

 www.cypress.com Document No. 001-64275 Rev. *E 1

AN64275

PSoC® 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

Author: Mark Hastings
Associated Project: Yes

Associated Part Family: All PSoC 3 and PSoC 5LP parts

Software Version: PSoC
®

Creator™ 2.0 SP1 or later
Related Application Notes: None

AN64275 discusses several methods to increase the resolution of the DACs available in the PSoC
®
 3 and PSoC 5LP

families. These methods can be used to extend the resolution up to 12 bits. An example application is supplied to

demonstrate most of these concepts. A library is also included that implements three of the methods as

PSoC Creator™ components.

Contents

Introduction ... 1
What are INL and DNL? ... 1
Summary of Results ... 2
Voltage or Current DAC.. 2

Parallel DACs Method (PIDAC) ... 3
Dithered Output DAC (DVDAC) .. 5

Dithered VDAC Limitations ... 7
Modulated IDAC (MIDAC) ... 8
ADC Feedback DAC ... 11
Which DAC is Right for You? .. 11

Test Setup .. 12
PSoC Advantage .. 12

Using these DACs in your Project 12
Summary ... 13
Worldwide Sales and Design Support 16

Introduction

The PSoC 3 and PSoC 5LP families have up to four 8-bit
voltage or current DACs (viDAC). These DACs have
overlapping ranges, two in the voltage mode and three in
current mode. In voltage mode, the full-scale voltage
ranges are 1 and 4 volts. In current mode, the ranges are
32, 256, and 2048 µA. For many applications, eight bits
may be sufficient, but there may be times where more
resolution can save a design. This application note
discusses four methods to extend the resolution up to
12 bits. The four methods presented in this application
note use one or two of the existing 8-bit DACs and other
PSoC components to achieve the higher resolution.
Following is the list of DAC resolution enhancement
techniques covered in this application note:

 Parallel IDACs (component included)

 Dithered Output DAC (component included)

 Modulated IDAC (component included)

 Parallel DACs with ADC feedback

What are INL and DNL?

Before we jump into designing a higher resolution DAC, it
is best to understand two important DAC specifications,
Differential nonlinearity (DNL) and integral nonlinearity
(INL). DNL is probably the most important specification for
a DAC. It is the difference between the ideal step size and
the actual step size between two successive output codes.
For example, if you have a 10-bit voltage DAC that has a
full scale of 1.023 volts, the ideal step size would be 1 mV.
If one or more steps are measured to be 1.5 mV, the DNL
error would be 1.5 – 1.0, or 0.5 LSb. Ideally you want the
DNL error to be zero, but a DNL less than 1.0 is usually
acceptable. A 10-bit DAC with a DNL between 1 and less
than 2 would be considered a 9-bit DAC. See Figure 1 for
an example of DNL.

http://www.cypress.com/

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 2

Figure 1. DNL and INL Error

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
A

C
 O

u
tp

u
t

(m
V

)

DAC Input (Code)

Real

Ideal

DNL Err = 1.3

INL Err = 2.7

INL is the deviation from the DAC’s actual transfer
function. Ideally, you would like the INL to be one or less,
but many applications will not suffer with an INL of several
counts. One example where a 16-bit DAC with an INL of
10 or 12 may be acceptable is the audio. Also,
applications where waveform shape is important, but
absolute accuracy is not required are applications where a
higher INL may be acceptable. Applications that require
absolute output accuracy may require a much lower INL,
such as 1 or 2 counts. Examples of applications that
require a low INL are voltage references, power supplies,
or any application that requires an accurate reference
without an ADC to close the loop. Figure 1 shows an
example of a DAC that has an INL greater than 1.

The 8-bit current and voltage DACs in PSoC 3 and
PSoC 5LP have an INL of about 2 and a DNL less than 1.
Because of this, we are able to easily achieve useful
higher resolution DACs. With each of the methods
mentioned above, the goal is to increase the resolution
until the DNL becomes 1 or greater. In most cases the INL
increases as the resolution increases, but as stated
before, a larger INL may be acceptable for many
applications.

Summary of Results

If you do not care about all the testing or how the DACs
work and want to get right to the results, take a look at
Table 1. It shows each of the methods discussed in the
application note, the achievable resolution, INL, DNL, and
DAC speed. Use this table to find the DAC that fits your
needs. You can then choose to jump right to the section of
interest for more information.

Table 1. DAC Resolution, INL, DNL, and Speed Summary

DAC Type Resolution INL DNL Speed

PIDAC

9 1 0.25 4 Msps

10 1.5 0.5 4 Msps

11 3 1.1 4 Msps

DVDAC

(1 V Range)

9 1.2 0.2 1.13 Msps

10 3 0.25 190 ksps

11 5.5 0.4 36 ksps

12 11 0.8 7 ksps

MIDAC

9 0.6 0.35 4 Msps

10 1.0 0.6 2.3 Msps

11 2 1.0 430 ksps

ADC
Feedback

12+ 1 1 ~100 sps

Voltage or Current DAC

Designers too often ignore current DACs in favor of
voltage DACs when needing a variable voltage source.
Since most voltage DACs have fixed ranges, you must
adjust your design to make the best use of the DAC’s
native range. A current DAC on the other hand can be
very flexible in providing just the right voltage range
required for a given application. By adding a single
external resistor, you can optimize the voltage range to
your application instead of the other way around. For
example, the internal voltage DACs in PSoC devices has
a full-scale output range of either 1 or 4 volts. What if you
need a full-scale range of 2.3 volts? You can use the 4 volt
range and route the output to a voltage divider (2
resistors), or you could use a single current DAC and one
resistor. For example, to achieve the 2.3 volts full scale,
you could select the 256-µA range and a 9.09 K load
resistor. The equation to calculate the resistor is just ohms
law. (Resistor_Value = Full_Scale_Volts *
Full_Scale_Current). To let you in on a little secret, many
voltage DACs are actually current DACs with an internal
resistor, including the ones inside PSoC 3 and PSoC 5LP.
So next time you see a current DAC do not think of it as
an inferior device, it may be just what you need.

One complaint with voltage DACs is that the output
impedance is not low enough and unable to drive much of
a load. With most microcontrollers that include a DAC, you
need to add an external amplifier to buffer the output.
PSoC 3 and PSoC 5LP devices have up to four opamps
internally that can be used to buffer a voltage DAC output.
These opamps are capable of sinking or sourcing 25 mA,
enough for most applications. These internal amplifiers in
combination with the DACs provide a wide range of
solutions for almost any application.

http://www.cypress.com/

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 3

Parallel DACs Method (PIDAC)

The parallel DAC method requires two current DACs
(iDAC) placed in parallel and set to two different
overlapping current ranges. When two iDACs are put in
parallel, the total current is the sum of both DACs. Notice
in Table 2 how the three current ranges overlap. The left
column indicates the weighting for each bit in the iDAC
data register. For example, in the 256 µA range, the most
significant bit (7) adds 128 µA when set. The least
significant bit (0) adds 1 µA when set. Each two adjacent
ranges overlap by 5 bits. Theoretically, you can construct
a 14-bit iDAC by setting one DAC to the 2048 µA range
and the second to the 32 µA range. Unfortunately, 8-bit
DACs are seldom linear enough to achieve an INL or DNL
that is low enough to for 14-bits.

Table 2. PSoC 3 and PSoC 5LP iDAC Overlapping
Current Ranges

 Ranges

µA 2048 µA

1024 7

512 6

256 5 256 µA

128 4 7

64 3 6

32 2 5 32 µA

16 1 4 7

8 0 3 6

4 2 5

2 1 4

1 0 3

0.5 2

0.25 1

0.125 0

In Figure 2, two iDACs are placed in parallel, configured in
source mode and connected to the same load resistor. If
the goal is to output a fixed voltage, a resistor can be used
for the load and the desired voltage is across this resistor.
The maximum voltage from the current source is the
analog supply voltage (VDDA) minus the compliance
voltage of the current source, typically less than a volt.
The routing resistance of the PCB and the internal PSoC
signal path may also reduce the maximum voltage across
the given load. This is usually only a concern for the
2048 µA range.

The load resistor is selected to provide a specific full-scale
voltage level. R is determined by using Ohm’s law.

CurrentMaximum

VoltageScaleFull
R

_

__
 Equation 1

For example, if the full-scale current is 2.048 mA and the
desired full-scale voltage is 1.5 volts, the optimal resistor
would be (1.5 V) / (0.002048 A) = 732 Ω.

In this example, the most significant DAC, ‘IDAC1_MSD’ is
configured to source current and set to the 2048 µA range.
The second iDAC, ‘IDAC2_LSD’ is also configured as a
current source but set to the 256 µA range.

Figure 2. Parallel Current DACs

Since the two ranges (2048 µA and 256 µA) overlap by
five bits as shown in Figure 3, there are six viable ways to
configure the DACs to achieve a 10-bit iDAC. Figure 3
shows one possible alignment. The second iDAC could
also have been configured in the 32 µA range and use bits
4 and 5 in the iDAC data register.

Figure 3. 10-bit DAC Data Register Bit Alignment

67 45 23 019 8

10-Bit DAC Word

67 45 23 01

67 45 23 01

1
0
2
4
 u

A
5
1
2
 u

A
2
5
6
 u

A
1
2
8
 u

A
6
4
 u

A
3
2
 u

A
1
6
 u

A
8
 u

A

4
 u

A

2
 u

A

Most Significant DAC (MSD) Least Significant DAC (LSD)

1
 u

A

1
2
8
 u

A
6
4
 u

A
3
2
 u

A
1
6
 u

A
8
 u

A

8-Bit Data Register (256uA)8-Bit Data Register (2048uA)

An 11-bit DAC would be a simple modification to the 10-bit
DAC. The 8 most significant bits of the input word would
be written to the higher current DAC and the 3 least
significant bits would be written to bits 2, 1, and 0 in the
lower current DAC. Figure 4 illustrates how the 11-bit
control word is spread across the two DACs.

http://www.cypress.com/

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 4

Figure 4. 11-bit DAC Data Register Bit Alignment

11-Bit DAC Word

67 45 23 01

67 45 23 01

1
0
2
4
 u

A
5
1
2
 u

A
2
5
6
 u

A
1
2
8
 u

A
6
4
 u

A
3
2
 u

A
1
6
 u

A
8
 u

A

4
 u

A

2
 u

A

Most Significant DAC (MSD) Least Significant DAC (LSD)

1
 u

A

1
2
8
 u

A
6
4
 u

A
3
2
 u

A
1
6
 u

A
8
 u

A

8-Bit Data Register (256uA)8-Bit Data Register (2048uA)

67 45 23 019 810

The code to configure the DACs and to write the value is
rather straight forward. The following code fragment starts
the two DACs, puts them both into source mode and puts
the two DACs into two adjacent ranges.

Example code to configure DACs:

/* Start both DACs */

IDAC1_MSD_Start();

IDAC2_LSD_Start();

/* Sets both IDACs to source current */

IDAC1_MSD_SetPolarity(IDAC1_MSD_SOURCE);

IDAC1_MSD_SetPolarity(IDAC2_LSD_SOURCE);

/* Sets proper ranges */

IDAC1_MSD_SetRange(IDAC1_MSD_RANGE_2mA);

IDAC2_LSD_SetRange(IDAC2_LSD_RANGE_255uA);

The following example code shows how to split the data
word into an MSB and LSB word to be written into the
parallel DACs. The most significant DAC should be written
first to minimize any glitch from one value to another since
both DACs cannot be written at the exact same time. This
glitch can be eliminated by setting the ‘Strobe_Mode’
parameter to ‘External’ in the customizer of each DAC.
Then connect both strobe inputs to the same clock source.
The code for implementing both a 10- and 11-bit iDAC is
as follows.

/* 10-Bit SetValue function */

void iDAC10_SetValue(uint16 dacValue)

{

 uint8 msb, lsb;

 /* Split data into 2 bytes */

 msb = (uint8)(dacValue >> 2);

 lsb = (uint8)((dacValue << 1) & 0x06);

 /* Write values */

 IDAC1_MSD_SetValue(msb);

 IDAC2_LSD_SetValue(lsb);

}

/* 11-Bit SetValue function. */

void iDAC11_SetValue(uint16 dacValue)

{

 uint8 msb, lsb;

 /* Split data into 2 bytes */

 msb = (uint8)(dacValue >> 3);

 lsb = (uint8)((dacValue << 0) & 0x07);

 /* Write values */

 IDAC1_MSD_SetValue(msb);

 IDAC2_LSD_SetValue(lsb);

}

A PSoC Creator component using this method has been
created and is part of the library accompanying this
application note. The name of this component is the
Parallel IDAC or PIDAC. The resolution for the PIDAC is
selectable for 9, 10, or 11 bits. See PIDAC datasheet
included with the component for more information.

The next step is to test this concept for increasing
resolutions until the DNL exceeds 1. Following are the INL
and DNL plots for 9, 10, and 11 bits.

Figure 5. 9-bit PIDAC DNL

Figure 6. 9-bit PIDAC INL

As can be seen from the PIDAC INL and DNL plots we
have very acceptable 9-bit performance.

http://www.cypress.com/

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 5

Figure 7. 10-bit PIDAC DNL

Figure 8. 10-bit PIDAC INL

Figure 9. 11-bit PIDAC DNL

Figure 10. 11-bit PIDAC INL

The 10-bit performance is still very respectable, but the
DAC’s 11-bit performance is becoming marginal. The INL
is about 3 counts, but the DNL at some points is just
above 1.

Dithered Output DAC (DVDAC)

The dithered output DAC uses a single current or voltage
DAC, DMA channel, a clock, and a small array of RAM.
The simple theory behind this method is that if you quickly
write two or more different values to the DAC and filter the
output, then the output is the average of the values written
to the DAC. This assumes that values written to the DAC
are periodic.

Figure 11. Dithered Outputs DAC

For example, to get 10-bits of resolution from an 8-bit
DAC, you require a resolution of ¼ of the LSb. Suppose
you are using a standard 8-bit VDAC with a full-scale
voltage of 1.024 volts, the minimum resolution, or LSb is
4 mV. For 10 bits, the LSb is 1 mV. This means that you
need two more bits of resolution or an LSb of ¼, you must
average at least four values to achieve 10 bits of
resolution with an 8-bit VDAC.

http://www.cypress.com/

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 6

The trick is to output the data quickly and very periodically.
With most average microcontrollers, you can use a timer
to generate an interrupt every ‘n’ microseconds. The
interrupt service routine would write the array of four
values sequentially to the VDAC. The faster you write to
the DAC, the simpler the filter will be and the faster the
output will settle. The problem is that interrupting a
processor every microsecond can consume a large share
of your microcontroller’s CPU performance. Since the
PSoC 3 and PSoC 5LP are not ordinary microcontrollers,
DMA can be used to repeatedly write an array to the
VDAC. A clock is used to trigger both the DMA and the
VDAC to strobe the data output. The beauty of using the
DMA is that after it is setup, there is ZERO CPU overhead.
Except for a couple extra bytes of RAM and a small
external capacitor, there is little cost to get 9 to 12 bits of
resolution from an 8-bit VDAC in the PSoC 3 and
PSoC 5LP parts.

Natively, the 8-bit VDAC in the 1-volt range provides a
resolution of 4 mV (1.024 V / 256 = 0.004 mV). If you want
an output of 500 mV you can simply write 125 to the DAC.
(125 * 0.004 mV = 500 mV). But, if you require 501 mV,
you have to settle for 500 or 504 mV. By dithering the
output at a relatively high speed, the 501 mV output can
be generated by averaging multiple output values. In this
case a succession of four values can be periodically
written to the VDAC. In the 1-volt range, a value of 125
written to the VDAC produces 500 mV. A value of 126
produces an output voltage of 504 mV. If you average the
numbers 500, 500, 500, and 504, you get 501. The
following table shows an example of how the output is
dithered. The same pattern may be used between any two
8-bit steps to increase the resolution.

Table 3. Example Output of 10-bit VDAC

Sample Array1 Array2 Array3 Array4

1 125 125 125 125

2 125 125 125 126

3 125 125 126 126

4 125 126 126 126

AVG 125.00 125.25 125.50 125.75

Average Volt (mV) 500 501 502 503

This dithering concept can be expanded beyond 10 bits,
but there are some limitations to where the INL and DNL
may become excessive. Usually the limit is where the
DAC becomes non-monotonic or the DNL error exceeds
one LSb.

A PSoC Creator component using this method has been
created and is part of the library accompanying this
application note. This DAC is called the DVDAC (Dithered
Voltage DAC) and has a selectable resolution of 9 to
12 bits. See DVDAC datasheet included with the
component for more information. The following plots show
the DNL and INL for a 10-bit dithered VDAC.

Figure 12. DNL for 10-bit Dithered VDAC

Figure 13. INL for 10-bit Dithered VDAC

The dithered VDAC concept can easily be extended
beyond 10-bit version from the looks of the INL and DNL.

Further testing showed that the DNL error remained under
1 up to 12 bits or resolution. At 13 bits the DNL error
exceeded 1.0 so currently the limit for the dithered VDAC
will be 12 bits. Below are the INL and DNL plots for the
12-bit version.

Figure 14. DNL for the 12-bit Dithered VDAC

http://www.cypress.com/

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 7

Figure 15. INL for the 12-bit Dithered VDAC

Notice that the shape of the INL for the 12-bit version is
identical to that of the 10-bit version. This is really not a
surprise since you expect it to have the same shape as
the native 8-bit VDAC. The INL error is multiplied by the
difference in resolution to the power of 2. Using this
equation we would expect the INL error for 12 bits to be
(12 bits – 10 bits)

2
 * 2.5 INL = 10 counts. If we note the

INL plot in Figure 15, we see that indeed the INL for
12 bits is about 10. The DNL also tends to double each
time the resolution is increased by one bit.

Dithered VDAC Limitations

The dithered DAC cannot generate a true 2
bits

 unique
output. The last N codes, where N = 2

(bits – 8)
 -1, all

generate the same output voltage. This is due to the fact
that the dithering requires two adjacent 8-bit DAC values
to generate an average output signal. Once the internal
8-bit DAC’s output is 255 (0xFF), there is no adjacent
higher value. When the voltage DAC is configured for the
1 volt range and the highest output value is written to the
VDAC, the output is 1.024 * (255 / 256) = 1.020 volts. This
is the highest voltage the 8-bit VDAC can generate. Using
the same equation for a 10-bit VDAC, we get a slightly
higher output, 1.024 * (1023 / 1024) = 1.023 volts. But, as
we are using a single 8-bit VDAC to simulate 10 or more
bits, the maximum voltage is still that of the 8-bit VDAC.
This means that any VDAC value higher than that of 8-bit
VDAC is invalid. In the case of a 10-bit VDAC, the highest
valid code is 1020, (1.024 * (1020 / 1024) = 1.020 volts.
The following table specifies the code limit for each
resolution.

Table 4. Valid Range of Dithered VDAC

Resolution
(bits)

Valid
Range

Invalid
Codes

Flat Code
Range

9 0 – 510 1 511

10 0 – 1020 3 1021 - 1023

11 0 – 2040 7 2041 - 2047

12 0 - 4080 15 4081 - 4095

Another more obvious limitation is the noise generated by
the process of dithering. Since the output is the average of
two adjacent values, the noise generated by dithering is
small. In this case the noise is 4 mV (1.024 / 256) for the
1-volt range and 16 (4.096 / 256) mV for the 4-volt range.
The actual dither frequency varies with the resolution of
the DAC. If a 1 MHz dither clock is used for the PWM and
the period is set to 4 (10-bits) the actual dither frequency
is about 250 KHz (1 MHz/4).

A filter can be added to reduce the dither noise to an
acceptable level. You are free to implement any type of
active or passive filter required to reduce the dithered
output noise. To keep external parts count low, a first
order passive filter may be sufficient. A first order filter is
simply a resistor and capacitor. Since the output
resistance of the DAC is known, 4 kΩ for the 1-volt range
and 16 kΩ for the 4-volt range, we get the resistor for free.
This means that all we need to do is add a capacitor on
the output. To calculate the capacitor value we first need
to know just how much attenuation is required, and then
determine the filter cutoff frequency. For each bit over
8-bits of resolution, the output needs to be attenuated by
about 6 dB to attenuate the noise caused by the dither
frequency. If we are making a 10-bit DAC, the dithered
output would need to be attenuated by 12 dB,
(6 db * (10 bits – 8 bits)). For an 11-bit DAC the
attenuation will need to be 18 dB and so on. The filter’s
cutoff frequency is relative to the dither frequency. The
VDAC8 specification states that the maximum clock rate is
1 MHz for the 1-volt range and 256 kHz for the 4 volt
range, but this output is divided by 2

B-8
where “B” is bits of

resolution. For example if we want 10 bits of resolution in
the 1 volt range, we divide the 1 MHz sample clock by 4
(2

(10-8)
) or 1 MHz/4 = 250 kHz. The following table shows

the attenuation required and dither frequency for each
resolution and voltage range.

Table 5. Attenuation and Dither Frequency

Resolution 9 10 11 12 Bits

Attenuation 6 12 18 24 dB

1-volt dither frequency 500 250 125 62.5 kHz

4-volt dither frequency 125 62.5 31.3 15.6 kHz

Using the following equation, we can find the filter cutoff
frequency.
















cF
dithF

Atten log*20 Equation 2

Where;

Atten is the amount of attenuation required for a given
resolution. Fdith is the dither frequency and Fc is the filter
cutoff frequency.

http://www.cypress.com/

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 8

Solving for Fc;

2010

Atten
dith

F

cF  Equation 3

Now that we know the cutoff frequency, we can calculate
the filter capacitor value.

RC
cF

2

1
 Equation 4

Solving for C;

cRF
C

2

1
 Equation 5

For example, if we build a 10 bit DAC using the voltage
dithering method and want to calculate the value of C for
the 1 volt range. The filter’s cutoff frequency would be;

kHz
kHz

cF 8.62

20
12

10

250


Remember the internal resistance is about 4 kΩ for the
1 volt range and the filter cutoff frequency is 62.8 kHz from
above we can solve for the filter capacitor value.

pF
kHzk

C 634
8.62*4**2

1







Using these equations we can solve for the required
capacitor values for both ranges at each resolution. See
the following table.

Table 6. Low-Pass Filter Capacitor Values

Resolution 9 10 11 12

C (1 volt Range) 160 pF 630 pF 2.5 nF 0.01 uF

Filter Cutoff 250 kHz 63 kHz 16 kHz 4 kHz

C (4 volt Range) 630 pF 2.5 nF 0.01 uF 0.04 uF

Filter Cutoff 16 kHz 4 kHz 1 kHz 250 Hz

The last thing to be concerned about is what the settling
time of the DAC is at the given resolution.

RC
t

einVSV



 Equation 6

Where Vs is the settled voltage and Vin is the smallest step
size of the 8-bit VDAC. If we make Vin one unit, then Vs is
the faction of the smallest step that we need to settle to for
the output to be accurate. Ideally, we want the output to be
within one half the smallest step of the VDAC. The step
size of the DAC in terms of the initial VDAC can be
expressed as follows.

8
2

1
*5.0




BsV Equation 7

Where B is the bits of resolution required. The “0.5”
multiplier is because we want the error to be one half the
step size. If we combine these two equations, we get;

RC
t

einV
B




8

2

1
*5.0 Equation 8

Solving for time (settling time);

CR
B

t **)
8

2

5.0
ln(


 Equation 9

If we use the example of the 10-bit, 1 volt full-scale VDAC,
our settling time would be;

uSecpFKt 3.5630*4*)
2

2

5.0
ln(

These are rough calculations to get you quickly into the
ballpark. The filter could easily be improved with a higher
order passive or active filter.

A dithered current DAC could easily be constructed using
the DVDAC as a template. All that would be needed is to
change the output connection of the viDAC8 in the DAC’s
schematic, change the customizer to reflect the current
range options, and a few lines of code in the API files.
Since the current DAC can run at a higher sampling
frequency, 8 MHz, the dither frequency is higher which
makes the settling time much faster.

Modulated IDAC (MIDAC)

This method combines a standard 8-bit current DAC
(IDAC8) and a PWM DAC. PWM DACs have been used
for years as an inexpensive way to generate a linear
voltage from digital hardware. The concept is simple. The
PWM generates a waveform with an adjustable duty cycle.
This is fed into a low-pass filter (LPF) and the DC output is
a function of the PWM’s peak-to-peak output times the
duty cycle. If the LPF is a simple single pole RC filter, the
modulation frequency needs to be close to three orders of
magnitude higher than the filters cutoff frequency just for
an 8-bit DAC. A higher order filter would probably be a
better option.

Figure 16. PWM Block Diagram

PWM
LPF

DC

Out

http://www.cypress.com/

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 9

Figure 17. Example PWM Waveforms

0%

25%

50%

75%

Period Period

00

01

10

11

Data[1:0]

With the modulated IDAC, the current is summed between
the PWM DAC and the 8-bit current source (See
Figure 18). The PWM’s modulation amplitude is half the
amplitude of the least significant bit of the 8-bit current
DAC, because of the combination of R2 and R1. So the
noise introduced by the PWM is more than 50 dB less
than a typical PWM DAC and much easier to filter with a
simple filter. The IDAC adjusts the most significant 8 bits
of the current and the PWM adjusts the remaining few bits,
depending on the resolution. In the case of a 10 bit DAC
the PWM would add the additional 2 bits of resolution.

This method requires a current DAC, two resistors, and a
PWM. The output of the current DAC is connected to two
resistors. One of the resistors is connected directly to VSSA
and the other is connected to the PWM output as shown in
Figure 18. With just one resistor connected to the DAC’s
output and VSS, the current DAC operates as a voltage
DAC. The second resistor connected to the PWM must be
much larger than the resistor connected to ground. The
pin connected to the PWM should be set to “Strong Drive”
so that it can drive the filter’s capacitor. This DAC works
much similar to the dithered voltage DAC except it uses a
PWM to modulate the least significant bits instead of the
DAC itself. One of the advantages is that the PWM can be
modulated faster than that of the DAC itself. Unlike a
typical PWM DAC where the output of the PWM that
swings from VSS to VDD, the effective voltage swing of this
PWM is much smaller and generates much less noise and
therefore requires less filtering The PWM’s output period
should be sufficiently fast so that the modulated signal can
be easily filtered.

Figure 18. Modulated IDAC

To calculate the size of R1, simply divide the maximum
output voltage required by the current range that is being
used.

I

V
R

max
1  Equation 10

Then use the value calculated for R1 to calculate R2.

)256max/(

)256max/(
*12

V

VVdd
RR


 Equation 11

Example:

If you require a DAC output voltage between 0 and
1.024 volts, using the 256 µA current range, and has a
VDD = 3.3 V solve for R1 and R2. (Using Equations 10 and
11 given earlier.)

 K
uA

V
R 4

256

024.1
1 Equation 12

)256/024.1(

)256/024.1(3.3
*42


 KR = 3.3 MΩ Equation 13

The modulated IDAC has good performance up to 11 bits.
The INL is better than that of the PIDAC or DVDAC at 2
counts for 11 bits. In 10 bit mode the maximum DNL was
less than 0.6 counts and the INL was just under 1 count,
not bad when derived from an 8-bit DAC.

A PSoC Creator component using this method has been
constructed and is part of the library accompanying this
application note. This DAC is called the MIDAC
(Modulated Current DAC). Its parameters allow you to
select both the range and the resolution between 9 and
11 bits. See MIDAC datasheet included with the
component for more information. Following are the test
result plots for INL and DNL for 9 to 11 bits.

http://www.cypress.com/

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 10

Figure 19. DNL for 9-Bit MIDAC

Figure 20. INL for 9-Bit MIDAC

Figure 21. DNL for 10-Bit MIDAC

Figure 22. INL for 10-Bit MIDAC

Figure 23. DNL for 11-Bit MIDAC

Figure 24. INL for 11-Bit MIDAC

As with the dithered voltage DAC, the PWM modulator
generates noise on top of the signal. Although the DAC
does use a PWM, the noise generated is less than one
LSb in magnitude that is much less than a typical PWM
DAC, where the output swings from VSS to the maximum
output voltage. To filter out this noise a capacitor may be
added to the output of the DAC in parallel with the
resistors, See Figure 18. The same method used to
calculate the capacitor value for the dithered voltage DAC
can be used here as well. As long as R2 is much larger

http://www.cypress.com/

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 11

than R1, you can ignore R2 and use R1 and C1
(Figure 18) for R and C respectively in Equations 3 and 5
given earlier. The following table shows examples of some
capacitor values for a load of 4 K and a PWM clock of
12 MHz.

Table 7. Capacitor Value for R1 = 4 K

Resolution 9 10 11

Modulation Frequency 6 MHz 3 MHz 1.5 MHz

Attenuation 6 dB 12 dB 18 dB

Cap Value 13 pF 53 pF 210 pF

The settling time can also be calculated in the same
fashion as we used with the dithered voltage DAC with
Equation 9.

ADC Feedback DAC

This method uses the same DAC configuration used in the
parallel IDAC method but is configured to provide at least
2 bits more resolution than required for the accuracy. For
example, if 12 bits of accuracy is required, the IDAC
resolution should be 14 bits. To achieve this, one IDAC
should be configured to the 2 mA range and the other
IDAC to the 32 µA range. These overlapping ranges
provide a maximum resolution of 14 bits. The higher
resolution parallel IDAC by itself may have excessive INL
and DNL errors for 14 bit operation. The ADC used for this
method should have an INL and DNL about half of the
desired result for this method. The ADC is essentially
continually calibrating the DAC and therefore needs to be
more accurate than the DAC. The 20-bit Delta-Sigma ADC
found in PSoC 3 and PSoC 5LP, has an INL and DNL of
less than 1 at 16 bits. This is more than sufficient to trim a
nonlinear 14-bit DAC to 12 bits.

In most cases, an external resistor is used as a linear load
that converts the current output to a voltage. The ADC
needs to be connected at the point where the voltage is
used or buffered by the system to eliminate any IR
(current * resistance) drop in the internal or external
current path.

Firmware is required to complete a feedback loop between
the IDAC output and the ADC. Each time the output is
updated, an approximated value is applied. The output is
allowed to settle and then measured with the ADC. If the
output is not within 12 bits of accuracy, the IDAC output is
trimmed to get closer to the desired value. This is an
iterative process and may require 2 to 4 cycles to get
within 12 bits of accuracy. The following figure is an
example of a feedback IDAC using standard
PSoC Creator components.

Figure 25. IDAC with Feedback

Which DAC is Right for You?

Four methods to create a higher resolution DAC have
been presented in this application note. There are several
factors that need to be considered when selecting which
DAC is right for your application. Resolution, current
versus voltage, speed, resources required, and need for
external components all need to be considered in order to
make a good decision. The current DACs are the most
flexible as they can all be converted to a voltage DAC with
the addition of an external resistor. The selection of the
external resistor also allows you to optimize the full-scale
voltage output as well.

For applications that require the fastest settling times,
PIDAC and MIDAC are your best choices. The PIDAC
provides 4 Msps for all ranges and does not require
external components. The only downside is that the
PIDAC uses two viDAC block resources. This may or may
not be a concern depending on your overall application
resource requirements. The MIDAC will be your next best
selection for fast settling times and it uses only one viDAC
block. Its speed does diminish as the resolution increases,
but may be sufficient for many applications.

The DVDAC also provides relatively high update rates at
low resolutions (9 and 10 bits), but slows down to 7 ksps
at 12 bits. It has good DNL performance up to 12 bits and
requires only one viDAC block and one DMA channel per
DAC. This is a good option for many applications since it
offers a good tradeoff between resolution and speed while
using few analog resources.

Applications that require high accuracy (low INL), the ADC
feedback method is the best approach, but its update rate
is substantially slower than the other options, well under
1 ksps. It is possible to achieve 12 or maybe 13 bits with
an INL of 1, but it will require the use of the DelSig ADC to
close the feedback loop. In applications where a reference
needs only be adjusted periodically and you can share the
ADC, it could prove to be a very cost effective solution.

The following figure shows a comparison of INL between
three of the methods discussed with a resolution of
10 bits. Table 8 shows a summary of resources required
to implement the DAC.

http://www.cypress.com/
../../../APPDATA/Local%20Settings/Temp/Extending_8bit_DACs.doc

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 12

Figure 26. INL Comparison for 10-bit DACs

Table 8. Resources Required for DACs

DAC Type Resources Pins
External

Components
Required

PIDAC viDAC8(2) 1 NA

DVDAC
viDAC8,
DMA, Clock 1 Capacitor(1)

MIDAC
viDAC8,
UDB(PWM) 2

Resistor(2)
Capacitor(1)

ADC
Feedback

viDAC8(2),

16-bit ADC 1 or 2 Resistor(1)

Test Setup

The test setup used for evaluation of these DACs
consisted of a Cypress CY8CKIT-001 PSoC Development
Board (DVK), a couple external components (Rs and Cs),
a USB-to-Serial adapter, and a PC. The internal Delta-
Sigma ADC, a UART, and the LCD were used for data
collection. When testing current DACs, external resistors
were used to convert the current to voltage so that the
ADC could measure the output. Excel was used to convert
the collected data into the INL and DNL plots in the
document.

Figure 27. Test Setup

Other than a couple resisters and capacitors no special
external hardware or development board is required to
implement these methods. Any of the PSoC 3 or PSoC
5LP development systems (DVK, FTK) can be used to
evaluate or test these concepts.

PSoC Advantage

Almost any microcontroller can do the old trick using a
PWM and LPF to create a DAC, so can PSoC, times 50 or
more (24 PWMs with dual outputs and 4 fixed function
PWMs). Voltage DACs are very common to many
controllers, but current DACs are not. Current DACs can
prove to be very flexible in optimizing a voltage range to fit
your application, not the other way around. DMA is
becoming more and more common in high end
microcontrollers, but with up to 24 channels, you will
always have sufficient channels to implement something
such as the DVDAC. Internal opamps to buffer a voltage
DAC is not as common, but very useful. If you combine all
these common and uncommon features, the PSoC 3 and
PSoC 5LP devices have unmatched flexibility compared to
any single part solution on the market today.

Using these DACs in your Project

To add any of these DAC components to your project, you
must add the HighResDacs library containing these
components, as a dependency. To do this, right-click on
your project’s name in the Workspace Explorer on the left
half of the PSoC Creator window. Select the
Dependencies option in the pop-up menu as shown in
Figure 28.

Figure 28. Select Project Dependency Option

When the Dependencies dialog box opens, press the
folder icon for User Dependencies as shown in Figure 29.

http://www.cypress.com/

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 13

Figure 29. Adding a User Dependency

Click the folder icon and then navigate to the folder
containing the library in which the high resolution DAC
components are located. In this case, it is located in the
folder HighResDacs.cylib. Select the file as shown in
Figure 30. This will add the library to this project.

Figure 30. Select the DAC library

The Dependencies dialog box should now look similar to

Figure 31, with the DAC library “HighResDacs” added to
your project.

Figure 31. DAC Library Added to Project

After you add the library to your project, the Concept tab
appears in the Component Catalog on the right side of
PSoC Creator. You must be in the schematic entry mode
to see the component library. Under that tab, you will see
three entries under the Analog/DAC/ component path, as
shown in Figure 32.

Figure 32. New DAC Components in Component Catalog

You can now add any of these DAC components to you
project just as you add any standard components.

Summary

There are many ways to implement DACs or to increase
the resolution of an existing DAC. The methods discussed
in this application note focused on methods that may be
unique to PSoC with its flexible analog and digital
structure. The supplied reference components should give
you a good head start in experimenting with the different
methods and finding out what works best for a given

http://www.cypress.com/

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 14

application. These concepts and example components
can be used as provided, or modified to fit your application
even better. Three example projects are also included with
this application note, one for each of the three
components (DVDAC, PIDAC, and MIDAC). These
projects are identical except for which DAC is used in the
project.

As of version 3.0 of PSoC Creator, the DVDAC or
“Dithered VDAC” is part of the standard library and no
longer requires downloading the library associated with
this application note to use it in your project.

About the Author

Name: Mark Hastings

Title: Application Engineer MTS

Background: Mark Hastings graduated from
Washington State University in 1984.
For most of the last twenty five years
he has been involved in embedded
and mixed signal designs.

Contact: meh@cypress.com

http://www.cypress.com/
mailto:meh@cypress.com

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 15

Document History

Document Title: PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs – AN64275

Document Number: 001-64275

Revision ECN
Orig. of
Change

Submission
Date

Description of Change

** 3095295 MEH 12/03/2010 New application note

*A 3450302 MEH 11/30/2011 Changed title and updated abstract.

Updated template.

*B 3621214 MEH 05/18/2012 Added section to show the user how to include DACs in their design.

Updated template.

*C 3702848 MEH 08/03/2012 Figure 1 update. Several minor changes.

*D 3811902 MEH 11/15/2012 Updated Associated Part Family as “All PSoC 3 and PSoC 5LP parts”.

Updated Software Version as “PSoC
®
 Creator™ 2.0 SP1 or later”.

Updated Using these DACs in your Project (Updated Figure 28, Figure 29,
Figure 30, Figure 31, Figure 32).

Replaced PSoC 5 with PSoC 5LP in all instances across the document.

*E 4573105 MEH 11/18/2014 Fixed several headers and table of contents.

Updated summary to mention new DVDAC in PSoC Creator 3.0

http://www.cypress.com/

PSoC
®
 3 and PSoC 5LP: Getting More Resolution from 8-Bit DACs

 www.cypress.com Document No. 001-64275 Rev. *E 16

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc
cypress.com/go/plc

Memory cypress.com/go/memory

Optical Navigation Sensors cypress.com/go/ons

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

PSoC is a registered trademark of Cypress Semiconductor Corporation. PSoC Designer and PSoC Creator are trademarks of Cypress Semiconductor
Corporation. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2010-2014. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/
http://www.cypress.com/go/locations
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=24
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/go/powerpsoc
http://www.cypress.com/go/plc
http://www.cypress.com/?id=64
http://www.cypress.com/go/ons
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=167
http://www.cypress.com/?id=10
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1573
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203
http://www.cypress.com/?app=forum
http://www.cypress.com/?id=2200
http://www.cypress.com/?id=2660
http://www.cypress.com/?id=1162
http://www.cypress.com/go/support
http://www.cypress.com/

