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AN64275 discusses several methods to increase the resolution of the DACs available in the PSoC
®
 3 and PSoC 5LP 

families. These methods can be used to extend the resolution up to 12 bits. An example application is supplied to 

demonstrate most of these concepts. A library is also included that implements three of the methods as 

PSoC Creator™ components. 
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Introduction 

The PSoC 3 and PSoC 5LP families have up to four 8-bit 
voltage or current DACs (viDAC). These DACs have 
overlapping ranges, two in the voltage mode and three in 
current mode. In voltage mode, the full-scale voltage 
ranges are 1 and 4 volts. In current mode, the ranges are 
32, 256, and 2048 µA. For many applications, eight bits 
may be sufficient, but there may be times where more 
resolution can save a design. This application note 
discusses four methods to extend the resolution up to 
12 bits. The four methods presented in this application 
note use one or two of the existing 8-bit DACs and other 
PSoC components to achieve the higher resolution. 
Following is the list of DAC resolution enhancement 
techniques covered in this application note: 

 Parallel IDACs (component included) 

 Dithered Output DAC (component included) 

 Modulated IDAC (component included) 

 Parallel DACs with ADC feedback 

What are INL and DNL? 

Before we jump into designing a higher resolution DAC, it 
is best to understand two important DAC specifications, 
Differential nonlinearity (DNL) and integral nonlinearity 
(INL). DNL is probably the most important specification for 
a DAC. It is the difference between the ideal step size and 
the actual step size between two successive output codes. 
For example, if you have a 10-bit voltage DAC that has a 
full scale of 1.023 volts, the ideal step size would be 1 mV. 
If one or more steps are measured to be 1.5 mV, the DNL 
error would be 1.5 – 1.0, or 0.5 LSb. Ideally you want the 
DNL error to be zero, but a DNL less than 1.0 is usually 
acceptable. A 10-bit DAC with a DNL between 1 and less 
than 2 would be considered a 9-bit DAC. See Figure 1 for 
an example of DNL. 
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Figure 1. DNL and INL Error 
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INL is the deviation from the DAC’s actual transfer 
function. Ideally, you would like the INL to be one or less, 
but many applications will not suffer with an INL of several 
counts. One example where a 16-bit DAC with an INL of 
10 or 12 may be acceptable is the audio. Also, 
applications where waveform shape is important, but 
absolute accuracy is not required are applications where a 
higher INL may be acceptable. Applications that require 
absolute output accuracy may require a much lower INL, 
such as 1 or 2 counts. Examples of applications that 
require a low INL are voltage references, power supplies, 
or any application that requires an accurate reference 
without an ADC to close the loop. Figure 1 shows an 
example of a DAC that has an INL greater than 1. 

The 8-bit current and voltage DACs in PSoC 3 and 
PSoC 5LP have an INL of about 2 and a DNL less than 1. 
Because of this, we are able to easily achieve useful 
higher resolution DACs. With each of the methods 
mentioned above, the goal is to increase the resolution 
until the DNL becomes 1 or greater. In most cases the INL 
increases as the resolution increases, but as stated 
before, a larger INL may be acceptable for many 
applications.  

Summary of Results 

If you do not care about all the testing or how the DACs 
work and want to get right to the results, take a look at 
Table 1. It shows each of the methods discussed in the 
application note, the achievable resolution, INL, DNL, and 
DAC speed. Use this table to find the DAC that fits your 
needs. You can then choose to jump right to the section of 
interest for more information. 

 

 

 

 

 

 

Table 1. DAC Resolution, INL, DNL, and Speed Summary 

DAC Type Resolution INL DNL Speed 

PIDAC 

9 1 0.25 4 Msps 

10 1.5 0.5 4 Msps 

11 3 1.1 4 Msps 

DVDAC 

(1 V Range) 

9 1.2 0.2 1.13 Msps 

10 3 0.25 190 ksps 

11 5.5 0.4 36 ksps 

12 11 0.8 7 ksps 

MIDAC 

9 0.6 0.35 4 Msps 

10 1.0 0.6 2.3 Msps 

11 2 1.0 430 ksps 

ADC 
Feedback 

12+ 1 1 ~100 sps 

Voltage or Current DAC 

Designers too often ignore current DACs in favor of 
voltage DACs when needing a variable voltage source. 
Since most voltage DACs have fixed ranges, you must 
adjust your design to make the best use of the DAC’s 
native range. A current DAC on the other hand can be 
very flexible in providing just the right voltage range 
required for a given application. By adding a single 
external resistor, you can optimize the voltage range to 
your application instead of the other way around. For 
example, the internal voltage DACs in PSoC devices has 
a full-scale output range of either 1 or 4 volts. What if you 
need a full-scale range of 2.3 volts? You can use the 4 volt 
range and route the output to a voltage divider (2 
resistors), or you could use a single current DAC and one 
resistor. For example, to achieve the 2.3 volts full scale, 
you could select the 256-µA range and a 9.09 K load 
resistor. The equation to calculate the resistor is just ohms 
law. (Resistor_Value = Full_Scale_Volts * 
Full_Scale_Current). To let you in on a little secret, many 
voltage DACs are actually current DACs with an internal 
resistor, including the ones inside PSoC 3 and PSoC 5LP. 
So next time you see a current DAC do not think of it as 
an inferior device, it may be just what you need. 

One complaint with voltage DACs is that the output 
impedance is not low enough and unable to drive much of 
a load. With most microcontrollers that include a DAC, you 
need to add an external amplifier to buffer the output. 
PSoC 3 and PSoC 5LP devices have up to four opamps 
internally that can be used to buffer a voltage DAC output. 
These opamps are capable of sinking or sourcing 25 mA, 
enough for most applications. These internal amplifiers in 
combination with the DACs provide a wide range of 
solutions for almost any application.  
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Parallel DACs Method (PIDAC) 

The parallel DAC method requires two current DACs 
(iDAC) placed in parallel and set to two different 
overlapping current ranges. When two iDACs are put in 
parallel, the total current is the sum of both DACs. Notice 
in Table 2 how the three current ranges overlap. The left 
column indicates the weighting for each bit in the iDAC 
data register. For example, in the 256 µA range, the most 
significant bit (7) adds 128 µA when set. The least 
significant bit (0) adds 1 µA when set. Each two adjacent 
ranges overlap by 5 bits. Theoretically, you can construct 
a 14-bit iDAC by setting one DAC to the 2048 µA range 
and the second to the 32 µA range. Unfortunately, 8-bit 
DACs are seldom linear enough to achieve an INL or DNL 
that is low enough to for 14-bits. 

Table 2. PSoC 3 and PSoC 5LP iDAC Overlapping 
Current Ranges 

 Ranges 

µA 2048 µA   

1024 7 

512 6 

256 5 256 µA 

128 4 7 

64 3 6 

32 2 5 32 µA 

16 1 4 7 

8 0 3 6 

4  2 5 

2 1 4 

1 0 3 

0.5  2 

0.25 1 

0.125 0 

 

In Figure 2, two iDACs are placed in parallel, configured in 
source mode and connected to the same load resistor. If 
the goal is to output a fixed voltage, a resistor can be used 
for the load and the desired voltage is across this resistor. 
The maximum voltage from the current source is the 
analog supply voltage (VDDA) minus the compliance 
voltage of the current source, typically less than a volt. 
The routing resistance of the PCB and the internal PSoC 
signal path may also reduce the maximum voltage across 
the given load. This is usually only a concern for the 
2048 µA range. 

The load resistor is selected to provide a specific full-scale 
voltage level. R is determined by using Ohm’s law.  

CurrentMaximum

VoltageScaleFull
R

_

__
                        Equation 1 

For example, if the full-scale current is 2.048 mA and the 
desired full-scale voltage is 1.5 volts, the optimal resistor 
would be (1.5 V) / (0.002048 A) = 732 Ω. 

In this example, the most significant DAC, ‘IDAC1_MSD’ is 
configured to source current and set to the 2048 µA range. 
The second iDAC, ‘IDAC2_LSD’ is also configured as a 
current source but set to the 256 µA range. 

Figure 2. Parallel Current DACs 

 
 

Since the two ranges (2048 µA and 256 µA) overlap by 
five bits as shown in Figure 3, there are six viable ways to 
configure the DACs to achieve a 10-bit iDAC. Figure 3 
shows one possible alignment. The second iDAC could 
also have been configured in the 32 µA range and use bits 
4 and 5 in the iDAC data register. 

Figure 3. 10-bit DAC Data Register Bit Alignment 
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An 11-bit DAC would be a simple modification to the 10-bit 
DAC. The 8 most significant bits of the input word would 
be written to the higher current DAC and the 3 least 
significant bits would be written to bits 2, 1, and 0 in the 
lower current DAC. Figure 4 illustrates how the 11-bit 
control word is spread across the two DACs. 
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Figure 4. 11-bit DAC Data Register Bit Alignment 
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The code to configure the DACs and to write the value is 
rather straight forward. The following code fragment starts 
the two DACs, puts them both into source mode and puts 
the two DACs into two adjacent ranges. 

Example code to configure DACs: 

/* Start both DACs */ 

IDAC1_MSD_Start();         

IDAC2_LSD_Start(); 

 

/* Sets both IDACs to source current */ 

IDAC1_MSD_SetPolarity(IDAC1_MSD_SOURCE); 

IDAC1_MSD_SetPolarity(IDAC2_LSD_SOURCE); 

 

/* Sets proper ranges */ 

IDAC1_MSD_SetRange(IDAC1_MSD_RANGE_2mA );  

IDAC2_LSD_SetRange(IDAC2_LSD_RANGE_255uA); 

 

The following example code shows how to split the data 
word into an MSB and LSB word to be written into the 
parallel DACs. The most significant DAC should be written 
first to minimize any glitch from one value to another since 
both DACs cannot be written at the exact same time. This 
glitch can be eliminated by setting the ‘Strobe_Mode’ 
parameter to ‘External’ in the customizer of each DAC. 
Then connect both strobe inputs to the same clock source. 
The code for implementing both a 10- and 11-bit iDAC is 
as follows. 

/* 10-Bit SetValue function  */ 

void iDAC10_SetValue(uint16 dacValue) 

{ 

    uint8 msb, lsb; 

    /* Split data into 2 bytes */ 

    msb = (uint8)(dacValue >> 2);            

    lsb = (uint8)((dacValue << 1) & 0x06); 

    /* Write values */ 

    IDAC1_MSD_SetValue(msb);        

    IDAC2_LSD_SetValue(lsb); 

} 

 

/* 11-Bit SetValue function.  */ 

void iDAC11_SetValue(uint16 dacValue) 

{ 

    uint8 msb, lsb; 

    /* Split data into 2 bytes */ 

    msb = (uint8)(dacValue >> 3);  

    lsb = (uint8)((dacValue << 0) & 0x07); 

    /* Write values */ 

    IDAC1_MSD_SetValue(msb);  

    IDAC2_LSD_SetValue(lsb); 

} 

 

A PSoC Creator component using this method has been 
created and is part of the library accompanying this 
application note. The name of this component is the 
Parallel IDAC or PIDAC. The resolution for the PIDAC is 
selectable for 9, 10, or 11 bits. See PIDAC datasheet 
included with the component for more information. 

The next step is to test this concept for increasing 
resolutions until the DNL exceeds 1. Following are the INL 
and DNL plots for 9, 10, and 11 bits. 

Figure 5. 9-bit PIDAC DNL  

 

Figure 6. 9-bit PIDAC INL 

 
As can be seen from the PIDAC INL and DNL plots we 
have very acceptable 9-bit performance. 
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Figure 7. 10-bit PIDAC DNL 

 

Figure 8. 10-bit PIDAC INL 

 
Figure 9. 11-bit PIDAC DNL 

 
 
 
 
 
 
 
 
 
 

Figure 10. 11-bit PIDAC INL 

 
The 10-bit performance is still very respectable, but the 
DAC’s 11-bit performance is becoming marginal. The INL 
is about 3 counts, but the DNL at some points is just 
above 1. 

Dithered Output DAC (DVDAC) 

The dithered output DAC uses a single current or voltage 
DAC, DMA channel, a clock, and a small array of RAM. 
The simple theory behind this method is that if you quickly 
write two or more different values to the DAC and filter the 
output, then the output is the average of the values written 
to the DAC. This assumes that values written to the DAC 
are periodic. 

Figure 11. Dithered Outputs DAC 

 
 
For example, to get 10-bits of resolution from an 8-bit 
DAC, you require a resolution of ¼ of the LSb. Suppose 
you are using a standard 8-bit VDAC with a full-scale 
voltage of 1.024 volts, the minimum resolution, or LSb is 
4 mV. For 10 bits, the LSb is 1 mV. This means that you 
need two more bits of resolution or an LSb of ¼, you must 
average at least four values to achieve 10 bits of 
resolution with an 8-bit VDAC. 
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The trick is to output the data quickly and very periodically. 
With most average microcontrollers, you can use a timer 
to generate an interrupt every ‘n’ microseconds. The 
interrupt service routine would write the array of four 
values sequentially to the VDAC. The faster you write to 
the DAC, the simpler the filter will be and the faster the 
output will settle. The problem is that interrupting a 
processor every microsecond can consume a large share 
of your microcontroller’s CPU performance. Since the 
PSoC 3 and PSoC 5LP are not ordinary microcontrollers, 
DMA can be used to repeatedly write an array to the 
VDAC. A clock is used to trigger both the DMA and the 
VDAC to strobe the data output. The beauty of using the 
DMA is that after it is setup, there is ZERO CPU overhead. 
Except for a couple extra bytes of RAM and a small 
external capacitor, there is little cost to get 9 to 12 bits of 
resolution from an 8-bit VDAC in the PSoC 3 and  
PSoC 5LP parts. 

Natively, the 8-bit VDAC in the 1-volt range provides a 
resolution of 4 mV (1.024 V / 256 = 0.004 mV). If you want 
an output of 500 mV you can simply write 125 to the DAC. 
(125 * 0.004 mV = 500 mV). But, if you require 501 mV, 
you have to settle for 500 or 504 mV. By dithering the 
output at a relatively high speed, the 501 mV output can 
be generated by averaging multiple output values. In this 
case a succession of four values can be periodically 
written to the VDAC. In the 1-volt range, a value of 125 
written to the VDAC produces 500 mV. A value of 126 
produces an output voltage of 504 mV. If you average the 
numbers 500, 500, 500, and 504, you get 501. The 
following table shows an example of how the output is 
dithered. The same pattern may be used between any two 
8-bit steps to increase the resolution. 

Table 3. Example Output of 10-bit VDAC 

Sample Array1 Array2 Array3 Array4 

1 125 125 125 125 

2 125 125 125 126 

3 125 125 126 126 

4 125 126 126 126 

AVG 125.00 125.25 125.50 125.75 

Average Volt (mV) 500 501 502 503 

 
This dithering concept can be expanded beyond 10 bits, 
but there are some limitations to where the INL and DNL 
may become excessive. Usually the limit is where the 
DAC becomes non-monotonic or the DNL error exceeds 
one LSb.  

A PSoC Creator component using this method has been 
created and is part of the library accompanying this 
application note. This DAC is called the DVDAC (Dithered 
Voltage DAC) and has a selectable resolution of 9 to 
12 bits. See DVDAC datasheet included with the 
component for more information. The following plots show 
the DNL and INL for a 10-bit dithered VDAC. 

Figure 12. DNL for 10-bit Dithered VDAC 

 

Figure 13. INL for 10-bit Dithered VDAC 

 
The dithered VDAC concept can easily be extended 
beyond 10-bit version from the looks of the INL and DNL. 

Further testing showed that the DNL error remained under 
1 up to 12 bits or resolution. At 13 bits the DNL error 
exceeded 1.0 so currently the limit for the dithered VDAC 
will be 12 bits. Below are the INL and DNL plots for the  
12-bit version. 

Figure 14. DNL for the 12-bit Dithered VDAC 
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Figure 15. INL for the 12-bit Dithered VDAC 

 
Notice that the shape of the INL for the 12-bit version is 
identical to that of the 10-bit version. This is really not a 
surprise since you expect it to have the same shape as 
the native 8-bit VDAC. The INL error is multiplied by the 
difference in resolution to the power of 2. Using this 
equation we would expect the INL error for 12 bits to be 
(12 bits – 10 bits)

2
 * 2.5 INL = 10 counts. If we note the 

INL plot in Figure 15, we see that indeed the INL for 
12 bits is about 10. The DNL also tends to double each 
time the resolution is increased by one bit. 

Dithered VDAC Limitations 

The dithered DAC cannot generate a true 2
bits

 unique 
output. The last N codes, where N = 2

(bits – 8)
 -1, all 

generate the same output voltage. This is due to the fact 
that the dithering requires two adjacent 8-bit DAC values 
to generate an average output signal. Once the internal  
8-bit DAC’s output is 255 (0xFF), there is no adjacent 
higher value. When the voltage DAC is configured for the 
1 volt range and the highest output value is written to the 
VDAC, the output is 1.024 * (255 / 256) = 1.020 volts. This 
is the highest voltage the 8-bit VDAC can generate. Using 
the same equation for a 10-bit VDAC, we get a slightly 
higher output, 1.024 * (1023 / 1024) = 1.023 volts. But, as 
we are using a single 8-bit VDAC to simulate 10 or more 
bits, the maximum voltage is still that of the 8-bit VDAC. 
This means that any VDAC value higher than that of 8-bit 
VDAC is invalid. In the case of a 10-bit VDAC, the highest 
valid code is 1020, (1.024 * (1020 / 1024) = 1.020 volts. 
The following table specifies the code limit for each 
resolution. 

Table 4. Valid Range of Dithered VDAC 

Resolution 
(bits) 

Valid 
Range 

Invalid 
Codes 

Flat Code 
Range 

9 0 – 510 1 511 

10 0 – 1020 3 1021 - 1023 

11 0 – 2040 7 2041 - 2047 

12 0 - 4080 15 4081 - 4095 

 

 

Another more obvious limitation is the noise generated by 
the process of dithering. Since the output is the average of 
two adjacent values, the noise generated by dithering is 
small. In this case the noise is 4 mV (1.024 / 256) for the 
1-volt range and 16 (4.096 / 256) mV for the 4-volt range. 
The actual dither frequency varies with the resolution of 
the DAC. If a 1 MHz dither clock is used for the PWM and 
the period is set to 4 (10-bits) the actual dither frequency 
is about 250 KHz (1 MHz/4). 

A filter can be added to reduce the dither noise to an 
acceptable level. You are free to implement any type of 
active or passive filter required to reduce the dithered 
output noise. To keep external parts count low, a first 
order passive filter may be sufficient. A first order filter is 
simply a resistor and capacitor. Since the output 
resistance of the DAC is known, 4 kΩ for the 1-volt range 
and 16 kΩ for the 4-volt range, we get the resistor for free. 
This means that all we need to do is add a capacitor on 
the output. To calculate the capacitor value we first need 
to know just how much attenuation is required, and then 
determine the filter cutoff frequency. For each bit over  
8-bits of resolution, the output needs to be attenuated by 
about 6 dB to attenuate the noise caused by the dither 
frequency. If we are making a 10-bit DAC, the dithered 
output would need to be attenuated by 12 dB,  
(6 db * (10 bits – 8 bits)). For an 11-bit DAC the 
attenuation will need to be 18 dB and so on. The filter’s 
cutoff frequency is relative to the dither frequency. The 
VDAC8 specification states that the maximum clock rate is 
1 MHz for the 1-volt range and 256 kHz for the 4 volt 
range, but this output is divided by 2

B-8 
where “B” is bits of 

resolution. For example if we want 10 bits of resolution in 
the 1 volt range, we divide the 1 MHz sample clock by 4 
(2

(10-8)
) or 1 MHz/4 = 250 kHz. The following table shows 

the attenuation required and dither frequency for each 
resolution and voltage range. 

Table 5. Attenuation and Dither Frequency 

Resolution 9 10 11 12 Bits 

Attenuation 6 12 18 24 dB 

1-volt dither  frequency 500 250 125 62.5 kHz 

4-volt dither frequency 125 62.5 31.3 15.6 kHz 

 

Using the following equation, we can find the filter cutoff 
frequency. 
















cF
dithF

Atten log*20                              Equation 2 

Where; 

Atten is the amount of attenuation required for a given 
resolution. Fdith is the dither frequency and Fc is the filter 
cutoff frequency. 
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Solving for Fc; 

2010

Atten
dith

F

cF                                               Equation 3 

Now that we know the cutoff frequency, we can calculate 
the filter capacitor value. 

RC
cF

2

1
                                              Equation 4 

Solving for C; 

cRF
C

2

1
                                             Equation 5 

For example, if we build a 10 bit DAC using the voltage 
dithering method and want to calculate the value of C for 
the 1 volt range. The filter’s cutoff frequency would be; 

kHz
kHz

cF 8.62

20
12

10

250
  

Remember the internal resistance is about 4 kΩ for the 
1 volt range and the filter cutoff frequency is 62.8 kHz from 
above we can solve for the filter capacitor value. 

pF
kHzk

C 634
8.62*4**2

1






          

Using these equations we can solve for the required 
capacitor values for both ranges at each resolution. See 
the following table. 

Table 6. Low-Pass Filter Capacitor Values 

Resolution 9 10 11 12 

C (1 volt Range) 160 pF 630 pF 2.5 nF 0.01 uF 

Filter Cutoff 250 kHz 63 kHz 16 kHz 4 kHz 

C (4 volt Range) 630 pF 2.5 nF 0.01 uF 0.04 uF 

Filter Cutoff 16 kHz 4 kHz 1 kHz 250 Hz 

 

The last thing to be concerned about is what the settling 
time of the DAC is at the given resolution.  

RC
t

einVSV



                                     Equation 6 

Where Vs is the settled voltage and Vin is the smallest step 
size of the 8-bit VDAC. If we make Vin one unit, then Vs is 
the faction of the smallest step that we need to settle to for 
the output to be accurate. Ideally, we want the output to be 
within one half the smallest step of the VDAC. The step 
size of the DAC in terms of the initial VDAC can be 
expressed as follows. 

8
2

1
*5.0




BsV                                  Equation 7 

Where B is the bits of resolution required. The “0.5” 
multiplier is because we want the error to be one half the 
step size. If we combine these two equations, we get; 

RC
t

einV
B




8

2

1
*5.0                           Equation 8 

Solving for time (settling time); 

CR
B

t **)
8

2

5.0
ln(


                       Equation 9 

If we use the example of the 10-bit, 1 volt full-scale VDAC, 
our settling time would be; 

uSecpFKt 3.5630*4*)
2

2

5.0
ln(   

These are rough calculations to get you quickly into the 
ballpark. The filter could easily be improved with a higher 
order passive or active filter. 

A dithered current DAC could easily be constructed using 
the DVDAC as a template. All that would be needed is to 
change the output connection of the viDAC8 in the DAC’s 
schematic, change the customizer to reflect the current 
range options, and a few lines of code in the API files. 
Since the current DAC can run at a higher sampling 
frequency, 8 MHz, the dither frequency is higher which 
makes the settling time much faster. 

Modulated IDAC (MIDAC) 

This method combines a standard 8-bit current DAC 
(IDAC8) and a PWM DAC. PWM DACs have been used 
for years as an inexpensive way to generate a linear 
voltage from digital hardware. The concept is simple. The 
PWM generates a waveform with an adjustable duty cycle. 
This is fed into a low-pass filter (LPF) and the DC output is 
a function of the PWM’s peak-to-peak output times the 
duty cycle. If the LPF is a simple single pole RC filter, the 
modulation frequency needs to be close to three orders of 
magnitude higher than the filters cutoff frequency just for 
an 8-bit DAC. A higher order filter would probably be a 
better option. 

Figure 16. PWM Block Diagram 

PWM
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Figure 17. Example PWM Waveforms 
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With the modulated IDAC, the current is summed between 
the PWM DAC and the 8-bit current source (See  
Figure 18). The PWM’s modulation amplitude is half the 
amplitude of the least significant bit of the 8-bit current 
DAC, because of the combination of R2 and R1. So the 
noise introduced by the PWM is more than 50 dB less 
than a typical PWM DAC and much easier to filter with a 
simple filter. The IDAC adjusts the most significant 8 bits 
of the current and the PWM adjusts the remaining few bits, 
depending on the resolution. In the case of a 10 bit DAC 
the PWM would add the additional 2 bits of resolution. 

This method requires a current DAC, two resistors, and a 
PWM. The output of the current DAC is connected to two 
resistors. One of the resistors is connected directly to VSSA 
and the other is connected to the PWM output as shown in 
Figure 18. With just one resistor connected to the DAC’s 
output and VSS, the current DAC operates as a voltage 
DAC. The second resistor connected to the PWM must be 
much larger than the resistor connected to ground. The 
pin connected to the PWM should be set to “Strong Drive” 
so that it can drive the filter’s capacitor. This DAC works 
much similar to the dithered voltage DAC except it uses a 
PWM to modulate the least significant bits instead of the 
DAC itself. One of the advantages is that the PWM can be 
modulated faster than that of the DAC itself. Unlike a 
typical PWM DAC where the output of the PWM that 
swings from VSS to VDD, the effective voltage swing of this 
PWM is much smaller and generates much less noise and 
therefore requires less filtering The PWM’s output period 
should be sufficiently fast so that the modulated signal can 
be easily filtered. 

 

 

 

 

 

 

 

 

Figure 18. Modulated IDAC 

 
 
To calculate the size of R1, simply divide the maximum 
output voltage required by the current range that is being 
used. 

I

V
R

max
1                                             Equation 10 

Then use the value calculated for R1 to calculate R2. 

)256max/(

)256max/(
*12

V

VVdd
RR


               Equation 11 

Example: 

If you require a DAC output voltage between 0 and 
1.024 volts, using the 256 µA current range, and has a  
VDD = 3.3 V solve for R1 and R2. (Using Equations 10 and 
11 given earlier.) 

 K
uA

V
R 4

256

024.1
1                               Equation 12 

)256/024.1(

)256/024.1(3.3
*42


 KR = 3.3 MΩ     Equation 13 

 

The modulated IDAC has good performance up to 11 bits. 
The INL is better than that of the PIDAC or DVDAC at 2 
counts for 11 bits. In 10 bit mode the maximum DNL was 
less than 0.6 counts and the INL was just under 1 count, 
not bad when derived from an 8-bit DAC. 

A PSoC Creator component using this method has been 
constructed and is part of the library accompanying this 
application note. This DAC is called the MIDAC 
(Modulated Current DAC). Its parameters allow you to 
select both the range and the resolution between 9 and 
11 bits. See MIDAC datasheet included with the 
component for more information. Following are the test 
result plots for INL and DNL for 9 to 11 bits. 
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Figure 19. DNL for 9-Bit MIDAC 

 

Figure 20. INL for 9-Bit MIDAC 

 

Figure 21. DNL for 10-Bit MIDAC 

 
 
 
 
 
 
 
 

Figure 22. INL for 10-Bit MIDAC 

 
 
 

Figure 23. DNL for 11-Bit MIDAC 

 

Figure 24. INL for 11-Bit MIDAC 

 
As with the dithered voltage DAC, the PWM modulator 
generates noise on top of the signal. Although the DAC 
does use a PWM, the noise generated is less than one 
LSb in magnitude that is much less than a typical PWM 
DAC, where the output swings from VSS to the maximum 
output voltage. To filter out this noise a capacitor may be 
added to the output of the DAC in parallel with the 
resistors, See Figure 18. The same method used to 
calculate the capacitor value for the dithered voltage DAC 
can be used here as well. As long as R2 is much larger 
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than R1, you can ignore R2 and use R1 and C1  
(Figure 18) for R and C respectively in Equations 3 and 5 
given earlier. The following table shows examples of some 
capacitor values for a load of 4 K and a PWM clock of 
12 MHz. 

Table 7. Capacitor Value for R1 = 4 K 

Resolution 9 10 11 

Modulation Frequency 6 MHz 3 MHz 1.5 MHz 

Attenuation 6 dB 12 dB 18 dB 

Cap Value 13 pF 53 pF 210 pF 

 
The settling time can also be calculated in the same 
fashion as we used with the dithered voltage DAC with 
Equation 9. 

ADC Feedback DAC 

This method uses the same DAC configuration used in the 
parallel IDAC method but is configured to provide at least 
2 bits more resolution than required for the accuracy. For 
example, if 12 bits of accuracy is required, the IDAC 
resolution should be 14 bits. To achieve this, one IDAC 
should be configured to the 2 mA range and the other 
IDAC to the 32 µA range. These overlapping ranges 
provide a maximum resolution of 14 bits. The higher 
resolution parallel IDAC by itself may have excessive INL 
and DNL errors for 14 bit operation. The ADC used for this 
method should have an INL and DNL about half of the 
desired result for this method. The ADC is essentially 
continually calibrating the DAC and therefore needs to be 
more accurate than the DAC. The 20-bit Delta-Sigma ADC 
found in PSoC 3 and PSoC 5LP, has an INL and DNL of 
less than 1 at 16 bits. This is more than sufficient to trim a 
nonlinear 14-bit DAC to 12 bits.  

In most cases, an external resistor is used as a linear load 
that converts the current output to a voltage. The ADC 
needs to be connected at the point where the voltage is 
used or buffered by the system to eliminate any IR 
(current * resistance) drop in the internal or external 
current path. 

Firmware is required to complete a feedback loop between 
the IDAC output and the ADC. Each time the output is 
updated, an approximated value is applied. The output is 
allowed to settle and then measured with the ADC. If the 
output is not within 12 bits of accuracy, the IDAC output is 
trimmed to get closer to the desired value. This is an 
iterative process and may require 2 to 4 cycles to get 
within 12 bits of accuracy. The following figure is an 
example of a feedback IDAC using standard 
PSoC Creator components. 

 

 

 

Figure 25. IDAC with Feedback 

 
 

Which DAC is Right for You?  

Four methods to create a higher resolution DAC have 
been presented in this application note. There are several 
factors that need to be considered when selecting which 
DAC is right for your application. Resolution, current 
versus voltage, speed, resources required, and need for 
external components all need to be considered in order to 
make a good decision. The current DACs are the most 
flexible as they can all be converted to a voltage DAC with 
the addition of an external resistor. The selection of the 
external resistor also allows you to optimize the full-scale 
voltage output as well.  

For applications that require the fastest settling times, 
PIDAC and MIDAC are your best choices. The PIDAC 
provides 4 Msps for all ranges and does not require 
external components. The only downside is that the 
PIDAC uses two viDAC block resources. This may or may 
not be a concern depending on your overall application 
resource requirements. The MIDAC will be your next best 
selection for fast settling times and it uses only one viDAC 
block. Its speed does diminish as the resolution increases, 
but may be sufficient for many applications. 

The DVDAC also provides relatively high update rates at 
low resolutions (9 and 10 bits), but slows down to 7 ksps 
at 12 bits. It has good DNL performance up to 12 bits and 
requires only one viDAC block and one DMA channel per 
DAC. This is a good option for many applications since it 
offers a good tradeoff between resolution and speed while 
using few analog resources. 

Applications that require high accuracy (low INL), the ADC 
feedback method is the best approach, but its update rate 
is substantially slower than the other options, well under 
1 ksps. It is possible to achieve 12 or maybe 13 bits with 
an INL of 1, but it will require the use of the DelSig ADC to 
close the feedback loop. In applications where a reference 
needs only be adjusted periodically and you can share the 
ADC, it could prove to be a very cost effective solution.  

The following figure shows a comparison of INL between 
three of the methods discussed with a resolution of 
10 bits. Table 8 shows a summary of resources required 
to implement the DAC. 
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Figure 26. INL Comparison for 10-bit DACs  

 

Table 8. Resources Required for DACs 

DAC Type Resources Pins 
External 

Components 
Required 

PIDAC viDAC8(2) 1 NA 

DVDAC 
viDAC8, 
DMA, Clock 1 Capacitor(1) 

MIDAC 
viDAC8, 
UDB(PWM) 2 

Resistor(2) 
Capacitor(1) 

ADC 
Feedback 

viDAC8(2), 

16-bit ADC 1 or 2 Resistor(1) 

Test Setup 

The test setup used for evaluation of these DACs 
consisted of a Cypress CY8CKIT-001 PSoC Development 
Board (DVK), a couple external components (Rs and Cs),  
a USB-to-Serial adapter, and a PC. The internal Delta-
Sigma ADC, a UART, and the LCD were used for data 
collection. When testing current DACs, external resistors 
were used to convert the current to voltage so that the 
ADC could measure the output. Excel was used to convert 
the collected data into the INL and DNL plots in the 
document. 

Figure 27. Test Setup 

 

 
Other than a couple resisters and capacitors no special 
external hardware or development board is required to 
implement these methods. Any of the PSoC 3 or PSoC 
5LP development systems (DVK, FTK) can be used to 
evaluate or test these concepts. 

PSoC Advantage 

Almost any microcontroller can do the old trick using a 
PWM and LPF to create a DAC, so can PSoC, times 50 or 
more (24 PWMs with dual outputs and 4 fixed function 
PWMs). Voltage DACs are very common to many 
controllers, but current DACs are not. Current DACs can 
prove to be very flexible in optimizing a voltage range to fit 
your application, not the other way around. DMA is 
becoming more and more common in high end 
microcontrollers, but with up to 24 channels, you will 
always have sufficient channels to implement something 
such as the DVDAC. Internal opamps to buffer a voltage 
DAC is not as common, but very useful. If you combine all 
these common and uncommon features, the PSoC 3 and 
PSoC 5LP devices have unmatched flexibility compared to 
any single part solution on the market today. 

Using these DACs in your Project 

To add any of these DAC components to your project, you 
must add the HighResDacs library containing these 
components, as a dependency. To do this, right-click on 
your project’s name in the Workspace Explorer on the left 
half of the PSoC Creator window. Select the 
Dependencies option in the pop-up menu as shown in 
Figure 28. 

Figure 28. Select Project Dependency Option 

 

 

When the Dependencies dialog box opens, press the 
folder icon for User Dependencies as shown in Figure 29. 
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Figure 29. Adding a User Dependency 

 

Click the folder icon and then navigate to the folder 
containing the library in which the high resolution DAC 
components are located. In this case, it is located in the 
folder HighResDacs.cylib. Select the file as shown in 
Figure 30. This will add the library to this project. 

Figure 30. Select the DAC library 

 

The Dependencies dialog box should now look similar to 

Figure 31, with the DAC library “HighResDacs” added to 
your project. 

Figure 31. DAC Library Added to Project  

 

After you add the library to your project, the Concept tab 
appears in the Component Catalog on the right side of 
PSoC Creator. You must be in the schematic entry mode 
to see the component library. Under that tab, you will see 
three entries under the Analog/DAC/ component path, as 
shown in Figure 32. 

Figure 32. New DAC Components in Component Catalog 

 

You can now add any of these DAC components to you 
project just as you add any standard components. 

Summary  

There are many ways to implement DACs or to increase 
the resolution of an existing DAC. The methods discussed 
in this application note focused on methods that may be 
unique to PSoC with its flexible analog and digital 
structure. The supplied reference components should give 
you a good head start in experimenting with the different 
methods and finding out what works best for a given 
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application. These concepts and example components 
can be used as provided, or modified to fit your application 
even better. Three example projects are also included with 
this application note, one for each of the three 
components (DVDAC, PIDAC, and MIDAC). These 
projects are identical except for which DAC is used in the 
project. 

As of version 3.0 of PSoC Creator, the DVDAC or 
“Dithered VDAC” is part of the standard library and no 
longer requires downloading the library associated with 
this application note to use it in your project. 
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