

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 002-24582 Rev. *A Revised November 26, 2018

Features

▪ EEPROM-Like Non-Volatile Storage

▪ Easy-to-use Read and Write API Functions

▪ Optional Wear Leveling

▪ Optional Redundant EEPROM Copy Storage

General Description

The Emulated EEPROM Component emulates an EEPROM device in the PSoC device flash
memory.

On PSoC 6 devices, the Em_EEPROM Component is a graphical configuration entity built on top
of the Cy_Em_EEPROM middleware library. This library operates on the top of a flash driver
available in the Peripheral Driver Library (PDL). On non-PSoC 6 devices, the Em_EEPROM
Component is the same graphical configuration entity built on top of the Em_EEPROM Dynamic
design-wide resource Component.

When To Use Em_EEPROM Component

The Emulated EEPROM Component should be used to store nonvolatile data on a target device.

Quick Start

Note For PSoC 6 devices, the Em_EEPROM operates on top of the flash driver. The flash driver
has some prerequisites for proper operation. Refer to the Flash System Routine (Flash) section
of the PDL API Reference Manual (PSoC Creator Help menu > Documentation > Peripheral
Driver Library).

1. Drag the Em_EEPROM Component from the Component Catalog System/Emulated
EEPROM folder onto your schematic. The placed instance takes the name of
Em_EEPROM_1.

2. Double-click to open the Configure dialog.

3. Select the desired parameter settings. For more details on the parameters, refer to the
Component Parameters section of this datasheet.

Emulated EEPROM (Em_EEPROM)
2.20

Emulated EEPROM (Em_EEPROM) PSoC® Creator™ Component Datasheet

Page 2 of 26 Document Number: 002-24582 Rev. *A

4. For PSoC 6 devices, by default the Component allocates the required amount of memory
for the Em_EEPROM storage in the Emulated EEPROM flash area. There is an option to
switch between the Emulated EEPROM flash area and main flash (user flash).

□ If the Use Emulated EEPROM option is set to “Yes,” the
Em_EEPROM_1_em_EepromStorage[] is declared as the EEPROM storage and
available for use. Pass the address of the storage to the Cy_Em_EEPROM_Init()
function if you do not want to use the Component API functions.

□ If the Use Emulated EEPROM option is set to “No,” follow the action described
below for non-PSoC 6 devices.

For non-PSoC 6 devices, you must statically allocate the memory that will be used for
Em_EEPROM storage.

To do this, declare an array in flash aligned to the size of the device flash row. The
following is an example of such array declaration for GCC and MDK compilers:

const uint8 emEeprom[Em_EEPROM_1_PHYSICAL_SIZE]

 __ALIGNED(CY_FLASH_SIZEOF_ROW) = {0u};

The same for the IAR compiler:

#pragma data_alignment = CY_FLASH_SIZEOF_ROW

const uint8 emEeprom[Em_EEPROM_1_PHYSICAL_SIZE] = {0u};

For PSoC 3 devices, the Keil compiler doesn’t support data aligning. You must place the
array to the flash memory address aligned to the flash row size. The following declaration
is used:

const uint8 CYCODE emEeprom[Em_EEPROM_1_PHYSICAL_SIZE] _at_ 0x1000u;

The value “0x1000u” in the declaration defines the start address where emEeprom[] will

be placed. The address can be any value aligned to 0x100 (the size of a flash row on
PSoC 3).

The Em_EEPROM_1_PHYSICAL_SIZE is calculated by the Component. This constant

defines the amount of memory dedicated for Em_EEPROM based on the user
configuration entered in the Configure dialog.

5. After Em_EEPROM storage is defined, pass the address to the Component. Use the
following code for that purpose:

cy_en_em_eeprom_status_t returnValue;

returnValue = Em_EEPROM_1_Init(&emEeprom[0]);

Note For PSoC 6 devices, when the Use Emulated EEPROM option is set to “Yes,” the
Em_EEPROM address will be overwritten with storage from Emulated EEPROM flash
area. In this case, the address may be passed as zero.

PSoC® Creator™ Component Datasheet Emulated EEPROM (Em_EEPROM)

Document Number: 002-24582 Rev. *A Page 3 of 26

Note If the Em_EEPROM is planned to be used on one specific core, you must modify the
linker scripts. For more information, refer to the Middleware/Cypress Em_EEPROM
Middleware section of the PDL documentation. To access this document, go to the PSoC

Creator Help menu > Documentation > Peripheral Driver Library.

6. Build the project in order to verify the correctness of your design. For PSoC 6, add the
required PDL modules to the Workspace Explorer, and generate the configuration data for
the Em_EEPROM_1 instance.

7. Program the device.

Placing EEPROM Storage at Fixed Address

EEPROM storage can be allocated at a fixed address in flash. To do this, you must modify the
linker control file (linker script). This requires a fundamental knowledge of the linker control file,
because there is a risk of receiving a linker error while building the project if you make some
improper modifications.

The Keil C51 compiler doesn’t have a linker control file. However, it allows placement of data at
a fixed address from source code as shown in the Quick Start section.

The steps below describe how to update the linker control file for GCC and MDK compilers for
PSoC 4/PSoC 5LP devices and PSoC 6 devices. There is a separate process for the IAR
compiler.

This approach demonstrates adding EEPROM storage reservation in flash after the application.
You must calculate the application end address and select the address of the EEPROM storage
so that the memory spaces of the storage and application won’t overlap. You might also add
some offset between the application end address and the EEPROM storage start address to
ensure there is extra space in case the project code grows.

PSoC 4/PSoC 5LP

1. Drag the Em_EEPROM Component from the Component Catalog System/Emulated
EEPROM folder onto your schematic.

2. Double-click to open the Configure dialog and select the desired parameter settings. For
more details about the parameters, refer to the Component Parameters section of this
datasheet.

3. Build the project. This is required for a linker script to be generated.

4. Go to the linker script directory. It is located at
\<em_eepromproject_name>.cydsn\Generated_Source\PSoC(4)(5)\.

□ For the GCC compiler, the linker control file name is cm0gcc.ld / cm3gcc.ld.

□ For the MDK compiler, the linker control file name is Cm0RealView.scat /
Cm3RealView.scat.

Emulated EEPROM (Em_EEPROM) PSoC® Creator™ Component Datasheet

Page 4 of 26 Document Number: 002-24582 Rev. *A

5. Select the required linker script, copy it, and rename it to the same directory. For example:
cm0gcc.ld -> custom_cm0gcc.ld (Cm0RealView.scat -> Custom_Cm0RealView.scat).

6. Open the Build Settings dialog and select the Linker node under the selected compiler.
Then, select the Custom Linker Script field and click the ellipsis […] button to select the
appropriate file.

For GCC, select the “custom_cm0gcc.Id” file:

For MDK, change the file type to *.scat, and then select the “Custom_Cm0RealView.scat”
file:

PSoC® Creator™ Component Datasheet Emulated EEPROM (Em_EEPROM)

Document Number: 002-24582 Rev. *A Page 5 of 26

Note If you want to switch between Debug and Release project configurations, you need
to do these steps for both of the configurations.

7. For the GCC compiler, open the custom linker script (custom_cm0gcc.ld) and search for
the following declaration:

.cy_checksum_exclude : { KEEP(*(.cy_checksum_exclude)) } >rom

a. Paste the following code right after the declaration:

EM_EEPROM_START_ADDRESS = <EEPROM Address>;

.my_emulated_eeprom EM_EEPROM_START_ADDRESS :

{

 KEEP(*(.my_emulated_eeprom))

} >rom

 <EEPROM Address> – This is an absolute address in flash where the

EEPROM should start. You must define the address value. The address
should be aligned to the size of the device’s flash row and should not
overlap with the memory space used by the application.

 my_emulated_eeprom – This is the name of the section where the

EEPROM storage will be placed. The name can be changed to any name
you choose.

b. Save the changes and close the file.

8. For the MDK compiler, open the custom linker script (Custom_Cm0RealView.scat) and
search for the following declaration:

APPLICATION APPL_START (CY_FLASH_SIZE - APPL_START)

{

 ...

}

Emulated EEPROM (Em_EEPROM) PSoC® Creator™ Component Datasheet

Page 6 of 26 Document Number: 002-24582 Rev. *A

a. Paste the following code right after the declaration:

#define EM_EEPROM_START_ADDRESS <EEPROM Address>

EM_EEPROM (EM_EEPROM_START_ADDRESS)

{

 .my_emulated_eeprom+0

 {

 *(.my_emulated_eeprom)

 }

}

 <EEPROM Address> – This is an absolute address in flash where the

EEPROM should start. You must define the address value. The address
should be aligned to the size of the device’s flash row and should not
overlap with the memory space used by the application.

 my_emulated_eeprom – This is the name of the section where the

EEPROM storage will be placed. The name can be changed to any name
you choose.

b. Save the changes and close the file.

9. Similar to Step 4 of Quick Start section, declare EEPROM storage in the newly created
section. To do this, declare an array in flash, aligned to the size of the flash row of the
device you are using. An example of such array declaration is following:

const uint8 emEeprom[Em_EEPROM_1_PHYSICAL_SIZE]

CY_SECTION(".my_emulated_eeprom") __ALIGNED(CY_FLASH_SIZEOF_ROW) = {0u};

10. After Em_EEPROM storage is defined, pass the address to the Component. Use the
following code for that purpose:

cy_en_em_eeprom_status_t returnValue;

returnValue = Em_EEPROM_1_Init(&emEeprom[0]);

11. Build the project in order to verify the correctness of the linker control file modifications.

PSoC 6

1. Drag the Em_EEPROM Component from the Component Catalog System/Emulated
EEPROM folder onto your schematic.

2. Double-click to open the Configure dialog and select the desired parameter settings. For
more details on the parameters, refer to the Component Parameters section of this
datasheet.

3. Build the project. This is required for linker scripts to be generated.

4. Go to the linker script directory. It is located at \<em_eeprom_project_name>.cydsn\.

□ For the GCC compiler, the linker control file name is cy8c6xx7_cm0plus.ld or
cy8c6xx7_cm4_dual.ld.

PSoC® Creator™ Component Datasheet Emulated EEPROM (Em_EEPROM)

Document Number: 002-24582 Rev. *A Page 7 of 26

□ For the MDK compiler, the linker control file name is cy8c6xx7_cm0plus.scat or
cy8c6xx7_cm4_dual.scat.

The name depends on the core on which the Em_EEPROM code will be run:CM0+ or
CM4.

5. For the GCC compiler, open the linker script and search the following declaration:

etext = . ;

a. Paste the following code right after the declaration:

EM_EEPROM_START_ADDRESS = <EEPROM Address>;

.my_emulated_eeprom EM_EEPROM_START_ADDRESS :

{

 KEEP(*(.my_emulated_eeprom))

} > flash

 <EEPROM Address> – This is an absolute address in flash where the

EEPROM should start. You must define the address value. The address
should be aligned to the size of the device’s flash row and should not
overlap with the memory space used by the application.

Note Do not write to and read/execute from the same flash sector at the
same time. This is true for all sectors. For more details, refer to the PDL
reference for Flash System Routine (Flash).

 my_emulated_eeprom – This is the name of the section where the

EEPROM storage will be placed. The name can be changed to any name
you choose.

b. Save the changes and close the file.

6. For the MDK compiler, open the custom linker script and search for the following
declaration:

LR_FLASH FLASH_START FLASH_SIZE

{

...

}

a. Paste the following code right after the declaration:

#define EM_EEPROM_START_ADDRESS <EEPROM Address>

EM_EEPROM (EM_EEPROM_START_ADDRESS)

{

 .my_emulated_eeprom+0

 {

 *(.my_emulated_eeprom)

 }

}

Emulated EEPROM (Em_EEPROM) PSoC® Creator™ Component Datasheet

Page 8 of 26 Document Number: 002-24582 Rev. *A

 <EEPROM Address> – This is an absolute address in flash where the

EEPROM should start. You must define the address value. The address
should be aligned to the size of the device’s flash row and should not
overlap with the memory space used by the application.

Note Do not write to and read/execute from the same flash sector at the
same time. This is true for all sectors. For more details, refer to the PDL
reference for Flash System Routine (Flash).

 my_emulated_eeprom – This is the name of the section where the

EEPROM storage will be placed. The name can be changed to any name
you choose.

b. Save the changes and close the file.

7. Follow the same process from Step 9 through Step 11 under PSoC 4/PSoC 5LP to make
appropriate changes and build the project.

IAR compiler

To use the IAR compiler, you must export your PSoC Creator design to the IAR IDE. Refer to the
PSoC Creator Help “Integrating into 3rd Party IDEs” for information about how to do this.

After the design has been integrated with the IAR IDE, build the project in IAR to verify the
correctness of the steps performed. Then, follow these steps to place the EEPROM Storage at a
fixed address.

1. In the IAR IDE, open the IAR linker control file. Depending on the device used, the linker
control file name should be Cm0Iar.icf (PSoC 4), Cm3Iar.icf (PSoC 5LP),
cy8c6xx7_cm0plus.icf (PSoC 6 CM0+), or cy8c6xx7_cm4_dual.icf (PSoC 6 CM4).

2. Find the following record:

□ For PSoC 4/PSoC 5LP:

"APPL" : place at start of APPL_region {block APPL};

□ For PSoC 6 CM0+:

".cy_app_header" : place at start of IROM1_region

{ section .cy_app_header };

□ For PSoC 6 CM4:

".cy_app_signature" : place at address

(__ICFEDIT_region_IROM1_end__ - 0x200)

{ section .cy_app_signature };

3. Insert the following code after the record mentioned in the previous step:

define symbol EM_EEPROM_START_ADDRESS = <EEPROM Address>;

".my_emulated_eeprom" : place at address (EM_EEPROM_START_ADDRESS) {

section .my_emulated_eeprom };

PSoC® Creator™ Component Datasheet Emulated EEPROM (Em_EEPROM)

Document Number: 002-24582 Rev. *A Page 9 of 26

 <EEPROM Address> – This is an absolute address in flash where the

EEPROM should start. You must define the address value. The address
should be aligned to the size of the device’s flash row and should not
overlap with the memory space used by the application.

Note Do not write to and read/execute from the same flash sector at the
same time. This is true for all sectors. For more details, refer to the PDL
reference for Flash System Routine (Flash).

 my_emulated_eeprom – This is the name of the section where the

EEPROM storage will be placed. The name can be changed to any name
you choose.

4. Save the changes and close the file.

5. Similar to Step 4 of Quick Start section, declare EEPROM storage in the newly created

section. For this, add the following declaration:

#pragma location = ".my_emulated_eeprom"

#pragma data_alignment = CY_FLASH_SIZEOF_ROW

const uint8 emEeprom[Em_EEPROM_1_PHYSICAL_SIZE] = {0u};

6. Follow the same process from Step 10 through Step 11 under PSoC 4/PSoC 5LP to make
appropriated changes and build the project.

Adding EEPROM Storage to Checksum Exclude Section
(PSoC 4/PSoC 5LP)

This section describes the actions required to add EEPROM Storage to the checksum exclude
section when using the Em_EEPROM Component in a bootloader project. The section doesn’t
provide details on creating a bootloader/bootloadable. Refer instead to the
Bootloader/Bootloadable Component datasheet.

To add the EEPROM Storage to the checksum exclude section:

1. In the Bootloadable project, follow the same process from Step 1 through Step 4 in the
Quick Start section.

2. Modify the declaration of EEPROM Storage as follows:

For GCC and MDK compilers:

from:

const uint8 emEeprom[Em_EEPROM_1_PHYSICAL_SIZE]

__ALIGNED(CY_FLASH_SIZEOF_ROW) = {0u};

to:

const uint8 emEeprom[Em_EEPROM_1_PHYSICAL_SIZE]

CY_SECTION(".cy_checksum_exclude")

Emulated EEPROM (Em_EEPROM) PSoC® Creator™ Component Datasheet

Page 10 of 26 Document Number: 002-24582 Rev. *A

__ALIGNED(CY_FLASH_SIZEOF_ROW) = {0u};

For the IAR compiler:

from:

#pragma data_alignment = CY_FLASH_SIZEOF_ROW

const uint8 emEeprom[Em_EEPROM_1_PHYSICAL_SIZE] = {0u};

to:

#pragma location = ".cy_checksum_exclude"

#pragma data_alignment = CY_FLASH_SIZEOF_ROW

const uint8 emEeprom[Em_EEPROM_1_PHYSICAL_SIZE] = {0u};

3. Open the Em_EEPROM Configure dialog to see the size occupied by the EEPROM
storage.

PSoC® Creator™ Component Datasheet Emulated EEPROM (Em_EEPROM)

Document Number: 002-24582 Rev. *A Page 11 of 26

4. Open the Bootloadable Component Configure dialog, and enter the EEPROM storage
size in the Checksum exclude section size field.

5. Follow the same process from Step 5 through Step 7 in the Quick Start section.

Emulated EEPROM (Em_EEPROM) PSoC® Creator™ Component Datasheet

Page 12 of 26 Document Number: 002-24582 Rev. *A

Component Parameters

The Em_EEPROM Component Configure dialog allows editing the configuration parameters for
the Component instance.

Basic Tab

This tab contains the Component parameters used in the general peripheral initialization
settings.

Parameter Name Description

EEPROM Size Sets an EEPROM size. The size should be rounded up to a full EEPROM page size.
The page size is specific for a device family. For PSoC 4 the page size is 64 bytes, for
PSoC 3/PSoC 5LP – 128 bytes, for PSoC 6 – 256 bytes. Min size is 1 page/row. Max
Size = available flash.

Actual EEPROM Size Shows the entire size of the EEPROM allocated. This parameter displays the actual size
allocated including an overhead for wear levelling and redundant copy implementations.

Redundant Copy If enabled, the checksum is calculated on each row of data (that checksum is stored in
the row), and a redundant copy of the EEPROM is stored in another location. When data
is read, the checksum is checked first. If the checksum is bad, the redundant copy is
restored if its checksum is good.

PSoC® Creator™ Component Datasheet Emulated EEPROM (Em_EEPROM)

Document Number: 002-24582 Rev. *A Page 13 of 26

Parameter Name Description

Use Blocking Write Applicable only for PSoC 6 devices. When selected, blocking writes to flash will be used
in the design; otherwise, non-blocking flash writes will be used. The behavior of blocking
and non-blocking writes are the same with the difference being that the non-blocking
writes do not block interrupts.

Note Do not write to and read/execute from the same flash sector at the same time. This
is true for all sectors. For more details, refer to the PDL reference for Flash System
Routine (Flash).

Use Emulated
EEPROM

Applicable only for PSoC 6 devices. Selects if Emulated EEPROM flash area or User
flash will be used for the EEPROM storage.

Wear Level factor Selects how much wear leveling is required. The higher the factor is, the more flash is
used, but a higher number of erase/write cycles can be done on the EEPROM. Multiply
this number by the datasheet write endurance spec to determine the max of write cycles.

Em_EEPROM Dynamic
The Em_EEPROM Component is linked with a hidden design-wide Em_EEPROM Dynamic
Component, which is always present in a design to support the placement of multiple instances of the
Em_EEPROM for non-PSoC 6 devices. For PSoC 6, the source code that is included in the
Em_EEPROM Dynamic is present in the PDL in the form of a middleware library.

Em_EEPROM Version and Updates

The Em_EEPROM_Dynamic version must be the same as the Em_EEPROM Component used
in the design. Therefore, both the Em_EEPROM and the Em_EEPROM_Dynamic Components
must be updated synchronously.

The Em_EEPROM_Dynamic Component is also shown in the Component Update Tool because
of its nature as a design-wide Component. If you do not have an Em_EEPROM Component in
your design, then no action is required; the Em_EEPROM_Dynamic Component is inactive and
colored gray.

Application Programming Interface

The Application Programming Interface (API) routines allow configuring the Component using
software.

By default, PSoC Creator assigns the instance name Em_EEPROM_1 to the first instance of a
Component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol.

For PSoC 6, the Component uses the Cy_Em_EEPROM middleware library module from the
PDL. The library is copied into the pdl\middleware\cy_em_eeprom\ directory of the application
project after a successful build.

Emulated EEPROM (Em_EEPROM) PSoC® Creator™ Component Datasheet

Page 14 of 26 Document Number: 002-24582 Rev. *A

Refer to the Middleware section of the PDL documentation for a detailed description of a
complete API. To access this document, go to the PSoC Creator Help menu > Documentation >

Peripheral Driver Library.

For non-PSoC 6 devices. PSoC Creator doesn’t provide the PDL library. The code base of the
Cy_Em_EEPROM middleware library is included in the Em_EEPROM Dynamic DWR
Component.

The Component generates the configuration structures described in the Global variables and
Preprocessor Macros sections. Pass the generated data structure and the EEPROM storage
address to the associated Cy_Em_EEPROM middleware library function in the application
initialization code to configure the library. After the peripheral is initialized, the application code
can perform run-time changes by referencing the provided base address in the driver API
functions.

Global Variables

The Em_EEPROM Component populates peripheral initialization data structure(s) (see the
below paragraph). The generated code is placed in the C source and header files that are
named after the instance of the Component (e.g. Em_EEPROM_1.c). Each variable is also
prefixed with the instance name of the Component.

cy_stc_eeprom_config_t Em_EEPROM_1_config

The instance-specific configuration structure. This should be used in the associated
Em_EEPROM_1_Init() function.

const uint8_t Em_EEPROM_1_em_EepromStorage[]

The Component-defined emulated EEPROM storage. The storage is only defined for
PSoC 6 devices in cases when the Use Emulated EEPROM option is set to “Yes.”

Preprocessor Macros

The Em_EEPROM Component generates the following pre-processor macro. Note that each
macro is prefixed with the instance name of the Component (e.g. “Em_EEPROM_1”).

Em_EEPROM_1_PHYSICAL_SIZE

The actual size of flash used to implement the EEPROM with the configuration entered by
the user.

Data Structures

struct cy_stc_eeprom_config_t

Emulated EEPROM configuration structure.

PSoC® Creator™ Component Datasheet Emulated EEPROM (Em_EEPROM)

Document Number: 002-24582 Rev. *A Page 15 of 26

Data Fields

uint32 eepromSize
uint32 wearLevelingFactor
uint8 redundantCopy
uint8 blockingWrite
uint32 userFlashStartAddr

uint32 cy_stc_eeprom_config_t::eepromSize

The number of bytes to store in EEPROM

uint32 cy_stc_eeprom_config_t::wearLevelingFactor

The amount of wear leveling from 1 to 10. 1 means no wear leveling is used.

uint8 cy_stc_eeprom_config_t::redundantCopy

If not zero, a redundant copy of the Em_EEPROM is included.

uint8 cy_stc_eeprom_config_t::blockingWrite

If not zero, a blocking write to flash is used. Otherwise non-blocking write is used. This
parameter is not used for non-PSoC 6 deices.

uint32 cy_stc_eeprom_config_t::userFlashStartAddr

The start address for the EEPROM memory in the user's flash.

enum cy_en_em_eeprom_status_t

Emulated EEPROM return enumeration type.

Enumerator

CY_EM_EEPROM_SUCCESS The function executed successfully
CY_EM_EEPROM_BAD_PARAM The input parameter(s) is(are) invalid.
CY_EM_EEPROM_BAD_CHECKSUM The data in EEPROM is corrupted.
CY_EM_EEPROM_BAD_DATA Failed to place the EEPROM in flash (Init).
CY_EM_EEPROM_WRITE_FAIL Write to EEPROM failed.

Emulated EEPROM (Em_EEPROM) PSoC® Creator™ Component Datasheet

Page 16 of 26 Document Number: 002-24582 Rev. *A

Component Functions

This Component includes a set of Component-specific wrapper functions that provide simplified
access to the basic Cy_Em_EEPROM operation. These functions are generated during the build
process and are all prefixed with the name of the Component instance.

Function Description

Em_EEPROM_1_Init() Fills the start address of the EEPROM to the Component configuration
structure and invokes Cy_Em_EEPROM_Init() function. In case of PSoC 6 the
function is located in Cy_Em_EEPROM middleware library which is part of
PDL. In case if it is utilized in the design based on non-PSOC 6 device the
function is located in internal design wide resource Component -
Em_EEPROM_Dynamic.

Em_EEPROM_1_Read() Invokes the Cy_Em_EEPROM_Read() function. In case of PSoC 6 the
function is located in Cy_Em_EEPROM middleware library which is part of
PDL. In case if it is utilized in the design based on non-PSOC 6 device the
function is located in internal design wide resource Component -
Em_EEPROM_Dynamic.

Em_EEPROM_1_Write() Invokes the Cy_Em_EEPROM_Write() function. In case of PSoC 6 the
function is located in Cy_Em_EEPROM middleware library which is part of
PDL. In case if it is utilized in the design based on non-PSoC 6 device the
function is located in internal design wide resource Component -
Em_EEPROM_Dynamic.

Em_EEPROM_1_Erase() Invokes the Cy_Em_EEPROM_Erase() function. In case of PSoC 6 the
function is located in Cy_Em_EEPROM middleware library which is part of
PDL. In case if it is utilized in the design based on non-PSOC 6 device the
function is located in internal design wide resource Component -
Em_EEPROM_Dynamic.

Em_EEPROM_1_NumWrites() Invokes the Cy_Em_EEPROM_NumWrites() function. In case of PSoC 6 the
function is located in Cy_Em_EEPROM middleware library which is part of
PDL. In case if it is utilized in the design based on non-PSOC 6 device the
function is located in internal design wide resource Component -
Em_EEPROM_Dynamic.

cy_en_em_eeprom_status_t EmEEPROM_1_Init (uint32 startAddress)

Fills the start address of the EEPROM to the Component configuration structure and
invokes Cy_Em_EEPROM_Init() function. In case of PSoC 6 the function is located in
Cy_Em_EEPROM middleware library which is part of PDL. In case if it is utilized in the
design based on non-PSOC 6 device the function is located in internal design wide
resource Component - Em_EEPROM_Dynamic.

Parameters:

Start address of the EEPROM. For PSoC 6, if Emulated EEPROM flash area is selected
for EEPROM storage, the start address will be overwritten to some address from that
area.

PSoC® Creator™ Component Datasheet Emulated EEPROM (Em_EEPROM)

Document Number: 002-24582 Rev. *A Page 17 of 26

Returns:

cy_en_em_eeprom_status_t A result of function execution of type
cy_en_em_eeprom_status_t.

cy_en_em_eeprom_status_t EmEEPROM_1_Write (uint32 addr, void * eepromData, uint32
size)

Invokes the Cy_Em_EEPROM_Write() function. In case of PSoC 6 the function is located
in Cy_Em_EEPROM middleware library which is part of PDL. In case if it is utilized in the
design based on non-PSoC 6 device the function is located in internal design wide
resource Component - Em_EEPROM_Dynamic.

cy_en_em_eeprom_status_t EmEEPROM_1_Read (uint32 addr, void * eepromDdata,
uint32 size)

Invokes the Cy_Em_EEPROM_Read() function. In case of PSoC 6 the function is located
in Cy_Em_EEPROM middleware library which is part of PDL. In case if it is utilized in the
design based on non-PSOC 6 device the function is located in internal design wide
resource Component - Em_EEPROM_Dynamic.

cy_en_em_eeprom_status_t EmEEPROM_1_Erase (void)

Invokes the Cy_Em_EEPROM_Erase() function. In case of PSoC 6 the function is located
in Cy_Em_EEPROM middleware library which is part of PDL. In case if it is utilized in the
design based on non-PSOC 6 device the function is located in internal design wide
resource Component - Em_EEPROM_Dynamic.

uint32 EmEEPROM_1_NumWrites (void)

Invokes the Cy_Em_EEPROM_NumWrites() function. In case of PSoC 6 the function is
located in Cy_Em_EEPROM middleware library which is part of PDL. In case if it is
utilized in the design based on non-PSOC 6 device the function is located in internal
design wide resource Component - Em_EEPROM_Dynamic.

Em_EEPROM_Dynamic Component Functions

Function Description

Cy_Em_EEPROM_Init() Initializes the Emulated EEPROM library.

Cy_Em_EEPROM_Read() This function takes the logical EEPROM address, converts it to the actual
physical address where the data is stored and returns the data to the user.

Cy_Em_EEPROM_Write() This function takes the logical EEPROM address and converts it to the actual
physical address and writes data there. If wear leveling is implemented, the
writing process will use the wear leveling techniques. This is a blocking
function and it does not return until the write operation is completed.

Emulated EEPROM (Em_EEPROM) PSoC® Creator™ Component Datasheet

Page 18 of 26 Document Number: 002-24582 Rev. *A

Function Description

Cy_Em_EEPROM_Erase() This function erases the entire contents of the EEPROM. Erased values are
all zeros. This is a blocking function and it does not return until the write
operation is completed.

Cy_Em_EEPROM_NumWrites() Returns the number of the EEPROM writes completed so far.

cy_en_em_eeprom_status_t Cy_Em_EEPROM_Init (cy_stc_eeprom_config_t *config,
cy_stc_eeprom_context_t *context)

Initializes the Emulated EEPROM library.

Parameters:

config The pointer to a configuration structure. See cy_stc_eeprom_config_t.

context The pointer to the EEPROM context structure cy_stc_eeprom_context_t.

Returns:

error / status code. See cy_en_em_eeprom_status_t.

Note:

The context structure should not be modified after it is filled with this function. Modifying the context
structure may cause unexpected behavior of the Cy_Em_EEPROM functions that rely on it.

This function uses a buffer of the flash row size to perform a read operation. For the size of the row, refer to
the specific PSoC device datasheet.

Note:

If the "Redundant Copy" option is used, the function performs a number of write operations to the EEPROM
to initialize flash rows checksums. Therefore, Cy_Em_EEPROM_NumWrites(), when it is called right after
Cy_Em_EEPROM_Init(), will return a non-zero value that identifies the number of writes performed by
Cy_Em_EEPROM_Init().

cy_en_em_eeprom_status_t Cy_Em_EEPROM_Read (uint32 addr, void *eepromData,
uint32 size, cy_stc_eeprom_context_t *context)

This function takes the logical EEPROM address, converts it to the actual physical
address where the data is stored and returns the data to the user.

Parameters:

addr The logical start address in EEPROM to start reading data from.

eepromData The pointer to a user array to write data to.

size The amount of data to read.

context The pointer to the EEPROM context structure cy_stc_eeprom_context_t.

PSoC® Creator™ Component Datasheet Emulated EEPROM (Em_EEPROM)

Document Number: 002-24582 Rev. *A Page 19 of 26

Returns:

This function returns cy_en_em_eeprom_status_t.

Note:

This function uses a buffer of the flash row size to perform read operation. For the size of
the row refer to the specific PSoC device datasheet.

In case in if redundant copy option is enabled the function may perform writes to
EEPROM. This is done in case if the data in the EEPPROM is corrupted and the data in
redundant copy is valid based on CRC-8 integrity check.

cy_en_em_eeprom_status_t Cy_Em_EEPROM_Write (uint32 addr, void *eepromData,
uint32 size, cy_stc_eeprom_context_t *context)

This function takes the logical EEPROM address and converts it to the actual physical
address and writes data there. If wear leveling is implemented, the writing process will use
the wear leveling techniques. This is a blocking function and it does not return until the
write operation is completed. The user firmware should not enter Hibernate mode until
write is completed. The write operation is allowed in Sleep and Deep-Sleep modes.
During the flash operation, the device should not be reset, including the XRES pin, a
software reset, and watchdog reset sources. Also, low-voltage detect circuits should be
configured to generate an interrupt instead of a reset. Otherwise, portions of flash may
undergo unexpected changes.

Parameters:

addr The logical start address in EEPROM to start writing data from.

eepromData Data to write to EEPROM.

size The amount of data to write to EEPROM.

context The pointer to the EEPROM context structure cy_stc_eeprom_context_t.

Returns:

This function returns cy_en_em_eeprom_status_t.

Note:

This function uses a buffer of the flash row size to perform write operation. For the size of
the row refer to the specific PSoC device datasheet.

For PSoC 3/PSoC 5LP, this function calls the CySetTemp() function for a reliable write
procedure to occur. The CySetTemp() function should be called once before executing a
series of Flash writes in case the die temperature changes significantly (10 °C or more).

Emulated EEPROM (Em_EEPROM) PSoC® Creator™ Component Datasheet

Page 20 of 26 Document Number: 002-24582 Rev. *A

cy_en_em_eeprom_status_t Cy_Em_EEPROM_Erase (cy_stc_eeprom_context_t *context)

This function erases the entire contents of the EEPROM. Erased values are all zeros. This is a
blocking function and it does not return until the write operation is completed. The user firmware
should not enter Hibernate mode until erase is completed. The erase operation is allowed in
Sleep and Deep-Sleep modes. During the flash operation, the device should not be reset,
including the XRES pin, a software reset, and watchdog reset sources. Also, low-voltage detect
circuits should be configured to generate an interrupt instead of a reset. Otherwise, portions of
flash may undergo unexpected changes.

Parameters:

context The pointer to the EEPROM context structure cy_stc_eeprom_context_t.

Returns:

This function returns cy_en_em_eeprom_status_t.

Note:

The erase operation is performed by clearing the EEPROM data using flash write. This
affects the flash durability. So it is recommended to use this function in utmost case for
prolongation of the flash life.

This function uses a buffer of the flash row size to perform erase operation. For the size of
the row refer to the specific PSoC device datasheet.

For PSoC 3/PSoC 5LP, this function calls the CySetTemp() function for a reliable erase
procedure to occur. The CySetTemp() function should be called once before executing a
series of Flash erase operations in case the die temperature changes significantly (10 °C
or more).

uint32 Cy_Em_EEPROM_NumWrites (cy_stc_eeprom_context_t *context)

Returns the number of the EEPROM writes completed so far.

Parameters:

context The pointer to the EEPROM context structure cy_stc_eeprom_context_t.

Returns:

The number of writes performed to the EEPROM.

Data in RAM

The generated Component configuration structure may be placed in flash memory (const) or
RAM. The former is the more memory-efficient choice if you do not wish to modify the
configuration data at run-time. Under the Built-In tab of the Configure dialog set the parameter
CONST_CONFIG to make your selection. The default option is to place the data in flash.

PSoC® Creator™ Component Datasheet Emulated EEPROM (Em_EEPROM)

Document Number: 002-24582 Rev. *A Page 21 of 26

Code Examples and Application Notes

This section lists the projects that demonstrate the use of this Component.

Code Examples

PSoC Creator provides access to code examples in the Code Example dialog. For Component-
specific examples, open the dialog from the Component catalog or an instance of the
Component in a schematic. For general examples, open the dialog from the Start Page or File
menu. In need, use the Filter Options in the dialog to narrow the list of projects available to
select.

Refer to the "Code Example" topic in the PSoC Creator Help for more information.

There are also numerous code examples that include schematics and example code available
online at the Cypress Code Examples web page.

Application Notes

Cypress provides a number of application notes describing how PSoC can be integrated into
your design. You can access the Cypress Application Notes search web page at
www.cypress.com/appnotes. Application Notes related to this Component include:

▪ AN210781 – Getting started with PSoC 6 BLE

▪ AN215656 – PSoC 6 Dual-Core CPU system Design

API Memory Usage

The Component memory usage varies significantly depending on the compiler, device, number
of APIs used and Component configuration. The following table provides the memory usage for
all APIs available in the given Component configuration.

The measurements have been done with an associated compiler configured in Release mode
with optimization set for Size. For a specific design, the map file generated by the compiler can
be analyzed to determine the memory usage.

PSoC 3 (Keil_PK51)

Configuration Flash Bytes SRAM Bytes

Default 7447 296

PSoC 4 (GCC)

Configuration Flash Bytes SRAM Bytes

Default 2386 48

http://www.cypress.com/go/ce_p3-4-5lp
http://www.cypress.com/appnotes

Emulated EEPROM (Em_EEPROM) PSoC® Creator™ Component Datasheet

Page 22 of 26 Document Number: 002-24582 Rev. *A

PSoC 5LP (GCC)

Configuration Flash Bytes SRAM Bytes

Default 2562 56

PSoC 6 (GCC)

Configuration Flash Bytes SRAM Bytes

Default 2998 60

Functional Description

The Emulated EEPROM Component provides an interface to either Cy_Em_EEPROM
Middleware library (PSoC 6) or to Em_EEPROM Dynamic DWR Component (non-PSoC 6).

Block Diagram and Configuration

A simplified diagram of the Em_EEPROM hardware is shown below:

For the PSoC 3/PSoC 4/PSoC 5LP devices, the Em_EEPROM Component itself includes the
Component configuration structures, initialization routine and interface to Em_EEPROM
Dynamic Component routines. The Em_EEPROM Dynamic design-wide Component includes
the implementation of wear leveling and redundant copy algorithms. The Em_EEPROM Dynamic
Component uses cy_boot Component that contains an API for operations with flash.

PSoC® Creator™ Component Datasheet Emulated EEPROM (Em_EEPROM)

Document Number: 002-24582 Rev. *A Page 23 of 26

For PSoC 6, the Emulated EEPROM implements a middleware library on the top of existing
Flash driver that creates an emulated EEPROM in flash and has the ability to do wear leveling
and restore corrupted data from a redundant copy. Em_EEPROM Component itself is only
responsible for configuring the Em_EEPROM middleware library and the Flash driver.

Wear leveling

Wear leveling allows to increase the flash endurance (the number of flash erase/write cycles) by
using extra flash rows in EEPROM. For example, if the user selected wear leveling of 5x, that
allows 5x more flash write/erase cycles to be performed to flash. However, the overall emulated
EEPROM size will be 5 times greater comparing to the case where no wear leveling is used.

Redundant Copy

Redundant copy option allows recovering of damaged EEPROM data from the redundant
EEPROM copy. This option, when it is used, doubles the overall flash size of the Emulated
EEPROM to store the redundant EEPROM copy in it. The algorithm works as following. During
the write operation the checksum of the active EEPROM row data is calculated and stored in the
active row and in the corresponding row of redundant EEPROM copy. When the data from the
EEPROM row is read - the checksum is calculated on the row data again and compared to the
stored one. If the checksums don’t match the same actions are performed on the redundant
EEPROM copy row. If the checksums are matching the corresponding EEPROM row is restored
from the redundant copy and valid data is returned to user. If the checksums don’t match the
error status is returned to the user and no data is read.

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the Component. There
are two types of deviations defined:

▪ project deviations – Deviations applicable to all PSoC Creator Components

▪ specific deviations – Deviations applicable only for this Component

This section provides information on the Component-specific deviations. Non-PSoC 6 project
deviations are described in the “MISRA Compliance” section of the System Reference Guide
along with information on the MISRA compliance verification environment.

For PSoC 6, this Component uses the Cy_Em_EEPROM middleware library from Peripheral
Driver Library (PDL) module. Refer to the PDL documentation for information on its MISRA
compliance and specific deviations. Also refer to PSoC Creator Help>Building a PSoC Creator
Project>Generated Files (PSoC 6) for information on MISRA compliance and deviations of a
files generated by PSoC Creator.

Emulated EEPROM (Em_EEPROM) PSoC® Creator™ Component Datasheet

Page 24 of 26 Document Number: 002-24582 Rev. *A

For PSoC 6, the Em_EEPROM Component has the following specific deviations:

Rule Rule Class Rule Description Description of Deviation(s)

8.7 R Objects shall be defined at block scope
if they are only accessed from within a
single function.

The Component defines the EEPROM storage
array that is directly used only in
'Em_EEPROM_1_Init'. Indirectly, the EEPROM
storage is used by every Component API.

14.2 R All non-null statements shall either
have at least one side-effect, however
executed, or cause control flow to
change.

To maintain common codebase some variables,
unused for a specific device, are casted to void
to prevent generation of an unused variable
compiler warning.

19.7 A A function shall be used in preference
to a function-like macro.

A macro is used for performance reasons.

For non-PSoC 6 devices, the Em_EEPROM Component (including Em_EEPROM_Dynamic) has
the following specific deviations:

Rule Rule Class Rule Description Description of Deviation(s)

10.1 R The value of an expression of integer
type shall not be implicitly converted to
a different underlying type under some
circumstances.

For PSoC 3, the #10.1 violation occurs for the
memset() and memcpy() because of a difference
of the functions parameter types for PSoC 3 and
PSoC 4/PSoC 5LP/PSoC 6.

11.4 A The cast should not be performed
between a pointer to the object type
and a different pointer to the object
type.

The cast from the object type and a different
pointer to the object was used intentionally
because of the performance reasons.

14.2 R All non-null statements shall either
have at least one side-effect, however
executed, or cause control flow to
change.

To maintain common codebase, some variables,
unused for a specific device, are casted to void
to prevent generation of an unused variable
compiler warning.

16.7 A The object addressed by the pointer
parameter is not modified and so the
pointer could be of type “pointer to
const”.

The warning is generated because of the pointer
dereferencing to the address which makes the
MISRA checker think the data is not modified.

17.4 R The array indexing shall be the only
allowed form of the pointer arithmetic.

The pointer arithmetic used in several places on
the Cy_Em_EEPROM implementation is safe
and preferred because it increases the code
flexibility.

19.7 A A function shall be used in preference
to a function-like macro.

A macro is used for performance reasons.

PSoC® Creator™ Component Datasheet Emulated EEPROM (Em_EEPROM)

Document Number: 002-24582 Rev. *A Page 25 of 26

DC and AC Electrical Characteristics

Refer to the Flash DC Specifications and Flash AC Specifications in the specific device
datasheet.

Component Changes

This section lists the major changes in the Component from the previous version.

Version Description of Changes Reason for Changes / Impact

2.20.a Edited the datasheet. Added notes to not write to and read/execute from
the same flash sector at the same time. This is true
for all sectors. For more details, refer to the PDL
reference for Flash System Routine (Flash).

2.20 Updated Component version to fix an incorrect
flash row number calculation for PSoC 4
devices with more than one flash array ID.

The Em_EEPROM_Write() function was always
writing to the zero flash array.

2.10 The “EEPROM Size” and “Actual EEPROM
Size” parameters were updated for larger base
types.

Fixed an issue where you were unable to set the
EEPROM Size larger than 32,767 bytes.

2.0.f Updated the datasheet. Changed API functions return type from
“cy_en_eeprom_return_value_t” to
“cy_en_em_eeprom_status_t”.

Added a note about modifying the link scripts when
using the Em_EEPROM on one specific core.

2.0.e Updated the datasheet. Added a note about prerequisites for Flash driver at
the top of the Quick Start section.

Added notes to the Cy_Em_EEPROM_Init() function
description.

2.0.d Updated the datasheet. The proper code for declaring an array for IAR
compiler was added to IAR compiler section.

2.0.c Updated the datasheet. Updated MISRA Compliance section.

Updated Placing EEPROM Storage at Fixed Address
section. Added description on how to use fixed
placement of EEPROM Storage with IAR compiler.

2.0.b Made the Em_EEPROM_em_EepromStorage[]
array accessible to the user.

Passing the address of the emulated EEPROM
storage to PDL _Init() function is mandatory. Making
the Em_EEPROM_em_EepromStorage[] array
accessible allows the removal of the Component
wrapper API functions if one wants to use only the
PDL API (PSoC 6).

2.0.a Edited datasheet. Added the section: Adding EEPROM Storage to
Checksum Exclude Section (PSoC 4/PSoC 5LP).

Emulated EEPROM (Em_EEPROM) PSoC® Creator™ Component Datasheet

Page 26 of 26 Document Number: 002-24582 Rev. *A

Version Description of Changes Reason for Changes / Impact

2.0 This is a complete re-write of the Component to
bring in line with customer expectations

1. Added Init, Read, Erase and
NumWrites API functions.

2. Remove Start and Stop API functions.

3. Modified Write API to pass a logical
EEPROM Address.

4. Added Wear Leveling.

5. Added Redundant Copy option.

6. Updated GUI to provide information on
flash used by Component.

7. The datasheet was moved to a new
template.

Improve the emulated EEPROM to match the
industry norms for emulated EEPROMs by adding
features such as wear leveling and redundant data
copies.

1.10 Fixed the incorrect flash array ID and row ID
calculation for devices that have more than one
flash array ID.

Em_EEPROM_Write() function fails if the
EEPROMPtr points to an address in flash that
corresponds to an array ID other than zero.

Added a flush instruction cache after a flash
write into the emulated EEPROM is complete.

Reading back just written flash data might return
cached data instead of reading flash content when
the instruction cache is enabled.

1.0.a Added the “DC/AC Electrical Characteristics”
section.

To provide the Component operating characteristics.

1.0 The first Component version. The first Component version.

© Cypress Semiconductor Corporation, 2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other
countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical Components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical Component is any
Component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable,
in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	When To Use Em_EEPROM Component
	Quick Start

	Placing EEPROM Storage at Fixed Address
	PSoC 4/PSoC 5LP
	PSoC 6
	IAR compiler

	Adding EEPROM Storage to Checksum Exclude Section (PSoC 4/PSoC 5LP)
	Component Parameters
	Basic Tab

	Em_EEPROM Dynamic
	Em_EEPROM Version and Updates

	Application Programming Interface
	Global Variables
	cy_stc_eeprom_config_t Em_EEPROM_1_config
	const uint8_t Em_EEPROM_1_em_EepromStorage[]

	Preprocessor Macros
	Em_EEPROM_1_PHYSICAL_SIZE

	Data Structures
	struct cy_stc_eeprom_config_t
	uint32 cy_stc_eeprom_config_t::eepromSize
	uint32 cy_stc_eeprom_config_t::wearLevelingFactor
	uint8 cy_stc_eeprom_config_t::redundantCopy
	uint8 cy_stc_eeprom_config_t::blockingWrite
	uint32 cy_stc_eeprom_config_t::userFlashStartAddr

	enum cy_en_em_eeprom_status_t
	Enumerator

	Component Functions
	cy_en_em_eeprom_status_t EmEEPROM_1_Init (uint32 startAddress)
	cy_en_em_eeprom_status_t EmEEPROM_1_Write (uint32 addr, void * eepromData, uint32 size)
	cy_en_em_eeprom_status_t EmEEPROM_1_Read (uint32 addr, void * eepromDdata, uint32 size)
	cy_en_em_eeprom_status_t EmEEPROM_1_Erase (void)
	uint32 EmEEPROM_1_NumWrites (void)

	Em_EEPROM_Dynamic Component Functions
	cy_en_em_eeprom_status_t Cy_Em_EEPROM_Init (cy_stc_eeprom_config_t *config, cy_stc_eeprom_context_t *context)
	cy_en_em_eeprom_status_t Cy_Em_EEPROM_Read (uint32 addr, void *eepromData, uint32 size, cy_stc_eeprom_context_t *context)
	cy_en_em_eeprom_status_t Cy_Em_EEPROM_Write (uint32 addr, void *eepromData, uint32 size, cy_stc_eeprom_context_t *context)
	cy_en_em_eeprom_status_t Cy_Em_EEPROM_Erase (cy_stc_eeprom_context_t *context)
	uint32 Cy_Em_EEPROM_NumWrites (cy_stc_eeprom_context_t *context)

	Data in RAM
	Code Examples and Application Notes
	Code Examples
	Application Notes

	API Memory Usage
	PSoC 3 (Keil_PK51)
	PSoC 4 (GCC)
	PSoC 5LP (GCC)
	PSoC 6 (GCC)

	Functional Description
	Block Diagram and Configuration
	Wear leveling
	Redundant Copy

	MISRA Compliance
	DC and AC Electrical Characteristics
	Component Changes

