

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Features

 Over-the-Air (OTA) firmware update

 Shared BLE Bootloader Service to receive bootloadable images

 HID Keyboard

General Description

This example shows how to use the custom linker scripts to share a block of memory between
the bootloader and bootloadable projects. It demonstrates how the bootloader can place the API
functions so that the bootloadable can also call them. This allows creating an OTA bootloader.

The purpose of the Bootloader project is to replace a bootloadable image on the device with an
image sent OTA by the Bluetooth protocol.

The bootloadable project uses BLE APIs implemented in the bootloader part of the memory
(Figure 1).

Note Currently GCC 5.4.1, MDK, and IAR compilers are supported.

Figure 1. OTA Fixed Stack Workspace

Bootloadable projectBootloader project

BLE

Workspace

BLE

Application

By default, both bootloader and bootloadable projects are expected to be located in the same
workspace. However, the user can save projects in any location and modify paths in the build
script.

BLE OTA Fixed Stack Bootloader and Bootloadable
1.40

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 2 of 33

Figure 2 shows the architecture of the bootloader project; Figure 3 shows the architecture of the
bootloadable project.

Figure 2. Bootloader Project Architecture

BLE component

Bootloader

component

BLE OTA

application code

Bootloader

project

Figure 3. Bootloadable Project Architecture

Bootloadable

component

BLE profiles

application code

Bootloadable

project

BLE component

APIs as extern

Linker script with

BLE APIs location

The bootloadable project may use APIs from the bootloader project if:

1. These APIs are listed as “extern” in a dedicated header.

2. These APIs addresses are provided in the bootloadable project linker script by the post-
build script of the bootloader.

3. Bootloader *.hex/*.elf has not been modified since Step 2.

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 3 of 33

Development Kit Configuration
This example project is designed to run on the Cypress CY8CKIT-042-BLE kit. A description of
the kit along with more example programs and ordering information can be found at
http://www.cypress.com/go/cy8ckit-042-ble.

The kit must be powered by 3.3 V (J16 is set to 1 and 2). No connection on the kit board is
required to use this example project. If you want to power the kit with the 5V supply you should
modify the Operating Conditions in the *.cydwr files under the System tab for both bootloader
and bootloadable projects:

Refer to the “Setup” and “Run Example Project” section of this document for instructions on how
to use this example project.

If the kit is powered with different from 3.3 voltage – the projects settings must be updated
appropriately in the System DWR settings on the System tab.

Bootloader Project Configuration

The Bootloader project contains the following components:

 Bluetooth Low Energy (BLE)

 Bootloader

 Software Transmit UART

 Watchdog timer (WDT) that is used as general timer

Linker Settings

Check the correctness of the project linker settings:

1. Right-click on the bootloader project in Workspace Explorer.

2. Click Build Settings.

3. Expand Linker under the selected compiler:

a. If ARM GCC compiler is selected:

Check the values of the following options in the General section:

http://www.cypress.com/go/cy8ckit-042-ble

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 4 of 33

Section Option Value

General Custom Linker Script .\cm0gcc.ld

b. If ARM MDK Generic:

Check the values of the following options in the General and Command line
section:

Section Option Value

General Use MicroLIB False

Command line Custom flags --keep=Advertising_LED_1_SetDriveMode --
keep=Advertising_LED_2_SetDriveMode --
keep=Bootloading_LED_SetDriveMode --
keep=Bootloader_Service_Activation_Read --
keep=Bootloader_Service_Activation_SetDriveMode --
keep=Bootloader_Service_Activation_Write --keep=CyBle_StackInit --
keep=CyBle_Shutdown --keep=CyBle_SoftReset --keep=CyBle_EnterLPM --
keep=CyBle_ExitLPM --keep=CyBle_ProcessEvents --
keep=CyBle_SetDeviceAddress --keep=CyBle_GetDeviceAddress --
keep=CyBle_GetRssi --keep=CyBle_GetTxPowerLevel --
keep=CyBle_SetTxPowerLevel --keep=CyBle_GetBleClockCfgParam --
keep=CyBle_SetBleClockCfgParam --keep=CyBle_GenerateRandomNumber --
keep=CyBle_SetCeLengthParam --keep=CyBle_WriteAuthPayloadTimeout --
keep=CyBle_ReadAuthPayloadTimeout --keep=CyBle_GetStackLibraryVersion -
-keep=CyBle_GetBleSsState --keep=CyBle_AesEncrypt --
keep=CyBle_AesCcmInit --keep=CyBle_AesCcmEncrypt --
keep=CyBle_AesCcmDecrypt --keep=CyBle_SetTxGainMode --
keep=CyBle_SetRxGainMode --keep=CyBle_GattGetMtuSize --
keep=CyBle_ApplCallback --keep=cyBle_deviceAddress --
keep=cyBle_sflashDeviceAddress --keep=cyBle_discoveryModeInfo --
keep=cyBle_scanRspData --keep=cyBle_discoveryData --
keep=cyBle_discoveryParam --keep=CyBle_Init --keep=CyBle_ServiceInit --
keep=CyBle_Start --keep=CyBle_Stop --keep=CyBle_StoreBondingData --
keep=CyBle_GappStartAdvertisement --keep=CyBle_GappStopAdvertisement --
keep=CyBle_ChangeAdDeviceAddress --keep=CyBle_GapSetLocalName --
keep=CyBle_GapGetLocalName --keep=CyBle_Get16ByPtr --
keep=CyBle_Set16ByPtr --keep=cyBle_bass --keep=CyBle_BasInit --
keep=CyBle_BasRegisterAttrCallback --
keep=CyBle_BassSetCharacteristicValue --
keep=CyBle_BassGetCharacteristicValue --
keep=CyBle_BassGetCharacteristicDescriptor --
keep=CyBle_BassWriteEventHandler --keep=CyBle_BassSendNotification --
keep=cyBle_diss --keep=CyBle_DisInit --keep=CyBle_DisRegisterAttrCallback --
keep=CyBle_DissSetCharacteristicValue --
keep=CyBle_DissGetCharacteristicValue --keep=cyBle_hidss --
keep=CyBle_HidsInit --keep=CyBle_HidsRegisterAttrCallback --
keep=CyBle_HidssSetCharacteristicValue --
keep=CyBle_HidssGetCharacteristicValue --
keep=CyBle_HidssGetCharacteristicDescriptor --
keep=CyBle_HidssWriteEventHandler --keep=CyBle_HidssSendNotification --
keep=CyBle_HidssOnDeviceConnected --keep=cyBle_scpss --
keep=CyBle_ScpsInit --keep=CyBle_ScpsRegisterAttrCallback --
keep=CyBle_ScpssSetCharacteristicValue --
keep=CyBle_ScpssGetCharacteristicValue --
keep=CyBle_ScpssGetCharacteristicDescriptor --
keep=CyBle_ScpssWriteEventHandler --keep=CyBle_ScpssSendNotification --
keep=CyBle_GattsEnableAttribute --apcs=/pic --info unused

Note MicroLib has compilation limitations which prevent the usage of code sharing.
Cause of this MircoLib cannot be used neither in BLE OTA Bootloader nor in BLE
OTA Bootloadable projects.

c. And if the project was exported to the IAR:

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 5 of 33

Set the following settings in the project options:

Section Option Value

C/C++
Compiler

Command line options
--no_fragments
--no_inline
--no_wrap_diagnostics
--interwork
--no_unaligned_access
--cpu_mode=thumb

Linker Command line options
--keep=Bootloader_Checksum
--keep=Advertising_LED_1_SetDriveMode
--keep=Advertising_LED_2_SetDriveMode
--keep=Bootloading_LED_SetDriveMode
--keep=Bootloader_Service_Activation_Read
--keep=Bootloader_Service_Activation_SetDriveMode
--keep=Bootloader_Service_Activation_Write
--keep=CyBle_StackInit
--keep=CyBle_Shutdown
--keep=CyBle_SoftReset
--keep=CyBle_EnterLPM
--keep=CyBle_ExitLPM
--keep=CyBle_ProcessEvents
--keep=CyBle_SetDeviceAddress
--keep=CyBle_GetDeviceAddress
--keep=CyBle_GetRssi
--keep=CyBle_GetTxPowerLevel
--keep=CyBle_SetTxPowerLevel
--keep=CyBle_GetBleClockCfgParam
--keep=CyBle_SetBleClockCfgParam
--keep=CyBle_GenerateRandomNumber
--keep=CyBle_SetCeLengthParam
--keep=CyBle_WriteAuthPayloadTimeout
--keep=CyBle_ReadAuthPayloadTimeout
--keep=CyBle_GetStackLibraryVersion
--keep=CyBle_GetBleSsState
--keep=CyBle_AesEncrypt
--keep=CyBle_AesCcmInit
--keep=CyBle_AesCcmEncrypt
--keep=CyBle_AesCcmDecrypt
--keep=CyBle_SetTxGainMode
--keep=CyBle_SetRxGainMode
--keep=CyBle_GattGetMtuSize
--keep=CyBle_ApplCallback
--keep=cyBle_deviceAddress
--keep=cyBle_sflashDeviceAddress
--keep=cyBle_discoveryModeInfo
--keep=cyBle_scanRspData
--keep=cyBle_discoveryData
--keep=cyBle_discoveryParam
--keep=CyBle_Init
--keep=CyBle_ServiceInit
--keep=CyBle_Start
--keep=CyBle_Stop
--keep=CyBle_StoreBondingData
--keep=CyBle_GappStartAdvertisement
--keep=CyBle_GappStopAdvertisement
--keep=CyBle_GattsEnableAttribute
--keep=CyBle_ChangeAdDeviceAddress
--keep=CyBle_GapSetLocalName
--keep=CyBle_GapGetLocalName
--keep=CyBle_Get16ByPtr
--keep=CyBle_Set16ByPtr
--keep=cyBle_bass
--keep=CyBle_BasInit
--keep=CyBle_BasRegisterAttrCallback
--keep=CyBle_BassSetCharacteristicValue

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 6 of 33

--keep=CyBle_BassGetCharacteristicValue
--keep=CyBle_BassGetCharacteristicDescriptor
--keep=CyBle_BassWriteEventHandler
--keep=CyBle_BassSendNotification
--keep=cyBle_diss
--keep=CyBle_DisInit
--keep=CyBle_DisRegisterAttrCallback
--keep=CyBle_DissSetCharacteristicValue
--keep=CyBle_DissGetCharacteristicValue
--keep=cyBle_hidss
--keep=CyBle_HidsInit
--keep=CyBle_HidsRegisterAttrCallback
--keep=CyBle_HidssSetCharacteristicValue
--keep=CyBle_HidssGetCharacteristicValue
--keep=CyBle_HidssGetCharacteristicDescriptor
--keep=CyBle_HidssWriteEventHandler
--keep=CyBle_HidssSendNotification
--keep=CyBle_HidssOnDeviceConnected
--keep=cyBle_scpss
--keep=CyBle_ScpsInit
--keep=CyBle_ScpsRegisterAttrCallback
--keep=CyBle_ScpssSetCharacteristicValue
--keep=CyBle_ScpssGetCharacteristicValue
--keep=CyBle_ScpssGetCharacteristicDescriptor
--keep=CyBle_ScpssWriteEventHandler
--keep=CyBle_ScpssSendNotification
--semihosting

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 7 of 33

Bluetooth Low Energy (BLE)

The BLE component is used to implement the BLE Human Interface Device (HID over GATT
keyboard), Battery Service (BAS), Scan Parameters (SCPS), Device Information (DIS), and a
hidden Bootloader Service. The purpose of the Bootloader Service is to receive other
bootloadable images. The Bootloader Service is available only in the bootloader. When a device
is in the bootloadable mode (the device operation is the same as in the BLE_HID_Keyboard
example, except for button SW2) in this example project, it forces the device to go to the
bootloader mode.

Figure 4. BLE GATT Settings

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 8 of 33

Figure 5. BLE GATT Settings

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 9 of 33

Figure 6. BLE GAP Settings

The Bootloader Service is enabled by default in the bootloader mode for communication with the
Bootloader Host tool.

The BLE Bootloader Service has one characteristic that supports the “Write/Write Long
Characteristic Values” procedure and notifications. The described characteristic also has a
characteristic descriptor - Client Characteristic Configuration.

For communication, the Bootloader Host tool writes a command to the Command Characteristic
and enables notifications in the characteristic descriptor.

The bootloader emulator reads the command from the Characteristic, processes it, and, if
notifications are enabled in the characteristic descriptor, writes a response to the notification that
is sent to Bootloader Host Tool.

The Bootloader Host tool receives the notification and, depending on its content (a bootloader
emulator response), either sends the next command or reports an error.

The BLE component is configured to have an MTU of 23 byte and the Bootloader Service UUID,
which is 00060000-F8CE-11E4-ABF4-0002A5D5C51B.

After pressing onboard SW2, the LED changes its indication to red. This can be applied to both
“advertising” and “connected’ modes.

Note The bootloader project is performing flash writes. Due to this, the maximum connection
interval value is set to 15 ms. Changing this parameter value to a smaller value might result in
disconnection during bootloading if a flash write takes longer. A flash Write takes about 10ms

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 10 of 33

(refer to the device datasheet), so this value cannot be smaller. If a device flash write takes more
than 15 ms, this value should be changed.

The bootloadable project shares the all BLE component settings with the bootloader project.

Adding Services

This section describes how to add and use another service in the BLE component of the
bootloader project. The basic steps include:

1. Add a service in the BLE component’s customizer of the
BLE_OTA_FixedStack_Bootloader project.

2. Optional Add code to disable the new service in the bootloader project as it is done in
main.c using API CyBle_GattsDisableAttribute(). This is done to hide the unused
functionality in the bootloader mode.

Figure 7. Code Example of Service Disabling

3. Build the BLE_OTA_FixedStack_Bootloader project.

4. Rerun the mk.bat script to update the bootloadable project linker scripts.

5. Add code that uses the added BLE API service in the
BLE_OTA_FixedStack_Bootloadable project.

6. Add all the used BLE APIs to the OTAMandatory.h file as extern declarations in the
BLE_OTA_FixedStack_Bootloadable project.

7. If APIs are to be used from the bootloadable project:

a. For the GCC compiler, add those APIs to the section with KEEP instructions in the
linker script of the bootloader project.

b. For the MDK compiler and for the IAR, the same procedure is performed with the
linker command line arguments of the bootloader project.

c. If the services are removed, the APIs should also be removed.

8. Add all the used BLE types and defines to the OTAMandatory.h file of the
BLE_OTA_FixedStack_Bootloadable project.

9. Build the BLE_OTA_FixedStack_Bootloadable project.

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 11 of 33

Bootloader

Enable the Bootloader application validation option only if the BLE profiles do not require saving
bonding information or if this information is not saved during the BLE component operation.
Otherwise, saving bonding information will update the Bootloader project image, which may
cause the validation to fail.

Software Transmit UART

This component is used for printing debug information. Refer to the Using UART for Debugging
section for details.

Watch Dog Timer (WDT)

The WDT is used here as a general purpose timer for LED indication.

Bootloadable Project Configuration

The bootloadable project contains the following components:

 Bootloadable

 Software Transmit UART

Compiler Settings

Bootloadable project uses code sharing for BLE API from Bootloader project firmware image.
And it does not have a BLE component to generate the code and header files with the APIs.

So all the BLE API in Bootloadable project are declared in ota_mandatory.h header file which
itself references BLE API headers copied to ${Bootloadable}/CyBle/ folder from
${Bootloader}/Generated_Source/PSoC4/CyBle*.h.

Note that you shall copy this files manually to Bootloadable project when changing BLE
component version in Bootloader project.

This is why ${Bootloadable}/CyBle/ folder has to be added to compiler include paths list.

It is done by default in PSoC Creator’s projects for GCC and MDK compilers.

IAR Compiler Settings

1. Open options for Bootloadable project.

2. Under C/C++ Compiler category choose Preprocessor tab.

3. Add $PROJ_DIR\CyBle to Additional include directories list.

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 12 of 33

Linker Settings

Check the correctness of the project linker settings:

1. Right-click the bootloadable project in Workspace Explorer.

2. Click Build Settings.

3. Expand Linker under the selected compiler:

a. If ARM GCC compiler is selected:

Check the values of the following options in the General and Optimization
sections:

Section Option Value

General Additional Library Directories .\LinkerScripts\

General Custom Linker Script .\LinkerScripts\cm0gcc.ld

Optimization Removed Unused Function False

b. If ARM MDK Generic:

Check the values of the following options in the “Linker” section:

Section Option Value

General Custom Linker Script .\LinkerScripts\Cm0Mdk.scat

General Use MicroLIB False

Command line Custom flags .\LinkerScripts\BootloaderSymbolsMdk.txt

c. And if the project was exported to the IAR:

Set the following settings in the project options:

Section Option Value

C/C++ Compiler Command line options --no_fragments

--no_cse

--no_unroll

--no_inline

--no_code_motion

--no_tbaa

--no_scheduling

--debug

--no_wrap_diagnostics

--interwork

--no_unaligned_access

--cpu_mode=thumb

Additional include directories $PROJ_DIR$\CyBle

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 13 of 33

Linker Command line options --no_dynamic_rtti_elimination

--no_range_reservations

--no_fragments

Linker Configuration File /
Custom Linker Script

$PROJ_DIR$\LinkerScripts\Cm0Iar.icf

Bootloadable

The Bootloadable component is used to create an image with the bootloadable firmware that can
be updated without affecting the bootloader.

Software Transmit UART

The component is used for printing debug information. Refer to the Using UART for Debugging
section for the details.

Watch Dog Timer (WDT)

The WDT is used here as a general purpose timer for the LED indication.

Custom Linker Scripts

The custom linker scripts are intended for keeping the Bootloader’s RAM regions not re-
initialized by the Bootloadable application and including the list of exported APIs.

Custom Linker Script Description

Bootloader and Bootloadable projects use the custom linker scripts for the GCC compiler. For
other supported compilers the custom linker scripts are used only for bootloadable projects.

Compared to a generated script, the bootloader’s custom linker script for GCC (cm0gcc.ld),
contains a few KEEP instructions to prevent the required symbols from being removed by the
linker and this script is located in the Bootloader sources folder
(\BLE_OTA_FixedStack_Bootloader.cydsn).

For the GCC compiler, the bootloadable’s custom linker script (cm0gcc.ld) includes a generated
file with a list of exported symbols (BootloaderSymbolsGcc.ld) and declares the
".bootloader_data” section as NOLOAD, so that it can’t be re-initialized. The Bootloadable’s
custom linker script is located in the Bootloadable’s folder
(\BLE_OTA_FixedStack_Bootloadable.cydsn\LinkerScripts\).

For the MDK compiler, the bootloader does not use custom linker scripts – instead all the options
are sent via a command line to the linker:

--keep=Advertising_LED_1_SetDriveMode --keep=Advertising_LED_2_SetDriveMode --
keep=Bootloading_LED_SetDriveMode --keep=Bootloader_Service_Activation_Read --

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 14 of 33

keep=Bootloader_Service_Activation_SetDriveMode --keep=Bootloader_Service_Activation_Write --keep=CyBle_StackInit --
keep=CyBle_Shutdown --keep=CyBle_SoftReset --keep=CyBle_EnterLPM --keep=CyBle_ExitLPM --
keep=CyBle_ProcessEvents --keep=CyBle_SetDeviceAddress --keep=CyBle_GetDeviceAddress --keep=CyBle_GetRssi --
keep=CyBle_GetTxPowerLevel --keep=CyBle_SetTxPowerLevel --keep=CyBle_GetBleClockCfgParam --
keep=CyBle_SetBleClockCfgParam --keep=CyBle_GenerateRandomNumber --keep=CyBle_SetCeLengthParam --
keep=CyBle_WriteAuthPayloadTimeout --keep=CyBle_ReadAuthPayloadTimeout --keep=CyBle_GetStackLibraryVersion --
keep=CyBle_GetBleSsState --keep=CyBle_AesEncrypt --keep=CyBle_AesCcmInit --keep=CyBle_AesCcmEncrypt --
keep=CyBle_AesCcmDecrypt --keep=CyBle_SetTxGainMode --keep=CyBle_SetRxGainMode --
keep=CyBle_GattGetMtuSize --keep=CyBle_ApplCallback --keep=cyBle_deviceAddress --keep=cyBle_sflashDeviceAddress
--keep=cyBle_discoveryModeInfo --keep=cyBle_scanRspData --keep=cyBle_discoveryData --keep=cyBle_discoveryParam --
keep=CyBle_Init --keep=CyBle_ServiceInit --keep=CyBle_Start --keep=CyBle_Stop --keep=CyBle_StoreBondingData --
keep=CyBle_GappStartAdvertisement --keep=CyBle_GappStopAdvertisement --keep=CyBle_ChangeAdDeviceAddress --
keep=CyBle_GapSetLocalName --keep=CyBle_GapGetLocalName --keep=CyBle_Get16ByPtr --keep=CyBle_Set16ByPtr --
keep=cyBle_bass --keep=CyBle_BasInit --keep=CyBle_BasRegisterAttrCallback --keep=CyBle_BassSetCharacteristicValue -
-keep=CyBle_BassGetCharacteristicValue --keep=CyBle_BassGetCharacteristicDescriptor --
keep=CyBle_BassWriteEventHandler --keep=CyBle_BassSendNotification --keep=cyBle_diss --keep=CyBle_DisInit --
keep=CyBle_DisRegisterAttrCallback --keep=CyBle_DissSetCharacteristicValue --keep=CyBle_DissGetCharacteristicValue -
-keep=cyBle_hidss --keep=CyBle_HidsInit --keep=CyBle_HidsRegisterAttrCallback --
keep=CyBle_HidssSetCharacteristicValue --keep=CyBle_HidssGetCharacteristicValue --
keep=CyBle_HidssGetCharacteristicDescriptor --keep=CyBle_HidssWriteEventHandler --keep=CyBle_HidssSendNotification
--keep=CyBle_HidssOnDeviceConnected --keep=cyBle_scpss --keep=CyBle_ScpsInit --
keep=CyBle_ScpsRegisterAttrCallback --keep=CyBle_ScpssSetCharacteristicValue --
keep=CyBle_ScpssGetCharacteristicValue --keep=CyBle_ScpssGetCharacteristicDescriptor --
keep=CyBle_ScpssWriteEventHandler --keep=CyBle_ScpssSendNotification --keep=CyBle_GattsEnableAttribute --apcs=/pic
--info unused

For the MDK compiler, the bootloadable project uses a custom linker script that provides
placement information of APIs from the bootloader project. The same approach is used for the
IAR.

Compilation Script Description

A compilation batch script file (mk.bat in the Bootloader project) generates custom link files. This
script file parses the *.elf file generated from the bootloader project and generates a file for the
bootloadable project linker with shared symbols placement. The script generates files into the
\BLE_OTA_FixedStack_Bootloadable.cydsn\LinkerScripts\ directory. The script consists of two
sections:

 Setup

 Main

The user must check the correctness of all paths in the “Setup” section. The setup options are as
follows:

 LOADER_PRJ_NAME – The name of the bootloader project.

 LOADER_PRJ_PATH – The path to the bootloader project.

 LOADABLE_PRJ_NAME – The name of the bootloadable project.

 OUTPUT_DIR – The path to the directory where to put generated files.

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 15 of 33

 BUILD_OUTPUT_DIR – The path to the directory with the *.elf file. There is a list of all
possible options, choose only one, uncomment it, and comment some other option.

 LOADER_ELF_FILE – The full name with a path to the *.elf file.

 COMPILER – The compiler identifier.

 COMPILE_OPTION – The Debug/Release option.

 KEEP_TMP_FILES – The options to keep temporary generated by this script files.

 UTILS_NM – The path to the Creator directory with the arm-none-eabi-nm.exe tool.
Check if this path is correct.

 The names of the input files with the section and symbols names are defined in
SECTION_LIST and SEARCHING_SYMBOLS.

 The names of the temporary files defined in PARSED_ELF, EXTRACTED_BLE_INFO,
BLE_INFO_ALL, and BLE_INFO_ALL_SORTED.

 The main section checks the input, searches specified symbols in *.elf files and generates
an output for linker scripts.

Note The names of the bootloader project component to be exported to the bootloadable project
must be aligned with the Symbol_list.txt file. It is not recommended to change the default values.
The script file may work in a wrong way if these names are misrecognized inside other names
(e.g., BLE as part of TABLE). CyBle is the recommended name for the BLE component.

Custom linker scripts limitations:

For project(s) that use custom linker scripts heap and stack size that was set in the PSoC
Creator will not be applied. The size must be specified manually in corresponding linker scripts.

Setup and Run Example Project

Building Example Project

The following steps are described for compiler GCC that is shipped with PSoC Creator. If the
MDK compiler is used, variable COMPILER should be changed to MDK_COMPILER and it
should be set to IAR_COMPILER for IAR. Note The same compiler should be used for the
bootloader and bootloadable projects.

For more information on changing the compiler from a default one (GCC), refer to section
“Changing projects compiler”.

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 16 of 33

1. Build the BLE_OTA_FixedStack_Bootloader example project. Check that the proper
compiler toolchain is set in Project -> Build Settings.

2. Optional Add the BLE_OTA_FixedStack_Bootloadable example project to the
workspace).

a. Setup the mk.bat file. Open the mk.bat file in the text editor. Set the following variables
(see the chain of file generation in the table below):

Variable name Default value Description

LOADER_PRJ_NAME BLE_OTA_FixedStack_Bootloader The Bootloader project’s name. Note The Bootloader

project’s name is different. For each example project,
PSoC Creator appends a number starting from 01 to
the example project’s name in a selected folder

LOADABLE_PRJ_NAME BLE_OTA_FixedStack_Bootloadable The Bootloadable project’s name. Note The

Bootloadable project’s name is different. For each
example project PSoC Creator appends a number
starting from 01 to the example project’s name in a
selected folder.

LOADER_PRJ_PATH “%~dp0..\” that means Bootloader’s
sources folder.

The path to the Bootloader project. By default it takes
the current path, but it can be set as the absolute path.

OUTPUT_DIR %~dp0..\..\%LOADABLE_PRJ_NAME%.
cydsn\LinkerScripts\

That means Bootloadable’s
\LinkerScripts\ folder

The path to the Bootloadable’s sources, where the
“LinkerScripts” folder is located. You should put the
absolute path to the Bootloadable project here. Note

The default path is valid if the Bootloader and
Bootloadable projects are in the same workspace.

CREATOR_VERSION 4.1 A version of PSoC Creator. For example, 4.0, 4.1 or
any other that matches the installed PSoC Creator
version. This variable must contain a version of PSoC
Creator installed. Note PSoC Creator Service Packs,

Device Packs do not matter here. You need to specify
only the version number.

CREATOR_LOCATION %PROGRAM_FILES_PATH%\Cypress\
PSoC Creator

By default, this value should not be changed. This path
needs to be modified only if the PSoC Creator is
installed to a different location. In this case, a full path
to the PSoC Creator installation must be specified.

COMPILER GCC_COMPILER=ARM_GCC_541

COMPILER= %GCC_COMPILER%

Keeps the compiler identifier.

COMPILER=%GCC_COMPILER%

or

COMPILER=%MDK_COMPILER%

or

COMPILER=%IAR_COMPILER%

COMPILE_OPTION COMPILE_OPTION=%COMPILE_OPTI
ON_DEBUG%

Keeps either the Debug or Release option.

You can choose it from the following list:

COMPILE_OPTION_DEBUG=Debug

COMPILE_OPTION_RELEASE=Release

KEEP_TMP_FILES KEEP_TMP_FILES=YES If set to “YES”, it keeps temporary files generated
during a batch file run.

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 17 of 33

b. Use the following link for detailed information on what a BATCH file is and how it
works:
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-
us/batch.mspx?mfr=true

The temporary files generated during a BATCH file run. Note They are available if
variable KEEP_TMP_FILES is set to “YES”.

 “ParsedElf.txt” – The output file that contains extracted information from the
bootloader’s ELF file in the following format:

 <Address> <section symbol> <symbol name>

 “Extracted_BLE_Info.txt” –The output file that contains filtered information about
the symbols that are searched by the masks defined in “Symbol_list.txt”. If you
want some instance/component to be available in the Bootloader, you can add
your own mask in that file. Those symbols names and their addresses are
provided to Bootloadable project.

 “Ble_Info_All.txt” – The output file that contains filtered information from the
“Extracted_BLE_Info.txt” file for certain required sections (T/t-text, B/b-bss, D/d-
data, R/r-read-only, a-absolute). These sections are listed in the
“Section_list.txt” file.

 Ble_Info_All_Sorted.txt – The output file that contains the final sorted by
address information required for the Bootloadable project.

All symbol lists for GCC are generated from the content of this file.

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/batch.mspx?mfr=true
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/batch.mspx?mfr=true

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 18 of 33

Figure 8. Batch Script Workflow

Bootloader’s ELF

ParsedElf.txt

Extracted_BLE_Info.txt

Ble_Info_All.txt

Ble_Info_All_sorted.txt

BootloaderSymbolsGcc.ld

arm-none-eabi-nm.exe

Symbol_list.txt

Section_list.txt

Sorted by address

 “Symbol_list” – The input file permanently present at the \Scripts folder. It is not
regenerated. It basically contains the list of symbols names masks, such as:
“CyBle_”, “LED_”, “Bootloader_Service_Activation_”, “WakeUp_Interrupt_” and
so on.

Do not modify the compiler-specific symbols under comment “;GCC”. Also, do
not delete or modify the “CyBle_” symbol, otherwise the BLE component-related
info will not be found. The search is not case-sensitive. We strongly recommend
NOT modifying the BLE component name (CyBle), because it is hard to find
only proper symbols with such names as BLE, because it takes also different
“Table_...” and “Enable_...” symbols that are redundant. “CyBle” is quite unique.

Therefore, symbols with names that contain any of those masks are filtered
from the “ParsedElf.txt” file in “Extracted_BLE_Info.txt”. If you want some
instance/component to be available in the Bootloader, you can add your own
mask in that file. Those symbols names and their addresses will be provided to
the Bootloadable project.

 “Section_list.txt” – The list of sections required for filtering (T/t-text, B/b-bss,
D/d-data, R/r-read-only, a-absolute). Do not modify this file, unless you know
what you are doing.

3. Run mk.bat file:

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 19 of 33

a. Open the mk.bat directory in the Explorer or other file manager. ([Project
path]\Scripts\)

b. Double click the mk.bat file.

If everything is correct, it reports the following:

 Parsing the ELF file...

 Filtering exported symbols...

 Filtering by the section list...

 Sorting by the address...

 Generating output file(s) ...

 Press any key to continue …

No error should be allowed on the output and a compiler-specific file to be created
(Note Such a file is regenerated each time the mk.bat file runs):

 BootloaderSymbolsGcc.ld – The file with a list of the PROVIDE() directive for all
exported symbols required for the GCC compiler.

 BootloaderSymbolsMdk.txt – The exported symbol definition for the MDK
compiler.

 BootloaderSymbolsIar.icf – The exported symbol definitions for the IAR
compiler.

4. Open the top design schematic of the BLE_OTA_FixedStack_Bootloadable project.
Specify the path to the bootloader project HEX and ELF files by double-clicking on the
Bootloadable component and going to the Dependencies tab and link Bootloadable to the
BLE_OTA_FixedStack_Bootloader.hex file, as Figure 9 shows.

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 20 of 33

Figure 9. Bootloadable Component Configuration

5. Program the BLE_OTA_FixedStack_Bootloader project.

At this point, the CYC8CKIT-042-BLE contains firmware that can receive new updates
over-the-air. The LED3 flashes red.

Upgrading Projects images

To perform any application update, a Bootloader project image should be running. If the current
running project image is a Bootloadable project image, rebooting to the Bootloader project image
can be done by a SW2 button press. While the device is running the Bootloader project image
code, and is ready to receive Application project image updates (*.cyacd files), the red LDE is
blinking.

There is one software tool provided by Cypress that can send Stack or Application project image
updates to the device - CySmart. It is external software to be downloaded and installed
separately.

There are two hardware Dongles that communicate with the BLE devices and can be used to
update the firmware:

 CY5670, with 128KB Flash chip, supports BLE 4.1.

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 21 of 33

 CY5677, with 256KB Flash chip, supports BLE 4.2. It supports higher transfer rates, up to
1Mbps.

Refer to the documentation that came with the dongle to figure out its type. Also, it can be
received from CySmart.

Upgrade Project images with CySmart

More detailed information about the CySmart usage can be found in CySmart User Guide
(section 2.7 Updating Peripheral Device Firmware). You can download the CySmart tool and its
user guide from here http://cypress.com/cysmart.

To upgrade the device firmware OTA follow:

1. Make sure the OTA device is running a Bootloader project image, and is ready to receive
updates.

2. Connect BLE Dongle.

3. Open CySmart software, and select BLE Dongle.

4. Press the Start Scan button to start scanning for the peripheral device.

5. When the device is listed in the Discovered Device list, stop scanning by clicking the
Stop Scan button.

6. Select the device from the Discovered Device list.

7. Click the Update Firmware button.

8. Select the firmware update type on the OTA firmware update window.

Firmware Update Type Description

Application and Stack
(Combined) update

The Application and Stack firmware co-exist in the same memory
location. This option updates complete firmware.

Application only update The Application and Stack firmware exist in independent memory
locations. This option updates only the application firmware.

Application and Stack
update

Application and Stack firmware exist in independent memory
locations. Select this option to update first the stack firmware and then
the Application firmware.

9. Click Next. In the next page, browse and select the new firmware image (*.cyacd) file.
It is located in the project folder ([project folder]\CortexM0\[compiler name]).

10. Click on the Update button.

11. Wait for the device firmware to be updated.

Note If the update fails at authentication, then check if the security settings in CySmart matches
with the settings used in the BLE component of the Stack project. To change the security

http://cypress.com/cysmart

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 22 of 33

settings in CySmart, click on the Configure Master Settings button in the tool and go to the
Security parameters page.

Expected Results

LED Behavior Description

Bootloader project

Color State Description

Red Blinking Advertising

Red Static Bootloading

White (Red+Green+Blue) Static Low power mode

At a reset, when the Bootloader runs, the red LED is blinking, which means that the device is
advertising. Once connected and an application image is sent from Bootloader Host Tool to the
device to be updated, the red LED stops blinking and remains static. This means the device is
bootloading.

If the LED color changes to white (all 3 LEDs are on – green, blue, and red), the device goes into
the low power mode.

Bootloadable project

Color State Description

Green Blinking Advertising

Blue Static Disconnected

Cyan (Green+Blue) Blinking Disconnected + Advertising

At a reset, when the Application runs, the green LED is blinking, which means that the device is
advertising. Once connected, it stops blinking. The blue LED ON indicates that the device is
disconnected. The Cyan (2 LED – Green+Blue simultaneously) color means that the device is
disconnected and advertising.

After the firmware update process is completed, the device should operate as the
BLE_HID_Keyboard example. Refer to the BLE_HID_Keyboard example project datasheet for
details.

If there are more changes to the BLE_OTA_FixedStack_Bootloadable project, repeat all the
steps described for OTA firmware update in the Setup and run the “Example Project” section.

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 23 of 33

Using UART for Debugging

In this example projects, the UART is used to print various debug information (enabled by
default).

File options.h contains define “DEBUG_UART_ENABLED”. It is set to “YES” and it provides
extra debugging information in each of the bootloader or bootloadable projects. This slightly
decreases the projects performance, but it provides extra debugging output to UART. If it is not
needed – set it to NO.

A HyperTerminal program is required in the PC to receive debugging information. If you don’t
have a HyperTerminal program installed, download and install any serial port communication
program. Freeware such as Bray’s Terminal, Putty etc. are available on the web.

1. Connect the PC and kit with a USB cable.

2. Open the device manager program in your PC, find the COM port to which the kit is
connected, and note the port number.

3. Open the HyperTerminal program and select the COM port to which the kit is connected.

4. Configure the Baud rate, Parity, Stop bits and Flow control information in the
HyperTerminal configuration window. By default, the settings are: Baud rate – 57600,
Parity – None, Stop bits – 1 and Flow control – XON/XOFF. These settings must match
the configuration of the PSoC Creator UART component in the project.

5. Start communicating with the device as explained in the project description.

File debug.h contains macros used to print various types of data:

 DBG_PRINT_TEXT(a) - Prints a text string.

 DBG_PRINT_DEC(a) – Prints a decimal number.

 DBG_PRINT_HEX(a) – Prints a hexadecimal number.

 DBG_PRINT_ARRAY(a,b) – Prints b first elements of array a.

 DBG_PRINTF(...) – Prints the function macro.

These macros print information to UART only if DEBUG_UART_ENABLED define is set to
“YES”.

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 24 of 33

Adding OTA Bootloader Support to another BLE Project
using shared code

This section describes how to add the OTA shared bootloader capability to your own project with
a BLE component.

1. Open the BLE_OTA_FixedStack_Bootloader example project.

2. Navigate to the project TopDesign, open the BLE component customizer by double
clicking on the CyBle component and select the Bootloader Service Top node:

Figure 12. Bootloader Service Top Node

3. Now you can export the Bootloader Service into a file:

Figure 13. Exporting BLE Service Configuration

4. Once the BLE Bootloader Service configuration is saved, it can be imported to any project
with a BLE component:

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 25 of 33

Figure 14. Loading Service Configuration

5. To enable the Bootloader Service to receive long packets, the MTU size of the BLE
component does not matter.

6. You can copy a bootloader component symbol from the BLE Shared Memory Bootloader
example project to your project. Change the project type to bootloader. This can be done
by selecting the project, and selecting Project > Build Settings and changing the
Application type to Bootloader.

7. You need to copy all the Application layer code from the project that you are converting to
a new project and configure it to be bootloadable.

8. Copy all the linker files and scripts from example projects
(BLE_OTA_FixedStack_Bootloader/ BLE_OTA_FixedStack_Bootloadable) to your
bootloader/bootloadable projects respectively maintaining their placement in the project
folders and change the projects names and paths in the mk.bat script.

9. Enable option Custom Linker Script in the bootloader project by selecting the copied
linker script in the build settings of the bootloader project:

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 26 of 33

Figure 15. Custom Linker Script Configuration

10. Change the option of the compiler to generate functions sections:

Figure 16. Compilation settings:

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 27 of 33

11. Now the bootloader project can be compiled.

12. After the bootloader project compilation, batch script mk.bat should be executed. It
analyzes the symbols placement in the bootloader image and provide them to the
bootloadable project linker script.

13. You can compile your bootloadable project.

14. If there are some compilation errors related to the missing APIs/symbols, you should
declare these APIs/symbols as external ones, as it is done in the files OTAMandatory.c/
OTAMandatory.h. This is also true for typedefs/structures or enums (OTAMandatory.h).

15. Now all the changes made to the bootloadable project can be updated OTA. Note
changes that are made to the bootloader project can be updated only via reprogramming
the device.

Functional description

The projects operation is slightly different for the GCC, MDK, and IAR compilers with the same
approach. The Bootloader project works this way in any generic case. On the other hand, the
Bootloadable project uses APIs from the bootloader project and, therefore initializes global and
static variables for them by creating two separate segments in RAM – one for bootloader APIs
and one for the bootloadable project code. Afterwards, bootloadable project calls either the
function generated by the compiler or the custom initialization function to initialize the bootloader
APIs RAM.

GCC Compiler

For the GCC compiler, the bootloadable project uses the custom function to initialize the
bootloader APIs RAM by passing the bootloader segments addresses to the bootloadable
application and copying data from ROM to RAM.

MDK compiler

For the MDK compiler, a similar approach is used, but instead of writing a function to initialize
RAM, the function already existing in the bootloader project is used. To be able to return to the
bootloadable project, the return point address is passed through the not initialized segment of
RAM.

IAR compiler

The IAR compiler uses roughly the same approach, but RAM separation should be done
manually. After the bootloader project is compiled, the amount of used RAM should be compared

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 28 of 33

to one, specified in row 48 of the IAR linker script in the bootloadable project. If the size is bigger,
increase the number specified in the mentioned line.

Changing projects compiler

Due to the specific implementation of the projects, the compiler should be the same for the
bootloader and bootloadable projects. By default, the projects are configured to work with the
GCC compiler but this can be changed.

MDK compiler

To use the example project with the MDK compiler:

1. Change the compiler to MDK Generic in the project build settings.

2. Open file mk.bat with Notepad or any other text editor. It is stored in the Scripts subfolder
of bootloader project.

3. Find the line that contains setting COMPILER variable and change it to MDK_COMPILER:

Note The symbol “%” should be present on both sides of the value.

4. Build the bootloder project.

5. Verify the path to the bootloader *.elf file as it is described in section “Setup and Run
Example Project”.

6. Run the mk.bat script.

7. Compile the bootloadable project and program it.

IAR Compiler

To use the IAR compiler, export both bootloader and bootloadable projects to IAR IDE as
described in PSoC® Creator™ User Guide with the two exceptions:

 The linker script for the bootloadable project. You should use the one that is provided in
the LinkerScripts folder of the bootloadable project.

 Include path for the bootloadable project. See IAR Compiler Settings.

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 29 of 33

After the projects are exported and configured, verify that the RAM segment for the bootloader is
big enough by getting the amount of RAM used in the bootloader project and comparing it to the
size of the BTLDRRAM block defined in the IAR linker script:

If the amount of RAM used by the bootloader is bigger, the size of the section should be
increased, so that the RAM left in the bootloadable was big enough to contain the heap and
stack.

Also, the mk.bat file should be modified:

Replace the LOADER_ELF_FILE variable value with the path to the *.out file that is generated
by IAR after building the bootloader project:

to something like:

Also, in the batch file that is located in subfolder \Export of the bootloadable project
(prebuild.bat) you should replace path to the *.elf file that is generated in PSoC Creator with the
path to the *.out file of the bootloader project. The elf tool requires including the correct
bootloader image into the final *.hex image of bootloadable. It is required only if you plan to
program the bootloadable *.hex file into the device and it is not required for generation of the
correct *.cyacd file.

Configuring projects for other Cypress BLE devices

BLE OTA Fixed Stack example projects use custom linker scripts so PSoC Creator will not be
able to configure linker scripts to provide correct linking and placement. This section describes
the steps to be done if you are not using CY8C4247LQI-BL483 or CYBL10563-56LQXI devices
or devices that have different sizes of the RAM or ROM memory.

The following sections describe linker scripts modification after you have changed the device in
PSoC Creator.

Steps for GCC Compiler

For the GCC compiler changes are required for both bootloader and bootloadable linker scripts:

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 30 of 33

1. Change the device flash memory size.

2. Change the device RAM size.

3. Change the device row size.

Linker scripts are located in .\cm0gcc.ld for the bootloader project and in
.\LinkerScripts\cm0gcc.ld for the bootloadable project.

If you are not sure in values that are to be entered for your device, refer to the values that are in
linker script generated by PSoC Creator even if it is not used. It is located in the folder:
%PROJECT_DIR%\Generated_Source\PSoC4\cy_boot under the name cm0gcc.ld.

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 31 of 33

Steps for MDK compiler

For the MDK compiler, only the linker script of the bootloadable project is changed:

1. Change the device flash memory size.

2. Change the device row size.

And a bit further:

3. Change the device RAM size (both values).

The linker script is located in folder .\LinkerScripts\Cm0Mdk.scat

If you are not sure in values to be entered for your device, refer to the values that are in the
linker script generated by PSoC Creator even if it is not used after project rebuild. It is located in
the folder: %PROJECT_DIR%\Generated_Source\PSoC4\cy_boot under the name
Cm0Mdk.scat.

BLE OTA Fixed Stack Bootloader and Bootloadable

Page 32 of 33

Steps for IAR Compiler

If you use the IAR, the linker script of the bootloader project is safe to use one that is generated
by PSoC Creator after the device was changed in PSoC Creator. But the bootloadable project
linker script must be modified:

1. Change the device flash memory size.

2. Change the device RAM size.

3. Change the device row size.

The linker script is located in folder .\LinkerScripts\Cm0Iar.icf

If you are not sure in values to be entered for your device, refer to the values that are in the
linker script generated by PSoC Creator even if it is not used after project rebuild. It is located in
the folder: %PROJECT_DIR%\Generated_Source\PSoC4\cy_boot under the name
Cm0Iar.icf.

Updating BLE component to other version

The following steps are required to update the bootloader component version of the BLE
component:

1. Ensure you’re using the desired version of the BLE component in the bootloader project.
2. Rebuild the bootloader project.
3. Locate the CYBLE_EVT_T enum declaration in the bootloadable project (for the

BLE_OTA_FixedStack_Bootloadable example project this is .\OTAMandatory.h starting
from line 1539) and replace it with the CYBLE_EVT_T enum declaration generated in the
bootloader project (BLE_OTA_FixedStack_Bootloader example project this is
.\Generated_Source\PSoC4\BLE_eventHandler.h starting from line 146).

4. Run the mk.bat script located in the bootloader project in the Scripts subfolder.

 BLE OTA Fixed Stack Bootloader and Bootloadable

 Page 33 of 33

5. After updating the BLE component in the bootloader project, program the new bootloader
image to the device;

 © Cypress Semiconductor Corporation, 2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	BLE OTA Fixed Stack Bootloader and Bootloadable
	Development Kit Configuration
	Bootloader Project Configuration
	Linker Settings
	Bluetooth Low Energy (BLE)
	Adding Services

	Bootloader
	Software Transmit UART
	Watch Dog Timer (WDT)

	Bootloadable Project Configuration
	Compiler Settings
	IAR Compiler Settings

	Linker Settings
	Bootloadable
	Software Transmit UART
	Watch Dog Timer (WDT)

	Custom Linker Scripts
	Custom Linker Script Description
	Compilation Script Description
	Custom linker scripts limitations:

	Setup and Run Example Project
	Building Example Project
	Upgrading Projects images
	Upgrade Project images with CySmart

	Expected Results
	LED Behavior Description
	Bootloader project
	Bootloadable project

	Using UART for Debugging
	Adding OTA Bootloader Support to another BLE Project using shared code
	Functional description
	GCC Compiler
	MDK compiler
	IAR compiler

	Changing projects compiler
	MDK compiler
	IAR Compiler

	Configuring projects for other Cypress BLE devices
	Steps for GCC Compiler
	Steps for MDK compiler
	Steps for IAR Compiler

	Updating BLE component to other version

