

Playing WAV Files with a PSoC Device

September 20, 2007 Document No. 001-13945 Rev. ** - 1 -

AN13945
Author: Chris Paiano

Associated Project: Yes
Associated Part Family: CY8C27143 (project), CY8C27xxx, CY8C29xxx

Software Version: PSoC Designer™ 4.3
Associated Application Notes: None

Application Note Abstract
The PSoC’s internal ROM is used to store samples converted from computer sound files. A Psuedo Random Sequence (PRS)
generator module is used for a low overhead method of output. A simple Visual Basic 6 application (executable and source
code) is used for converting standard 8-bit mono .WAV files into a formatted, ready-to-use PSoC C header.

Introduction
Sound at its lowest level is vibrating air molecules moving
sensors in our ears (tympanic membrane or eardrums).
Also, sound waves cannot propagate in a vacuum,
demonstrated because there is no sound in outer space.
Sound waves also travel through solids and liquids but with
restrictions that end up altering the sound (for example, a
conversation underwater).

Sounds are defined by the frequencies and amplitudes of
the air vibrations over time; or how fast, how much, and
when the molecules shake. The shapes of the individual
vibrations also contribute to the sound. Our brains take care
of identifying sounds after the eardrum receives them with
incredibly fast and fuzzy memory comparisons.

By setting up a bionic eardrum (a microphone –basically just
a membrane that picks up air vibrations and turns them into
a voltage) and looking at various sounds with an
oscilloscope (or by recording as digital audio with a
computer), sound waves become visible.

Figure 1 is an example of a sound wave – particularly, of the
“One more time!” voice recording used in this application
note’s project (original .WAV file is also included). The top
wave is a zoomed out view of the entire phrase, while the
bottom wave is a zoomed in view of the beginning of the
word “more.” In this view, the exact pattern and shape of
sound waves that the speaker transfers to the air in front of
it is seen.

Figure 1. “One More Time” Voice Recording (Zoom Out and
Zoom In Views, respectively)

Besides amplification, reproduction of the sounds becomes
possible by using these microphone output voltages to drive
another membrane’s position (a speaker). The speaker
vibrates at the rate and intensity it wants to currently transfer
to the air in front of it, and the resultant sound waves
propagate outward for nearby biological and bionic
eardrums to receive.

The difference between analog and digital audio is the
method the microphone voltages are directed to drive the
speaker to reproduce sound waves. Analog audio routes the
voltage directly; digital audio involves a conversion of the
voltages into representative numbers before being
converted back into voltages to drive a speaker.

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_AN13945_pdf_p_1
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13945_pdf_p_1

AN13945

September 20, 2007 Document No. 001-13945 Rev. ** - 2 -

Analog audio has the advantage of never being forced into
discrete steps of amplitude and frequency. This means that
the reproduction of sound is (theoretically) exact.

Digital audio, at higher sample frequencies and bit rates
(how many numbers are available to represent the range of
voltages), reproduce any sound that a human ear responds
to. Although the reproduction is not technically exact, it is
close enough that human ears cannot tell the difference.

Analog audio is converted to digital audio for a computer (or
microprocessor/microcontroller) to make use of it.
Furthermore, there are many good audio effects that are
achieved completely in the analog domain, but none
compare to the variety and flexibility of Digital Signal
Processing (DSP) effects – that requires digital audio.

Digital audio recordings have the distinct advantage of
random access, at any time. If a computer has the sound in
memory (or even on a hard drive), it is possible to play back
any part of a digital sound file. Analog audio recordings
require you to wind or rewind the tape and cue up the start
position ahead of time, to have access to a certain portion of
audio.

Software and PSoC Implementation
The PSoC has many options and is capable of reproducing
digital audio from samples. The most common is the use of
a DAC that directly translates samples to voltages. An
alternative is to represent the samples with the pulse width
of a PWM, and using a simple R/C circuit to convert these
pulse widths to voltages.

However, a DAC module takes up valuable analog resource
space. Its possible output frequencies are limited and it is
power hungry (especially with the required analog output
buffer).

A PWM is a better choice, as every PSoC has many more
digital blocks than analog blocks. Driving a digital pin
consumes considerably less current. The resulting digital
output is converted to a voltage with an R/C circuit at high
switching frequencies and with some additional filtering at
lower switching frequencies.

With an 8-bit PWM module, the maximum switching
frequency that is achieved, using all 8 bits of pulse width, is
around 200 kHz (48 MHz clock divided by 256 counts). This
is theoretically fine, as it switches above the human range of
hearing (~20 kHz) and is not audible. However, if a 16-bit
PWM module is desired for increased fidelity, the maximum
switching frequency is around 700 Hz and very audible. This
makes 16-bit sample playback unfeasible with a PWM.

The pulse width of a PWM module is updated via an
interrupt right at the start of the count to avoid pulse glitches.
This tends to overrun the PSoC, generating interrupts at a
200 kHz rate. So, either the PWM gets slowed down
(potentially introducing more audible switching noise) or a
slower synchronized interrupt generator is required and is
tricky to configure. Either way, the PSoC’s processing time
is used up fast with the interrupts.

There is another lesser known alternative – the Psuedo-
Random Sequence (PRS) generator. This handy little digital
PSoC module has a Compare Out signal that is used

directly with a simple R/C circuit to represent sound wave
voltages. It is updated with a new sample at any time
without noise, and its switching frequency is typically around
12 MHz for both 8-bit and 16-bit samples.

The way the PRS module works to represent digital audio is
fascinating. The module itself is configured to generate a
random stream of numbers evenly distributed around its
range (for the purpose of this application note – 8 bits or 256
counts).

After the module is started with a seed value (simply a value
given to kick start the random sequence generation), the
seed register is used as a compare register. As the random
numbers are generated at the clock rate (12 MHz), they are
compared to the value in the compare register and the
Compare Out signal is driven either high or low, depending
on the result.

The Compare Out signal, when viewed on an oscilloscope,
is a very fast and random square wave. However, because
the number stream is evenly distributed around its range, an
interesting phenomenon occurs. The Compare Out signal’s
overall duty cycle in any given window of time is equal to the
value in the Seed/Compare registers. This is due to the
probability that any supplied random number is above or
below the value in the Seed/Compare registers.

When you write the new value (sample) to the
Seed/Compare registers, the resultant duty cycle begins to
“fade” to the new value. Because the PRS module is
completely refreshed every clock cycle, this happens very
quickly and imperceptibly – entirely too fast for any effect on
audio signals. Therefore, the PRS module becomes an ideal
method through which digital audio is represented with
literally zero processing overhead and only a single digital
block (for 8-bits).

Besides the PRS module, all that is needed for PSoC to play
back digital audio samples is a sample rate clock to control
exactly when each new sample is loaded into the PRS’s
Seed/Compare registers for output. This takes some math to
get close to standard sample rates (11.025 kHz, 22.050
kHz, and 44.100 kHz). But with the VC1/VC2/VC3 dividers
and an 8-bit counter, just about any rate is possible.

This particular application note makes use of 11.025 kHz
sampling frequency to match the input sound file. Actually,
the PSoC was able to hit 11.019 kHz which is close enough.

Note The play back sound samples at different frequencies,
then they are sampled at results in either a higher/faster or a
lower/slower effect that may or may not be desirable based
on the particular application.

The PSoC code, illustrated in Appendix A. PSoC Source
Code, demonstrates one way to implement the necessary
logic. A basic flowchart is shown in Figure 4 and the
configuration of the PSoC’s resources are shown in Figure
5, Figure 6, Table 2, Table 3, Table 4, and Table 5.

[+] Feedback [+] Feedback

saurabh
Highlight

saurabh
Highlight

saurabh
Highlight

saurabh
Highlight

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_AN13945_pdf_p_2
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13945_pdf_p_2

AN13945

September 20, 2007 Document No. 001-13945 Rev. ** - 3 -

Converting WAV to PSoC
Do you have a sound file on the computer that you like to
implement into the PSoC project? Take the following into
consideration:

1. What format is the sound file in? If it is not already in a
standard 8-bit mono PCM .WAV format, you either need
to convert it or modify the included Wav2H converter
application to suit the need.

2. How large is the sound file (assuming it is already in an
8-bit mono PCM WAV format)? This is an indication of
how much space is required of the PSoC’s internal
ROM, excluding about 45 bytes for the WAV’s header
information. The application note project uses a
CY8C27143 that has approximately 16 kilobytes of
ROM.

If the WAV file is too large, implement the following:

 Remove any unnecessary silence at the beginning or
end of the sound file. This requires a basic WAV editing
application. Silence takes up the same amount of
storage space as sound in PCM WAV files.

 Reduce the sampling rate of the sound file. This is best
done in a good WAV editing application that resamples
the sound internally (such as Sound Forge).

 Scale up to a CY8C29xxx family PSoC that doubles the
amount of available ROM to 32 kilobytes.

Theoretical maximum sound file length in seconds versus
sampling frequency and PSoC ROM size are shown in
Table 1. This data takes into account the 540 bytes of
configuration or execution code that is in this application
note’s project, and leaves room for nothing else. The
formula for this table is:

()[]
InHzSampleFreq
eInKBPsocRomSizMaxLength 150*1024 −

=

Equation 1

Table 1. Sampling Frequency vs. Maximum WAV Length

Sampling
Frequency

(kHz)

4 kB
PSoC

(Seconds)

16 kB
PSoC

(Seconds)

32 kB
PSoC

(Seconds)
8.000 0.4445 1.9805 4.0285

11.025 0.3225 1.4371 2.9232

22.050 0.1613 0.7185 1.4616

44.100 0.0806 0.3593 0.7308

When you have an 8-bit mono PCM WAV file that fits into
the project, the next step is to run it through the Wav2H
converter application and generate a PSoC header file.
Figure 2 displays a screenshot of this application.

Figure 2. Screenshots of Wav2Header Conversion
Application

Note Installation of the Microsoft Visual Basic 6 (Service
Pack 5) Runtime Library is necessary to execute this
application, and of course Visual Basic 6 to edit and
recompile this application. At the time of writing this
application note, the MSVB6sp5 Runtime Library is available
at:

http://www.microsoft.com/downloads/details.aspx?FamilyID
=bf9a24f9-b5c5-48f4-8edd-cdf2d29a79d5&DisplayLang=en

[+] Feedback [+] Feedback

http://www.microsoft.com/downloads/details.aspx?FamilyID=bf9a24f9-b5c5-48f4-8edd-cdf2d29a79d5&DisplayLang=en�
http://www.microsoft.com/downloads/details.aspx?FamilyID=bf9a24f9-b5c5-48f4-8edd-cdf2d29a79d5&DisplayLang=en�
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_AN13945_pdf_p_3
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13945_pdf_p_3

AN13945

September 20, 2007 Document No. 001-13945 Rev. ** - 4 -

Using Wav2H
To use Wav2H:

1. Click Wav h.

2. Acknowledge the information on what this program
does (click OK) and select the WAV file in the browser
window.

3. As Wav2H processes the WAV file’s format information,
it displays various progress messages. Click OK to
continue.

Note If the WAV file does not conform to the format
supported, Wav2H displays an error message with an
explanation.

After all the messages are finished, the actual data
extraction begins. When the status bar goes back to “Doing
Nothing,” the PSoC header file is completed. It is saved as
wav.h in the Wav2H application directory.

To view this file, click the wav.h button to launch the
preferred text viewer automatically. Now, you either copy
and paste the text file into the PSoC’s main.c program or
add the wav.h file to the project.

Assuming you are working with the project that comes with
this application note (that is a great starting point for any
WAV-playing PSoC project), copy the newly generated
wav.h file over the old one. Now calculate how to achieve
the sampling frequency with the included counter and
change the array variable names to match the program (or
vice versa). Now the PSoC is ready to play back digital
audio.

The included project plays the WAV sound upon startup in
its current state. A macro, mOutputWave, is included to
cycle through the digital samples and make them available
to the sample rate counter’s interrupt. This updates the PRS
Seed/Compare registers that is basically a command that
plays the sound back once.

Hardware Implementation
Due to the extremely high frequency of the PRS module, a
simple R/C filter easily removes the digital component in the
audio. A 4.7k series resistor and a .1 uf capacitor to ground
give a clean 1v signal.

Improvements and Possibilities
The PSoC has limited memory to store samples. Adding
some external memory/EEPROM or a Flash drive interface
enables playing back much longer sound files.

By adding some sort of compression algorithm, either
algorithmically or through a codec chip, the duration of time
of the stored samples in the PSoC’s internal ROM is
increased dramatically. Linear PCM WAV files are
completely uncompressed and lend themselves to direct
representation of the sound waves they attempt to
reproduce. The PRS module still requires uncompressed
samples to reproduce sounds. As long as decompression
happens in real time inside the PSoC (or externally through
another chip), compression is viable.

Three simple effects that are easily achieved with no
additional overhead are:

1. Speeding Up Playback – Have the samples output at
a faster rate than when they were recorded; they sound
higher in pitch and faster.

2. Slowing Down Playback – Follow the same concept;
only output the samples at a slower rate than when they
were recorded; they sound lower in pitch and slower.

3. Reverse Playback – Alter the mOutputWave macro
(duplicate or create a new macro) to cycle through the
audio samples backwards from last to first.

Figure 3. Schematic

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_AN13945_pdf_p_4
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13945_pdf_p_4

AN13945

September 20, 2007 Document No. 001-13945 Rev. ** - 5 -

Appendix A. PSoC Source Code

main.c:
#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules
#include "wav.h"
//---
#define bPOLY_255 0xB8 // Modular Polynomial = [8,6,5,4]
#define bSEED_255 0xFF // Seed value
#define InitPrs PRS8_Out_WritePolynomial(bPOLY_255);
PRS8_Out_WriteSeed(bSEED_255); PRS8_Out_Start()
//---
unsigned int i;
unsigned char NextSample;
BOOL SampleOutput=0;
#define mOutputWave i=0; while(i <= onemoretimeNumSamples) \
 { \
 NextSample=onemoretime[i]; \
 SampleOutput=0; \
 i++; \
 while(!SampleOutput); \
 }
//---
void main()
{
 InitPrs;
 CNT_Rate_EnableInt(); CNT_Rate_Start();
 M8C_EnableGInt;
 mOutputWave //enable this line to output the wave once at startup

 while(1)
 {
// mOutputWave //enable this line to output the wave continuously and repeatedly
 }
}
CNT_RateINT.asm:
include "PRS8_Out.inc"
push A
push X
 mov A, [_NextSample]
 mov reg[PRS8_Out_SEED_REG], A
 mov [_SampleOutput],1
pop X
pop A

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_AN13945_pdf_p_5
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13945_pdf_p_5

AN13945

September 20, 2007 Document No. 001-13945 Rev. ** - 6 -

Appendix B. Program Flowchart and Pin Configuration

Figure 4. Program Flowchart

CNT_Rate
Interrupt

Move sample from
output buffer

variable to PRS8
seed/compare

register

Set flag indicating
that the sample

was output

End

Start

Initialize variables,
interrupts,
modules

Prepare to
playback audio

samples

Retrieve first
sample and place

in output buffer
variable, reset

sample output flag

Was the
sample

output yet?

Yes

No

Was that
the last
sample?

Yes

End

No

Retrieve next
sample and place

in output buffer
variable, reset

sample output flag

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_AN13945_pdf_p_6
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13945_pdf_p_6

AN13945

September 20, 2007 Document No. 001-13945 Rev. ** - 7 -

Figure 5. PSoC Pin Configuration

Figure 6. PSoC Module Configuration GUI

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_AN13945_pdf_p_7
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13945_pdf_p_7

AN13945

September 20, 2007 Document No. 001-13945 Rev. ** - 8 -

Appendix C. Project Settings

Table 2. CNT_Rate PSoC Module Configuration Settings
User Module Parameters Value
Clock VC2

ClockSync Sync to SysClk

Enable High

CompareOut None

TerminalCountOut None

Period 98

CompareValue 1

CompareType Less Than Or Equal

InterruptType Terminal Count

InvertEnable Normal

Table 3. RPS8_Out PSoC Module Configuration Settings

User Module Parameters Value
Clock VC1

OutPutBitStream None

CompareOut Row_1_Output_1

CompareType Less Than Or Equal

ClockSync Sync to SysClk

Table 4. PSoC Global Resource Settings

Global Resources Value
CPU_Clock 12_MHz (SysClk/2)

32K_Select Internal

PLL_Mode Disable

Sleep_Timer 512_Hz

VC1=SysClk/N 2

VC2=VC1/N 11

VC3 Source SysClk/1

VC3 Divider 1

SysClk*2 Disable No

Analog Power All Off

Ref Mux (Vdd/2)+/-BandGap

Op-Amp Bias Low

A_Buff_Power Low

Trip Voltage 4.18V

LVDThrottleBack Disable

Supply Voltage 5.0V

Watchdog Enable Disable

Table 5. PSoC Global Port Settings

Name Port Select Drive Interrupt
Port_0_2 P0[2] stdCPU High Z Analog DisableInt

Port_0_3 P0[3] stdCPU High Z Analog DisableInt

Port_0_4 P0[4] stdCPU High Z Analog DisableInt

Port_0_5 P0[5] stdCPU High Z Analog DisableInt

Port_2_0 P1[0] stdCPU High Z Analog DisableInt

WaveOut P1[1] GlobalOutOdd
_1 Strong DisableInt

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_AN13945_pdf_p_8
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13945_pdf_p_8

AN13945

September 20, 2007 Document No. 001-13945 Rev. ** - 9 -

About the Author
Name: Chris Paiano

Title: Owner, CpE

Background: 24+ years programming experience
7+ years PSoC-specific experience

Contact: http://www.chrispaiano.com
chris.paiano@gmail.com

"Programmable System-on-Chip," PSoC Designer and enCoRe are trademarks of Cypress Semiconductor Corp. All other trademarks or
registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2007. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[+] Feedback [+] Feedback

http://www.chrispaiano.com/�
mailto:chris.paiano@gmail.com�
http://www.cypress.com/�
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_AN13945_pdf_p_9
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-13945_pdf_p_9

	Application Note Abstract
	Introduction
	Software and PSoC Implementation
	Converting WAV to PSoC
	Using Wav2H
	Hardware Implementation
	Improvements and Possibilities
	Appendix A. PSoC Source Code
	Appendix B. Program Flowchart and Pin Configuration
	Appendix C. Project Settings
	Table 2. CNT_Rate PSoC Module Configuration Settings
	About the Author

