

 PSoC® Creator™ Code Example

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Features
 Bootloading via USB communication interface

 Switching between Bootloader and Bootloadable applications

General Description
This example project demonstrates the basic operation of the Bootloader and Bootloadable
components when the communication interface is a USB.

Development Kit Configuration
This example project is designed to run on the CY8CKIT-046 kit from Cypress Semiconductor. A
description of the kit, along with more code examples and ordering information, can be found at
http://www.cypress.com/go/cy8ckit-046.
The project requires configuration settings changes to run on other kits from Cypress
Semiconductor. Table 1 is the list of the supported kits. To switch from CY8CKIT-046 to any
other kit, change the project’s device with the help of Device Selector called from the project’s
context menu.

Table 1. Development Kits vs Parts
Development Kit Device

CY8CKIT-046 CY8C4248BZI-L489
CY8CKIT-030 CY8C3866AXI-040
CY8CKIT-050 CY8C5868AXI_LP035
CY8CKIT-001 CY8C3866AXI-040/ CY8C5868AXI_LP035

The pins assignment for the supported kits is in Table 2 and Table 3.
Table 2. Pins Assignment of USBFS_Bootloader Project

Pin Name Development Kit
CY8CKIT-046 CY8CKIT-030 CY8CKIT-050 CY8CKIT-001

\USBFS:Dm\ P13[1] P15[7] P15[7] P15[7]
\USBFS:Dp\ P13[0] P15[6] P15[6] P15[6]
LED_REB P5[2] – – –
LED_GREEN P5[3] – – –
LED_BLUE P5[4] – – –
LED4 – P6[3] P6[3] P6[3]

USBFS Bootloader and Bootloadable Code Example
3.0

http://www.cypress.com/go/cy8ckit-042

USBFS Bootloader and Bootloadable Code Example PSoC® Creator™ Code Example

Page 2 of 7

Table 3. Pins Assignment of USBFS_Bootloadable Project

Pin Name Development Kit
CY8CKIT-046 CY8CKIT-030 CY8CKIT-050 CY8CKIT-050

LED_REB P5[2] – – –
LED_GREEN P5[3] – – –
LED_BLUE P5[4] – – –
LED3 – P6[2] P6[2] P6[2]

To handle hardware differences between the supported kits, separate TopDesigns and control
files are added to the project. The control files are responsible for the pins assignment
depending on the selected device. Manual placement of the pins overrides the control file
directives, therefore the pins in the Design Wide Resource (DWR) file should be unlocked. All
these files can be found in the Components tab of the workspace explorer.

Bootloader Project Description
The example project consists of the following components: USBFS, Bootloader, and pins.
The USBFS component is used to establish communication with the PC via a USB executing the
role of the communication component for the bootloader. It means that the bootloader
component is provided with an interface that allows managing command transfers from the PC to
the device and status transfers from the device to the PC.
The bootloader component is used to update the device flash memory with a new application.
The component is responsible for the update process and uses the communication component
to get a new application with the help of a command and status protocol. The component is also
responsible for writing the new application image in the flash memory.
The pin components are used to control the LED which indicates that the bootloader is running.
For PSoC4, the RGB LED is red and for PSoC 3/PSoC 5LP, LED4 is turned on.

Bootloader Project Flash Protection
The bootloadable project does not allow re-writing a bootloader project during the application
image update. But, the flash rows consumed by the bootloader should be protected to avoid
being corrupted by the application. The rows consumed by the bootloader example project are
not protected because the bootloader size changes depend on the compiler and optimization
options. Incorrect flash protection of bootloader can cause failures during the application image
update because the rows consumed by the application can become protected due to bootloader
project size change. Therefore, it is important to check the number of protected rows consumed
by the bootloader after rebuild.
The number of rows consumed by the bootloader is calculated as follows: the bootloader project
flash used in bytes divided by the flash row size in bytes, then the calculated value is rounded up
to the nearest whole number. The bootloader project flash used is equal to the flash used in the
Output window after the bootloader project is built. The flash row size differs depending on the

USBFS Bootloader and Bootloadable Code Example PSoC® Creator™ Code Example

 Page 3 of 7

selected device (hint in DWR file in the Flash Security tab telling the number of bytes in the
row).
The example below for PSoC 4200L shows that the number of rows consumed by the bootloader
is equal to 9216 bytes / 256 bytes = 36 rows.

Figure 1. Bootloader Project Output Window

When the number of rows consumed by the bootloader project is known, open the DWR file on
the Flash Security tab and set protection to the appropriate rows. Note that the bootloader
project starts from row 0 and consumes rows successively.

Figure 2. Bootloader Project DWR Flash Security Tab

For more information about the bootloader and bootloadable flash layout refer to the components
datasheets.

Bootloadable Project Description
The example project consists of the following components: the Bootloadable and pins.
The Bootloadable component allows linking the USBFS_Bootloader project to the
USBFS_Bootloadable project and creating a bootloadable application image. Also, it specifies
additional parameters for the bootloadable project.
The pins component is used to control the LED which indicates that the application is running.
For PSoC4, the RGB LED is green and for PSoC 3/PSoC 5LP, LED3 is turned on.

USBFS Bootloader and Bootloadable Code Example PSoC® Creator™ Code Example

Page 4 of 7

Example Project Execution Flow
To execute this code example, follow the procedure:
1. Use two projects to execute this code example: the USBFS_Bootloader and

USBFS_Bootloadable. Note that both projects should be added into single workspace.

2. First, build the USBFS_Bootloader project because it has to be linked with the bootloadable
project.

3. Open the USBFS_Bootloadable project top design schematic. Then, open the bootloader
component Dependencies tab and specify the path to the bootloader project HEX and ELF
files as shown in Figure 3.

Figure 3. Bootloadable Component Dependencies Tab

4. Build the USBFS_Bootloader project to get the bootloadable application image and hex files.

5. Connect the PSoC kit to the PC through a USB connector for programming.
6. Program the USBFS_Bootloader into the device. The USB cable can be disconnected from

the programming connector at this point.

7. Connect the kit to the PC through a USB connector for communication. After the USB HID
device is enumerated, it appears in the Bootloader Host tool. The LED indicates that the
bootloader is running: for PSoC4 RGB, the LED is red and for PSoC 3/PSoC 5LP, LED4 is
turned on.
Note that the bootloader project does not contain an application and waits forever (instead of
10ms configured in GUI) for downloading.

USBFS Bootloader and Bootloadable Code Example PSoC® Creator™ Code Example

 Page 5 of 7

8. Open the Bootloader Host tool by navigating to Tools > Bootloader Host in PSoC Creator.
Observe that the HID USB device with VID 0x4B4 and PID 0xB71D appears in the Ports list.

Figure 4. Bootloader Host Tool HID Device Enumerated

9. Press the File button and choose the bootloadable application image

USBFS_Bootloadable.cyacd. It is available in the project folder USBFS_Bootloadable.cydsn:
 For PSoC 3: \DP8051_Keil_951\(Debug or Release)
 For PSoC 5LP: \CortexM3\ARM_GCC_493\(Debug or Release)
 For PSoC 4200L: \CortexM0\ARM_GCC_493\(Debug or Release)

10. To start the application update, click the Program button.
11. After the bootloadable application image is downloaded successfully, a software reset occurs,

and the device starts executing a new application. The LED indicates that the application is
running: for PSoC4 RGB, the LED is green and for PSoC 3/PSoC 5LP, LED3 is turned on.
Note that the bootloadable application does not contain a USBFS device and after
downloading it disappears from the Bootloader Host Ports list. The device has to be reset to
start the bootloader project. The device waits for the application update for 10 seconds, then
jumps to the bootloadable application.

USBFS Bootloader and Bootloadable Code Example PSoC® Creator™ Code Example

Page 6 of 7

Expected Results
Following the instructions above, you can download a new application into the device and get the
Bootloader Host tool output after successful downloading.

Figure 5. Bootloader Host Tool Successful Application Image Upload

USBFS Bootloader and Bootloadable Code Example PSoC® Creator™ Code Example

 Page 7 of 7

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730

Website : www.cypress.com

© Cypress Semiconductor Corporation, 2014-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to
be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. PSoC® is a registered trademark,
and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the
respective corporations.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/

	Features
	General Description
	Development Kit Configuration
	Bootloader Project Description
	Bootloader Project Flash Protection
	Bootloadable Project Description
	Example Project Execution Flow
	Expected Results

