

Algorithm - nth Order IIR Filtering
Graphical Design Tool for PSoC

September 26, 2005 Document No. 001-31159 Rev. ** 1

AN2312
Authors: Somsak Sukittanon, Ph.D., Stephen G. Dame, MSEE

Associated Project: Yes
Associated Part Family: CY8C21xxx, CY8C24xxxA, CY8C24794, CY8C27xxx, CY8C29xxx

GET FREE SAMPLES HERE

Software Version: PSoC Designer™ 4.2
Associated Application Notes: AN2038

Application Note Abstract
High performance filtering has been implemented in a variety of industry standard Digital Signal Processing (DSP) chips.
However, many applications don’t require the high sampling rates and cost normally associated with these dedicated DSP
chips. This Application Note presents an alternative for implementing high order IIR DSP filtering using inexpensive PSoC®
chips. A Biquad IIR filtering algorithm and MATLAB® Graphical User Interface (GUI) code and coefficient generation tools are
developed that can dramatically reduce the time to deploy a digital filtering project for the PSoC. Links are provided for an
example project and filter generation MATLAB source code.

Introduction
Many developers of small systems are faced with signal
processing challenges during the design process. PSoC is
a highly flexible electrical engineering environment in
which to creatively approach and solve all kinds of
systems’ problems. With the on-chip ADC and DAC blocks
of the PSoC, it is possible to sample analog signals and
represent their amplitude values with as much digital
precision as 8 – 14 bits at a variety of sample rates. Many
system designs don’t require video or even high kHz
sample rates. The low cost of PSoC chips, combined with
a reasonable MIPs rate and Flash program memory
storage, enables some powerful traditional IIR filtering
methods if only a library of DSP building blocks were
available. A powerful filter design tool that can
automatically generate PSoC code and filter coefficients
would also be a benefit once the filtering code has been
implemented.

This application presents flexible and powerful IIR Biquad
filtering methods typically only used on much more
powerful and expensive DSP chips. This Application Note
also includes a project example and source code for a
MATLAB tool that can automatically generate filter
coefficients and PSoC filtering code.

Digital IIR Filter
For a linear time invariant system, an infinite impulse
response (IIR) filter can be described in this form:

0 1

1

[] [] [1] []
[1] [].

M

N

y n b x n b x n b x n M
a y n a y n N

= + − + + −

− − − − −

L

L

n y[n]

 Equation 1

An output at time , , can be computed from
multiplying and summation of the current input, x[n]

[n
, and

its previous values, x − d] i

y[n
, with weight coefficients b ,

also summation together with previous outputs, − d]

i

,
with weight coefficients - a . M and N determine the
number of zeros and poles, respectively, in the filter. For
example, the Biquad IIR filter, referred to a second order
filter, can be described by the following differential
equation:

0 1 2[] [] [1] [2]y n b x n b x n b x n

1 2 [2].a y n[1]a y n
= + − + −

− − −
 Equation 2

−

[+] Feedback [+] Feedback

http://www.cypress.com/samplerequest
http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-31159_pdf_p_1
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_algorithm___nth_order_iir_filtering_graphical_design_tool_for_psoc_tm____an2312_12_pdf_p_1

AN2312

Applying Z -transform to Equation 3, the corresponding
transfer function H (Z) becomes:

1 2
0 1 2

1
1 2

() .
1
b b Z b ZH Z

a Z a Z

− −

− −

+ +
=

+ + 2
 Equation 3

Efficient implementation, minimum delays and
computation, are illustrated in Figure 1 below.

Figure 1. Second Order IIR Filter

There are several issues that need to be taken into
account when using Equation 3 and Figure 1 in the PSoC
ALU and MAC architecture (e.g., signed number
representation, overflow). A signed integer number can
represent a floating-point number between minus 1 and 1
to a specified bit resolution. How do we guarantee that

and can be represented using a signed integer
number format? If we are designing a stable IIR filter, this
issue of stability must be addressed. From Equation 3, the
transfer function in the form of zeros, , and poles, ,
can be described as:

bi ai

zi

() ()

pi

 ()
()()

1 1
1 21 1k z Z z Z− −− −

1 1
H Z

p Z − −
=

− −1 2p Z1 1
 Equation 4

k is a constant. For the real filter, is the conjugate of
and is the conjugate of .

z1

z2 p1 p2

() ()()
()()

{ }()
{ }()

1 * 1
1 1

1 * 1
1 1

21 2
1 1

21 2
1 1

1 1

1 1

1 2Re

R

k z Z z Z
H Z

p Z p Z

k z Z z Z

p Z

− −

− −

− −

− −

− −
=

− −

− +
=

− +1 2 e p Z
 Equation 5

For a stable and minimum phase IIR filter, Re p1{ },

{ }1Re z , 2
1p and 2

1z must be less than 1. Comparing

Equation 5 to 3,
1a is always less than 2 and

2a is always

less than 1.

Biquad Implementation
In this section we describe the implementation of one
Biquad filter in PSoC. The input, output, delays, and
coefficient values are 16 bit signed numbers. The
multiplication function is adopted from AN2038 (“Signed
Multi-Byte Multiplication”). One shift left is also required to
adjust the result to be 1.31-signed fractional numerical
format.

Feedback Algorithm
Since

1a

[1]

is always less than 2, it is prescaled by 0.5 and

then the result after multiplication with u n − is scaled
back by 2 (using a left shift operation). For

2a

[]

, it is always

less than 1, therefore it can be used directly. The following
is PSoC assembly code for computing u n .

Code 1. Feedback Operation
BiquadFiltering:

_BiquadFiltering:

 ;;; retrieve the parameters

 mov X,SP

 ; x[n]

 mov A,[X-3]

 mov [iUn+1],A

 mov A,[X-4]

 mov [iUn],A

 ; statenumber

 mov A,[X-5]

 call LoadBiquadState

 ;;; FEEDBACK PART

 ; ((-a1/2) * u[n-1])*2

 Multiply32s_16s_16s (cTemp), (iACoff+0),
(iDelay+0)

 call ShiftLeft32BitsBuffer

 ; -a2 * u[n-2]

 MultiplyAndSum32s_16s_16s (cTemp),
(iACoff+2), (iDelay+2)

 call ShiftLeft32BitsBuffer

 ; u[n] = x[n]-(a1*u[n-1])-(a2*u[n-2])

 mov A,[cTemp+1]

 add [iUn+1],A

 mov A,[cTemp]

 adc [iUn],A

September 26, 2005 Document No. 001-31159 Rev. ** 2

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-31159_pdf_p_2
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_algorithm___nth_order_iir_filtering_graphical_design_tool_for_psoc_tm____an2312_12_pdf_p_2

AN2312

Feedforward Algorithm
Similar to

1a ,
1b is always less than 2 so we prescale all

 by 0.5 and post scale the final result back by a factor of
2 (using a left shift operation). This method also prevents
filter overflow. The filter state delays are updated after the
feedforward operation. The following is PSoC assembly
code for computing :

ib

[]y n

Code 2. Feedforward Operation
 ;;; FORWARD PART

 ; (b0/2) * u[n]

 Multiply32s_16s_16s cTemp, (iBCoff+0),
(iUn+0)

 ; (b1/2) * u[n-1]

 MultiplyAndSum32s_16s_16s (cTemp),
(iBCoff+2), (iDelay+0)

 ; (b2/2) * u[n-2]

 MultiplyAndSum32s_16s_16s (cTemp),
(iBCoff+4), (iDelay+2)

 call ShiftLeft32BitsBuffer

 call ShiftLeft32BitsBuffer

 mov [iBuffer+1],[cTemp+1]

 mov [iBuffer], [cTemp]

 ; swap delays

 ; delay1 <--- delay 0

 ; delay0 <--- u[n]

 mov [iDelay+2],[iDelay+0]

 mov [iDelay+3],[iDelay+1]

 mov [iDelay+0],[iUn+0]

 mov [iDelay+1],[iUn+1]

 mov A,iDn

 add A,[cStateDelay]

 mov [cTemp],A

 mov [cTemp+1],iDelay

 call SwapDelays

 ; y[n] = 2*{((b0/2) * u[n])+((b1/2) *
u[n-1])+((b2/2) * u[n-2])}

 mov X,[iBuffer]

 mov A,[iBuffer+1]

ret

nth Order IIR Filter
In the previous section, we discussed the implementation
of a second order IIR filter. In this section, we discuss the
extension of the Biquad to higher order IIR filters. Suppose
we are required to design a 6th order IIR filter. The transfer
function can be written as:

1 6
0 1 6

1 6
1 6

() .
1
b b Z b ZH Z

a Z a Z

− −

− −

+ + +
=

+ + +
L

L Equation 6

Equation 6 can also be represented in pole-zero form as:

()() ()
()() ()

()()
()()

() ()
()()
()()

()()

1 * 1 * 1
1 1 3

1 * 1 * 1
1 1 3

1 * 1
1 1 1

1 * 1
1 1

1 * 1
2 2 2

1 * 1
2 2

1 * 1
3 3 3

1 * 1
3 3

1 1 1
()

1 1 1

1 1

1 1

1 1

1 1

1 1
.

1 1

k z Z z Z z Z
H Z

p Z p Z p Z

k z Z z Z

p Z p Z

k z Z z Z

p Z p Z

k z Z z Z

p Z p Z

− − −

− − −

− −

− −

− −

− −

− −

− −

− − −
=

− − −

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟− −⎝ ⎠
⎛ ⎞− −
⎜ ⎟×
⎜ ⎟− −⎝ ⎠
⎛ ⎞− −
⎜ ⎟×
⎜ ⎟− −⎝ ⎠

L

L

, ,i i ik

 Equation 7

Equivalently, Equation 6 can be expressed as 3 cascaded
Biquad IIR filters. Each Biquad structure requires a
different set of a b , and filter state delays. To
implement a cascaded Biquad IIR filter, we can use the
same previous PSoC assembly code but the Biqaud
structure is dynamically loaded each time prior to each
Biquad filtering iteration. The filter state delays are saved
after each Biquad operation. The following is the PSoC
assembly code for dynamically loading the Biquad
structure:

September 26, 2005 Document No. 001-31159 Rev. ** 3

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-31159_pdf_p_3
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_algorithm___nth_order_iir_filtering_graphical_design_tool_for_psoc_tm____an2312_12_pdf_p_3

AN2312

September 2 01-31159 4

Code 3. Dynamic Load Biquad State
Experiments and Results ;compute the beginning of tables and

delays We compare the results of filtering between 16-bit integer
precision data from PSoC and 64-bit precision data from
MATLAB. Different inputs are tested for stability and round
off error.

mov X, NcCoeffs

call GetStateHeader

mov [cStateCoeff],[cTemp]

6th Order IIR filter mov X, NcDelays

call GetStateHeader Design Specification: 6th order digital low pass filter using
Butterworth design. Cutoff frequency at 500 Hz, with a
sampling rate of 4000 Hz.

mov [cStateDelay],[cTemp]

Equation 8 shows the transfer function of a 3-Biquad IIR
filter that implements the above specification. Figure 2
shows the pole-zero plot and frequency response of this
filter.

;load coefficients

mov [cTemp+0], iBCoff

mov [cTemp+1], NcBCoffs

mov A, 0

6, 2005 Document No. 0 Rev. **

add A, [cStateCoeff]

call LoadTableItems

mov [cTemp+0], iACoff

mov [cTemp+1], NcACoffs

mov A, NcBCoffs

add A, [cStateCoeff]

call LoadTableItems

;load delays

mov A,iDn

add A,[cStateDelay]

mov [cTemp+1],A

 mov [cTemp],iDelay

 call SwapDelays

1 2

1 2

1 2

1 2

1 2

1 2

0.0508 0.1021 0.0513() 2
1 0.8403 0.1883

0.0508 0.1017 0.05082
1 0.9428 0.3333

0.0508 0.1013 0.05042 .
1 1.1954 0.6906

Z ZH Z
Z Z

Z Z
Z Z

Z Z
Z Z

− −

− −

− −

− −

− −

− −

⎛ ⎞+ +
= ⎜ ⎟− +⎝ ⎠

⎛ ⎞+ +
× ⎜ ⎟− +⎝ ⎠

⎛ ⎞+ +
× ⎜ ⎟− +⎝ ⎠

 Equation 8

Inputs
The impulse and unit response are used for testing.
Assuming that we are using 12-bit samples from the ADC,
the filtering results from PSoC and MATLAB are shown in
Table 1.

Figure 2. Pole-Zero Plot (Left) and Frequency Response of 6th Order IIR Filter (Right)

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Real Part

Im
ag

in
ar

y
P

ar
t

-400

-200

0

200

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (d

B
)

0.8 0.9 1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-600

-400

-200

Normalized Frequency (×π rad/sample)

P
ha

se
 (d

eg
re

es
)

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-31159_pdf_p_4
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_algorithm___nth_order_iir_filtering_graphical_design_tool_for_psoc_tm____an2312_12_pdf_p_4

AN2312

Table 1. Comparison Results

 Input Output Input Output
Time

 Impulse MATLAB PSoC Step Resp. MATLAB PSoC

0 0x07FF 0x0002 0x0002 0x07FF 0x0002 0x0002

1 0x0000 0x0013 0x0013 0x07FF 0x0015 0x0015

2 0x0000 0x0051 0x0050 0x07FF 0x0066 0x0065

3 0x0000 0x00D3 0x00D2 0x07FF 0x013A 0x0138

4 0x0000 0x0183 0x0180 0x07FF 0x02BC 0x02BA

5 0x0000 0x020E 0x020B 0x07FF 0x04CA 0x04C7

6 0x0000 0x021F 0x021B 0x07FF 0x06E9 0x06E5

7 0x0000 0x019C 0x0199 0x07FF 0x0885 0x0881

8 0x0000 0x00BE 0x00BB 0x07FF 0x0943 0x093E

9 0x0000 0xFFE3 0xFFE2 0x07FF 0x0928 0x0923

10 0x0000 0xFF63 0xFF62 0x07FF 0x088D 0x0888

11 0x0000 0xFF55 0xFF55 0x07FF 0x07E4 0x07DF

12 0x0000 0xFF9C 0xFF9B 0x07FF 0x0782 0x077D

13 0x0000 0xFFFA 0xFFFA 0x07FF 0x077E 0x0779

14 0x0000 0x003D 0x003C 0x07FF 0x07BB 0x07B7

15 0x0000 0x004C 0x004A 0x07FF 0x0807 0x0803

Matlab Graphic Tool
To help PSoC developers doing DSP development on
their systems, we have implemented an IIR filtering
Graphical Design Tool, which can directly generate the
PSoC files (main.c and iirbiquad.inc). This tool and its
outputs are shown in Figure 3. Developers may simply
substitute main.c and iirbiquad.inc with the associated
project. The main.c file will need some minor adjustments
that correspond to the user project environment.

MATLAB requirements are to be running at least
version 6. After launching MATLAB and changing to the
project directory, you type >>runGUIPSOC at the
command line. Four types of filters can be designed. The
cutoff frequency is chosen after entering a sampling
frequency. The output graph can be shown in different
modes (e.g., Magnitude, phase).

More information about the PSoC signal-processing tool is
available for free downloading at www.virtual-dsp.com.

Figure 3. (Left) IIR Filtering Design Graphical Tool using MATLAB (Right) an Output File Used in PSoC

September 26, 2005 Document No. 001-31159 Rev. ** 5

[+] Feedback [+] Feedback

http://www.virtual-dsp.com/
http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-31159_pdf_p_5
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_algorithm___nth_order_iir_filtering_graphical_design_tool_for_psoc_tm____an2312_12_pdf_p_5

AN2312

Summary
In this Application Note we present the implementation of
a high order IIR filter for PSoC. Many practical design and
implementation issues, signed representation or overflow,
were discussed. We also presented an easy way to
generate several filters, i.e., low pass, high pass, band
pass, or notch filters, and plug coefficients into PSoC
projects. The graphical design tool is currently running on
MATLAB and can generate PSoC filter code in one click.

Appendix
The multiply and sum operation is modified from
Multiply32s_16s_16s (Application Note AN2038). Instead
of storing into the first parameter, we add to the previous
value.

Code 4. Multiply and Sum Code
macro MultiplyAndSum32s_16s_16s

; @0 = @0+(@1 * @2)

; 16bit by 16 bit signed multiply

; with 32 bit signed result and added to
prior 32 bits

;

; X(s) X+1(u)

; +-----+-----+

; | /| /|

; | / | / |

; R | (1) | (4) |Y(s) Napier Matrix

; | /v | /^ |

; |/ v |/ ^ |

; +--v--|--^--+

; | v /| ^ /|

; | v/ | ^/ |

; R+1| (2)>>>(3) |Y+1(u)

; | / | / |

; |/ |/ |

; +-----+-----+

; R+2 R+3

; @0 = @0+(@1* @2)

; (1)

 PushMulX @1

 PushMulY @2

 GetLSB

 add [@0 + 1],A

 GetSignedMSB

 adc [@0],A

; (2)

 PushMulY (@2 + 1)

 GetXsYuMSB (@1), (@2+1)

 cmp A,128

 jc . + 4 ;pass on carry

 dec [@0]

 add [@0 + 1],A

 adc [@0],0

 GetLSB

 add [@0+2],A

 adc [@0+1],0

 adc [@0],0

; (3)

 PushMulX (@1 +1)

 GetUnsignedMSB (@1+1),(@2 + 1)

 add [@0+2],A

 adc [@0+1],0

 adc [@0],0

 GetLSB

 add [@0+3],A

 adc [@0+2],0

 adc [@0+1],0

 adc [@0],0

; (4)

 PushMulY (@2)

 GetXuYsMSB, (@1 + 1),(@2)

 push A

 cmp A,128

 jc .+ 4

 dec [@0]

 GetLSB

 add [@0 + 2],A

 pop A

 adc [@0 +1],A

 adc [@0],0

endm

September 26, 2005 Document No. 001-31159 Rev. ** 6

[+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-31159_pdf_p_6
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_algorithm___nth_order_iir_filtering_graphical_design_tool_for_psoc_tm____an2312_12_pdf_p_6

AN2312

About the Authors
Name: Somsak Sukittanon, Ph.D.

Title: Principal R&D Engineer
Background: Dr. Sukittanon is a principal R&D engineer at Virtual DSP Corporation. He has led

several investigations in the area of software development of signal processing and
embedded systems. He is also a part-time lecturer at University of Washington. He has
taught many classes, e.g., circuit analysis, DSP embedded design. He is the recipient of
the 2005 outstanding teaching award for Electrical Engineering Department at the
University of Washington.

Contact: somsak@virtual-dsp.com

Name: Stephen G. Dame, MSEE

Title: President and CEO
Background: Mr. Dame is president and founder of Virtual DSP Corporation, which is a research and

development and manufacturing company in the area of digital signal processing,
wireless and internet computing devices. He holds a masters degree in electrical
engineering and is a successful entrepreneur with more than 25 years of experience in
developing products in the medical, aerospace and consumer electronic markets. He is a
recipient of 1994 Technical Fellow award for his work in Doppler Ultrasound at Advanced
Technology Labs (ATL).

Contact: steve@virtual-dsp.com

In March of 2007, Cypress recataloged all of its Application Notes using a new documentation number and revision code. This new documentation
number and revision code (001-xxxxx, beginning with rev. **), located in the footer of the document, will be used in all subsequent revisions.

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer, and PSoC Express are trademarks
of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2005-2007. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

September 26, 2005 Document No. 001-31159 Rev. ** 7

[+] Feedback [+] Feedback

mailto:somsak@virtual-dsp.com
mailto:steve@virtual-dsp.com
http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-31159_pdf_p_7
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_algorithm___nth_order_iir_filtering_graphical_design_tool_for_psoc_tm____an2312_12_pdf_p_7

	Application Note Abstract
	Introduction
	Digital IIR Filter
	Biquad Implementation
	Feedback Algorithm
	Feedforward Algorithm

	nth Order IIR Filter
	Experiments and Results
	6th Order IIR filter
	Inputs
	Matlab Graphic Tool
	Summary
	Appendix
	About the Authors

