o CYPRESS

N 4 EMBEDDED IN TOMORROW™

AN221774

Getting Started with PSoC 6 MCU

Authors: Srinivas Nudurupati, Vaisakh K V

Associated Part Family: All PSoC® 6 MCU devices

Software Version: ModusToolbox™ 1.1, PSoC Creator™ 4.2
Associated Application Notes and Code Examples: Click here.

More code examples? We heard you.

To access an ever-growing list of hundreds of PSoC code examples, please visit our code examples

web page. Please visit the Cypress GitHub site for a comprehensive collection of code examples using

ModusToolbox IDE for PSoC 6. You can also explore the PSoC video library here.
__|

AN221774 introduces the PSoC 6 MCU, a dual-CPU programmable system-on-chip with Arm®
Cortex®-M4 and Cortex-MO+ processors. This application note helps you explore PSoC 6 MCU
architecture and development tools, and shows you how to create your first project using ModusToolbox
and PSoC Creator. This application note also guides you to more resources available online to accelerate
your learning about PSoC 6 MCU. To get started with the PSoC 6 MCU with BLE Connectivity device
family, refer to AN210781 — Getting Started with PSoC 6 MCU with BLE Connectivity.

Contents

1 INrOdUCHION......eiiiiiiiieiiee et 2
1.1 PrerequiSiteS.......coccuueeeeiieeiiiiiiieceee e 3

2 Development ECOSYStEMccevveiiiiiieiiiiiie e 3
2.1 PSOC RESOUICESeeviviiiiiiiiiiiieeiisiieieee e 3
2.2 Firmware/Application Development 4
2.3 Support for Other IDEScccveeeeeeeiiiiiiiieeeeen. 8
2.4 RTOS SUPPOIT ..ccoiiiririieeeeeririeeee e 8
2.5 DebUGQING....uueieiieeiiiiiiiiee et 9
2.6 PSoC 6 MCU Development Kitscc.eeee... 10

3 Device FEAtUresSccccoviiieiiiiii e 11

4 ChooSiNg an IDEcccooiiiiiiiiieeeiiiiee e 12

5 My First PSoC 6 MCU Design
Using ModusTooIboX IDE...........ccoccvveiiiieeeiiiiecee 13
5.1 Using These INStructions...........cccceeveeeiiiiiineeen. 13
5.2 About the DeSigncccceovviriiiiiiiiiiieee e 13
5.3 Part 1: Create a New Application....................... 14
5.4 Part 2: Implement the Design and

Generate Source Codecccceevivieeeniineeennnn. 17

5.5 Part 3: Write the Firmwarec.cccceevvieeens 26
5.6 Part 4: Build the Application..........c.ccccevvvieennns 30

5.7 Part 5: Program the Device...........cccccevvvvennnnen. 31
5.8 Part 6: Test Your Design........ccccceevviiivvieeenennnnne 32
6 My First PSoC 6 MCU Design
USING PSOC Creator........cuveviieieeiiiiee e 34
6.1 Using These INStructionscccccoovvuvvieeenennnne 34
6.2 About the DeSignccccvveiririeiiiiee e 35
6.3 Part 1: Create a New Project from Scratch....... 36
6.4 Part 2: Implement the Designccccccvveennnen. 40
6.5 Part 3: Generate Source Codeccccceevvvvveeennns 48
6.6 Part 4: Write the Firmwareccocecvveeveeeenn. 50
6.7 Part 5: Build the Project and
Program the Devicecccccoeviiiiiieenieiiniins 54
6.8 Part 6: Test Your Design.......ccccceeeeviviieieeeenenne 56
T SUMIMAIY ..eiiiiiiiiiiiiiiieinieiereierereeaenbeneneeeneneeeseeeeeeennanne 57
8 Related Application Notes and Code Examples........ 58
Appendix A. GlOSSANY....vvvieeie et 60
Appendix B. PSoC 6 MCU Development Kits 61
Document HiStory.........uuuviiiiiiiiiiiiieeeee e 65
Worldwide Sales and Design SUuppoOrt........c.occuvveeveeennne 66

Www.Ccypress.com

Document Number: 002-21774 Rev. *D

[

http://www.cypress.com/
http://www.cypress.com/products/32-bit-arm-cortex-m4-psoc-6
http://www.cypress.com/modustoolbox
http://www.cypress.com/psoccreator/
http://www.cypress.com/search-results?as_q=psoc%206%20mcu%20code%20examples
http://www.cypress.com/search-results?as_q=psoc%206%20mcu%20code%20examples
https://github.com/cypresssemiconductorco/Code-Examples-for-the-ModusToolbox-PSoC-6-SDK
http://www.cypress.com/video-library/PSoC
http://www.cypress.com/documentation/application-notes/an210781-getting-started-psoc-6-mcu-bluetooth-low-energy-ble

Vs

ws CYPRESS

N EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

1 Introduction

PSoC 6 MCU is Cypress’ ultra-low-power PSoC device with a dual-CPU architecture tailored for smart homes, l1oT
gateways, etc. The PSoC 6 MCU device is a programmable embedded system-on-chip that integrates the following
features on a single chip:

Single-CPU microcontroller: Arm Cortex-M4 (CM4) or Dual-CPU microcontroller: Arm Cortex-M4 (CM4) and
Cortex-M0+ (CMO+).

Programmable analog and digital peripherals.

Up to 2 MB of flash and 1 MB of SRAM.

Fourth-generation CapSense® technology.

PSoC 6 MCU is suitable for a variety of power-sensitive applications such as the following:
o Smart home sensors and controllers.

o Smart home appliances.

o Gaming controllers.

o Sports, smart phone, and virtual reality (VR) accessories.
o Industrial sensor nodes.

o Industrial logic controllers.

o Advanced remote controllers.

The programmable analog and digital subsystems allow flexibility and dynamic fine-tuning of the design using
ModusToolbox™ IDE, the Eclipse-based IDE for developing PSoC 6 MCU applications, or PSoC Creator, the
schematic-based design tool.

Figure 1 illustrates an application-level block diagram for a real-world use case using PSoC 6 MCU.

Figure 1. Application-Level Block Diagram Using PSoC 6 MCU

PSoC 6 MCU
Buck Universal Digital TFT LCD Display
uc
Block (UDB)-
12C Block
Motion Sensor <€ Converter Based LCD
Parallel Interface

' !

Ambient Light | | SAR ADC
Sensor] Block 1€ CM4 CPU
A ¢
CapSense |
,nﬁgﬁgﬂe Block | CMO+ CPU PWM Block > RGB LED

PSoC 6 MCU is a highly capable and flexible solution. For example, the real-world use case in Figure 1 takes advantage
of these features:

A buck converter for ultra-low-power operation.

An analog front end (AFE) within the device to condition and measure sensor outputs such as ambient light sensor.
Serial Communication Blocks (SCBs) to interface with multiple digital sensors such as motion sensors.
CapSense technology for reliable touch and proximity sensing.

Digital logic (Universal Digital Blocks or UDBs) and peripherals (Timer Counter PWM or TCPWM) to drive the
display and LEDs respectively.

Product security features managed by CM0O+ CPU and application features executed by CM4 CPU.

See Device Features and the device datasheets for more details.

WWW.Cypress.com Document Number: 002-21774 Rev. *D 2

http://www.cypress.com/
http://www.cypress.com/modustoolbox

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

This application note introduces you to the capabilities of PSoC 6 MCU, gives an overview of the development
ecosystem, and gets you started with a simple design wherein you learn to use PSoC 6 MCU. This design is available
as code example CE221773 for ModusToolbox and PSoC Creator.

For hardware design considerations, see AN218241 — PSoC 6 MCU Hardware Design Considerations.

1.1 Prerequisites

Before you get started, make sure that you have a development kit and have installed the required software. It is
recommended that you download the code example for reference.

1.1.1 Hardware
m CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit
m CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit or

m CYB8CPROTO-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit Note that kit is supported only on ModusToolbox; it is
not supported in PSoC Creator.

1.1.2 Software
® ModusToolbox 1.1 or
m PSoC Creator 4.2 with Peripheral Driver Library (PDL v3.1.x or later)
m CE221773 — PSoC 6 MCU Hello World Example Using ModusToolbox

2 Development Ecosystem

2.1 PSoC Resources

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device and quickly and
effectively integrate it into your design. For a comprehensive list of PSoC 6 MCU resources, see KBA223067 in the
Cypress community. The following is an abbreviated list of resources for PSoC 6 MCU.

Overview: PSoC Portfolio, PSoC Roadmap m Development Tools

Product Selectors: PSoC 6 MCU o CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT

Datasheets describe and provide electrical Pioneer Kit is a development kit that supports the
PSoC 62 series MCU along with Wi-Fi and BT

specifications for each device family.

m Application Notes and Code Examples cover connectivity.
a broad range of topics, from basic to advanced @ CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kitis an
level. You can also browse our collection of easy-to-use and inexpensive development
code examples. See Code Examples. platform for PSoC 63 series MCU with BLE
m Technical Reference Manuals (TRMs) provide Connectivity.
detailed descriptions of the architecture and o CY8CPROTO-062-4343W PSoC 6 Wi-Fi BT
registers in each device family. Prototyping Kit is a development kit that supports
m PSoC 6 MCU Programming Specification the PSoC 62 series MCU along with CYW4343W
provides the information necessary to program module-based Wi-Fi and BT connectivity for
the nonvolatile memory of PSoC 6 MCU development on ModusToolbox.
devices. m Training Videos: Cypress provides video training
m CapSense Design Guides: Learn how to on our products and tools, including a dedicated
design capacitive touch-sensing applications series on PSoC 6 MCU.

with PSoC devices.

WWW.Cypress.com Document Number: 002-21774 Rev. *D 3

http://www.cypress.com/
http://www.cypress.com/ce221773
http://www.cypress.com/an218241
http://www.cypress.com/CY8CKIT-062-WiFi-BT
http://www.cypress.com/cy8ckit-062-ble
http://www.cypress.com/cy8cproto-062-4343w
http://www.cypress.com/modustoolbox
http://www.cypress.com/psoccreator/
http://www.cypress.com/documentation/software-and-drivers/peripheral-driver-library-pdl
http://www.cypress.com/ce221773
http://www.cypress.com/
https://community.cypress.com/docs/DOC-14644
http://www.cypress.com/psoc
http://www.cypress.com/product-roadmaps/cypress-psoc-and-mcu-portfolio-roadmap
http://www.cypress.com/search/psg/114026#/?_facetShow=ss_pmain_core,ss_psecondary_core,fs_pmax_operating_frequency_mhz_,fs_pflash_kb_,fs_psram_kb_,fs_pno_of_gpios,fs_pble_maximum_data_rate_mbps_,fs_pble_power_output_dbm_,fs_pble_rx_sensitivity_dbm_,fs_pble_supported_frequency_band_ghz_,ss_pdedic
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/psoc6an
http://www.cypress.com/search-results?as_q=psoc%206%20mcu%20code%20examples
https://github.com/cypresssemiconductorco
http://www.cypress.com/psoc6trm
http://www.cypress.com/documentation/programming-specifications/psoc-6-programming-specifications
http://www.cypress.com/documentation/application-notes/an85951-psoc-4-capsense-design-guide
http://www.cypress.com/CY8CKIT-062-WiFi-BT
http://www.cypress.com/CY8CKIT-062-WiFi-BT
http://www.cypress.com/cy8ckit-062-ble
http://www.cypress.com/cy8cproto-062-4343w
http://www.cypress.com/cy8cproto-062-4343w
http://www.cypress.com/training
http://www.cypress.com/training/psoc-101-video-tutorial-series-how-use-arm-cortex-m4-based-psoc-6

& CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

2.2

Firmware/Application Development

Cypress provides two development platforms that you can use for application development with PSoC 6 MCU:

all PSoC 6 MCU devices.

ModusToolbox relies on PSoC 6 SDK as the software development kit for all supported Cypress PSoC 6 devices.
The SDK is provided as source code and in some cases, like BLE, as libraries. See ModusToolbox IDE and the

PSoC 6 SDK for more information.

PSoC Creator for more information.

2.2.1

ModusToolbox IDE and the PSoC 6 SDK

ModusToolbox is a free development ecosystem that includes the ModusToolbox IDE and the PSoC 6 SDK. The
ModusToolbox IDE brings together several device resources, middleware, and firmware to build an application. Using
ModusToolbox, you can enable and configure device resources and middleware libraries, write C/assembly source

code, and program and debug the device.

The PSoC 6 SDK is the software development kit for the PSoC 6 MCU. The SDK makes it easier to develop firmware
for supported devices. It helps you to build firmware without the need to understand the intricacies of the device

resources.

ModusToolbox: An Eclipse-based development environment on Windows, macOS, and Linux platforms that
includes the ModusToolbox IDE and the PSoC 6 SDK. ModusToolbox supports stand-alone device and
middleware configurators that are fully integrated into the IDE. Use the configurators to set the configuration of
different blocks in the device and generate code that can be used in firmware development. ModusToolbox supports

PSoC Creator: A Cypress-proprietary IDE that runs on Windows only. It supports a subset of PSoC 6 MCU devices
(up to 1 MB flash memory) as well as other PSoC device families such as PSoC 3, PSoC 4, and PSoC 5LP. See

As Figure 2 shows, with the ModusToolbox IDE, you can:

1.

code examples online.

Add software components or middleware.
Develop your application firmware.

Create a new application based on a list of starter applications, filtered by kit or device, or browse the collection of

Configure device resources in design.modus to build your hardware system design in the workspace.

Figure 2. ModusToolbox IDE Resources and Middleware

6 ModuToalbos IDE Appication
Startar Application
Choose strter code Foryour CYICKIT-462-WIF-GT,

init_cyctg all();
__enable_1rq()3

for(s;)

Browse Starter
Applications or
Code Examples

Online

= e

Byp % 450 MR Zp = 0O

Eile Miew Help /’ \\
Peripherals | Pins | Platform |)Clocks | DMA |

- Serial C Block (SCB) 5 - Pararne ters 8 x
< EmptyPSocs e [nter fiter test... — =] [Erter Fiter text 2B
4 15 EmptyPSoC6_mainapp 5 5
) Includes Resource Configure Device [Value -]
b b Anal &l
(& GeneratedSource . 9 Resources (=]
> & psocbsw-1.1 Comnmunicat tion Standard
4 (= Source [7] Inter-I¢ Sound Bus 029) 0 115200
[7] PDM-PCM Canverter 0 [—
= og £ 7] Quad Serial Memory Interface (QSPD 0 -
odus [C] Serial Communication Black (SCB) 0 LSB First
e [71] Serial Corrmunication Black (SCB) 1 8 bits
e [[] Serial Communication Black (SCE) 2 [
L modus.m [Serial Communica tion Black (SCE) 3 <
psoc6_01_cmOp_sleep_signed.elf [Serial Black (SCB) 4 T] »
. |5 setup_readmeibct Serial Communication Block (SCB) 5 |UART-10 7 [USRT | Code Praview g x
b 1% psocbpdl_Cortex-M4
[S Emr T HEd S50 /% NOTE: This is a preview omly. It comhines elements of the
— R = [Serisl Comrmunicat tion Black (SCB) 7 [
&0 2 7] Seral Communication Block (SCB) § P o
[7] Universal Serial Bus (USB) 0 #include "cy_sysclk.h”
™ > Digital
ModusToolbox™ B4 " e R ———
- Start Fiiacas 5
8 New Application < J | [analg egram | code preview
& Search Online for Code Examples (g \
] Midddleware Selector 3 o |5 E]
~ EmptyPSoC6_mainapp x \

&, Build EmptyPSaCE Application

@ Clean EmptyPSoC6 Application
8 Project Build Settings
W Configure Device

Search:

Middlewars Companents Add Software
FIubEy Components/ [T
7] Lib Wb Sockets Middleware FErASSomeymm—"

[C] Middleware BLE. Base SW component This is the Bluetooth Low Energy (BLE) saftware component biase part. Includes BLE
commen, profiles and HAL sources, =

[] Middleware BLE, Complete BLE Protocal,

This is the BLE Bluetoath Low Energy (BLE) software companent, operates in BLE dual —
Dual core mode: controller. Soft FP.

(controller core mode. This component includes the Saft FP pre-built BLE Stack contrc
library and can be run on CMOp anly core

[] Middieware BLE. Complete BLE Protocal,

This is the BLE Bluetaoth Low Energy (BLE) software component, operates in BLE dual (
Dual core mode: host and profiles. Soft FP

core mode. This component includes the Soft FP pre-built BLE Stack host library and cz

uuuuu CM4 anly core.

7] Middleware BLE, Complets BLE Protocal. This is the BLE Bluetoath Low Energy (BLE) software component, operates in BLE single
ale rore mode. Hard FP rantroll nst runan same care. This camnanent includes the Hard FP =L

<

WWW.Cypress.com

Document Number:

002-21774 Rev. *D

http://www.cypress.com/

o CYPRESS

N EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

2.2.1.1 ModusToolbox Help

Visit the ModusToolbox home page to download and install the latest version of ModusToolbox. Launch ModusToolbox
and navigate to the following items:

® Quick Start Guide: Choose Help > ModusToolbox IDE Documentation > Quick Start Guide. This guide gives
you the basics for using ModusToolbox.

m PSoC 6 API Reference: Choose Help > ModusToolbox APl Reference > PSoC PDL API Reference. This guide
gives you in an insight into the PSoC 6 PDL APIs.

2.2.1.2 PSoC 6 SDK

The PSoC 6 SDK includes resource drivers and middleware configurators to get you started developing firmware with
PSoC 6 MCU. The SDK includes the same driver code as found in the Software Development Kits for PSoC 6 Devices.

The SDK provides the central core of the ModusToolbox software. It contains Configurators, drivers, libraries,
middleware, as well as various utilities, makefiles, and scripts. It also includes relevant drivers, middleware, and
examples for use with Cypress IoT devices and connectivity solutions. You may use any or all tools in any environment
you prefer. The SDK is the one place where you can find all the development resources for PSoC 6 MCU devices.

Configurators

ModusToolbox software provides graphical applications called Configurators that make it easier to configure a
hardware block. For example, instead of having to search through all the documentation to configure a serial
communication block as a UART with a desired configuration, open the appropriate Configurator and set the baud rate,
parity, stop bits. Upon saving the hardware configuration, the tool generates the "C" code to initialize the hardware with
the desired configuration

Configurators are independent of each other, but they can be used together to provide flexible configuration options.
They can be used stand alone, in conjunction with other tools, or within a complete IDE. Everything is bundled together
as part of the unified SDK for distribution purposes. Configurators are used for:

m Setting options and generating code to configure drivers

m Setting up connections such as pins and clocks for a peripheral

m Setting options and generating code to configure middleware
For PSoC 6 MCU applications, the available Configurators include:

m Device Configurator: Set up the system (platform) functions, as well as the basic peripherals (e.g., UART, Timer,
PWM).

m CapSense Configurator and Tuner: Configure CapSense, and generate the required code.

m USB Configurator: Configure USB settings and generate the required code.

® QSPI Configurator: Configure external memory and generate the required code.

® Smart I/O Configurator: Configure the Smart 1/0.

m BLE Configurator: Configure the Bluetooth Low Energy (BLE) settings.

WWW.Cypress.com Document Number: 002-21774 Rev. *D 5

http://www.cypress.com/
http://www.cypress.com/modustoolbox

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

2.2.2 PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It brings together several digital, analog,
and system Components and firmware to build an application, and enables you to design hardware and firmware
systems concurrently. Using PSoC Creator, you can select, place, and configure Components on a schematic; write
Classembly source code; and program and debug the device.

As Figure 3 shows, with PSoC Creator, you can:

1. Browse the collection of code examples from the File > Code Example... menu.

a. Filter for examples based on device family.
b. Select from the menu of examples offered based on the Filter by options.

c. Download the code example using the download button.

d. Create a new project based on the selection.

Explore the library of more than 100 Components.

Drag and drop Components to build your hardware system design in the main design workspace.
Review the Component datasheets.

Configure the Components using configuration tools.

o 0k~ wN

Co-design your application firmware with the PSoC hardware.
Figure 3. PSoC Creator Schematic Entry and Components

Find Code Example @
famty Boc
v []
"

[

Browse Code

[=EIES - 41 Componest Catsog L6 comp. = 8 X iy
SEIEY)

ownload
utton

Explore Component
B g Catalog

Inst N

lllll Open K
@/ / [Cepsence |
Firmware =
- ~
T AT || 4CYPRESS @ .

1 & M x 50 g e[S S il A Turel - el]
T [hame Sergrade =) —_—— PSoC 6 Capacitive Sensing (CapSen:
Features Gt
Configure =
Components

2.2.2.1 PSoC Creator Help
Visit the PSoC Creator home page to download and install the latest version of PSoC Creator. Launch PSoC Creator
and navigate to the following items:

® Quick Start Guide: Choose Help > Documentation > Quick Start Guide. This guide gives you the basics for
developing PSoC Creator projects.

m Code Examples: Choose File > Code Example or click the Find Code Example... link on the Start Page tab.
These code examples demonstrate how to configure and use PSoC resources.

m Component Datasheets: Right-click a Component and select Open Datasheet. Visit the PSoC 6 MCU
Component Datasheets page for a list of all Component datasheets.

WWW.Cypress.com Document Number: 002-21774 Rev. *D 6

http://www.cypress.com/
http://www.cypress.com/psoccreator/
http://www.cypress.com/psoccreator/
http://www.cypress.com/?id=4749&rtID=377
http://www.cypress.com/documentation/component-datasheets/
http://www.cypress.com/documentation/component-datasheets/

~
W

-

CYPRESS

EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

2.2.3

Software Development Kits for PSoC 6 Devices

Cypress provides significant source code and tools to enable software development for PSoC 6 MCU. You use tools
to specify how you want to configure the hardware, generate code for that purpose which you use in your firmware,
and include various middleware libraries for additional functionality, like BLE connectivity or FreeRTOS. This source
code makes it easier to develop the firmware for supported devices. It helps you quickly customize and build firmware
without the need to understand the register set.

For the PSoC Creator environment, Cypress provides the Peripheral Driver Library (PDL). The PDL supports both
PSoC Creator and third-party IDEs. You use PSoC Creator Components to configure the hardware. PSoC Creator
generates configuration code based on your choices. That code is based on the source code in the PDL drivers. The
PDL also includes various middleware libraries. There may or may not be a Component to assist in configuring that
code.

For ModusToolbox software, Cypress provides the PSoC 6 SDK. This SDK includes both the driver code and
middleware libraries. In the ModusToolbox environment, you use Configurators to configure either the device, or a
middleware library, like the BLE stack or CapSense functionality.

The driver code is delivered as the psoc6pdl library. Middleware is delivered as psocémw. The PDL source code is
essentially identical, whether delivered with PSoC Creator or ModusToolbox IDE. There are implementation differences
for the two IDEs.

There are differences in how the middleware is provided. For example, CapSense functionality is provided in PSoC
Creator as a Component. For ModusToolbox software, there is a Configurator and a middleware library. See the
respective documentation for the two IDEs for details of what's the same, and what'’s different.

Whether you use ModusToolbox IDE, PSoC Creator, or a third-party IDE, firmware developers who wish to work at the
register level should also use the driver source code from the PDL. The PDL includes all the device-specific header
files and startup code you need for your project. It also serves as a reference for each driver. Because the PDL is
provided as source code, you can see how it accesses the hardware at the register level.

Some devices do not support particular peripherals. The PDL is a superset of all the drivers for any supported device.
This superset design means:

= All APl elements needed to initialize, configure, and use a peripheral are available.

m The PDL is useful across various PSoC 6 MCU devices, regardless of available peripherals.

m The PDL includes error checking to ensure that the targeted peripheral is present on the selected device.

This enables the code to maintain compatibility across some members of the PSoC 6 device family as long as the
peripherals are available. A device header file specifies the peripherals that are available for a device. If you write code
that attempts to use an unsupported peripheral, you will get an error at compile time. Before writing code to use a
peripheral, consult the datasheet for the particular device to confirm support for the peripheral.

PSoC Creator provides Components that are based on the PDL. This retains the essence of PSoC Creator in utilizing
Cypress or community-developed and pre-validated Components. However, the PDL is a source code library that you
can use with any development environment.

The PDL includes the following key software resources:

m Header and source files for each peripheral driver.

m Header and source files for middleware libraries.

m Device-specific header, startup, and configuration files.

m Template projects for supported third-party IDEs.

®m Full documentation, available in <PDL install directory>\doc\.

WWW.Cypress.com Document Number: 002-21774 Rev. *D 7

http://www.cypress.com/

~
W

CYPRESS

g~ EMBEDDED IN TOMORROW® Getting Started with PSoC 6 MCU
There are two key documents:
1. The PDL v3.x User Guide covers the fundamentals of working with the PDL, such as the following:
m Creating a custom project using the PDL (including third-party IDES).
m Configuring a peripheral.
® Managing pins in firmware.
®m Using the PDL as a learning tool for register-based programming.
m Using the PDL API Reference documentation.

2. The PDL 3.x API Reference Manual.html. This reference has complete information on every driver in the PDL,
including overview, configuration considerations, and details on every function, macro, data structure, and
enumerated type.

2.3 Support for Other IDEs

You can also develop firmware for PSoC 6 MCU using your favorite IDE such as IAR Embedded Workbench. Cypress

recommends that you generate resource configuration using a configuration tool. For ModusToolbox, the stand-alone

device and middleware configurators generate the required code. For PSoC Creator, configuration is integral to the

IDE.

You can use the PDL with another IDE by using PSoC Creator to design the system and generate configuration code

and then export to a target IDE. See the AN219434 — PSoC 6 MCU Importing Generated Code into an IDE for details.

2.3.1 Using ModusToolbox to Target Another IDE

ModusToolbox configurators are standalone tools that can be used to set up and configure PSoC 6 MCU resources

and other middleware components without using the ModusToolbox IDE. The device configurator and middleware

configurators use the design.modus file within the application workspace. You can then point to the generated source
code, and continue developing firmware in your IDE. If there is a change in the device configuration, edit the
design.modus file using the configurators and regenerate the code for the target IDE.

2.3.2 Using PSoC Creator to Target Another IDE

PSoC Creator is used to set up and configure PSoC 6 MCU system resources and peripherals. You then export the

project to your IDE, and continue developing firmware in your IDE. If there is a change in the device configuration, you

edit the TopDesign schematic in PSoC Creator and regenerate the code for the target IDE.

You can work effectively in most if not all IDEs. If your IDE is not supported in the Target IDEs panel, you can still use

PSoC Creator. After you generate code, add the necessary files directly to your IDE’s project. AN219434 — PSoC 6

MCU Importing Generated Code into an IDE provide detailed steps for manually importing the generated code into

another IDE.

24 RTOS Support
2.4.1 RTOS Support with ModusToolbox

The PSoC 6 SDK includes RTOS for PSoC 6 MCU development. The FreeRTOS source code is fully integrated with
the SDK as part of software components/middleware. You can import the FreeRTOS middleware into your application
by using the Select Middleware option. Select the mainapp project, and then click the Select Middleware link in the
Quick Panel. Then select FreeRTOS from the Middleware Selector dialog, as Figure 4 shows.

WWW.Cypress.com Document Number: 002-21774 Rev. *D 8

http://www.cypress.com/
https://www.iar.com/iar-embedded-workbench/
http://www.cypress.com/an219434
http://www.cypress.com/an219434
http://www.cypress.com/an219434

A,
e

CYPRESS

EMBEDDED IN TOMORROW™ : P
- Getting Started with PSoC 6 MCU
Figure 4. Import FreeRTOS in ModusToolbox IDE Application
110 =
GP 34D R mP = Middleware Selector o (2=
BE -
Search:
Middleware Cornponents
[7] Middleware emiVin FlextCalar driver This is the riddleware emiin FlexCalor driver
Q Ao W E B = 0
a [7] Middleware USB Device This is the riddleware LSE device component
MOdUSTOO' bOXw E [obex_lib This is a WICED Object Exchange Protocol library for 2071981 platform.
— [pbap_lib This is a WICED Phanebook Access Profile library for 2071981 platform.
New Application [7] Protacals This is WICED Protocal Suppart.
& Search Online for Code Examples E [7] Retarget YO Retarget the IO functions of the standard C run-time library to the user-defined target
= EmpyPSo6 matapp [7] RTOS Threadx This is the ThreadX Operating Systern Includes,
&, Build EmptyPSoC6 Applicatiop [] Test cade Test cade - Malloe debug — Trace? =
@ Clean EmptyPSoC6 Applicgfion | [Tracex This is the WICED TraceX Wrapper.
& Project Build Settings [upmp This is WICED UPNP Suppart.
B Configure Device = en e e I P e s 2
< .] +
@ Select Middleware
2.4.2 RTOS Support with PSoC Creator

2.5

The PDL includes RTOS support for PSoC 6 MCU development: FreeRTOS source code is fully integrated and included
with the PDL. You can import the FreeRTOS software package into your project by using the PSoC Creator RTOS
import option. Navigate to the Project > Build Settings menu and select FreeRTOS from the Software package
imports option under Peripheral Driver Library > FreeRTOS as shown in Figure 5.

Figure 5. Import FreeRTOS in PSoC Creator Project

B
Build Settings m
Configuration: [Debug IActive) ']
Toolchain [ARM GCC 5.42016q2 update -

B-PSoC_6_MCU_Hello World Ex2| @) Defauit (Tools > Options). C:\Program Files («86)\Cypress\PDL\3.0.1
Code Generation
Debug @) Custom
Customizer
’Ipﬂi‘ﬂﬂni"“ﬂ‘“.'f Software package imports:
i~ Target IDEs s Expand T Collapse I Check All [T Uncheck All
MO+ ARM GCC5.4-2016- p (o Variant Version Descriptior *
[-CM4 ARM GCC 5.4-2016-c T o B B P ceco
+[] Communication 12 2100 |12€ comm
-] Communication SPI 2.10.0 |SPIcommu
-RTOS [
E}-FreeRTOS 9.0.0 |[FreeRTOSH
B Memeory Management |heap_1 * 19.0.0 |[The simplefF
[utilities
~{7] Retarget 'O 1.10.0 |Redirects I -
il v 4 n | +
Co 0 [oo]

If you have a preferred RTOS, use the resources provided as examples on how to integrate such code with the PDL.

Debugging

The CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit and CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit have the
KitProg2 onboard programmer/debugger. It supports Cortex Microcontroller Software Interface Standard - Debug
Access Port (CMSIS-DAP) and custom modes of operations, as well as the KitProg2 connection. This makes debugging
the PSoC 6 MCU Pioneer Kit extremely flexible. See the KitProg2 User Guide for details.

The CY8CPROTO-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit has the KitProg3 onboard programmer/debugger. It

supports Cortex Microcontroller Software Interface Standard - Debug Access Port (CMSIS-DAP). See the KitProg3
User Guide for details.

WWW.Cypress.com

Document Number: 002-21774 Rev. *D

http://www.cypress.com/
http://www.cypress.com/CY8CKIT-062-WiFi-BT
http://www.cypress.com/cy8ckit-062-ble
http://www.cypress.com/documentation/development-kitsboards/kitprog2-user-guide
http://www.cypress.com/cy8cproto-062-4343w
http://www.cypress.com/documentation/development-kitsboards/kitprog2-user-guide
http://www.cypress.com/documentation/development-kitsboards/kitprog2-user-guide

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

2.5.1 Debugging with ModusToolbox
The ModusToolbox IDE requires KitProg3 for debugging PSoC 6 MCU applications. It also supports GDB debugging
using industry standard probes like the Segger J-Link.
For more information on debugging firmware on PSoC devices with ModusToolbox, refer to the ModusToolbox Help.

ModusToolbox includes the fw-loader command-line tool to update CY8CIT-062-WiFi-BT and CY8CKIT-062-BLE kits,
and switch the KitProg firmware from KitProg2 to KitProg3. Refer to the PSoC 6 MCU KitProg Firmware Loader
section in the ModusToolbox IDE User Guide for more details.

2.5.2 Debugging with PSoC Creator

PSoC Creator supports debugging a single CPU (either Cortex-M4 or Cortex-M0+) at a time. Some third-party IDEs
support multi-CPU debugging. For more information on debugging firmware on PSoC devices with PSoC Creator, refer
to the PSoC Creator Help.

2.6 PSoC 6 MCU Development Kits

CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit and CYSCPROTO-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit
are development kits that supports the PSoC 62 series MCU along with Wi-Fi and BT connectivity.

The CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit and CYSCPROTO-063-BLE PSoC 6 BLE Prototyping Kit support the
PSoC 6 MCU with Bluetooth Low Energy (BLE) Connectivity. Refer to Appendix B for more information.

Note that the CYS8CPROTO-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit is not supported on PSoC Creator and is
only supported on the ModusToolbox IDE.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 10

http://www.cypress.com/
http://www.cypress.com/CY8CKIT-062-WiFi-BT
http://www.cypress.com/cy8cproto-062-4343w
http://www.cypress.com/cy8ckit-062-ble
http://www.cypress.com/cy8cproto-063-ble
http://www.cypress.com/cy8cproto-062-4343w

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

3 Device Features

The PSoC 6 MCU device has an extensive feature set as shown in Figure 6. The following is a list of its major features.
For more information, see the device datasheet, the Technical Reference Manual (TRM), and the section on Related
Application Notes and Code Examples.

m 32-bit dual-CPU subsystem Figure 6. PSoC 6 MCU Block Diagram

o 150-MHz Arm Cortex-M4 and 100-MHz Arm

PSoC 6 MCU
Cortex-M0O+
) . MCUSubsystem Analog Blocks 1/0 Subsystem
0 Up to 2 MB of flash with additional 32 KB for Opamp CMP
EEPROM emulation and 32-KB supervisory q rm x2
flash g
Cortex®-M4 = 12-bit SAR
o Up to 1 MB of SRAM with selectable Deep with SPFPU = ADC
Sleep retention granularity at 32-KB retention 150-Mkiz % _
i : CapS =
O Inter-processor communication supported in = Digital Blocks e
g ~ o
arm 1;
0 Cryptography accelerators and true random Cortex®-Mo+ 8 x12 x32 g
number generator function L00MLE 5 Communication Interfaces §
o Up to three DMA controllers é g
o ()
o : -ti i SRAM] e
eFUSE: one-time programmable bits 2 é
0O Secure boot with hardware hash-based = ‘g £
authentiation : :
o Up to 104 GPIOs with programmable drive S
modes, drive strength, slew rates E (Quad-SPI)
<
0 Two ports with Smart I/O that can implement
Boolean operations
® Programmable analog blocks m CapSense with SmartSense™ auto-tuning
0 Two opamps of 6-MHz gain bandwidth O Supports both CapSense Sigma-Delta (CSD) and
(GBW) and two low-power comparators CapSense Transmit/Receive (CSX) controllers
O Up to One 12-bit, 1-Msps SAR ADC and one O Provides best-in-class SNR, liquid tolerance, and
12-bit voltage-mode DAC proximity sensing
m Programmable digital blocks, Operating voltage range, power domains,
communication interfaces and low-power modes
0 Up to 12 UDBs for custom digital peripherals 0 Device operating voltage: 1.71 V to 3.6 V with
O Up to 32 TCPWM blocks configurable as 16- gfgrés\e/lectable core logic operation at either 1.1 V
bit/ 32-bit timer, counter, PWM, or quadrature)
decoder 0 Multiple on-chip regulators: low-drop out (LDO for
0 Up to 13 SCBs configurable as 12C Master or ﬁ\cttlvet, (g(lel\ij)Sllje?:‘I)(rg:'?veesr)t;lngle—mput multiple-
Slave, SPI Master or Slave, or UART utpu u
o Audio subsystem with up to two I12S interface N éf:ge’ Dléc(;w-glc:ev;/er aﬁgﬂ%ﬂﬁ;‘g%;gg}g?:ﬁé
and two PDM channels P, p P.
power management
0O SMIF interface with support for execute-in- M » A .
place fom exemalqued Sp fosh memory 1 eSS O badus pover o it bl
and on-the-fly encryption and decryption (PMIC) control, and limited SRAM backup
0 Secure Digital Host Controller with support for
SD, SDIO, and eMMC interfaces
O Full-Speed, dual-role USB with device and
host capability
WWW.CYpress.com Document Number: 002-21774 Rev. *D 11

http://www.cypress.com/
http://www.cypress.com/psoc6ds
http://www.cypress.com/psoc6trm

~
W

-

CYPRESS

EMBEDDED IN TOMORROW’ Getting Started with PSoC 6 MCU

4

Choosing an IDE

ModusToolbox, the latest-generation toolset, includes the ModusToolbox IDE. The IDE is Eclipse-based and therefore
is supported across Windows, Linux, and MacOS platforms. The tool supports all PSoC 6 MCU devices. The associated
hardware and middleware configurators also work on all three host operating systems.

Certain features of PSoC 6 MCU such as UDBs and USB host are not currently supported in ModusToolbox IDE.
Cypress will release new versions of ModusToolbox to support these features and improve the user experience.

Choose ModusToolbox if you have prior experience with Eclipse-based tools and want to take advantage of the power
and extensibility of an Eclipse-based IDE, or if you want your development environment on Linux or MacOS. You should
also choose ModusToolbox if you want to build an 10T application using Cypress IoT devices, or if you are using a
PSoC 6 MCU device not supported on PSoC Creator.

PSoC Creator is the long-standing Cypress-proprietary tool that runs on Windows only. This mature IDE includes a
graphical editor that supports schematic based design entry with the help of Components. PSoC Creator supports all
PSoC 3, PSoC 4, PSoC 5LP devices and a subset of PSoC 6 MCU devices. The subset of PSoC 6 MCU devices
include devices up to 1 MB of flash. It does not support PSoC 6 MCU devices with a USB interface.

Choose PSoC Creator if you are inclined towards using a graphical editor for design entry and code generation, and if
the PSoC MCU that you are planning to use is supported by the IDE or if you are intending to use the UDBs on the
PSoC MCU.

The sections that follow provide detailed steps to create an application for PSoC 6 MCU. Navigate to section My First
PSoC 6 MCU Design Using ModusToolbox if you would like to use ModusToolbox. Navigate to section My First PSoC
6 MCU Design Using PSoC Creator if you would like to use PSoC Creator development environment.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 12

http://www.cypress.com/

A,
e

CYPRESS

~~ EMBEDDED IN TOMORROW® Getting Started with PSoC 6 MCU

5 My First PSoC 6 MCU Design Using ModusToolbox IDE
This section does the following:
® Demonstrates how to build a simple PSoC 6 MCU-based design and program it on to the development kit.
® Provides detailed steps that make it easy to learn PSoC 6 MCU design techniques and how to use the

ModusToolbox IDE.

5.1 Using These Instructions
These instructions are grouped into several sections. Each section is devoted to a phase of the application development
workflow. The major sections are:
m Part 1: Create a New Application
m Part 2: Implement the Design
m Part 3: Write the Firmware
m Part 4: Build the Application
®m Part 5: Program the Device
m Part 6: Test Your Design
If you are familiar with developing projects with ModusToolbox, download and use ModusToolbox version of the code
example CE221773 — PSoC 6 MCU Hello World Example Using ModusToolbox directly. It is a complete design, with
all the firmware written for the CY8CKIT-062-WiFi-BT kit. You can walk through the instructions and observe how the
steps are implemented in the code example.
If you start from scratch and follow all the instructions in this application note, you use the code example as a reference
while following the instructions.
This design is developed for the CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit. You can also use CY8CKIT-
062-BLE PSoC 6 BLE Pioneer Kit or CYSCPROTO-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit to test this example
by selecting the appropriate kit or device while creating the application.

5.2 About the Design

This design uses the CM4 CPU of PSoC 6 MCU to execute two tasks: UART communication and LED control.

At device reset, the Cypress-supplied pre-built CMO+ application image enables the CM4 CPU and configures CM0+
CPU to go to sleep. The CM4 CPU uses the UART personality to print a “Hello World” message to the serial port stream
and when the user presses the enter key, the LED on the PSoC 6 MCU Wi-Fi-BT Pioneer Kit starts blinking.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 13

http://www.cypress.com/
http://www.cypress.com/ce221773
http://www.cypress.com/CY8CKIT-062-WiFi-BT
http://www.cypress.com/cy8ckit-062-ble
http://www.cypress.com/cy8ckit-062-ble
http://www.cypress.com/cy8cproto-062-4343w

& CYPRESS

EMBEDDED IN TOMORROW’ Getting Started with PSoC 6 MCU

5.3 Part 1: Create a New Application

This section takes you on a step-by-step guided tour of the design process. It starts with creating an empty application
and guides you through hardware and firmware design development stages.

Launch ModusToolbox and get started.

1. Select a new workspace.

At launch, ModusToolbox presents a dialog to choose a directory for use as the workspace directory. The
workspace directory is used to store workspace preferences and development artifacts. You can choose an
existing empty directory by clicking the Browse button, as Figure 7 shows. Alternatively, you can type in a directory

name to be used as the workspace directory along with the complete path and ModusToolbox will create the
directory for you.

Figure 7. Select a Directory as Workspace

Eclipse Launcher @
Select a directory as workspace

todusToolbox IDE uses the workspace directory to store its preferences and development artifacts,

Warkspace: CUserstsnvniDesktophCE223541 miw vl Browyse.., I

[T Use this as the default and do not ask again

» Recent Workspaces

Launch l l Cancel

2. Create a new ModusToolbox Application.
A. Click New Application in the Start group of the Quick Panel.

B. Alternatively, you can choose File > New > ModusToolbox IDE Application, as Figure 8 shows.
The ModusToolbox IDE Application window appears.

WWW.Cypress.com Document Number: 002-21774 Rev. *D 14

http://www.cypress.com/

A

wos CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

Figure 8. Create a New ModusToolbox IDE Application
B mtw - ModusToolbox IDE

File | Edit Mavigate Search Project Run WPL Window Help
Newy Alt+Shift+N » | 7 Project...
Cpenhile: | Other... Ctrl+N

[, Open Projects from File System...

| B8 ModusToolbox IDE Application Ctrl+7
e Ctrhrtr—
Close All Ctrl +Shift+W
Ctrl+S

Ctrl +Shift+S
Revert
Mowve..,
Rename... F2
Refresh FS5
Convert Line Delimiters To 4
Print... Ctrl+P

pe Import.,

2 Export..
Properties Alt+Enter
Switch Warkspace >
Restart
Exit

B4 Qui...] Qui... Wati... Exp... Bre... = m|

A ModusToolbox™ @

v Start

New Application

3. Select PSoC 6 MCU as the target device.

ModusToolbox speeds up the development process by automatically setting various workspace/project options for
specified development kits in the new application dialog. In this case, ModusToolbox provides you with an
application template, with all kit resources pre-configured. You must configure and enable additional resources that
you intend to use in your application.

See Figure 9 for help with this step.

A.

nmo o w

In the Choose Target Hardware dialog, choose the Kit Name that you have. The steps that follow assume
CY8CKIT-062-WIFI-BT.

Click Next.

In the Starter Application dialog, select PioneerKitApp application.
In the Name field, type in a name for the application.

Click Next. The application summary dialog appears.

Click Finish to let ModusToolbox create the application projects for you.

You have successfully created a new ModusToolbox application for PSoC 6 MCU.

ModusToolbox uses CY8C6247BZI-D54 as the default device that is mounted on the CY8CKIT-062-WiFi-BT PSoC
6 Wi-Fi-BT Pioneer Kit along with the CYW4343WKUBG Wi-Fi/BT radio.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 15

http://www.cypress.com/
http://www.cypress.com/CY8CKIT-062-WiFi-BT
http://www.cypress.com/CY8CKIT-062-WiFi-BT

o CYPRESS

N EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

The PioneerKitApp application template has the all the resources available on the Pioneer kit pre-configured and
ready for use. These resources include user LEDs, user switches, 12C bridge and UART bridge. Additionally, the
template includes the system clock configuration.

Figure 9. Choose Target Hardware

B¢ ModusToalbax IDE Application = @

Choose Target Harcdware

Choose a Cypress kit to start your application with a pre-configured dewvice setup or create a custom application with your own chaoice of
MCU and/or connectivity device,

Kit Marne rCU Connectivity Device o i} ‘
[A [YBCKIT-062-4343w CYBCH24ABZI-D44 CYW4I4IWKUBG CYSCKIT-062-WIFLBT
[T\ YBCKIT-062-BLE CY8CE34TBZI-BLDS3 The PSoC 6 WiFi-BT Pioneer Kit is a low-cost hardware L
CYRCKIT-062-WIFI-BT CYHC6247871-D54 CWw 44 KUBG | platform that enables design and debug of the PSoC 62 MCU 3
CYECMOD-062-43430 CYBCA24ABZT-D44 Cyir4343LIBG (CY8C6247BZI-D54) and the Murata LBEESKL 1DX Module
CYBCPROTO-062-4343W CYSCGI4ABZI-DA4 CYW4A343WKUES (CYW4343W WiFi + Bluetooth Combo Chip)
CYECPROTO-063-BLE CWBLE-416045-02
CYBLE-416045-02 EZ-BLE CYBLE-416045-02 - Kit Features:
CWBT-213043-MESH CYBT-213043-02
CYWI20819EWE-02 CY¥W2081941KFBG -- « BLEv5.0
Custom Board - - + Serial memorv interface
+ DWW DN 1smirranhnna intarfara Sl
@ < Back Einish

B4 ModusTaalbax IDE Application = @

Starter Application
bryour CYBCKIT-062-WIFI-BT.

CE223541

Enter filter text Basic peripheral configuration for the PSoC 6 Pioneer kits (CY¥8CKIT-062-*), Debug is enabled and platformm clocks are set for high =
- perfarrmance (144hHz CLE_FAST for Chd core and T2hHz CLE_SLOWY for Ch0 +) but with a peripheral-friendhy CLK_PERI

BlinkyLED . frequency (T2MHz). In addition the user LEDs and switch, KitProg3 UART and I2C bridges, and CapSense buttons and slider are

apSenseslider configured.

Application Mame:

m

P fp
Protokitdpp

ProtokitdppFreeRTOS
Q3PIRead\rite

MeodusToolbox IDE Application ==

Summary

Verify application creation information.

Nou selected: -
Device: CYBCH247EZ1-D54

Connectivity device: CYW4343WKUBG

Board: CYBCKIT-062-WIFI-BT

Example: PioneerKitApp

Press "Finish" to create "PioneerKitApp” application.

4 b
E

|f?:- Mext = [Finish l l Cancel I

If you are using a custom hardware based on PSoC 6 MCU, or a different PSoC 6 MCU part number, choose
Custom Board in Choose Target Hardware dialog.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 16

http://www.cypress.com/

y__\

- A

e
N 4

CYPRESS

EMBEDDED IN TOMORROW’ Getting Started with PSoC 6 MCU

54

Part 2: Implement the Design and Generate Source Code

Now that you have an application set up from an existing Pioneer kit template, it is time to add additional resources in
hardware design required for this application. The template includes configuration for pins, UART and clocks required
for this example. If you are using the code example directly, you already have a complete design.

Before you add additional resources to the design, a quick tour of the ModusToolbox project explorer is in order.
Figure 10 shows the ModusToolbox project explorer interface displaying the structure of the application projects.

In the ModusToolbox IDE, a PSoC 6 MCU application consists of a project to develop code for the CM4 CPU, and the
associated project for PDL drivers. The configuration files generated by the device and peripheral configurators are
included in the Generated Source folder of the CM4 project and are prefixed with cycfg_ . These files contain the design
configuration. You can modify the design configuration by double-clicking the design.modus file in the project.

The application project (_mainapp) contains relevant files that help you create an application for the CM4 CPU, while
the CMO+ application is supplied as a pre-built image (psoc6_01_cmOp_sleep_signed.elf) by Cypress. This pre-built
image is linked with the CM4 image at the final build step. You can use also use a custom CMO+ application image.
Please refer the ModusToolbox Help for more details.

Note that application project points to a modus.mk file. It contains instructions on how to recreate the project.

The makefile required to compile and link the projects is created automatically by the IDE, and is in _mainapp/Debug
folder after the application is built. This file contains the set of directives that the inbuilt make tool uses to compile and
link the application project.

Figure 10. Project Explorer View

’ Project Explorer ‘

B eoe in g =6

=1

4 =5 CE223541_mainapp Configuration Files
> [Includes

4_[5 GeneratedSource
2 [€ cycfg_capsense.c
> cycfg_capsenseh
o g cycfg_clocks.c
> cycfg_clocks.h
y cycfg_notices.h
o | cycfg_peripherals.c
3 cycfg_peripherals.h
o [cycfg_pins.c
3 cycfg_pins.h
o g cycfg_platform.c
3 cycfg_platferm.h
2 [cycfg_routing.c
> cycfg_routing.h
2 [eycfg.c
> cycfg.h

> [psochsw-1.1

» = Source

Double click to set up ;3‘8_‘5“?—‘;”“—“3'-”
&g design.modus

design configuration = makefile.nit ’ Pre-built CMO+ Image‘

& modus.mk 4

PDL Driver Project ‘ I psoch_01_cm0p_sleep_signed.elf l
=| setup readmetst

+ o5 psoctpd|_Cortex-M4

Double-click the design.modus file in the config project in the Project Explorer view or click on the Configure
Device link in the Quick Panel. Figure 11 shows the resulting window called the Device Configurator window.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 17

http://www.cypress.com/

A

wos CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

Figure 11. design.modus Overview

it

J'L'—‘—“‘—‘—‘—‘ ,_L| =] Enter filker text,. ,_L‘ =
List of Resources ‘

e G EmeiEs Faie .-’Desktop.-‘CE223541_mt\/w’CE223541_configfdesign.moj parameters Pane = = =

N L =

I Peripherals | Pins | Platform | Petipheral-Clocks I DA || Serial Communication Block (SCB) 5 - Pararmeters g X

Personality Alias Name Walue n

> Analog 4 General |E|
4 Communication Standard I
[T] Inter-IC Sound Bus 128 0 115200
[T PDM-PCM Converter 0
7] Quad Serial Memory Interface ((QSPT) 0 &
[7] Serial Communication Black (SCE) 0 it
[] Serial Comrmunication Block (SCEY 1 i 8 hits
[] Serial Comrmunication Block (SCE) 2 X X) Mone
[] Serial Comrmunication Block (SCB) 3 s -
etial Communication Block (SCE) 4 | o = Lbit ‘ Code Preview Pane

5
| Serial Communication Block (SCE) 5 [UART-10 + [UART

|| Serial Comrnunication Elock (SCB) 6 Code Preview F X

D Serial Communication Block (SCB) 7 4% WOTE: This is a preview only. It combines elements of the .c
[T] Setial Communication Block (SCE) 8 ‘

] Universal Serial Bus (USEY 0 #include "cy_sch_uart.h” E
> Digital #include "cy_sysclk.h” i
» System

#define UART HW SCES

const cy _stc sch_uart config t UART config =
{
.uartMode = CY_SCE_UART STANDARD,
.enableMutliProcessorMode = false,

.smartCardRetrylinlack = false, -
4| 1 3
Notices Pane ‘ Analog Diagram Code Preview
Motice List F X

o 0 ErrnrsI | 0%darnings I [j 0 Tasks o 0 Infos]

Fix Description Location

Ready

The Device Configurator window provides a Resources Categories pane. Here can you can choose between
different resources available in the device such as peripherals, pins, and clocks from the List of Resources.

You can choose how a resource behaves by choosing a Personality for the resource. For example, a Serial
Communication Block (SCB) resource can have an EZI2C, 12C, SPI or UART personalities. The Alias is your
name for the resource, which is used in firmware development.

The Parameters pane is where you enter the configuration parameters for each enabled resource and the selected
personality. The Code Preview pane shows the configuration code generated per the configuration parameters
selected. This code is populated in the cycfg_ files in the config project. Any errors, warnings, and information
messages arising out of the configuration are displayed in the Notices pane.

The design uses several resources: three digital pins, a UART, a Timer, and an Interrupt. In the following steps,
you will note the settings of the resources already enabled, and you will add the Timer resource to the design and
configure it.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 18

http://www.cypress.com/

CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

1. UART Configuration.

Serial Communication Block (SCB) 5 is already configured as KIT_UART by the application template. To view the
pre-configured settings, follow the steps below. See Figure 12 for help with this step.

A.

Expand the Peripherals resources tab and navigate to Communication group.

B. Notice that Serial Communication Block (SCB) 5 is configured as a UART personality with KIT_UART as
the alias/name. Notice that the hardware resource SCB5 is given an alias KIT_UART_HW by the configurator.
See the Code Preview window in Figure 12. This alias will be used later in the firmware.

C. Also notice that the baud rate is set to 115200 bps and the SCB is configured to 16 bit Divider O clk as the
clock source. The RX and TX signals are also routed to port pins P5[0] and P5[1] respectively, as Figure 12
shows.

Figure 12. SCB 5 Resource as UART
A
Peripherals I Pins | Platform I Peripheral-Clocks | DMA | Serial Communication Block (SCE) 3 (kIT_UART) - Parameters & X
|Er|ter filker text... ‘_L| = & Ea @ |Enter Filter text.. ._L| =
Resource Personality Alias MName “Walue -
> Analog 4 General Cc
4 Communication (7) Cam Made Standard ~
[T Irter-IC Sound Bus 025) 0 I) Baud Rate (bps) 115200
] Quad Serial kermory Interface (QSPT 0
[C] Serial Communication Block (3CB) 0 | Oversample 8 =
[C] Serial Commurication Block (SCB) 1) Bit Order L3 First =
[] Serial Communication Block (SCB) 2) Data Width 8 bits b
Serial Communication Block (SCB) 3 [EZ12¢-10 ~ [T 12C | F) Parity None =
[Serial Cormmunication Block (SCE) 4 | Stop Bits 1 hit -
|=1 Sefal Camrmunication Block (SCE) § [UART-10 = [KIT_UART 1] (2) Enable Digitel Filter o L
[} Ser!al Cnmmun!cat!nn Block (SCB) 6 + ‘Support RS-485
] Serial Communication Block (3CB) 7 - [Flicantral F:
] Serial Communication Block (SCE) 8 M) Canociions Va
7] Universal Serial Bus {LISB) 0 —
> Digital () Clock & | 16 bit Divider 0 clk (KIT_UART_Clock) [USED] -
> System) RX & ||ps[a] digital_inout (KIT_UART_R3) [LISED] -
) TE & ||ps[1] digital_inout (KIT_LART_Tx) [LISED] -
! R¥ Trigger Output <unassigned s]
','3’\ T Trigger Output <unassigned >] i

Code Preview

/% HOTE: This is a preview only. It combines elements of the .c and .h files. */

]

#include "cy_sch_warc.h”
#include “"cy sysclk.h”

#define KIT_UART_HV 5CB5 |

| Analog Diagram | Code Preview ‘

=)

WWW.Cypress.com

Document Number: 002-21774 Rev. *D

19

®

-

q

http://www.cypress.com/

A,
e

-

CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

2. Configure the Timer.

The TCPWM resource is configured as a timer to generated interrupts every 500 milliseconds. Note that the
application template does not pre-configure the timer for you.

Figure 13. Enable and Configure TCPWM][0] Counter O Resource

Periphersls | Pins | Platform | Periphera-Clocks | DMa | TCPWMIN] 32-hit Caunter 0 - Parameters g x
Erker filter text... ‘_L| = ‘Enter Filter text. .. ._L‘ =
Resource Personality Alias Narne Value
> Analog 4 General
> Coramunication (2) Clock Prescaler [Divide by 1 hd
4 Digital (2) Counter Resolution | (%) 33-bits
[] POM-PCI Corverter A 2) Run Mod Conti
4 Tirner, Counter, and PW (TCPWN) 0 o un MRgE BIGR 3
[TCPwMIn] 32-bit Counter 0 [Timer - Counter-L0 < [Tirmer | Count Direction |Up =
T TCPWI[0] 32-bit Counter 1 Z) Petiod 1000
[7] TCPYMID] 32-bit Caunter 2 (2) Compare or Capture | Capture -
[TCPWMD] 32-bit Counter 3 © Capture ©
[TCPWM[] 32-bit Counter 4 4 Interrupts
[C] TCPWMIA) 32-bit Courter 5 p | (@) InterruptSource [Overflow & Underflow v

[TCPWM[] 32-bit Caunter 6
[TCPWM[] 32-bit Caunter 7
> Timer, Caunter, and PYh (TCRYM) 1
> System

Mputs

(2) Clock Signal

& {lﬁ bit Divider 1 clk [USED]

]

2) CountInput
() Stop Input
@ Reload Input
(Z) StartInput

- Outputs

+ Advanced

Disabled
Disabled
Disabled
Disabled

LN N KR E

Code Preview

#include "cy_sysclk.h”

/* NOTE: This is a preview only. It combines elements of the .c and .h £
#include "oy _topum_counter.h'

#include "cycfy conmectivity.h”

& X

»

4

‘ Analog Diagram | Code Preview ‘

m 3

Follow the steps below to configure the TCPWM 32-bit Counter 0 to be used as a software timer.

A.

In the Peripherals resources tab, expand the Digital > Timer, Counter and PWM (TCPWM) 0 group, and

select the checkbox next to TCPWM (0) 32-bit Counter 0 to configure it. Select Timer-Counter-1.0 as the

personality. Set the alias as Timer here for use in

to generate an interrupt.

the firmware.

Now, you will set the clock connections to the TCPWM resource.

Enter the desired period in the Period field of General parameters group. For this example, you will use 1000.

Set Overflow & Underflow as the Interrupt Source. Whenever the timer overflows, this setting will cause it

Select 16 bit Divider 1 clk as the Clock Signal. When you select the peripheral clock, ModusToolbox

automatically enables the corresponding peripheral clock, but does not set the divider. Click the link icon next
to the selected clock signal. This will take you to the 16 bit Divider 1 settings. You will set the divider value in

the next step.

WWW.Cypress.com

Document Number: 002-21774 Rev. *D

20

http://www.cypress.com/

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

3. Peripheral-Clocks.

In this step, you configure the peripheral clock divider that is required to source the Timer resource. You will also
note the settings of the peripheral clock divider sourcing the UART resource.

A. At this point, the Peripheral-Clocks tab must be in focus. Notice that the 16 bit Divider 1 is already enabled
the with Divider value set to 1 and connected to TCPWM(0) 32-bit Counter 0 clock, as Figure 14 shows.

Set the alias to Timer_Clock. This is an optional step to identify the clock divider and is not necessary for
firmware.

B. Setthe Divider value to 36000. This would generate a clock of 2 kHz because the CLK_PERI is configured to
be 72 MHz in the application template. You will see this in a later step.

Figure 14. 16 bit Divider 1 Configuration

Peripherals Pins Platform Petipheral-Clocks DM, 16 bit Divider 1 (Tirner_Clock) - Pararneters g X
‘Entar filler test .., ._,-_‘ = & Ea @ ‘Entar filler tesxt .., ._;_| =
Resource Personality Alias Mame Walue

> 8§ hit > Peripheral Documentation
4 16 bit A | General 5

16 bt Dividder 0_|Peripheral Clock- 10~ [KIT UART Clock @) Source Clock B CLK_PERT (72 MHz = 156)

|7 16 bit Divider 1 Peripheral Clock-L0 - [Timer_Clock | [owiaer Em I
[T 16 bit Divider 2 = -

[16 bit Divider 3 @ Frequency () 2 kHz + 1% AJ
] 16 bit Divider 4 (2) Starton Reset

[T] 16 bit Divier 5 | @ peripherals | [|TcPvnio) 32-bit Counterd clack (Timer) [USED]

[16 bit Divider 6

[7] 16 bit Divicer 7

[16 bit Divider 8

[7] 16 hit Divider 8

[16 bit Divider 10

[16 bit Divider 11

[7] 16 bit Divider 12

[16 bit Divider 13

[T 16 bit Divider 14

[T 16 bit Divider 15 Code Preview 8 x

> 16.5 bit

> 245b:t /% NOTE: This is a preview only. It combines elements of the .c and .h file: *
#include "cy_sysclk.h” |
#define Timer Clock HU CY_SYSCLK DIV_16_BIT
#define Timer Clock NUM 1T -
4 1 | 3
‘ Analog Diagram | Code Preview |

C. Also notice that 16 bit Divider 0 is already selected with the Divider value set to 78 and connected to Serial
Communication Block (SCB) 5 clock, as Figure 15 shows.

The alias has also been set to KIT_UART_Clock. This is optional and is used to identify the clock divider.
Figure 15. 16-bit Divider 0 Configuration
Peripheral-Clocks

|Enter Fiter text... ,_,-_| = & Ea @ ‘Enterfilter test.. u_‘ B

Resource Personality Alias me Walue

Peripherals

Platfarm 16 bit Diwider 0 (KIT_UART Clock) - Pararmeters 2 X

B bit c Peripheral Documentation
4 16 bit 4 General

16 bit Divider 0 | Peripheral Clack-1.0 KIT_UL&RT Clack

[7T 16 bit Divider 1

[] 16 bit Divider 2

[] 16 bit Divider 2

[] 16 bit Divider 4

[] 16 bit Divider 5

[] 16 bit Divider 6

[] 16 bit Divider 7

[T 16 hit Divider &

[T] 16 hit Divider 1

[] 16 bit Divider 10

[16 bit Divider 11

[16 bit Divider 12

[] 16 bit Divider 13

[] 16 bit Divider 14

[] 16 bit Divider 15
. 16.5 bit Code Preview g x
> 24.5 bit

(3) Source Clack | (%) CLK_PERI (72 MHz = 1%)

7 75

=) 0731 kHz + T

(2) Peripherals | & || serial Communicatian Block (SCE) 5 clock (<IT_UART) [USED] ...

4% NOTE: This is a preview only. It combines elements of the .c and .h file: *

#include "oy sysclk.h”

gdefine KIT_UART Clock HW CY_SYSCLE_DIV_16_BIT
#define KIT UART Clock NUM 0T i
< [| 2

‘ Analog Diagram Code Preview

WWW.CYpress.com Document Number: 002-21774 Rev. *D 21

http://www.cypress.com/

A,
e

-

CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

4. LED Pin Configuration.

The user LED on the PSoC 6 Wi-Fi BT Pioneer Kit is active LOW; that is, the logic HIGH pin-drive state turns OFF
the LED, and the logic LOW pin-drive state turns it ON. Figure 16 shows the configuration. The configuration is
already set by the application template.

A. Inthe Device Configurator window, navigate to the Pins resources tab.

B. Expand the Port 13 group and notice that the checkbox next to P13[7] is checked to enable the pin. Notice

that the alias is set to KIT_LED2 for use in the firmware.

C. Notice that the Drive Mode has been set to Strong Drive, Input buffer off.
Figure 16. Output Pin Resource

| peripherals | Pins | platform | Peripheral-clocks | oma | P13[7] (KIT_LEDZ) - Parameters B x
‘Enterﬁltertextm & B EREEN-NE N N ‘Enterﬁltertext”. LL\ B
Resource Personality Alias 13 12 11 10 & 8 7 & 5 4 Marne Walue
> Portd . Peripheral Documentation
\ Bl (o) fme) rwa pma mioe) enal s A ..
> Port2 -, B (2) Drive Mode | Strong Drive, Input buffer off -
b Port3 (2) Initial Drive State | High (1) -
> Port 4 . L c 4 Input
b Ports Pt
> Port 6 -) R g D (7) Threshold [cmos -
b Port? (2) Interrupt Trigger Type [Mane -
» Ports E 5 Output
> Rortd) F (2 Slew Rate [Fast -
» Pert10 . (2) Drive Strength [Fur -
ezl PG 4 Teminals
> Port 12
4 Portd H (Z) Analog | sunassigned>
[] p13in] (%) Digital Output [cunassigned> -
BN - 5 Advanced
O puaz) & = PPOP | (7) Store Config in Flash
[T P1313]
[P13 L - o L Cade Preview 8 x
[p1ags) [B] . M /% NOTE: This is & preview only. It coubines elements of th *
[] P13[6] [
p13[7]| Pin-1.0 KIT_LEDZ 1] i N #include "cy_gpio.h”
' Pert1d #def: KIT_LEDZ_FORT GPIO_PRT13
efine
CYBCE24BZI-D5A (124 8GA) #define KIT LEDZ PIN 71T 2
osigned Pouver 10 < m] o
Dedicaed @ Enor

[“andlog Diagram | cods Preview |

Navigate to the Port 5 group and notice that P5[0] and P5[1] pins are pre-configured for your application use as

UART pins.

WWW.Cypress.com

Document Number: 002-21774 Rev. *D

22

http://www.cypress.com/

A

wos CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

5. System Clocks.

The design uses default values for the high-frequency system clock settings as set up in the template. Although
you do not modify high-frequency clocks for this design, you should know how ModusToolbox manages them. If
you are working with your own board, you may need to modify these clocks.

A.
B.

In the Device Configurator window, navigate to the Platform resources tab.
Expand the System Clocks Group.

Here, you can see the clock tree, and modify the clock/clock dividers as required. Note that there are
checkboxes for different types of clocks under FLL+PLL, High Frequency Clocks, Input Clocks, and
Miscellaneous Clocks groups.

Click PLL clock under the FLL+PLL group. By default, the starter application template enables PLL and sets
the frequency to 144 MHz.

Alternatively, you can click on the PLL clock block in the clock diagram and the parameters show up in the
Parameters tab as Figure 17 shows.

Figure 17. System Clock Configuration

Peripherals | Pins | Platform | PeripherakClocks | DMa | PLL - Parameters a8 x

4 Hligh Frequency

[] CLKHFL

[CLKHF2

[CLKHF3 E
5

4 Input
[eco
[BxTCLE
1o 1L0-10
Mo MO-10
[] PLO
[weo

> Miscellancous

CLKFAST _[CLK_fasT-10 oo
CLKHFO [CLK_HF-1,
CLK HF4
CLK_PERI | CLKPERI10
CLK_SLOW | CLKBLOW-10

Enter fiter text... LJ B X Q G [ritertext. _L‘ B
Resource Persanality Alias Value
Debug D:buen—l‘ﬂ
e Poue) 4emmings- L0) Source Frequency) & MHz
[B syt Tspchearto Lowfrequency mode (]
4 FLLPLL Automatic -
[AL ?) Desired Frequency (WHz) [144,000
PATH_MUXD | PATH_MUX-1.0 (2) Optimization Ilin Power -
PATH_MUX1 | PATH_MUKG-L0 (@) Feedback 22-112) @ 3
PATH_MLUX2 | PATH_MUX-L0 %) Reference (1-19) &1
E] PATH_MUX3 | PATH_MLK-L0 [@ output @-1) ™ 2
PATH_MUX4 | PATH 1MUX-L0 (3 Actusl Frequency (MHz) | () 144:10000%
PLL PLL-: MO ._‘ CLK_HFD CLK_PERI CLK_SLOW ‘

CLK_TIMER,

L CLK_HF1 ko

— (2SPCPC)

_‘ CLK_HF2 '7 Quid s

" CLK_HF3 us
CLK_HF4 Exterral Fin Code Preview g x

/* NOTE: This is a preview only. It coubines elements of

0
| CLKALT
] SYSTICK

EXTCLE

T

CLK_PUNP ‘
#include "oy _s¥scli.h”

#define CY_CFG_S¥SCLE_PLLO_ENABLED 1 3
CLK_BAK
static const cy_stc_pll mamual_config t srss_0_ clock 0_|
(L
.feedbackDiv = 36,
.referenceliv - 1,
Loutputbiv = Z,
LlfMode - false,
.outputMode = CY_S$TSCLK_FLLPLL_OUTPUT_AUTD,
i

al i b

["Andog Diagram | code preview |

Expand the High Frequency Clocks group and select the already enabled CLK_FAST clock. Note that the
Divider for this clock is set to 1. This sets CLK_FAST to 144 MHz. This clock path sources the CM4 CPU in
PSoC 6 MCU.

In the High Frequency Clocks group, select the already enabled CLK_PERI clock. Note that the Divider for
this clock is set to 2. This sets the CLK_PERI to 72 MHz. This clock path sources the peripheral clock dividers
in PSoC 6 MCU.

In the High Frequency Clocks group, select the already enabled CLK_SLOW clock. Note that the Divider
for this clock is set to 1. This sets the CLK_SLOW to 72 MHz. This clock path sources the CM0O+ CPU in
PSoC 6 MCU.

Click File > Save in the ModusToolbox Configurator window, as Figure 18 shows. This step causes the configurator to

generate

the design configuration and save it to the design.modus file. This step also completes the code generation

process for the configuration. The configuration structures and associated code are saved to the cycfg_ files.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 23

http://www.cypress.com/

A

ws CYPRESS

N EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

Figure 18. Save Design Configuration

Wiew Help

L Mewr Ctrl+MN

= Open... Ctrl+0
Close Celedtd [

|EJ Save Ctrl+5

Save 8.

1 CifUsers/srvn, CYSEMIDesktop/CE22354]_ribn/CE223541 configfdesign.modus
2 CifUsers/srvn, CYSEML mbn/CE223541_config/design.maodus

Update Referenced Libraries

Exit Alt+F4

6. Add Retarget I/O Software Component.

In this step, you will add the Retarget I/O software component to redirect standard input and output streams to the
UART configured in Step 1.

OO0 w

In the Project Explorer panel, navigate to the _mainapp project.

In the Quick Panel, click on the Select Middleware link.

In the Middleware Selector dialog, select the Retarget 1/0 software component.
Click OK.

The files necessary to use the Retarget I/O component are added in the psoc6sw-1.0 > components >
psoc6pdl| > utilities > retarget_io folder, and the Source folder under the _mainapp project as Figure 19
shows.

psoc6sw-1.0 > components > psoc6pdl > utilities > retarget_io: retarget_io.c

Source: stdio_user.c and stdio_user.h

WWW.CYpress.com

Document Number: 002-21774 Rev. *D 24

http://www.cypress.com/

o CYPRESS

N> EMBEDDED IN TOMORROW” Getting Started with PSoC 6 MCU

Figure 19. Add Retarget I/O Software Component

P = B B Middleware Selector

= = Search:

Middleware Cormpanents

=% CE223541_mainapp.

Tl [obex_lib This is 3 WICED Object Exchange Protocol library for 2071381 platform, -
[ncludes
g G teds [pbap_lib This is a ‘WICED Phonebook Access Profile library for 2071081 platform,
[eneratedSource
= chow-11 [T Protocols This is WICED Protocol Support,
[psocisw-1.
[» [= Source
- RTOS Thread) This is the ThreadX Operating System Includes,
2] cy8chind_crmd_dual.ld B persting Sy
design.m_odus_ [Test cade Test code - Malloc debug -- Trace?
2 leini Trace) This is the WICED TraceX Wiapper,
= makefile.init a
[& modus.mk [] UPHP This is WICED URNP Support,
psoch_01_cmDp_sleep_signed.elf [7 usax This is USEX Driver Sources, H
|2/ setup_readme.txt [T Web Socket This is Websocket Library source.
I+ 2% psochpdl_Cortex-M4 7] WICED BESL MBEDTLS This is WICED BESL/MBEDTLS Security Code,

B 2D w=v &F 8%E = O
EyP. 2|0 WR. FP. T O

™ B =
ModusToolbox E 4 & CE223541_mainapp

[@'].I Includes

»

< S [» [= GeneratedSource
New Application | 4 (= psocbsw-1l

. 3 4 [= components

& Search Online for Code Examples " > psocmw
~ CE223541_mainapp 4 (= psocbpd|

> (= devices

&, Build CE223541 Application 4 (= utilities

9 Clean CE223541 Application T 4 = retarget_io

B Project Build Settin

b | [g) retarget.c|
4 [= Source

b [€ mainc

[|3 stdio_user.c|

[|E stdio_user.h|

=] cy8chied_cmd_dual.ld
B design.modus

= makefile.init

B Configure Device

@ Select Middleware

| @ modus.mk
psoch_01_cmDp_sleep_signed.elf
|Z| setup_readme bt

b 25 psocpdl_Cortex-M4

WWW.CYpress.com Document Number: 002-21774 Rev. *D 25

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

55 Part 3: Write the Firmware

At this point in the development process, you have created an application, completed the hardware design with the
assistance of an application template/Configurators, and generated the code. In this part, you write the firmware that
implements the design functionality.

The steps in this part discuss the firmware for the design that you configured in Part 2: Implement the Design.

The code example has all the required code. If you are working from scratch, you can copy the respective source code
to the main.c of the application project from the code snippet provided in this section. If you are using the code example,
files are already in your application.

Firmware Flow
We now examine the code in the main.c files of the application.

The CMO0O+ CPU comes out of reset and enables the CM4 CPU. The CM0+ CPU is then configured to go to sleep by
the pre-built image. The resource initialization for this example is performed by CM4 CPU. It configures the system
clocks, pins, clock to peripheral connections, and other platform resources.

When the CM4 CPU is enabled, the UART peripheral is initialized and started. It prints a “Hello World!” message on
the terminal emulator. A Timer Counter PWM (TCPWM) peripheral is configured to generate an interrupt every 500
milliseconds. At each Timer interrupt, the CM4 CPU toggles the LED state on the kit.

Copy the following code snippet to main.c of your application project.

#include "cy device headers.h"
#include "cycfg.h"

#include "cy sysint.h"
#include "stdio.h"

#include "stdio user.h"

/*~k************************

* Macros
**/
#define LED ON (Ou)

#define LED OFF (1u)

[KKKk K K K ok ko K K K K ok kK K K R ok ok K R R ok kK R ok ok ok ok K R ok ok ok ok R R ok Rk R R Rk Rk R R R Rk Rk R R R Rk ok ok R R Ak

* Function Prototypes
**/
void UartInit (void) ;

void TimerInit (void);

void Isr Timer (void);

[kK ok K K K K K K K K Kk ko ok ok ok ok ok K R R K K K K Kk ko ok ok ok ok ok R R R R K K K Kk ok ok ok ok ok kR R R K K Kk ok ks ok ok ok ok ok ok

* Global Variables

KKK KK KKK KKKk K KKK KKk KKK KKK KKK KKK KA AR KK KK AARK KKK AARK KKK AAAK KKK AXAK KKK AX R KKK KA AR K [

bool LEDupdateFlag = false;

/* The instance-specific context structure.

* The driver uses this as a scratch pad for its operations.
* Do not modify this structure.

*/

cy stc scb uart context t KIT UART context;

/* Isr Timer configuration structure*/

cy_stc_sysint_t Isr Timer config = {
.intrSrc = (IRQOn Type) Timer IRQ,
.intrPriority = 7u

}i

/‘k‘k******‘k‘k***‘k‘k******‘k‘k**‘k‘k******‘k‘k***‘k‘k******‘k‘k**‘k‘k***************************
* Function Name: main
***/
int main (void)
{

/* Set up the device based on configurator selections */

init cycfg all();

WWW.CYpress.com Document Number: 002-21774 Rev. *D 26

http://www.cypress.com/

A,
e

-

CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

/* Start the UART peripheral */
UartInit();

/* Enable global interrupts */
__enable irq();

/* \x1b[2J\x1b[;H - ANSI ESC sequence for clear screen */
printf ("\x1b[2J\x1b[;H");

Printf ("MH ARk kK CE221773 - PSoC 6 MCU:"\
" Hello World! Example*****kkkkkkkksksxx*\r\n\n");

printf ("Hello World!!!\r\n\n");
printf ("Press Enter key to start blinking the LED\r\n\n");

/* Wait for the user to press Enter key */
while (getchar() != '"\r');

/* Start the TCPWM peripheral. TCPWM is configured as a Timer */
TimerInit () ;
printf ("Observe the LED blinking on the kit!!!\r\n");

for (;;)
{
if (LEDupdateFlag)
{
/* Clear the flag */
LEDupdateFlag = false;

/* Invert the LED state*/
Cy GPIO Inv(KIT LED2 PORT, KIT LED2 PIN);

}

return (0) ;

}

/~k************************

* Function Name: UartInit
***/
void UartInit (void)
{
/* Configure the UART peripheral.
UART config structure is defined by the UART personality based on
parameters entered in the Component configuration*/
Cy SCB_UART Init (KIT UART HW, &KIT UART config, &KIT UART context);

/* Enable the UART peripheral */
Cy SCB_UART FEnable (KIT UART HW) ;
}

/**************************************‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k************************

* Function Name: TimerInit
************************************‘k‘k‘k‘k*‘k‘k‘k‘k**********************************/
void TimerInit (void)
{
/* Configure the TCPWM peripheral.
Counter config structure is defined based on the parameters entered
in the Component configuration */
Cy TCPWM Counter Init(Timer HW, Timer NUM, &Timer config);

/* Enable the initialized counter */
Cy_TCPWM Counter_ Enable(Timer HW, Timer NUM) ;

/* Start the enabled counter */
Cy TCPWM TriggerStart (Timer HW, Timer MASK);

/* Configure the ISR for the TCPWM peripheral*/

WWW.CYpress.com Document Number: 002-21774 Rev. *D 27

http://www.cypress.com/

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

Cy _SysInt Init(&Isr Timer config, Isr Timer);

/* Enable interrupt in NVIC */
NVIC EnableIRQ((IRQn Type)Isr Timer config.intrSrc);
}

[H Kk ok ok ok ok ok kKA K K K Kk ks k ok ok ok kR A A R K K Kk ks k ok ok ok kR A A A A K Kk ks ko ok ok ok ok kA A A K K Kk ok ko ok ok ok ok ok ok

* Function Name: Isr Timer
~k***********************/

void Isr_Timer (void)
{
/* Clear the TCPWM peripheral interrupt */
Cy TCPWM ClearInterrupt(Timer HW, Timer NUM, CY TCPWM INT ON_TC);

/* Clear the CM4 NVIC pending interrupt for TCPWM */
NVIC ClearPendingIRQ (Isr Timer config.intrSrc);

LEDupdateFlag = true;

The retarget_io middleware must be configured to use the UART resource to output the serial data. Navigate to Source
folder of your application project, open stdio_user.h.

Note that IO_STDx_UART is defined as KIT_UART_HW. The KIT_UART_HW points to the SCB resource used by the
UART. The redirection is highlighted in yellow as shown below.

#include "cy device headers.h"
#include "cy cfg.h"

/* Must remain uncommented to use this utility */
#define IO STDOUT ENABLE

#define IO STDIN ENABLE

#define IO STDOUT UART KIT UART HW

#define IO STDIN UART KIT UART HW

WWW.CYpress.com Document Number: 002-21774 Rev. *D 28

http://www.cypress.com/

o CYPRESS

N EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

Figure 20. Firmware Flowchart

[sTART)
1 CMo+ CPU

Y 1 CM4CPU
Enable CM4 CPU &
Go to Sleep
A 4
Initialize pins, clocks and On TCPWM Interrupt
platform resources ¢

v

Initialize and enable the
UART peripheral

¢ Y
Print the message

“Hello World”
on to UART terminal

Clear the TCPWM Interrupt

Set the LEDupdateFlag

A\ 4

Exit TCPWM
Interrupt Handler

“Enter” key
pressed?

Initialize and enable
TCPWM and the Timer
Interrupt

LEDupdateFlag
=true?

Clear LEDupdateFlag
Toggle LED state

This completes the summary of how the firmware works in the code example. Feel free to explore the source files for
a deeper understanding.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 29

http://www.cypress.com/

& CYPRESS

5.6

EMBEDDED IN TOMORROW™

Part 4: Build the Application

Getting Started with PSoC 6 MCU

This section shows how to build the application.
1. Build the Application.

A. Click on the Build <name> Application shortcut under the Start group in the Quick Panel. It selects the
Debug build configuration and compiles/links all projects that constitute the application.
B.

The Console view lists the results of the build operation, as Figure 21 shows.

Figure 21. Build the Application
CE223541_mitw - ModusToolbox IDE =N
File Edit MNavigate Search Project Run Window Help
Al |®'Q'.ﬁv:’§5"0'%'_ | ??' L v MR T
Quick Access 14 |
P 22|40 MR, EP. = O = B8 go. ® =08
BE ~
> |5 CE223541_mainapp. An outline is not
» =% psocGpd]_Cortex-M4 available.
Q D i E B = 4
ModusToolboxTM E B |& Consale 33 Froblerns Mernary Mewws &4 | LA BE _?x| MBS 5
[\[CDT Build Console [CE223541 mainapp]
w Start -
New Application == Application CME4+ Memory ==
& Search Online for Code Examples code:6568 sram:1724
A
CE223541_mainapp =

| & Build cE223541 Application |
9 Clean CE223541 Application

== Application CM4 Memory ==
B3 Project Build Settings

code:11328

sram; 2836
B Configure Device

@ Select Middleware

» Launches

19:38:59 Build Finished (teock 16s.938ms)

-)4 [m
=5 CE223541 mainapp

[

tasks. You can work to resolve errors or switch to the code example for these final steps.

If you are working from scratch and encounter errors, revisit prior steps to ensure that you accomplished all the required

WWW.Cypress.com

Document Number: 002-21774 Rev. *D

30

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW’ Getting Started with PSoC 6 MCU

5.7 Part 5: Program the Device
This section shows how to program the PSoC 6 MCU device.

ModusToolbox uses the OpenOCD protocol to program and debug applications on PSoC 6 MCU devices. For
ModusToolbox to identify the device on the kit, the kit must be running KitProg3. ModusToolbox includes a command-
line tool fw-loader to update CY8CIT-062-WiFi-BT and CY8CKIT-062-BLE kits, and switch the KitProg firmware from
KitProg2 to KitProg3. Refer to the PSoC 6 MCU KitProg Firmware Loader section in the ModusToolbox IDE User
Guide for more details.

If you are using a development kit with a built-in programmer (the CY8CKIT-062-WiFi-BT Pioneer Kit, for example),
connect the board to your computer using the USB cable.

If you are developing on your own hardware, you may need a hardware programmer/debugger; for example, a Cypress
CY8CKIT-005 MiniProg4.

1. Program the Application.
A. Connect to the board and perform the following step.

B. Selectthe mainapp application project and click on the <application name> Program (KitProg3) shortcut under
the Launches group in the Quick Panel, as Figure 22 shows. The IDE will select and run the appropriate run
configuration.

Figure 22. Programming an Application to a Device

By, 240, HER. EP. = 0

=@ -
2|15 CE223541_mainapp
» = psochpd|_Cortex-h4

¥R o] W E E = 8

ModusToolbox™ E

* Start

Mew Application

o Search Online for Code Examples
» CE223541 mainapp

= Launches

35 CE223541 Debug (I-Link)

’3:& CE223541 Debug (KitProg3)

@ CE223541 Program (J-Link)

|© cE223541 Program (Kiterog3) |

The Console view lists the results of the programming operation, as Figure 23 shows.

Figure 23. Console — Programming Results

Bl Console &2 x%‘-ﬁabﬂ_ @@‘#Evi’jv‘:lﬂ
<terminated> CE221773 Program (KitProg3) [GDB OpenQCD Debugging] epenocd

[35¥] [sssssssssss 1 [Programming] A
[42%] [sssEHE 1 [Programming]

[S1%] [] [Programming]

[G4¥] [sssssssssssssnses 1 [Programming]

[71%] [y 1 [Programming]

[93%] [1 [Programming]

[1ee¥] [1 [Programming]

box’

wrote 35848 bytes from file D:\ModusToolbe
** Programming Finished **

** Resetting Target **

Warn : Only resetting the Cortex-M core, use a reset-init event handler to reset any peripherals or configure hardware srst support.
** Program operation completed successfully **

shutdown command invoked

\CodeExamples\newCE221773_miw\CE221773_mainapp\Debug\CE221773_mainapp_final.elf in 1.524877s (22.953 KiB/s)

WWW.CYpress.com Document Number: 002-21774 Rev. *D 31

http://www.cypress.com/
http://www.cypress.com/?rID=38154&source=an79953

&2 CYPRESS

EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

5.8 Part 6: Test Your Design

This section describes how to test your design.

Follow the steps below to observe the output of your design. Note that the below steps use Tera Term as the UART
terminal emulator to view the results. You can use any terminal of your choice to view the output.

1. Select the serial port.
Launch Tera Term and select the USB-UART COM port as shown in Figure 24.
Figure 24. Selecting the USB-UART COM Port in Tera Term

T

File Edit

2=0 Tera Term: Mew connection b

O TCPAP myhost.example.com
History
Telnet
S5H SSH2
Other

22

UNSPEC

@ Serial Port: [COM5: USE Serial Device [COM5] . - |

| 0K | | Cancel Help

2. Set the baud rate.
Set the baud rate to 115200 under Setup > Serial port as Figure 25 shows.
Figure 25. Configuring the Baud Rate in Tera Term

N

Fi Tera Term: Serial port setup *
e

Port: COM5 v
Baud rate: 115200 v

Data: § bit w Cancel

Parity: none w

Help

Stop: 1 bit W

Flow control: none

Transmit delay

El msecichar El msecfline

3. Reset the device.

Press the reset switch (SW1) on the Pioneer Kit. The following message appears on the terminal as Figure 26
shows.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 32

http://www.cypress.com/

& CYPRESS

NP> EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

Figure 26. UART Message Printed from CM4 CPU

T COMS3 - Tera Term VT - O x

File Edit Setup Contrel Window Help
E221773 — P50C 6 MCU: Hello YWorld! Example

Hello Worldtt?t

Press Enter key to start hlinking the LED

4. Enable the LED Blinking functionality.

Press the Enter Key to start blinking the LED. When the LED starts blinking, the following message will be
displayed on the UART terminal as shown in Figure 27.

Figure 27. UART Message from CM4 CPU

T COMS - Tera Term VT - O s

File Edit Setup Contrel Window Help
E221773 — PSoC 6 HCU: Hello World?! Example

Hello World?tt?t

Press Enter key to start blinking the LED

Observe the LED blinking on the kit?t**

WWW.CYpress.com Document Number: 002-21774 Rev. *D 33

http://www.cypress.com/

o CYPRESS

N EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

6 My First PSoC 6 MCU Design Using PSoC Creator

This section does the following:
® Demonstrates how to build a simple PSoC 6 MCU-based design and program it on to the development kit.

® Provides detailed steps that make it easy to learn PSoC 6 MCU design techniques and how to use the PSoC
Creator IDE.

6.1 Using These Instructions

These instructions are grouped into several sections. Each section is devoted to a particular phase of the application
development workflow. The major sections are:

m Part 1: Create a New Project from Scratch

m Part 2: Implement the Design

m Part 3: Generate Source Code

m Part 4: Write the Firmware

m Part 5: Build the Project and Program the Device
m Part 6: Test Your Design

If you are familiar with developing projects with PSoC Creator, you can use the PSoC Creator version of the code
example CE221773 — PSoC 6 MCU Hello World Example directly. It is a complete design, with all the firmware written.
You can walk through the instructions and observe how the steps are implemented in the code example.

If you start from scratch and follow all the instructions in this application note, you use the code example as a reference
while following the instructions.

You can download the code example from the Cypress website by clicking the link above. You can also use the PSoC
Creator File > Code Example command. Set the Device family to PSoC 62. Select the PSoC MCU Hello World
Example. Download the code example by clicking on the download icon adjacent to the example and then click on
Create Project, and follow the on-screen instructions.

This design is developed for the CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit. You can also use CY8CKIT-
062-BLE PSoC 6 BLE Pioneer Kit to test this example by selecting the appropriate device from the Device Selector.

WWW.Cypress.com Document Number: 002-21774 Rev. *D 34

http://www.cypress.com/
http://www.cypress.com/ce221773
http://www.cypress.com/CY8CKIT-062-WiFi-BT
http://www.cypress.com/cy8ckit-062-ble
http://www.cypress.com/cy8ckit-062-ble

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

6.2 About the Design

This design uses the CM4 CPU of PSoC 6 MCU to execute two tasks: UART communication and LED control. At device
reset, the CM0+ CPU enables the CM4 CPU. The CM4 CPU uses the UART Component to print a “Hello World”

message to the serial port stream and when the Enter Key is pressed by the user, the LED on the PSoC 6 MCU Wi-Fi-
BT Pioneer Kit starts blinking.

Figure 28. My First PSoC 6 MCU Design

P6_VDD
Timer
Timer Counter T
ovrflw 1]
undrflw |- ;
capt_out|t] * ¥
a
Lo
=
Clock[_F—{>clock T Pin_GreenLED i
TkHz interrupt Isr_Timer

The TCPWM generates an interrupt to the CM4 CPU once per second.
On each interrupt the CM4 CPU toggles the LED state.

PSoC 6 MCU RGBLED

UART Baud rate: 115200 bps
WARIY Data width: 8 bits
Stop bits: 1

= &= CYPRESS
Sendarq Parity: None =5 3

The UART component prints a "Hello World"
message in a terminal window

RESET SWITCH

WWW.CYpress.com Document Number: 002-21774 Rev. *D 35

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW’ Getting Started with PSoC 6 MCU

6.3 Part 1: Create a New Project from Scratch

This section takes you on a step-by-step guided tour of the design process. It starts with creating an empty project and
guides you through hardware and firmware design development stages.

Note: These instructions assume that you are using PSoC Creator 4.2. The overall development process is the same
for subsequent versions of PSoC Creator; but the user interface may change over time.

Launch PSoC Creator and get started.
2. Ensure that PSoC Creator can find the PDL.

This should be set correctly automatically during installation, but nothing works if this isn’'t set up right. Refer to
Figure 29 for help with this step.

A. Choose Tools > Options.
B. On the Project Management panel, check the path in the PDL v3 (PSoC 6 Devices) location field.

C. Ensure that it is correct. If it is not, click the Browse button and locate the installed directory of the PDL. The
default location is C:\Program Files (x86)\Cypress\PDL\3.0.1.

Figure 29. Peripheral Driver Library (PDL) Location

Options 2|l
[#]- Froject M anagement Projects location:
. E:s;?asstguppurl E:\Usels\snvn.EYSEMI\D.Dcuments\F'SoE Creator
" My Template projects location:
+1- Teut Editor
7)- Frogram/Debug C:A\Usershsnvn CYSEMIND ocumentshPS oC Creator'ky Templates
v Erviranment PDL «2 [Fh0+ devices| location:
B\
PDL «3 [PSoC B devices) location: c
J CE221773 - PSoC Creator 4.2 - E:\F’rngrlam Files (»8E\CypresshPOLYE0T L‘ Browsze...
) I - B A
Eile Edit View Project Build ﬁUU‘S Window Help Alwaps show the Error List window if a build has errors
oy _1 :::I Bk WEENF Y ﬁ Find new components Always display the workspace in the Workspace Explorer
¥ - j &m & B Find new devices Display the Output window when a build starts
= — ST Fieload open documents when a workspace is opened
Workspace Explorer (1 project) v 1 X Install drivers for uVision
%] [Reload the last workspace on statup
=] Datapath Config Tool... Ao Boslup s
Work: 'CE221773" (1 Project: -
g.ﬂo;;:j?; 'PSoC_ﬁ_M(CU_rI[-;J:IEI:_)Wm - DMA Wizard... Don't show Kel registration dialog every time PSoC Creator starts
B . -] Compenent Tuners 3
|Z' TopDesign.cysch H
E}jg Design Wide Rescurces (PScC_E] 2 @ Bootloader Host...
: ./3 Pins o QOptions... I_>
-\ Anzlog St

Fiestare All Defaultz Ok l ’ Apply] ’ Cancel

Optional: Jump to Part 2: Implement the Design.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 36

http://www.cypress.com/

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

3. Create a new PSoC Creator project.
Choose File > New > Project, as Figure 30 shows. The Create Project window appears.

Figure 30. Create a New PSoC Creator Project

i_E PSoC Creator 4.2

File | Edit View Project Build Debug Tools Window Help
ew Y3 Project.. F o 44-
pen L4 j File...

[=

Note: If you are using the code example, choose File > Open > Project/Workspace, as Figure 31 shows. The
Open window appears. Point to the location of the code example workspace and open the workspace.

Figure 31. Open Existing Code Example Workspace

J PSoC Creatar 4,2

Eile | Edit View Project Build Debug Tools Window Help
New b2 B X _ifA-

‘ Open P‘ ::-j Project/Workspace ge
Code Baample ... [File.. Ctrl+0

4. Select PSoC 6 MCU as the target device.

PSoC Creator speeds up the development process by automatically setting various project options for specified
development kits or target devices. See Figure 32 for help with this step.

A. Click Target device.

B. In the family drop-down menu, select PSoC 6.

C. Inthe device drop-down menu, select PSoC 62.

D. Click Next. The Select project template panel appears.

PSoC Creator uses CY8C6247BZI-D54 as the default device in the PSoC 6 MCU family. This device is mounted
on the CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit.

If you are using custom hardware based on PSoC 6 MCU, or a different PSoC 6 MCU part number, this is the place
you choose to Launch Device Selector option in Target device and select the appropriate part number.

Figure 32. Selecting Target Device

Create Project - CYSC6247BZ1-D54 [i)

Select project type
Choose the type of project - design, library, or workepace.

Design project:
() Tanget kit:
B () Target module:] B\ C \
A — [~
ul ¥ Target device: ’PSOCB v”PSoC -
(@) Library project
) Workspace

WWW.CYpress.com Document Number: 002-21774 Rev. *D 37

http://www.cypress.com/
http://www.cypress.com/CY8CKIT-062-WiFi-BT

o CYPRESS

N EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

5. Pick a project template.
A. Choose Empty Schematic.
B. Click Next.
Figure 33. Pick a Project Template

Create Project - CY8C6247B71-D54 (8 [

Select project template
Choose a schematic template or start your design with a kit or example project.

1101 |Code example
00| | Choose from our library of code examples.

= | Pre-populated schematic
1= | Start with typical MCU functions (ike UART, ADC, etc).
A

Empty schematic
Create a full custom design by adding functionality from the component catalog.

B\
| <Bok | Net> || cancel

b

6. Select target IDE(S).

If you expect to export the code from the project, specify the target IDE. By default, all export options are disabled.
You can modify this setting later if circumstances change.

Click Next to accept the default options.

Figure 34. Select Target IDEs (All Disabled)

Create Project - CY0C63470Z1-BLD53 -7 ==

Select target IDE(g])
Choose zero or more build targets

CMSIS Pack: | Disable -
&R Ew-4RM: [Disable -
Makefle: |Disable -

’ < Back HI Mext =] ’ Cancel]

7. Create the project.

In this step, you set the name and location for your workplace, and a name for the project. See Figure 35 for help
with this step. A workspace is a container for one or more projects.

Set the Workspace name.

B. Specify the Location of your workspace.
C. SetaProject name. The project and workspace names can be the same or different.
D. Click Finish.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 38

http://www.cypress.com/

o CYPRESS

~am»> EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

Figure 35. Project Naming and Location

r
Create Project - CY8C6247BZ1-D54

Create Project

Choose a name and location for your design

A

EhS

Workspace name:
Location:

Project name:

Create new workspace

CE221773

C:\PSoC Crestor Projects.
PSaC 6 MCU - Hello Word Example

Cancel

&

You have successfully created a new PSoC Creator project.

WWW.Cypress.com

Document Number: 002-21774 Rev. *D

39

http://www.cypress.com/

EMBEDDED IN TOMORROW™

& CYPRESS

Getting Started with PSoC 6 MCU

6.4 Part 2: Implement the Design
Now that you have a project file, it is time to implement the hardware design using PSoC Creator Components. If you
are using the code example directly, you already have a complete design.
Before you implement the design, a quick tour of the PSoC Creator interface is in order.
Figure 36 shows the PSoC Creator application displaying an empty design schematic.

The project includes a project folder with a base set of files. You view these files in the Workspace Explorer pane to
the left. The project schematic opens by default. This is the TopDesign.cysch file. Double-click the file name in the
explorer pane to open the schematic at any time. In a new project, the schematic is empty. If you are using the code
example, this is the schematic for the design.

The Component catalog is on the right side of the window. You can open it with the View > Component Catalog menu
item. You can search for a particular Component by typing the name of the Component in the Search for... text box
and then pressing the enter key. See Figure 36.

Figure 36. Schematic and Component Catalog

.
{:} CE221773 - PSoC Creator 42 [CA..\PSoC_6_MCU_Hello World_Example.cydsm\TopDesign\TopDesign.cysch] =R

File Edit View Project Build Debug Tools Window Help

) Workspace [@ @@ % s & X 9 o _ 8- Debug T Component
EXp|0rer gns Serif -0 - B I U =|A- - S04 Catalog 17
Workspace Bxplorer (1 project] B X| startPage ' TopDesign.cysch]—W Comp Catalog (115 compone... ~ & XI@
! 0 | T | o z
T Component b %
=+2] Project 'PSoC_6_MCU_Hello World_ &
- &' TopDesign.cysch é‘ o SearCh Box - Cypress ar §
S Design Wide Resources (PSoC_6_M & O @ . Il
g o #4g Analog
,(\ﬁ ,I;I::bg g kN g CapSense
)....U’-D‘ DA E - -@ Communications
?9 Clocks e g Digital
;j Interrupts 3 T -@ Zor:sand Pins
- System 2 = g System
é] Directives Ei
EHE) CMOp (Core 0) =
~{ Header Files El

=M Source Files
@ main_cmOp.c

EHED CM4 (Core 1)

{3 Header Files

[EH) Source Files
@ main_cmd.c

[+ Shared Files

-] cyapicallbacks.h

synsay

4 b

Pagel 4 b

<4 1 3

[output | Notice List |

Ready 0 Errors 0 Warnings 0 Notes

8. Place Components in the design.

This design uses several Components: three digital output pins, a UART, a Watchdog Timer, and an Interrupt. In
this step, you add them to the design. You configure them in subsequent steps. Figure 37 shows the result.

A. Inthe Component Catalog, expand the Communications group, drag a UART (SCB) Component into the
schematic, and drop it. It doesn’t matter where you put a Component.

B. Expand the Ports and Pins group, and drag a Digital Output Pin into the design.
C. Expand the Digital group, and drag a Timer Counter (TCPWM) Component into the design.

D. Expand the System group, and drag an Interrupt Component and a Clock Component into the design.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 40

http://www.cypress.com/

A

w CYPRESS

-

EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

Figure 37. Place Components in the Design

< Start Page J’

B 010]

TopDesign.cysch LG 4
-

Component Catalog (115 compone., « & X

o B e

Drag and
Drop
Components

ﬁ Search for...

UART 1

UART

Standard

Counter 1

. [Timer Counter

ovrilee
unidrflwe

=1
5]
capt_oul i

clock
intarrupt {5

Clock_1

Sysint_1

L7 =

£

B Pin_1~ugge]

\\

88 SPI

=@ Digital
EHg& Functions

@8 Ports and Pins

‘o0l System|
] Clock [v1.0]

Cypress]/OFF—Chip] 4

Cypress Component Catalog
Bigg Analog
&g CapSense
EH@8 Communications
g 12C
By 125

>|£| PDM to PCM [fixed function) [v

@8 UART

i[#] CRC[v2.50]
[¢] PWM (TCPWM) [v1.0]

+-8g Logic

H-@ Registers
g Utility

(2 Anzleg Pin [v1.0]

@ Digital Bidirecticnal Pin [v1.0]
|2} Digital Input Pin [v1.0]

|2} Digital Qutput Pin [v1.0]

~[¢] DMA [v2.0]

*

m

~[#] Emulated EEPROM [+2.0]

B-@g External Memory Interface
\@ Global Signal Reference [v2.10]
g

~#] Interrupt [v1.00

=

PSoC Creator gives each Component a default name and properties. Default values may or may not be suitable
for any given design. In subsequent steps, you modify the name and some of the properties.

WWW.Cypress.com

Document Number: 002-21774 Rev. *D

41

http://www.cypress.com/

o CYPRESS

N EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

9. Configure the LED pin.

The output pin drives the LED. The LED on the PSoC 6 Wi-Fi-BT Pioneer Kit is active LOW; that is, the logic HIGH
pin-drive state turns OFF the LED, and the logic LOW pin-drive state turns it ON. Figure 38 shows the configuration.

Double-click the Component placed on the schematic to open the configuration dialog. Then perform the following
steps.

D. Change the name of the Component instance to Pin_GreenLED.
E. Deselect HW connection. The firmware will drive the pin.
F. Setthe Drive Mode to Resistive Pull Up.
Figure 38. Configuring an Output Pin Component

ure 'Pin_GreenlLED' #? 2% resee
A T
L —
Name: | Pin_GreenLED I :
~ Pins | Builtin 4k
Number of pins: 1 ||:| Display as bus | A HE T+ | P
[All pins] General | Input | Output e Ctrl+X
[Pin_GreanlED_0 Type Drive mode Initiz] drive state 53| Copy Ctrl+C
[Anzlog Resistive Pull Up ~| [H\gh i) v] &
[T Digital input ; Min. supply voktsge: % Delete Del
B Select All Ctrl+A
Digital output e 4&0"” ,
i 100 MH: -]
Sh,
[T Qutput enable [E] Hot swap Shape]
[Bidirectional Configure...
Extemal teminal | Open PDL Documentation...
. ; Disable
@—B Click to view PDL]
. = Open Datasheet ...
Documentation
Find Code Example ...
Click to view Open Component Web Page
Component datasheet
| Datasheet I 0K Poply | Generate Macro
b]

Tip: Each Component has an associated datasheet that can be accessed from the configuration window. The
Component datasheet provides more information on the Component configuration, the application programming
interface (API), and the electrical specifications.

Tip: You can open the API reference document of the associated PDL driver of a Component by right-clicking the
Component and clicking on Open PDL Documentation... link. See Figure 38.

Tip: For a pin, if you enable External terminal, you can add external “off-chip” Components to a design. External
Components on the schematic are included for descriptive purposes only; they have no effect on the generated
code. Off-chip Components are optional, but can assist the hardware design team understanding how the design
works. You can also add text boxes to a design with descriptions. Figure 39 shows how you could enhance the
design for the LED. In this case, the off-chip components were configured with the Instance_Name_Visible option
unchecked. The resistor was configured with the Value field left blank. The power terminal was configured with the
Supply_Name set to P6_VDD.

Figure 39. An Output Pin with Off-Chip Components

P6_VDD

>
= Pin_GreenLED AAA

WWW.Cypress.com Document Number: 002-21774 Rev. *D 42

http://www.cypress.com/

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

10.Configure the UART Component.

Double-click the Component to open the configuration window. The design uses this Component to display
messages in a terminal window at a baud rate of 115200 bps.

A. Change the Name of the Component instance to UART.
B. Click OK.
The design uses default values for all other settings.

Figure 40. Configuring the SCB-Based UART Component

E,}Elo nfigure 'SCE_UART _PDL v2 0 &lﬂ—hJ
MName: UAR
Basic [* Advanced |* Pins [* Builtdin 14k
=l Clock Source
Enable Clock from Terminal |[C]
= General
Com Mode Standard > || fe
TA/RX Mode TH + RX v || fix
L [() 115200 ﬁ Actual baud rate (bps): 115741 (i)
Cversample 12 flx)
Bit Order LSB First > || fixg)
Data Width & bits v || fxd
Parity Mone v || fix
Stop Bits 1 v || fix
Enable Digital Filter = [o0 |

11.Configure the Timer Counter (TCPWM) Component to trigger an interrupt.

In this step, you configure the Timer Counter (TCPWM) Component to trigger an interrupt every second (1 Hz).
The clock source of the TCPWM is the peripheral clock (Clk_Peri). The design will use this interrupt to toggle the
LED state. Open the Component customizer and follow the steps illustrated in Figure 41.

Change the Name to Timer.

B. Setthe Period to 1000 and Interrupt Source as Overflow/Underflow.
C. Click OK to complete the configuration of the TCPWM Component.
D. Connect the clock terminal of the TCPWM to the 1-kHz clock source. In the schematic, use the wire tool button

or press the ‘W’ key to start wiring the Clock Component to the clock terminal of the TCPWM Component.

WWW.Cypress.com Document Number: 002-21774 Rev. *D 43

http://www.cypress.com/

A,
e

-

CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

&

Figure 41. Configuring the TCPWM Component

-
Configure Timer' &I&J
A
oo =]
Basic [Inputs |* Builtin 1k
Tount Direction Tp A P
Period 1000 fix)
Compare or Capture | Capture | hd | fix)
= Capture I
Capture Input | Disabled | ~ |[fix) = Tirer CDIII;;T
El Interrupts ovritw =1
| 5 i . clrftw =
Interrupt Source | Cverflow/Underflow | ~ ” fix) § - EanintpnlcioeRIELELSE c::t out-_:
Period (kHz): 0.001 - |
Capturs __# + + 4 + 4 [} L]
1000 #]) b]
i - i J Ciock[}—{>clock
couter [il il N I T interrupt {5
i 4,_,J) i
o i ‘ I LT
Cuarllow i + + + +
Captuee_Oul + | [} + s + 1y : ¥
S— i [} [} [4
CoptweReg 0 | 1 | w8 | 1 | g | [om [1 [mm
Capture Buf Rag [_2_| [ses T] wes] v w8 | 1

12.Configure the interrupt Component.

In this step, you configure the Sysint Component to map the TCPWM interrupt to the CM4 CPU. Open the
Component customizer and follow the steps illustrated in Figure 42.

A. Change the Name to Isr_Timer.
B. Click OK to complete the configuration of the Sysint Component.
Figure 42. Sysint_PDL Settings

Configure Tsr_Timer'

Eme Isr_Timer

Basic | Built-n
Deep Sleep Capable |[7]) |
Interrupt Type Auto-Select Trigger | A | flx)
ES e

As the final step, connect the interrupt output of the TCPWM Component to the Isr_ TCPWM Component input. This
routes the TCPWM interrupt to the CM4 CPU (the selection of the CM4 CPU for this interrupt will be set in the system
interrupt configuration in a later step). In the schematic, use the wire tool button or press the ‘W’ key to start wiring the

Components.

Figure 43. Connect TCPWM Peripheral Interrupt to CM4 CPU

ES /000

Timer

ovrftw
undritw

capt_out

clock
interrupt

Clock[1
=

Timer Counter

=
£

2

=] 1sr_Timer

WWW.Cypress.com

Document Number: 002-21774 Rev. *D

44

http://www.cypress.com/

A

wos CYPRESS

-

EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

13.Set the physical pins for each Pin Component.

14.

One task remains to complete the design. You must associate each Component with the required physical pins on
the device. The choice of which pin to use is driven by the board design. You can find this information in the kit
schematic. Figure 44 shows the result of this step. You can connect external LEDs to the selected pins.

To set a pin, type either the port number or pin number in the corresponding field, or use the drop-down menu to
pick the port or pin. Typically, the port number is used instead of the pin number since these names are independent
of the specific package being used.

A.

Workspace Explorer (1 ... v 3 X

B

B Workspace 'CE221777 &

Open the pin selector.

In the Workspace Explorer pane, double-click the Pins item under the Design Wide Resources. The pin
selector for this device appears.

Set each pin as shown in Table 1.
Table 1. Physical Pin Assignments for CY8CKIT-062-WiFi-BT Pioneer Kit

=] E‘ Project "PSoC_6_

E.

Configure System Clock.

ﬂ TopDesi
2 _Decign

{8 Clocks
>;}‘ Interrupts
@ System

*=: Directives

EH CMOp (Core 0)

EHE ARM GLC €
LR cyBebe

a3unosg

uopejuaWnIeg | sjueuodwan

s)nsay

4 b

Pin Component Name Port Name
UART: rx P5[0]
UART: tx P5[1]
Pin_GreenLED P1[1]

Figure 44. Pin Assignment

PS0C_6_MC...mple.cydwr | - - d b X
10 9 8 7 6 5 4 3 2 1 \i,\
Mame Port Pin Loc
@ PO | PO (PHE| (PR (PR (Pras @ A | =
Q== OB [/ vozer: ey P5[0] |~ |Le -
) (o) () (o) (o) o) (o) ot Slc [vozeT= e ps[1] |~ [Ee -
o) (o) () (o) o) () ot = @ o []|ein_Greenten|pi[i] |~ |E2 -
e E BT | (PROG R EE B @ E
o | (e | (| (o) (e @ F
TP RE PaE PE) PR @@ [e]
i ||| (B (R ao H
o) (e feam (o () (oo (o e J
ST 1-1-1-1-1- 10
sl 1 I-T-X-X-X-18
gl ~1--X-X - X - J=X-=J-=}L
~ CYEcesajezlBLDSZ
116-BGA-BLE .
(bottormn view) 4 I 3
@t Pins | \/\ Analog E,'_' DMA @ Clocks ;’f{nberrupts B system Z| Directives 4 bk
i pins | i 5

The design uses default values for the high-frequency system clock settings. Although you do not modify high
frequency clocks for this design, you should know how PSoC Creator manages them. If you are working with your
own board, you may need to modify these clocks.

A.

In the Workspace Explorer pane, double-click the Clocks item under Design Wide Resources. The list of

clocks appears.

Click Edit Clock. The Configure System Clocks dialog appears.

Here, you can see the clock tree, and modify the clocks as required. Note that there are tabs for different types
of clocks such as Source Clocks, FLL/PLL, High Frequency Clocks, and Miscellaneous Clocks.

Click on the FLL/PLL tab. By default, PSoC Creator enables FLL and sets the frequency to 100 MHz.

Click on the High Frequency Clocks tab.

You can set the CM4 CPU clock by setting the divider in Clk_Fast. By default, the divider is set to 1.

WWW.Cypress.com

Document Number: 002-21774 Rev. *D

45

http://www.cypress.com/

o CYPRESS

N> EMBEDDED IN TOMORROW” Getting Started with PSoC 6 MCU

F. You can set the CMO+ CPU clock by setting the divider in Clk_Slow. By default, the divider is set to 1. See

Figure 45.
Figure 45. Clock Configuration
Workspace Explorer (1 proje... » 3 X StartPage | TopDesign.cysch ” PSoC_6_MC...mple.cydwr |
& (E# Add Design-Wide Clock... (7 Delete DE-.:ignE\h:-\:t (¥ Edit Clock... |
Workspace 'CE221773' (1P » - .
E-@ Project "PSoC_6_MCU| | (]| Configure System Clocks (B =S
: H
g TopDesign.cysch E /;4 © WFLLJFLL"/ngh Frequency Clocks }/Mlsoellanecus Clocks] d b
D Design Wide Resoun| | ® L
ﬁ Pins ;
= Digital Signal e FLL @
2 [1.2] > @
2 e Desired: 100 MHz patn 0
¥ no . Actual: 100 MHz £2.4%
el L]
=g
=le ECO
----- @ Directives E {7 MHz) >
3
EHD) CMOp (Core 0) g —
E| A5 ARM GCC Generi El {7 MHz) »
o mreoer e ol s mezeo_, fwosua]
: IMO (8 MH; -
E| AL ARMIAR Generid || & (7 MHz) Btz
=
: -] cyBebuxT _crm & Lo
@ ARM MDK Gener Configure System C
-] cyBebuxT _crm
{5 Header Files TH Source Clocks H D N High Frequency Clocks [| Miscellaneous Clocks qb
-[h] cy_ipc_confic Clk_Fast ®
: (] system_psoct Path 0 . = @
50 Source Files (100 ME) S
a@ ARM GCC Ge Path 1 100 MHz £2.4%
o beand) startup_p (8 MHz) -
@ ARM IAR Ger Path 2 Clk_Peri @ [Ck_Sow 3
ﬂ startup.p (F 2 2 EI Divider: 1 EI
92 ARM MK & Fan 2 50 MHz 2.4 50 MHz 2.4
— lz £2.4% z £2.4%
Ldn] startup_p (8 MHz)
-[€] main_cm0p.c Path 4 -
----- “[€] system_psoct (8 MHz) !
EHL CM4 (Core 1)
E| E} ARM GCC Generi
-1 cyBcbuxT_cn
E| E} ARM IAR Generic
-] cyBebuxT _crm
E}@ ARM MDK Gener = | o | |22 il | - = il
« [Lom b - | @ Pins }\{V\. Analog }\E,'E DMA\@ Clocks }\;f Interrupts }\9 System]\% Directives
| output | Notice List |
Ready

15.Configure System Interrupts.
In this step, you configure the system interrupts. See Figure 46.

A. Inthe Workspace Explorer pane, double-click the Interrupts item under Design Wide Resources. The list
of interrupts appears.
B. Enable Isr_Timer for the CM4 CPU.

The interrupt numbers are generated automatically by PSoC Creator when you generate the code in Part 3:
Generate Source Code.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 46

http://www.cypress.com/

&= CYPRESS

N> EMBEDDED IN TOMORROW” Getting Started with PSoC 6 MCU

Figure 46. Interrupt Configuration

- 5 = [=] x
i§ CE221773 - PSoC Creator 4.2 [C.\...\PSoC_G_MUJ_HeIln_WorId_Eﬂrrple.cydwﬂ_ . [

File Edit View Project Build Debug Tools Window Help
RS B SR E @26 S X0 L iss s Debug 7)
FEI 22 f G ii&

_ StartPage / PSoC_6_MC...mple.cydwr | MR
al
. . s | Interrupt | ARMCMO+ 5 ARMCMO+ ARMCMO+ | ARMCMA - ARMCMA a
Workspace 'CE221L773" (1 » Instance Name Number Enable Priority (1-3) Vector (3-29)| Enable Pricrity (0 - 7) 5
- v m
=] Project PSoC 6 MC st Timer | o | B | N B z
i1 & TopDesign.cysch B =
UART SCBIRQ | 46 -- -- -- =

D @ Design Wide Reso

5155 CMOp (Core 0)
E-{Ea ARM GCC Gene
L] eyBefuxT
EI 53 ARM AR Gene
C[d eyBebxxT
£+ ARM MDK Gen
: L[oyBeBunT o | 2

I sq|nsay/{ uonequau.lnaou/{ sjuaLod Luo:J/{ aounos

* System ‘% Directives

0Errors 0 Warnings 20 Notes ..
— = ——3

The next part in the development process is to generate code.

Note: This exercise does not detail how to export your work to a target IDE. However, if you wish to use a target IDE,
this is the point in the workflow where you would ensure that the correct target IDE is selected before you generate the
source code.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 47

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

6.5 Part 3: Generate Source Code

PSoC Creator generates the source code based upon the design. The recommended workflow is to generate code
before writing firmware. PSoC Creator will automatically create macros, constants, and API calls that you may then use
in your firmware.

1. Generate the application.

Choose Build > Generate Application. PSoC Creator generates the source code based on the design and puts
the files in the Generated_Source folder. See Figure 47. PSoC Creator will alert you to errors or problems that may
occur. If you are working from scratch and encounter errors, revisit the configuration steps in Part 2: Implement the
Design to ensure you have performed them correctly.

Figure 47. Generate Application

File Edit View Project | Build | Debug Tools Window Help

83% » @ = _|[# Build PSoC_6_MCU_Hello_World_Example Shift+F6

B8 - K = W E Clean PSeC_6_MCU_Hello_World_Example
Workspace Explorer (1 project) Clean and Build PSoC_6_MCU_Helle_World Example
=) 2
&1 Workspace 'CE221773' (1B .

& P2] Project "PSoC_6_MCU— —
[} TopDesign.cysch ‘3 Generate Application I
=3 ja Design Wide Resoury =] Generate Project Datasheet

&0

Interrupts

% System
2| Directives
EHED) CMOp (Core 0)
EHD) CM4 (Core 1)
[#-12) Shared Files
EH Generated_Source

S PSoCh

BHDD pdl
BHD Clock
BHD Pins and Interrupts
B Timer
B
B

Bl s

s]|nsay | UolEjUBWNIag | sjuauodwon

i3 UART
+-{3) UART_SCBCLK
-] cycodeshareexport.ld
|1 cycodeshareimport.ld
|1 cycodeshareimport.scat
] cydevice_trm.h
I cydevicegnu_trminc
-] cydeviceiar_trm.inc
-] cydeviceny_trmiinc
--[n] cydisabledsheets.h
-[n] eyfitter.h
-] cyfitter cfg.c
0] cyfitter_ cfg.h
-|g] cymetadata.c
\n] project.h

a

Background: PSoC 6 MCU is a dual-CPU platform. You can target firmware to run either on Cortex-M4 or Cortex-
MO+. You set this at the source file level by accessing the file properties. Right-click on a source file, and select
Properties. Figure 48 shows the Properties dialog window. By default, the main_cmOp.c file is targeted to the Cortex-
MO+ and the main_cm4.c file is targeted to the Cortex-M4. You do not need to modify the properties for any other file.
They are already set in the code example.

By convention, files targeted to run on the CMO+ CPU are located in the CMOp folder and files targeted to run on the
CM4 CPU are located in the CM4 folder.

WWW.Cypress.com Document Number: 002-21774 Rev. *D 48

http://www.cypress.com/

A,
e

-

CYPRESS

EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

Figure 48. Setting Target Processor for a Source C File

-
£ CE221773 - PSaC Creator 4.2 l“:' =] g
File Edit View Project Build Debug Tools Window Help
NS H@S A % 5@ X9 ¢ 8- Debug
Workspace Explorer (1 project) > X Start Page] - d b X |
l:% @ Lea Il - E
] d Properties &lg %
EEl Project 'PSoC_6_MCU_Hello_World_Example %
1@' TopDesign.cysch E, 5
L‘—Jﬁg Design Wide Rescurces {PSD’C_E_MCU_HE”E% Sta 2 Build filters)
P A Corfigurai .Lasttim
4 a igurations Al
= d |Cores CortexMd_ | owldor
z ; Processors Al ust right-
] Toolchains Al
P hthe grap
§ 4 General
; ﬁ Red File: Type SOURCEC
[Directives g Full Path C:\WUsers‘wiovk\Desktop'PSoC 6 MCU Hello World
E]'@ CMOp (Core 0) % g Name main_cm4.c
@ Header Files 5 Y| Relative Path main_cm4.c
B+ Source Files = K
L.lc] main_cmOp.c a g
= q
[—J-{E_} CM4 (Core 1? |7 Name et tah
{3 HeaderFiles The name of the item.]
[EHL Source Files before E
me to rel:
EH Shared Files
|ﬂ cyapicallbacks.h 0K | l Cancel
. -
< 1] (e b
[output | notice List |
Ready 0 Errors 0 Warnings 19 Notes |
WWW.Cypress.com Document Number: 002-21774 Rev. *D 49

http://www.cypress.com/

EMBEDDED IN TOMORROW"

& CYPRESS

Getting Started with PSoC 6 MCU

6.6 Part 4: Write the Firmware

At this point in the development process, you have created a project, implemented a hardware design, and generated
the code. In this part, you write the firmware that implements the design functionality.

The steps in this part discuss the firmware for the design that you configured in Part 2: Implement the Design.

The code example has all the required code. If you are working from scratch, you can copy the respective source codes
to main_cmOp.c and main_cmé4.c from the code snippet provided in this section. If you are using the code example,
files are already in your project.

Firmware Flow
In the remaining steps, we examine code in the main_cmOp.c and main_cm4.c file.

When the PSoC 6 MCU device is reset, the firmware first performs system initialization, which includes setting up the
CPUs for execution, enabling global interrupts, and enabling other Components used in the design.

The initialization is split across the CPUs. The CM0+ CPU comes out of reset and enables the CM4 CPU. The CMO+
CPU code snippet is given below. Copy the following code snippet to the main_cmOp.c file of your project.

/* Header files includes*/
#include "project.h"
int main(void)
{
__enable irq(); /* Enable global interrupts. */

/* Enable CM4. CY CORTEX M4 APPL ADDR must be updated
if CM4 memory layout is changed. */
Cy SysEnableCM4 (CY CORTEX M4 APPL ADDR) ;

for (;;)

{

}
}

/* [] END OF FILE */

When the CM4 CPU is enabled, the UART Component is started and prints a “Hello World!” message on the terminal
emulator. A Timer Counter PWM (TCPWM) Component is configured to generate an interrupt every second. At each
interrupt, the CM4 CPU toggles the LED (LED5) state on the kit. Copy the following code snippet to main_cm4.c of
your project.

/* Header files includes*/
#include "project.h"

/~k************************

* Macros
***/
#define LED ON (0)

#define LED OFF (!LED_ON)

[ko ok ok ok K K K K K A K Kk ko ko ok ok kR KRR R K K K Kk ko ok ok R kR R R R R K K Kk kR ok R Rk kR R R K K Kk kk kR ok ok ok ok ok ok

* Function Prototypes
***/
void UartInit (void);

void TimerInit (void);

void Isr_Timer (void);

/‘k************************‘k********

WWW.CYpress.com Document Number: 002-21774 Rev. *D 50

http://www.cypress.com/

o CYPRESS

N> EMBEDDED IN TOMORROW” Getting Started with PSoC 6 MCU

* Global Variables
***/
bool LEDupdateFlag = false;

/**

* Function Name: main
‘k*‘k*‘k*‘k**‘k*‘k*‘k*‘k************************/

int main (void)
{
/* Start the UART peripheral */

UartInit();

/* Enable global interrupts. */

__enable irq();

/* \x1b[2J\x1b[;H - ANSI ESC sequence for clear screen */

Cy SCB UART PutString (UART HW, "\x1b[2J\x1b[;H");

Cy SCB UART PutString (UART HW, "****xxxxxxxxxxxxxxCE221773 - PSoC 6 MCU:"\

" Hello World! Example******xkxxkxxkxkxxxxx\r\n\n");

Cy SCB_UART PutString (UART HW, "Hello World!!!\r\n\n");
Cy SCB UART PutString (UART HW, "Press Enter key to start blinking the LED\r\n\n");

/* Wait for the user to Press Enter key */
while (Cy SCB_UART Get (UART HW) != '\r');

/* Start the TCPWM peripheral. TCPWM is configured as a Timer */
TimerInit () ;

Cy SCB UART PutString (UART HW, "Observe the LED blinking on the kit!!!\r\n");

for(;;)
{
if (LEDupdateFlag)

{
/* Clear the flag */
LEDupdateFlag = false;

/* Invert the LED state*/
Cy GPTO Tnv(Pin GreenLED 0 PORT, Pin_ GreenLED 0 NUM);

}

/~k************************

* Function Name: UartInit
‘k************************‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k‘k**‘k*‘k‘k‘k*/

void UartInit (void)

{
/* Configure the UART peripheral.
UART config structure is defined by the UART PDL component based on

parameters entered in the Component configuration*/

Cy SCB UART Init (UART HW, &UART config, &UART context);

WWW.CYpress.com Document Number: 002-21774 Rev. *D 51

http://www.cypress.com/

o CYPRESS

N> EMBEDDED IN TOMORROW” Getting Started with PSoC 6 MCU

/* Enable the UART peripheral */

Cy SCB UART Enable (UART HW) ;
}

/‘k**

* Function Name: TimerInit
‘k************************/

void TimerInit (void)
{
/* Configure the TCPWM peripheral.
Counter config structure is defined based on the parameters entered
in the Component configuration */

Cy TCPWM Counter Init (Timer HW, Timer CNT NUM, &Timer config);

/* Enable the initialized counter */

Cy_TCPWM Counter Enable (Timer HW, Timer CNT_NUM) ;

/* Start the enabled counter */

Cy TCPWM TriggerStart (Timer HW, Timer CNT MASK) ;

/* Configure the ISR for the TCPWM peripheral*/

Cy SysInt Init(&Isr Timer cfg, Isr Timer);

/* Enable interrupt in NVIC */

NVIC EnableIRQ((IRQn Type)Isr Timer cfg.intrSrc);
}

/~k************************

* Function Name: Isr Timer
‘k************************‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*‘k‘k‘k**‘k‘k‘k‘k‘k‘k‘k‘k*/

void Isr Timer (void)
{
/* Clear the TCPWM peripheral interrupt */

Cy TCPWM ClearInterrupt (Timer HW, Timer CNT NUM, CY TCPWM INT ON TC);

/* Clear the CM4 NVIC pending interrupt for TCPWM */
NVIC ClearPendingIRQ(Isr Timer cfg.intrSrc);

LEDupdateFlag = true;

}
/* [] END OF FILE */

WWW.CYpress.com Document Number: 002-21774 Rev. *D 52

http://www.cypress.com/

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

Figure 49. Firmware Flowchart

START
&D == oo oy

1 CM4CPU
Device Reset and
Initialization
CMO+ CPU Initialization On TCPWM Interrupt

Enable CM4 CPU

v

Configure and Start the
UART Component

¢ Y

Print the message
“Hello World” Set the LEDupdateFlag

on to UART terminal

Clear the TCPWM Interrupt

4

Exit TCPWM
Interrupt Handler

“Enter” key
pressed?

Configure TCPWM
Interrupt

LEDupdateFlag
= true?

Clear LEDupdateFlag
Toggle LED state

I

This completes the summary of how the firmware works in the code example. Feel free to explore the source files for
a deeper understanding.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 53

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

6.7 Part 5: Build the Project and Program the Device

This section shows how to program the PSoC 6 MCU device. If you are using a development kit with a built-in
programmer (the CY8CKIT-062-WiFi-BT Pioneer Kit, for example), connect the board to your computer using the USB
cable. If you are developing on your own hardware, you may need a hardware programmer/debugger; for example, a
Cypress CY8CKIT-002 MiniProg3.

If you are working from scratch and encounter errors, revisit prior steps to ensure that you accomplished all the required
tasks. You can work to resolve errors or switch to the code example for these final steps.

1. Select the debug target.
PSoC Creator can debug one CPU at a time.
A. In PSoC Creator, choose Debug > Select Debug Target, as Figure 50 shows.
Figure 50. Selecting Debug Target

i CE221773 - PSoC Creator 4.2

File Edit View Project Build | Debug | Tools Window Help
ENASEH@ SR % | wndow :
[- o 5 0E | U4 Program Ctrl+FS
Workspace Explorer (1 project) a Select target and program..
% =) & Select Debug Target...
(551 Workspace 'CE221773" (1 Projects) ﬁ Debug F5
EE‘ Project 'P_SOC—G—MCU—HE"O—" FE£ Debugwithout Programming Alt+F5
i1 &l TopDesign.cysch
i ﬁ Select target and debug...
|5k Attach to Running Target...
JJ Toggle Breakpoint F9
Mew Breakpoint »
+4
& Directives .

B. Connect to the board.
In the Select Debug Target dialog box, select the CM4 target, then click OK/Connect, as Figure 51 shows.

Figure 51. Connecting to a Device

Select Debug Target l P eS|
% KitProg2/041012E003336400 PSoC 62 CYSCE247BZ1-D54 (CM4)

@ PSoC 62 CYECE247BZI-D54 (CMOp) PSoC 62 (CortexMOp CortexM4)
Silicon |1D: ix6BADZ47T7

* PSoC 62 CY8C6247B71-D54 (CM4) Cypress ID: (xE2062100
Revision: PRODUCTION

Target unacquired

Show all tangets -

0K / Connect

TIP: For programming the board, you can pick either target. The CPUs share the same memory space.
Programming either CPU programs both CPUs. However, if you are debugging, this choice matters. The debugger
will see only the CPU you connect to. These instructions do not use the debugger.

WWW.Cypress.com Document Number: 002-21774 Rev. *D 54

http://www.cypress.com/
http://www.cypress.com/?rID=38154&source=an79953

o CYPRESS

NP> EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

2. Program the board.
Choose Debug > Program to program the device with the project, as Figure 52 shows.

Figure 52. Programming the Device

i_E CE221773 - P5oC Creator 4.2

File Edit View Project Build erug|IooIs Window Help

BN g e S a] &) 1 Windows E

l_ifl - o B ‘3 aﬂ _ a Program Ctrl+F5
Workspace Explorer (1 project) %m Select target and program...
&1 3 % Select Debug Target...
] ‘Workspace 'CE221773" (1 Projects) j& Debug F5
BE‘ Project 'PSoC_6 MCU_Hello Y F% Debug without Programming Alt+F5

éf‘ TopDesign.cysch
Design Wide Resources [PSof ﬁ Select target and debug...

Attach to Running Target...

o

]

Toggle Breakpoint F9

Mew Breakpoint »

-

B Directives

You can view the programming status in the lower left corner of the PSoC Creator window, as Figure 53 shows.

Figure 53. Programming Status

1 1
[

Page1 |

||Programming - Erasing... I

TIP: The Debug > Debug command also programs the board. If any code needs to be generated or rebuilt, that
happens automatically when you issue a Program or Debug command. You can also debug without programming the
board. However, these instructions do not use the debugger.

NOTE: The KitProg2 firmware on the kit might require an update. See the respective kit user guide for step-wise
instructions on updating the firmware.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 55

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW" Getting Started with PSoC 6 MCU

6.8 Part 6: Test Your Design

This section describes how to test your design.

Follow the steps below to observe the output of your design. Note that the below steps use Tera Term as the UART
terminal emulator to view the results. You can use any terminal of your choice to view the output.

2. Select the serial port.
Launch Tera Term and select the KitProg2 USB-UART COM port as shown in Figure 54.
Figure 54. Selecting the KitProg2 USB-UART COM Port in Tera Term

Y| Tera Term - [disconnected] VT = | = P

File Edit 5§ Tera Term: New connection I.ih,l

TCPIP myhost.example.com
History
Telnet

S5H S55H2
Other

22

UNSPEC

[Port: |cOM218: KitProg2 USB-UART (COM21 |

[0K l | Cancel | | Help |

3. Set the baud rate.
Set the baud rate to 115200 under Setup > Serial port as Figure 55 shows.
Figure 55. Configuring the Baud Rate in Tera Term

r &

7 COM218 - Tera Term VI =|gj x
Y
Tera Term: Serial port setup LX)

Port: |COM218 ~| l oK l

Baud rate: |1152I]I] vI

Data: |Bh|t7v| ‘ Cancel ‘
Parity: |nune7v|
Stop: |1h|t7v| ‘ Help ‘
Flow control: [none ~|

Transmit delay

0 msecichar 0 msecfline

WWW.CYpress.com Document Number: 002-21774 Rev. *D 56

http://www.cypress.com/

A :
ws CYPRESS
Getting Started with PSoC 6 MCU

> EMBEDDED IN TOMORROW

4. Reset the device.
Press the reset switch (SW1) on the Pioneer Kit. The following message appears on the terminal as Figure 56

shows.
Figure 56. UART Message Printed from CM4 CPU

=] B) |

| COMZ218 - Tera Term VT

File Edit Setup Control Window Help
e e e xCE221 773 — PSoC 6 MCU: Hello World? Example sssess s ses s sics e

Helle Worldtt?
Press Enter key to start blinking the LED

5. Enable the LED Blinking functionality.
Press the Enter Key to start blinking the LED. When the LED starts blinking, the following message will be

displayed on the UART terminal as shown in Figure 57.
Figure 57. UART Message from CM4 CPU

f E=E)

vl COM218 - Tera Term VT

Eile Edit Setup Control Window Help

s s e m e x(E221773 — PSoC 6 MCU: Hello World?! Example
Hello Worldttt

Press Enter key to start blinking the LED

Observe the LED blinking on the kitt!?t?

LS

7 Summary
This application note explored the PSoC 6 MCU device architecture and the associated development tools. PSoC 6
MCU is a truly programmable embedded system-on-chip with configurable analog and digital peripheral functions,
memory, and a dual-CPU system on a single chip. The integrated features and low-power modes make PSoC 6 MCU

an ideal choice for smart home, IoT gateways, and other related applications.

57

WWW.Cypress.com Document Number: 002-21774 Rev. *D

http://www.cypress.com/

o CYPRESS

N EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

Related Application Notes and Code Examples

For a complete and updated list of PSoC 6 MCU code examples, please visit our code examples web page. For more
PSoC 6 MCU-related documents, please visit our PSoC 6 MCU product web page.

Table 2 lists the system-level and general application notes that are recommended for the next steps in learning about
PSoC 6 MCU and PSoC Creator.

Table 2. General and System-Level Application Notes

Document Document Name

AN210781 Getting Started with PSoC 6 MCU with Bluetooth Low Energy (BLE) Connectivity
AN218241 PSoC 6 MCU Hardware Design Considerations

AN219434 PSoC 6 MCU Importing Generated Code into an IDE

AN219528 PSoC 6 MCU Low-Power Modes and Power Reduction Techniques

Table 3 lists the application notes (AN) and code examples (CE) for specific peripherals and applications.
Table 3. Documents Related to PSoC 6 MCU Features

Document Document Name

System Resources, CPU, and Interrupts

AN215656 PSoC 6 MCU Dual-CPU System Design

AN217666 PSoC 6 MCU Interrupts

CE221773 PSoC 6 MCU Hello World Example

CE216795 PSoC 6 MCU Dual-Core Basics

CE216825 PSoC 6 MCU Real-Time Clock Basics

CE218129 PSoC 6 MCU Wake up from Hibernate Using Low-Power Comparator
CE218541 PSoC 6 MCU Fault-Handling Basics

CE218542 PSoC 6 Custom Tick Timer Using RTC Alarm Interrupt

CE218552 PSoC 6 MCU UART to Memory Buffer Using DMA

CE218964 PSoC 6 MCU RTC Daily Alarm

CE219339 PSoC 6 MCU MCWDT and RTC Interrupts (Dual Core)

CE219521 PSoC 6 MCU GPIO Interrupt

CE219881 PSoC 6 MCU Switching Power Modes

CE220060 PSoC 6 MCU Watchdog Timer

CE220061 PSoC 6 MCU Multi-Counter Watchdog Interrupts

CE220120 PSoC 6 MCU Blocking Mode Flash Write

CE220169 PSoC 6 MCU Periodic Interrupt Using TCPWM

GPIO
CE219490 PSoC 6 Breathing LED Using SMART 10
CE219506 PSoC 6 Clock Buffer Using SMART 10
CE220263 PSoC 6 MCU GPIO Pins Example
CapSense

AN92239 Proximity Sensing with CapSense

AN85951 PSoC 4 and PSoC 6 MCU CapSense Design Guide
Bootloader
AN213924 PSoC 6 MCU Bootloader Software Development Kit (SDK) Guide
CE213903 PSoC 6 MCU Basic Bootloaders

WWW.CYpress.com Document Number: 002-21774 Rev. *D 58

http://www.cypress.com/
http://www.cypress.com/search-results?as_q=psoc%206%20mcu%20code%20examples
http://www.cypress.com/psoc6
http://www.cypress.com/documentation/application-notes/an210781-getting-started-psoc-6-mcu-bluetooth-low-energy-ble
http://www.cypress.com/an218241
http://www.cypress.com/an219434
http://www.cypress.com/an219528
http://www.cypress.com/an215656
http://www.cypress.com/an217666
http://www.cypress.com/ce221773
http://www.cypress.com/ce216795
http://www.cypress.com/ce216825
http://www.cypress.com/ce218129
http://www.cypress.com/ce218541
http://www.cypress.com/ce218542
http://www.cypress.com/ce218552
http://www.cypress.com/ce218964
http://www.cypress.com/ce219339
http://www.cypress.com/ce219521
http://www.cypress.com/ce219881
http://www.cypress.com/ce220060
http://www.cypress.com/ce220061
http://www.cypress.com/ce220120
http://www.cypress.com/ce220169
http://www.cypress.com/ce219490
http://www.cypress.com/ce219506
http://www.cypress.com/ce220263
http://www.cypress.com/documentation/application-notes/an92239-proximity-sensing-capsense
http://www.cypress.com/an85951
http://www.cypress.com/an213924
http://www.cypress.com/ce213903

A

wos CYPRESS

~am»> EMBEDDED IN TOMORROW™

Getting Started with PSoC 6 MCU

Document Document Name
Communications

CE220541 PSoC 6 MCU SCB EzI2C

Audio

CE218636 PSoC 6 MCU Inter-IC Sound (12S) Example
CE219431 PSoC 6 MCU PDM-to-PCM Example

RTOS

CE217911 PSoC 6 MCU FreeRTOS™ Example Project
Security

CE220465 PSoC 6 MCU Cryptography — AES Demonstration
CE220511 PSoC 6 MCU Cryptography — SHA Demonstration

WWW.Cypress.com

Document Number: 002-21774 Rev. *D

59

http://www.cypress.com/
http://www.cypress.com/ce220541
http://www.cypress.com/ce218636
http://www.cypress.com/ce219431
http://www.cypress.com/ce217911
http://www.cypress.com/ce220465
http://www.cypress.com/ce220511

o CYPRESS

N EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

Appendix A. Glossary

This section lists the most commonly used terms that you might encounter while working with Cypress’s PSoC family
of devices.

Component Customizer: Simple GUI in PSoC Creator that is embedded in each Component. It is used to customize
the Component parameters and is accessed by right-clicking a Component.

Components: Components are used to integrate multiple ICs and system interfaces into one PSoC Component that
is inherently connected to the MCU via the main system bus. For example, the BLE Component creates Bluetooth
Smart products in minutes. Similarly, you can use the Programmable Analog Components for sensors.

KitProg: The KitProg is an onboard programmer/debugger with USB-12C and USB-UART bridge functionality. The
KitProg is integrated onto most PSoC development kits.

MiniProg3 / MiniProg4: Programming hardware for development that is used to program PSoC devices on your
custom board or PSoC development kits that do not support a built-in programmer.

Personality: A personality expresses the configurability of a resource for a functionality. For example, the SCB
resource can be configured to be an UART, SPI or 12C personalities.

PSoC: A programmable, embedded design platform that includes a CPU, such as the 32-bit Arm Cortex-MO, with both
analog and digital programmable blocks. It accelerates embedded system design with reliable, easy-to-use solutions,
such as touch sensing, and enables low-power designs.

ModusToolbox: An Eclipse based embedded design platform for 10T designers that provides a single, coherent, and
familiar design experience combining the industry’s most deployed Wi-Fi and Bluetooth technologies, and the lowest
power, most flexible MCUs with best-in-class sensing.

PSoC Creator: PSoC 3, PSoC 4, PSoC 5LP, PSoC 6 MCU and PSoC 6 BLE Integrated Design Environment (IDE)
software that installs on your PC and allows concurrent hardware and firmware design of PSoC systems, or hardware
design followed by export to other popular IDEs.

Peripheral Driver Library: The Peripheral Driver Library (PDL) simplifies software development for the PSoC 6 MCU
architecture. The PDL reduces the need to understand register usage and bit structures, thus easing software
development for the extensive set of peripherals available.

PSoC Programmer: A flexible, integrated programming application for programming PSoC devices. PSoC
Programmer is integrated with PSoC Creator to program PSoC 3, PSoC 4, PRoC, PSoC 5LP, PSoC 6 MCU, and PSoC
6 BLE designs.

WICED: Cypress's WICED (Wireless Internet Connectivity for Embedded Devices) is a full-featured platform with
proven Software Development Kits (SDKs) and turnkey hardware solutions from partners to readily enable Wi-Fi and
Bluetooth connectivity in system design.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 60

http://www.cypress.com/
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-002-psoc-miniprog3-program-and-debug-kit
http://www.cypress.com/cy8ckit-005
http://www.cypress.com/go/psoc
http://www.cypress.com/modustoolbox
http://www.cypress.com/go/creator
http://www.cypress.com/documentation/software-and-drivers/peripheral-driver-library-pdl
http://www.cypress.com/go/programmer
http://www.cypress.com/products/wiced-software

& CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

Appendix B. PSoC 6 MCU Development Kits

B.1 CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit

The PSoC 6 Wi-Fi-BT Pioneer Kit shown in Figure 58 is a development kit from Cypress that supports the PSoC 6
MCU family of devices. The following are the features of the PSoC 6 Wi-Fi-BT Pioneer kit baseboard:

Expansion headers that are compatible with Arduino Uno 3.3-V shields and Digilent Pmod modules
Type 1DX ultra-small 2.4-GHz WLAN and Bluetooth functionality module
512-Mbit external quad-SPI NOR flash that provides a fast, expandable memory for data and code

KitProg2 onboard programmer/debugger with mass storage programming, USB to UART/I2C/SPI bridge
functionality, and custom applications support

EZ-PD CCG3 USB Type-C power delivery (PD) system with rechargeable lithium-ion polymer (Li-Po) battery
support

CapSense touch-sensing slider (five elements) and two buttons, all of which are capable of both self-capacitance
(CSD) and mutual-capacitance (CSX) operation, and a CSD proximity sensor that allows you to evaluate Cypress’
fourth-generation CapSense technology

1.8-V to 3.3-V operation of PSoC 6 MCU is supported. An additional 330-mF super-capacitor is provided for backup
domain supply (Vbackup)
Two user LEDs, an RGB LED, a user button, and a reset button for PSoC 6 MCU. Two buttons and three LEDs for
KitProg2.

Figure 58. CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit

Ld
L
(d
>
L
L4
@
L
*®
Ll
L

The kit includes a TFT display shield with the following features:

A 2.4-inch TFT LCD display with 240x320 pixel resolution.

A three-axis acceleration and three-axis gyroscopic motion sensor.

A PDM microphone for voice input.

A 32-bit stereo codec with microphone, headphone, and speaker amplifier capability.

An audio jack with a provision of connecting both AHJ and OMTP headphones. The headset standard can be set
by an onboard switch.

An ambient light sensor IC made of an NPN phototransistor.
An LDO that converts 3.3 V to 1.8 V for the digital supply of the audio codec.

For more details, refer to CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer kit user guide.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 61

http://www.cypress.com/
http://www.cypress.com/CY8CKIT-062-WiFi-BT

W & CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

B.2 CY8CKIT-062-BLE
The PSoC 6 BLE Pioneer Kit shown in Figure 59 is a BLE development kit from Cypress that supports the PSoC 6 BLE
family of devices.

Following are the features of the PSoC 6 BLE Pioneer kit baseboard:

m Can be powered by a coin-cell battery or through the Type-C USB interface. The Type-C USB interface also
supports up to 12 V, 3 A power delivery (PD) consumer and provider profiles.

m Enables development of battery-operated low-power BLE designs that work in conjunction with standard, Arduino
Uno connector-compliant shields or the onboard PSoC 6 BLE device capabilities, such as the CapSense user
interface and serial memory interface.

Supports third-party programming, debugging, and tracing with the Cortex Debug/ETM connector.

Includes an additional header that supports interfacing with Pmod ™ daughter cards from third-party vendors such
as Digilent.

Supports PDM-PCM microphone for voice-over-BLE functionality.

Includes QSPI NOR flash and F-RAM™,

The kit includes the following:

m A USB-BLE dongle that acts as a BLE link master and works with the CySmart Host Emulation Tool to provide a
BLE host emulation platform on non-BLE Windows PCs.

® An E-INK display.

The kit consists of a set of BLE example projects and documentation that help you get started on developing your own
BLE applications. Visit the CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit webpage to get the latest updates on the kit
and download the kit design, example projects, and documentation files.

Figure 59. CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit

voog 1y, @)

,zrﬁmﬁ

piza |l @ | (B

o r2z|@ @ ool
Pe.VDD OND

'S asT|@® @

Sl T ml'l Igllgllﬂll,»,l ,u_u Jras

sws
e mﬂua)“" szxmL _Raz

SLIDER),

/X0
R R

L TXCT0)

WWW.CYpress.com Document Number: 002-21774 Rev. *D 62

http://www.cypress.com/
http://www.cypress.com/go/CY8CKIT-062-BLE

W & CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

B.3 CY8CPROTO-063-BLE

The PSoC 6 BLE Prototyping Kit shown in Figure 60 is a development kit from Cypress that supports the PSoC 6 BLE
family of devices. It offers an open footprint breakout board to maximize the end utility of the PSoC 6 MCU with
Bluetooth Low Energy Connectivity (PSoC 6 BLE) device. This kit provides a low-cost alternative to device samples
while providing a platform to easily develop and integrate the PSoC 6 BLE device into your end-system.

Following are the features of the PSoC 6 BLE Prototyping Kkit:
m CYBLE-416045-02 PSoC 6 BLE module.

m 3.3-V operation.
m Two user LEDs, a user button, and a reset button for PSoC 6. One mode switch and two LEDs for KitProg2.

The kit consists of a set of loT example projects and documentation that help you get started on developing your own
10T applications. Visit the CYSBCPROTO-063-BLE PSoC 6 BLE Prototyping Kit webpage to get the latest updates on
the kit and download the kit design, example projects, and documentation files.

Figure 60. CYBCPROTO-063-BLE PSoC 6 BLE Prototyping Kit

s
@
-
3
5
uw
a
o

WWW.CYpress.com Document Number: 002-21774 Rev. *D 63

http://www.cypress.com/
http://www.cypress.com/cy8cproto-063-ble

P o
we
-

CYPRESS

EMBEDDED IN TOMORROW™ Getting Started with PSoC 6 MCU

B.4

CY8CPROTO-062-4343W

The PSoC 6 Wi-Fi-BT Prototyping Kit shown in Figure 59 is a development kit from Cypress that supports the PSoC 6
MCU family of devices with 2 MB flash memory.

Following are the features of the PSoC 6 Wi-Fi-BT Prototyping Kkit:

PSoC 6 MCU with SDHC.

Type 1DX ultra-small 2.4-GHz WLAN and Bluetooth functionality module based on CYW4343W.
microSD card slot.

512-Mbit external quad-SPI NOR Flash that provides a fast, expandable memory for data and code.

A thermistor to measure ambient temperature and two PDM microphones for voice input.

KitProg3 onboard programmer/debugger with CMSIS-DAP mode, USB to UART/I2C bridge functionality.

CapSense touch-sensing slider (5 elements), two buttons, all of which are capable of both self- capacitance (CSD)
and mutual-capacitance (CSX) operation.

A micro-B connector for USB device interface.

Expansion headers that are compatible with Digilent Pmod modules.

1.8-V to 3.3-V operation of PSoC 6 MCU is supported.

One user LED, a user button, and a reset button for PSoC 6 MCU. One mode switch and two LEDs for KitProg3.

The kit consists of a set of loT example projects and documentation that help you get started on developing your own
10T applications. Visitthe CYSCPROTO-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit webpage to get the latest updates
on the kit and download the kit design, example projects, and documentation files.

Figure 61. CYBCPROTO0-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit

WWW.Cypress.com Document Number: 002-21774 Rev. *D 64

http://www.cypress.com/
http://www.cypress.com/cy8cproto-062-4343w

o CYPRESS

N EMBEDDED IN TOMORROW Getting Started with PSoC 6 MCU

Document History
Document Title: AN221774 — Getting Started with PSoC 6 MCU
Document Number: 002-21774

Revision ECN Orig. of | Submission Description of Change

Change Date
SNVN, L

b 6049560 VKVK 03/28/2018 | New application note

*A 6332672 SNVN 10/04/2018 | Updated for ModusToolbox

*B 6372351 SNVN 10/31/2018 Updated images

*C 6385422 SNVN 11/15/2018 | Updated for public release

*D 6488710 ?,'\‘l(\\//'\Kl 02/19/2019 | Updated for ModusToolbox 1.1

WWW.CYpress.com Document Number: 002-21774 Rev. *D 65

http://www.cypress.com/

& CYPRESS

EMBEDDED IN TOMORROW"

Getting Started with PSoC 6 MCU

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers

Automotive

Clocks & Buffers
Interface

Internet of Things
Memory
Microcontrollers

PSoC

Power Management ICs
Touch Sensing

USB Controllers

cypress.com/arm
cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/iot
cypress.com/memory
cypress.com/mcu
cypress.com/psoc
cypress.com/pmic
cypress.com/touch

cypress.com/ush

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Videos | Blogs
| Training] Components

Technical Support

cypress.com/support

Wireless Connectivity cypress.com/wireless

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

& CYPRESS

~agp”> EMBEDDED IN TOMORROW™

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2018-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and
treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in
this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license
agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-
exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary
code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under
those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely
for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures
implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of
a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER
SECURITY INTRUSION (collectively, “Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release
Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design
defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves
the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference
purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this
information and any resulting product. “High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage.
Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical Component” means any component of a
High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or
effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use
of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates,
distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal
injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended
or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published data sheet for the product explicitly
states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a
Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or
registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and
brands may be claimed as property of their respective owners.

WWW.CYpress.com Document Number: 002-21774 Rev. *D 66

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/cypressgithub
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	1.1 Prerequisites
	1.1.1 Hardware
	1.1.2 Software

	2 Development Ecosystem
	2.1 PSoC Resources
	2.2 Firmware/Application Development
	2.2.1 ModusToolbox IDE and the PSoC 6 SDK
	2.2.1.1 ModusToolbox Help
	2.2.1.2 PSoC 6 SDK

	2.2.2 PSoC Creator
	2.2.2.1 PSoC Creator Help

	2.2.3 Software Development Kits for PSoC 6 Devices

	2.3 Support for Other IDEs
	2.3.1 Using ModusToolbox to Target Another IDE
	2.3.2 Using PSoC Creator to Target Another IDE

	2.4 RTOS Support
	2.4.1 RTOS Support with ModusToolbox
	2.4.2 RTOS Support with PSoC Creator

	2.5 Debugging
	2.5.1 Debugging with ModusToolbox
	2.5.2 Debugging with PSoC Creator

	2.6 PSoC 6 MCU Development Kits

	3 Device Features
	4 Choosing an IDE
	5 My First PSoC 6 MCU Design Using ModusToolbox IDE
	5.1 Using These Instructions
	5.2 About the Design
	5.3 Part 1: Create a New Application
	5.4 Part 2: Implement the Design and Generate Source Code
	5.5 Part 3: Write the Firmware
	5.6 Part 4: Build the Application
	5.7 Part 5: Program the Device
	5.8 Part 6: Test Your Design

	6 My First PSoC 6 MCU Design Using PSoC Creator
	6.1 Using These Instructions
	6.2 About the Design
	6.3 Part 1: Create a New Project from Scratch
	6.4 Part 2: Implement the Design
	6.5 Part 3: Generate Source Code
	6.6 Part 4: Write the Firmware
	6.7 Part 5: Build the Project and Program the Device
	6.8 Part 6: Test Your Design

	7 Summary
	8 Related Application Notes and Code Examples
	Appendix A. Glossary
	Appendix B. PSoC 6 MCU Development Kits
	B.1 CY8CKIT-062-WiFi-BT PSoC 6 Wi-Fi-BT Pioneer Kit
	B.2 CY8CKIT-062-BLE
	B.3 CY8CPROTO-063-BLE
	B.4 CY8CPROTO-062-4343W

	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

