

Chapter 4B More Advanced BLE Peripherals Page 1 of 44

Chapter 4B: More Advanced BLE Peripherals

Time: 3 Hours

This chapter expands your basic knowledge of BLE Peripherals by introducing more Attribute

Procedures, GATT Database Features, Security, WICED Configuration Files, HCI, etc.

4B.1 NOTIFY & INDICATE ... 2
4B.2 OTHER CHARACTERISTIC DESCRIPTORS .. 4
4B.3 SECURITY ... 6

4B.3.1 PAIRING ... 6
4B.3.2 BONDING .. 9
4B.3.3 PAIRING & BONDING PROCESS SUMMARY ... 9
4B.3.4 AUTHENTICATION, AUTHORIZATION AND THE GATT DB ... 9
4B.3.5 LINK LAYER PRIVACY .. 9

4B.4 WICED CONFIGURATION: WICED_BT_CFG.C .. 11
4B.5 WICED CONFIGURATION: BUFFER POOLS ... 12
4B.6 WICED BLUETOOTH DESIGNER ... 13

4B.6.1 RUNNING THE TOOL ... 13
4B.6.2 EDITING THE FIRMWARE .. 16
4B.6.3 TESTING THE PROJECT ... 18

4B.7 WICED BLUETOOTH FIRMWARE ARCHITECTURE ... 21
4B.8 EXERCISES ... 27

EXERCISE 4B.1 SIMPLE BLE PROJECT WITH NOTIFICATIONS USING WICED BT DESIGNER 27
EXERCISE 4B.2 BLE NOTIFICATIONS FOR WICED101 BUTTON ... 28
EXERCISE 4B.3 BLE PAIRING AND SECURITY ... 31
EXERCISE 4B.4 (ADVANCED) SAVE BLE PAIRING INFORMATION (I.E. BONDING) AND ENABLE PRIVACY 34
EXERCISE 4B.5 (ADVANCED) ADD A PAIRING PASSKEY ... 39
EXERCISE 4B.6 (ADVANCED) ADD NUMERIC COMPARISON .. 41
EXERCISE 4B.7 (ADVANCED) ADD MULTIPLE BONDING CAPABILITY ... 43

Chapter 4B More Advanced BLE Peripherals Page 2 of 44

4B.1 Notify & Indicate

In the previous chapter, we talked about how the GATT Client can Read and Write the GATT Database

running on the GATT Server. But, there are cases where you might want the Server to initiate

communication. For example, if your Server is a Peripheral device, you might want to send the Client an

update each time a button value changes. That leaves us with the obvious questions of how does the

Server initiate communication to the Client, and when is it allowed to do so?

The answer to the first question is, the Server can notify the Client that one of the values in the GATT

Database has changed by sending a Notification message. That message has the Handle of the

Characteristic that has changed and a new value for that Characteristic. Notification messages are not

responded to by the Client, and as such are not reliable. If you need a reliable message, you can instead

send an Indication which the Client must respond to.

To send a Notification or Indication use the APIs:

• wiced_bt_gatt_send_notification (conn_id, handle, length, value)

• wiced_bt_gatt_send_indication (conn_id, handle, length, value)

By convention, the GATT Server will not send Notification or Indication messages unless they are turned

on by the Client.

How do you turn on Notifications or Indications? In the last chapter, we talked about the GATT

Attribute Database, specifically, the Characteristic. If you recall, a Characteristic is composed of a

minimum of two Attributes:

• Characteristic Declaration

• Characteristic Value

However, information about the Characteristic can be extended by adding more Attributes, which go by

the name of Characteristic Descriptors.

For the Client to tell the Server that it wants to have Indications or Notifications, four things need to

happen.

First, the Server must add a new Characteristic Descriptor Attribute called the Client Characteristic

Configuration Descriptor, often called the CCCD. This Attribute is simply a 16-bit mask field, where bit 0

represents the Notification flag, and bit 1 represents the Indication flag. In other words, the Client can

Write a 1 to bit 0 of the CCCD to tell the Server that it wants Notifications.

To add the CCCD to your GATT DB use the following Macro:

• CHAR_DESCRIPTOR_UUID16_WRITABLE (

o <HANDLE>,

o UUID_DESCRIPTOR_CLIENT_CHARACTERISTIC_CONFIGURATION,

o LEGATTDB_PERM_READABLE | LEGATTDB_PERM_WRITE_REQ |

LEGATTDB_PERM_AUTH_WRITABLE),

Chapter 4B More Advanced BLE Peripherals Page 3 of 44

The permissions above indicate that the CCCD value is readable whenever connected but will only be

writable if the connection is authenticated (more on that later). To see the other possible choices, right

click on one of them from inside WICED Studio and select "Open Declaration".

Second, you must change the Properties for the Characteristic to specify that the characteristic allows

notifications. That is done by adding LEGATTDB_CHAR_PROP_NOTIFY to the Characteristic's Properties.

To see all the available choices, right-click on one of the existing Properties in WICED Studio and select

"Open Declaration".

Third, in your GATT Attribute Write Callback you need to save the CCCD value that was written to you.

Finally, when a value that has Notify and/or Indicate enabled changes in your system, you must send out

a new value using the appropriate API.

Chapter 4B More Advanced BLE Peripherals Page 4 of 44

4B.2 Other Characteristic Descriptors

There are several other interesting Characteristic Descriptors that are defined by the Bluetooth SIG

including:

A commonly used Characteristic Descriptor is the Characteristic User Description which is just a text

string that describes in human format the Characteristic Type. Many GATT Database Browsers (e.g.

Light Blue) will display this information when you are looking at the GATT Database. To add the

Characteristic User Description to your Characteristic just add:

• CHAR_DESCRIPTOR_UUID16 (

o <Handle>,

o UUID_DESCRIPTOR_CHARACTERISTIC_USER_DESCRIPTION,

o LEGATTDB_PERM_READABLE),

Chapter 4B More Advanced BLE Peripherals Page 5 of 44

WICED Bluetooth has defines for the rest of the Descriptors which you can find in wiced_bt_uuid.h

Chapter 4B More Advanced BLE Peripherals Page 6 of 44

4B.3 Security

To securely communicate between two devices, you want to: (1) Authenticate that both sides know who

they are talking to; (2) ensure that all access to data is Authorized, (3) Encrypt all message that are

transmitted; (4) verify the Integrity of those messages; and (5) ensure that the Identity of each side is

hidden from eavesdroppers.

In BLE, this entire security framework is built around AES-128 symmetric key encryption. This type of

encryption works by combining a Shared Secret code and the unencrypted data (typically called plain

text) to create an encrypted message (typically called cypher text).

• CypherText = F(SharedSecret,PlainText)

There is a bunch of math that goes into AES-128, but for all practical purposes if the Shared Secret code

is kept secret, you can assume that it is very unlikely that someone can read the original message.

If this scheme depends on a Shared Secret, the next question is how do two devices that have never

been connected get a Shared Secret that no one else can see? In BLE, the process for achieving this

state is called Pairing. A device that is Paired is said to be Authenticated.

4B.3.1 Pairing

Pairing is the process of arriving at the Shared Secret. The basic problem continues to be how do you

send a Shared Secret over the air, unencrypted and still have your Shared Secret be Secret. The answer

is that you use public key encryption. Both sides have a public/private key pair that is either embedded

in the device or calculated at startup. When you want to authenticate, both sides of the connection

exchange public keys. Then both sides exchange encrypted random numbers that form the basis of the

shared secret.

Public Key 1 (PK1)

Public Key 2 (PK2)

Encrypt Random Number 1

using PK2 (RN1)

Encrypt Random Number 2

using PK1 (RN2)

Un-Encrypt RN2

Device 1

Un-Encrypt RN1

Shared Secret = f(RN1, RN2) Shared Secret = f(RN1, RN2)

Device 2

Chapter 4B More Advanced BLE Peripherals Page 7 of 44

But how do you protect against Man-In-The-Middle (MIM)? There are four possible methods.

Method 1 is called "Just works". In this mode you have no protection against MIM.

Method 2 is called "Out of Band". Both sides of the connection need to be able to share the PIN via

some other connection that is not Bluetooth such as NFC.

Method 3 is called "Numeric Comparison" (V2.PH.7.2.1). In this method, both sides display a 6-digit

number that is calculated with a nasty cryptographic function based on the random numbers used to

generate the shared key and the public keys of each side. The user observes both devices. If the number

is the same on both, then the user confirms on both sides. If there is a MITM, then the random numbers

on both sides would be different so the 6-digit codes would not match.

Method 4 is called "Passkey Entry" (V2.PH.7.2.3). For this method to work, at least one side needs to be

able to enter a 6-digit Passkey. The other side must be able to display the Passkey. Once the side with

numeric entry capability enters the Passkey, an exchange and comparison process starts with the

Passkeys being divided up, encrypted, exchanged and compared with the other side.

Chapter 4B More Advanced BLE Peripherals Page 8 of 44

Pictorially, the process with no MIM and with MIM is shown below. Note that if there is a man in the

middle, the two sides will calculate different numbers because the number is a function of the public

keys used to encrypt the random numbers. If both sides used the same two public keys, then there can't

be a man in the middle.

Public Key 1 (PK1)

Public Key 2 (PK2)

Encrypt Random Number 1

using PK2 (RN1)

Encrypt Random Number 2

using PK1 (RN2)

Un-Encrypt RN2

Device 1

Un-Encrypt RN1

Shared Secret = f(RN1, RN2) Shared Secret = f(RN1, RN2)

Device 2

6-Digit Number =

f(RN1, RN1, PK1, PK2)

6-Digit Number =

f(RN1, RN1, PK1, PK2)

The 6-Digit Numbers are displayed/compared or displayed/

entered to verify both sides calculated the same value

Public Key 1 (PK1)

Public Key 2 (PK2)

Encrypt Random Number 1

using PKM (RN1)

Encrypt Random Number 2

using PKM (RN2)

Un-encrypt RN2

Device 1

Un-encrypt RN1

Shared Secret = f(RN1, RN2) Shared Secret = f(RN1, RN2)

Device 2MIM

Public Key MIM (PKM)

Public Key MIM (PKM)

Un-encrypt RN1 and Re-encrypt

with PK2

Unencrypt RN2 and Reincrypt

with PK1

Shared Secret = f(RN1, RN2)

6-Digit Number =

f(RN1, RN1, PK1, PKM)

6-Digit Number =

f(RN1, RN1, PKM, PK2)

The Shared Secrets will be the same, but each side will calculate a different

6-Digit Number. Therefore, the connection will not be authenticated.

Chapter 4B More Advanced BLE Peripherals Page 9 of 44

4B.3.2 Bonding

The whole process of Pairing is a bit painful and time consuming. It is also the most vulnerable part of

establishing security, so it is beneficial to do it only once. Certainly, you don't want to have to repeat it

every time two devices connect. This problem is solved by Bonding, which just saves all the relevant

information into a non-volatile memory. The allows the next connection to launch without repeating

the pairing process.

4B.3.3 Pairing & Bonding Process Summary

4B.3.4 Authentication, Authorization and the GATT DB

In Chapter 4A3.1 we talked about the Attributes and the GATT Database. Each Attribute has a

permissions bit field that includes bits for Encryption, Authentication, and Authorization. The WICED

Bluetooth Stack will guarantee that you will not be able to access an Attribute that is marked Encryption

or Authentication unless the connection is Authenticated and/or Encrypted.

The Authorization flag is not enforced by the WICED Bluetooth Stack. Your Application is responsible for

implementing the Authorization semantics. For example, you might not allow someone to turn off/on a

switch without entering a password.

4B.3.5 Link Layer Privacy

BLE devices are identified using a 48-bit device address. This device address is part of all the packets sent

by the device in the advertising channels. A third device which listens on all three advertising channels

can easily track the activities of a device by using its device address. Privacy is a feature that reduces the

ability to track a BLE device by using a private address that is generated and changed at regular intervals.

Note that this is different than security (i.e. encrypting of messages).

Chapter 4B More Advanced BLE Peripherals Page 10 of 44

There are a few different types of address types possible for BLE devices; these are shown in the

following table:

The device address can be a Public Device Address or a Random Device Address. The Public Device

Addresses are comprised of a 24-bit company ID (an Organizationally Unique Identifier or OUI based on

an IEEE standard) and a 24-bit company-assigned number (unique for each device); these addresses do

not change over time.

There are two types of Random Addresses: Static Address and Private Address. The Static Address is a

48-bit randomly generated address with the two most significant bits set to 1. Static Addresses are

generated on first power up or during manufacturing. A device using a Public Device Address or Static

Address can be easily discovered and connected to by a peer device. Private Addresses change at some

interval to ensure that the BLE device cannot be tracked. A Non-Resolvable Private Address cannot be

resolved by any device so the peer cannot identify who it is connecting to. Resolvable Private Addresses

(RPA) can be resolved and are used by Privacy-enabled devices.

Every Privacy-enabled BLE device has a unique address called the Identity Address and an Identity

Resolving Key (IRK). The Identity Address is the Public Address or Static Address of the BLE device. The

IRK is used by the BLE device to generate its RPA and is used by peer devices to resolve the RPA of the

BLE device. Both the Identity Address and the IRK are exchanged during the third stage of the pairing

process. Privacy-enabled BLE devices maintain a list that consists of the peer device’s Identity Address,

the local IRK used by the BLE device to generate its RPA, and the peer device’s IRK used to resolve the

peer device’s RPA. This is called the Resolving List. Only peer devices that have the 128-bit identity

resolving key (IRK) of a BLE device can connect to it.

A Privacy-enabled BLE device periodically changes its RPA to avoid tracking. The BLE Stack configures the

Link Layer with a value called RPA Timeout that specifies the time after which the Link Layer must

generate a new RPA. In WICED Studio, this value is set in wiced_bt_cfg.c and is called

rpa_refresh_timeout. If the rpa_refresh_timeout is set to 0 (i.e.

WICED_BT_CFG_DEFAULT_RANDOM_ADDRESS_NEVER_CHANGE), privacy is disabled, and a public

device address will be used.

Chapter 4B More Advanced BLE Peripherals Page 11 of 44

4B.4 WICED Configuration: wiced_bt_cfg.c

When you initialize the BLE Stack one of the arguments you pass is a pointer to a structure of type

wiced_bt_cfg_settings_t. This structure contains initialization information for both the BLE and Classic

Bluetooth configuration. This structure is built for you by WICED Bluetooth Designer and typically

resides in the file wiced_bt_cfg.c

The structure definition is shown below. Note that many of the entries are themselves structures with

multiple entries of their own.

Chapter 4B More Advanced BLE Peripherals Page 12 of 44

4B.5 WICED Configuration: Buffer Pools

Rather than use the C typical memory allocation scheme, malloc, the WICED team has built a scheme

optimized for Bluetooth. One of the arguments that you need to pass to the Stack initialization function

is a pointer to the pools. This array is typically created for you by the WICED Bluetooth Designer.

There are four different size buffer pools. The configuration settings for them can be found in

wiced_bt_cfg.c. The default settings are:

There is a file in the doc folder inside WICED Studio called WICED-Application-Buffer-Pools.pdf that

contains some additional information on the use of buffer pools. For example, the large buffer pool

should be set to at least as large as the MTU value plus 12.

You can read the amount of free memory in the device at initialization and after starting the stack by

using the function wiced_memory_get_free_bytes.

Chapter 4B More Advanced BLE Peripherals Page 13 of 44

4B.6 WICED Bluetooth Designer

WICED Bluetooth Designer can be used to setup Characteristics for Notify and Indicate. It can also be

used to create Characteristic User Descriptions.

For this example, I'm going to build a BLE project that has a custom Service called WicedButton

containing one Characteristic called MB1. The Characteristic will count the number of times the

mechanical user button on the kit has been pressed. It will be Readable by the Client and it will send

Notifications if the Client enables them.

4B.6.1 Running the Tool

Start the tool from File->New->WICED Bluetooth Designer. I'll use a Device name of key_Button. When

you do this yourself, use a unique name such as <inits>_Button where <inits> is your initials.

Otherwise you will have trouble finding your specific device among all the ones that are advertising.

Click on Finish to launch the configuration window.

We will keep all the defaults on the Device Settings tab.

Chapter 4B More Advanced BLE Peripherals Page 14 of 44

On the Characteristics tab, add a new Vendor Specific Service and change its name to WicedButton.

Next, add a Vendor Specific Characteristic and change its name and description to MB1. It has a size of 1.

Chapter 4B More Advanced BLE Peripherals Page 15 of 44

On the Properties tab, we want this Characteristic to have Read and Notify selected.

Now check the Permissions tab. It was set by the tool to Read based on our Properties selections. This

means that we will be able to Read the Characteristic value without Pairing first. Let's also turn on Read

(authenticated) so that Read will require an Authenticated (i.e. Paired) link.

(Note, you must also leave on Read although that does NOT mean that it will be Readable with a non-

Authenticated link anymore.)

Chapter 4B More Advanced BLE Peripherals Page 16 of 44

Enabling/disabling Notifications requires a Paired connection by default – it can't be changed in WICED

Bluetooth Designer, but you'll see how that can be done in the exercises.

Next, let's go to the User Description tab and include a User Description with the value of "Mechanical

Button 1 Count". We will allow this to be read without an Authenticated link.

Now, click the Generate Code button.

4B.6.2 Editing the Firmware

In <inits>_Button.c, we need to:

1. Switch the debug messages to the PUART.

2. Declare a global variable called connection_id. Upon a GATT connection (i.e. in

<inits>_button_connect_callback), save the connection ID. Upon a GATT disconnection, reset

the connection ID. The ID is needed to send a notification – you need to tell it which connected

Chapter 4B More Advanced BLE Peripherals Page 17 of 44

device to send the notification to. In our case we only allow one connection at a time but there

are devices that allow multiple connections.

Global Variable:

uint16_t connection_id = 0;

GATT Connection:

/* TODO: Handle the connection */

connection_id = p_conn_status->conn_id;

GATT Disconnection:

/* TODO: Handle the disconnection */

connection_id = 0;

3. Configure MB1 as a falling edge interrupt.

void key_button_app_init(void)

{

 /* Initialize Application */

 wiced_bt_app_init();

 /* Configure the Button GPIO as an input with a resistive pull up and falling edge interrupt */

 wiced_hal_gpio_register_pin_for_interrupt(WICED_GPIO_PIN_BUTTON_1, button_cback, NULL);

 wiced_hal_gpio_configure_pin(WICED_GPIO_PIN_BUTTON_1,

 (GPIO_INPUT_ENABLE | GPIO_PULL_UP | GPIO_EN_INT_FALLING_EDGE),

 GPIO_PIN_OUTPUT_HIGH);

4. Create the button callback function. In the callback we will increment the Characteristic value,

and then send a notification if we have a connection and the notification is enabled.

/* Interrupt callback function for BUTTON_1 */

void button_cback(void *data, uint8_t port_pin)

{

 /* Increment the button value */

 key_button_wicedbutton_mb1 [0] ++;

 /* If the connection is up and if the client wants notifications, send it */

 if (connection_id != 0)

 {

 if(key_button_wicedbutton_mb1_client_configuration[0] & GATT_CLIENT_CONFIG_NOTIFICATION)

 {

 wiced_bt_gatt_send_notification(connection_id, HDLC_WICEDBUTTON_MB1_VALUE,

 sizeof(key_button_wicedbutton_mb1), key_button_wicedbutton_mb1);

 WICED_BT_TRACE("\tSend Notification: sending Button value\r\n");

 }

 }

 /* Clear the GPIO interrupt */

 wiced_hal_gpio_clear_pin_interrupt_status(WICED_GPIO_PIN_BUTTON_1);

}

5. In wiced_bt_cfg.c, change the rpa_refresh_timeout to

WICED_BT_CFG_DEFAULT_RANDOM_ADDRESS_NEVER_CHANGE so that privacy is disabled.

6. Update the Make Target to add the option BT_DEVICE_ADDRESS=random.

Chapter 4B More Advanced BLE Peripherals Page 18 of 44

4B.6.3 Testing the Project

Start up a UART terminal and then run the Make Target to program the kit. When the firmware starts up

you will see some messages.

Chapter 4B More Advanced BLE Peripherals Page 19 of 44

Run CySmart on your phone. When you see the "<inits>_Button" device, tap on it. CySmart will connect

to the device and will show the GATT browser widget.

Tap on the GATT DB widget to open the browser. Then tap on the Unknown Service (which we know is

WicedButton) and then on the Characteristic (which we know is MB1).

Chapter 4B More Advanced BLE Peripherals Page 20 of 44

Tap the Read button to read the value. Press the button on the kit a few times and then Read again to

see the incremented value. Then tap the Notify button to enable notifications. Now each time you press

the button the value is shown automatically.

When you are done, press back until CySmart disconnects. Then go to your phone's Bluetooth settings

and remove the device from the list of paired devices. If you don't do this, you will have trouble

connecting again once you re-program your kit since it will no longer match the information stored on

the phone.

Chapter 4B More Advanced BLE Peripherals Page 21 of 44

4B.7 WICED Bluetooth Firmware Architecture

The firmware architecture is the same as was described in the previous chapter. The only difference is

that there are additional Stack Management events and GATT Database events that occur.

For a typical BLE application that connects using a Paired link but does NOT use privacy, does NOT store

bonding information in NVRAM and does NOT require a passkey, the order of callback events will look

like this:

Activity Callback Event Name (both Stack and GATT) Reason

Powerup BTM_LOCAL_IDENTITY_KEYS_REQUEST_EVT At initialization, the BLE stack looks to
see if the privacy keys are available. If
privacy is not enabled, then this state
does not need to be implemented.

BTM_ENABLED_EVT This occurs once the BLE stack has
completed initialization. Typically, you
will start up the rest of your application
here.

BTM_BLE_ADVERT_STATE_CHANGED_EVT This occurs when you enable
advertisements. You will see a return
value of 3 for fast advertisements. After
a timeout, you may see this again with a
return value of 4 for slow
advertisements. Eventually the state
changes to 0 (off) if there have been no
connections, giving you a chance to save
power.

Connect GATT_CONNECTION_STATUS_EVT The callback needs to determine if the
event is a connection or a disconnection.
For a connection, the connection ID is
saved, and pairing is enabled (if a secure
link is required).

BTM_BLE_ADVERT_STATE_CHANGED_EVT Once the connection happens, the stack
stops advertisements which will result in
this event. You will see a return value of
0 which means advertisements have
stopped.

Pair
(if secure link
is required)

BTM_SECURITY_REQUEST_EVT The occurs when the client requests a
secure connection. When this event
happens, you need to call
wiced_bt_ble_security_grant() to allow a
secure connection to be established.

BTM_PAIRING_IO_CAPABILITIES_BLE_REQUEST_EVT This occurs when the client asks what
type of capability your device has that
will allow validation of the connection
(e.g. screen, keyboard, etc.). You need to
set the appropriate values when this
event happens.

BTM_ENCRYPTION_STATUS_EVT This occurs when the secure link has
been established.

Chapter 4B More Advanced BLE Peripherals Page 22 of 44

BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT This event is used so that you can store
the paired devices keys if you are storing
bonding information. If not, then this
state does not need to be implemented.

BTM_PAIRING_COMPLETE_EVT This event indicates that pairing has
been completed successfully.

Read Values GATT_ATTRIBUTE_REQUEST_EVT →
GATTS_REQ_TYPE_READ

The firmware must get the value from
the correct location in the GATT
database.

Write Values GATT_ATTRIBUTE_REQUEST_EVT →
GATTS_REQ_TYPE_WRITE

The firmware must store the provided
value in the correct location in the GATT
database.

Notifications N/A Notifications must be sent whenever an
attribute that has notifications set is
updated by the firmware. Since the
change comes from the local firmware,
there is no stack or GATT event that
initiates this process.

Disconnect GATT_CONNECTION_STATUS_EVT For a disconnection, the connection ID is
reset, all CCCD settings are cleared, and
advertisements are restarted.

BTM_BLE_ADVERT_STATE_CHANGED_EVT Upon a disconnect, the firmware will get
a GATT event handler callback for the
GATT_CONNECTION_STATUS_EVENT
(more on this later). At that time, it is
the user's responsibility to determine if
advertising should be re-started. If it is
restarted, then you will get a BLE stack
callback once advertisements have
restarted with a return value of 3 (fast
advertising) or 4 (slow advertising).

Chapter 4B More Advanced BLE Peripherals Page 23 of 44

If bonding information is stored to NVRAM, the event sequence will look like the following. The

sequence is shown for three cases (each shaded differently):

1. First-time connection before bonding information is saved

2. Connection after bonding information has been saved for disconnect/re-connect without

resetting the kit between connections.

3. Connection after bonding information has been saved for disconnect/reset/re-connect.

In the reconnect cases, you can see that the pairing sequence is greatly reduced since keys are already

available.

Activity Callback Event Name Reason

1st Powerup BTM_LOCAL_IDENTITY_KEYS_REQUEST_EVT When this event occurs, the firmware needs to
load the privacy keys from NVRAM. If keys have
not been previously saved for the device, then
this state must return a value other than
WICED_BT_SUCESS such as WICED_BT_ERROR.
The non-success return value causes the stack
to generate new privacy keys.

BTM_ENABLED_EVT This occurs once the BLE stack has completed
initialization. Typically, you will start up the rest
of your application here.

During this event, the firmware needs to load
keys (which also includes the BD_ADDR) for a
previously bonded device from NVRAM and
then call
wiced_bt_dev_add_device_to_address_resoluti
on_db() to allow connecting to an bonded
device. If a device has not been previously
bonded, this will return values of all 0.

BTM_BLE_ADVERT_STATE_CHANGED_EVT This occurs when you enable advertisements.
You will see a return value of 3 for fast
advertisements. After a timeout, you may see
this again with a return value of 4 for slow
advertisements. Eventually the state changes to
0 (off) if there have been no connections, giving
you a chance to save power.

BTM_LOCAL_IDENTITY_KEYS_UPDATE_EVT This event is called if reading of the privacy keys
from NVRAM failed (i.e. the return value from
BTM_LOCAL_IDENTITY_KEYS_REQUEST_EVT
was not 0). During this event, the privacy keys
must be saved to NVRAM.

BTM_LOCAL_IDENTITY_KEYS_UPDATE_EVT This is called twice to update both the IRK and
the ER in two steps.

1st Connect GATT_CONNECTION_STATUS_EVT The callback needs to determine if the event is
a connection or a disconnection. For a
connection, the connection ID is saved, and
pairing is enabled (if a secure link is required).

Chapter 4B More Advanced BLE Peripherals Page 24 of 44

Activity Callback Event Name Reason

BTM_BLE_ADVERT_STATE_CHANGED_EVT Once the connection happens, the stack stops
advertisements which will result in this event.
You will see a return value of 0 which means
advertisements have stopped.

1st Pair BTM_SECURITY_REQUEST_EVT The occurs when the client requests a secure
connection. When this event happens, you
need to call wiced_bt_ble_security_grant() to
allow a secure connection to be established.

BTM_PAIRING_IO_CAPABILITIES_BLE_REQUEST_EVT This occurs when the client asks what type of
capability your device has that will allow
validation of the connection (e.g. screen,
keyboard, etc.). You need to set the appropriate
values when this event happens.

BTM_PASSKEY_NOTIFICATION_EVT This event only occurs if the IO capabilities are
set such that your device has the capability to
display a value, such as
BTM_IO_CAPABILITIES_DISPLAY_ONLY. In this
event, the firmware should display the passkey
so that it can be entered on the client to
validate the connection.

BTM_USER_CONFIRMATION_REQUEST_EVT This event only occurs if the IO capabilities are
set such that your device has the capability to
display a value and accept Yes/No input, such as
BTM_IO_CAPABILITIES_DISPLAY_ANT_YES_NO_
INPUT. In this event, the firmware should
display the passkey so that it can be compared
with the value displayed on the Client. This
state should also provide confirmation to the
Stack (either with or without user input first).

BTM_ENCRYPTION_STATUS_EVT This occurs when the secure link has been
established. Previously saved information such
as paired device BD_ADDR and notify settings is
read. If no device has been previously bonded,
this will return all 0's.

BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT During this event, the firmware needs to store
the keys of the paired device (including the
BD_ADDR) into NVRAM so that they are
available for the next time the devices connect.

BTM_PAIRING_COMPLETE_EVT This event indicates that pairing has been
completed successfully.

Information about the paired device such as its
BT_ADDR should be saved in NVRAM at this
point. You may also initialize other state
information to be saved such as notify settings.

Read Values GATT_ATTRIBUTE_REQUEST_EVT →
GATTS_REQ_TYPE_READ

The firmware must get the value from the
correct location in the GATT database.

Write
Values

GATT_ATTRIBUTE_REQUEST_EVT →
GATTS_REQ_TYPE_WRITE

The firmware must store the provided value in
the correct location in the GATT database.

Chapter 4B More Advanced BLE Peripherals Page 25 of 44

Activity Callback Event Name Reason

Notifications N/A Notifications must be sent whenever an
attribute that has notifications set is updated by
the firmware. Since the change comes from the
local firmware, there is no stack or GATT event
that initiates this process.

Disconnect BTM_BLE_ADVERT_STATE_CHANGED_EVT Upon a disconnect, the firmware will get a GATT
event handler callback for the
GATT_CONNECTION_STATUS_EVENT (more on
this later). At that time, it is the user's
responsibility to determine if advertising should
be re-started. If it is restarted, then you will get
a BLE stack callback once advertisements have
restarted with a return value of 3 (fast
advertising) or 4 (slow advertising).

Re-Connect GATT_CONNECTION_STATUS_EVT The callback needs to determine if the event is
a connection or a disconnection. For a
connection, the connection ID is saved, and
pairing is enabled (if a secure link is required).

BTM_BLE_ADVERT_STATE_CHANGED_EVT Advertising off.

Re-Pair BTM_ENCRYPTION_STATUS_EVT In this state, the firmware reads the state of the
server from NVRAM. For example, the
BD_ADDR of the paired device and the saved
state of any notify settings may be read.

Since the paired device BD_ADDR and keys
were already available, no other steps are
needed to complete pairing.

Read Values GATT_ATTRIBUTE_REQUEST_EVT →
GATTS_REQ_TYPE_READ

The firmware must get the value from the
correct location in the GATT database.

Write
Values

GATT_ATTRIBUTE_REQUEST_EVT →
GATTS_REQ_TYPE_WRITE

The firmware must store the provided value in
the correct location in the GATT database.

Notifications N/A Notifications must be sent whenever an
attribute that has notifications set is updated by
the firmware. Since the change comes from the
local firmware, there is no stack or GATT event
that initiates this process.

Disconnect BTM_BLE_ADVERT_STATE_CHANGED_EVT Advertising on.

Reset BTM_LOCAL_IDENTITY_KEYS_REQUEST_EVT Local keys are loaded from NVRAM.

BTM_ENABLED_EVT

Stack is enabled. Paired device keys (including
the BD_ADDR) are loaded from NVRAM and the
device is added to the address resolution
database.

BTM_BLE_ADVERT_STATE_CHANGED_EVT Advertising on.

Re-Connect GATT_CONNECTION_STATUS_EVT The callback needs to determine if the event is
a connection or a disconnection. For a
connection, the connection ID is saved, and
pairing is enabled (if a secure link is required).

BTM_BLE_ADVERT_STATE_CHANGED_EVT Advertising off.

Chapter 4B More Advanced BLE Peripherals Page 26 of 44

Activity Callback Event Name Reason

Re-Pair

BTM_PAIRED_DEVICE_LINK_KEYS_REQUEST_EVT

Since we are connecting to a known device
(because it is in the address resolution
database), this event is called by the stack so
that the firmware can load the paired device's
keys from NVRAM. If keys are not available, this
state must return WICED_BT_ERROR. That
return value causes the stack to generate keys
and then it will call the corresponding update
event so that the new keys can be saved in
NVRAM.

BTM_ENCRYPTION_STATUS_EVT

In this state, the firmware reads the state of the
server from NVRAM. For example, the
BD_ADDR of the paired device and the saved
state of any notify settings may be read.

Since the paired device BD_ADDR and keys
were already available in NVRAM, no other
steps are needed to complete pairing.

Read Values GATT_ATTRIBUTE_REQUEST_EVT →
GATTS_REQ_TYPE_READ

The firmware must get the value from the
correct location in the GATT database.

Write
Values

GATT_ATTRIBUTE_REQUEST_EVT →
GATTS_REQ_TYPE_WRITE

The firmware must store the provided value in
the correct location in the GATT database.

Notifications N/A Notifications must be sent whenever an
attribute that has notifications set is updated by
the firmware. Since the change comes from the
local firmware, there is no stack or GATT event
that initiates this process.

Disconnect BTM_BLE_ADVERT_STATE_CHANGED_EVT Advertising on.

Chapter 4B More Advanced BLE Peripherals Page 27 of 44

4B.8 Exercises

Exercise 4B.1 Simple BLE Project with Notifications using WICED BT Designer

Follow the instructions in section 4B.6 to use WICED BT Designer to create a project with a Service called

WicedButton and a Characteristic called MB1 that will keep track of how many times mechanical button

1 has been pressed and will send a notification if it is enabled by the client.

Hint: Remember to use your initials in the project name (i.e. device name) so that you can find it in the

list of devices that will be advertising.

Hint: Remember to add the option BT_DEVICE_ADDRESS=random to the make target so that your

device's address will not conflict with another kit in the class.

Hint: You may want to move the project from apps into the folder for ch04b and rename the project

folder to ex01_<inits>_Button to keep the projects organized. If you do, remember to update the make

target.

Chapter 4B More Advanced BLE Peripherals Page 28 of 44

Exercise 4B.2 BLE Notifications for Wiced101 Button

Introduction

In this exercise, you will add notifications manually to the LED and Button BLE project from the previous

chapter. This will allow you to become more familiar with the GATT permissions in the firmware and will

also allow you to re-use the custom code created for handling the LED and Button in the Wiced101

Service.

Below is a table showing the events that occur during this exercise. Arrows indicate the cause/effect of

the stack events. New events introduced in this exercise are highlighted.

External Event BLE Stack Event Action

Board reset → BTM_LOCAL_IDENTITY_KEYS_REQUEST_EVT → Not used yet

BTM_ENABLED_EVT → Initialize application.

 BTM_BLE_ADVERT_STATE_CHANGED_EVT
(BTM_BLE_ADVERT_ UNDIRECTED _HIGH)

 Start advertising

CySmart will now see
advertising packets

Connect to device from
CySmart →

GATT_CONNECTION_STATUS_EVT → Set the connection ID
and enable pairing

BTM_BLE_ADVERT_STATE_CHANGED_EVT
(BTM_BLE_ADVERT_OFF)

Read button
characteristic while
pressing button →

GATT_ATTRIBUTE_REQUEST_EVT, GATTS_REQ_TYPE_READ →

Returns button state

Read Button CCCD → GATT_ATTRIBUTE_REQUEST_EVT, GATTS_REQ_TYPE_READ →

Returns button
notification setting

Write 01:00 to Button
CCCD →

GATT_ATTRIBUTE_REQUEST_EVT, GATTS_REQ_TYPE_WRITE → Enables notifications

Press or release button
→

 Send notifications

Disconnect → GATT_CONNECTION_STATUS_EVT → Clear the connection
ID and re-start
advertising

BTM_BLE_ADVERT_STATE_CHANGED_EVT
(BTM_BLE_ADVERT_UNDIRECTED_HIGH)

Wait for timeout. → BTM_BLE_ADVERT_STATE_CHANGED_EVT
(BTM_BLE_ADVERT_ UNDIRECTED _LOW)

Stack switches to
lower advertising rate
to save power

Wait for timeout. → BTM_BLE_ADVERT_STATE_CHANGED_EVT
(BTM_BLE_ADVERT_OFF)

Stack stops
advertising.

Chapter 4B More Advanced BLE Peripherals Page 29 of 44

Project Creation

1. Copy the folder from the class files at WBT101_Files/Templates/ch04b/ex02_ble_ntfy into the

ch04b folder for your workspace.

a. Hint: The template is just the solution from exercise ch04a/ex04_ble_con so if you

prefer, you can instead copy your answer to that exercise and rename things as

necessary.

b. Hint: Change the name from key_ntfy to use your initials instead of "key" in the

wiced_bt_cfg.c file and the ex02_ble_ntfy.c file.

c. Hint: If your initials are more than 3 letters, make sure you also update the maxlen and

curlen in the GATT database lookup table (gatt_db_lookup_table).

2. In the GATT database header file, add a new handle for a Client Characteristic Configuration

Descriptor (CCCD) for the Wiced101 Service, Button Characteristic.

a. Hint: the format is: HDLD_<service>_<characteristic>_CLIENT_CONFIGURATION <value>.

b. Hint: use the next free handle value.

c. Note: This could have been done in WICED Bluetooth Designer when the Characteristic

was setup in the starting exercise, but we wanted you to practice reading and modifying

the GATT permissions on your own.

3. In the GATT database C file, add the Client Characteristic Configuration Descriptor to the GATT

database for the Button Characteristic.

a. Hint: We are not adding in pairing yet so make sure the CCCD value has the Read and

Write Permissions set. That is, don't include LEGATTDB_PERM_AUTH_WRITABLE in the

permissions.

4. In the GATT database C file, update the Properties for the Button Characteristic to enable

Notifications.

5. In the main C file, add the CCCD initial value array

a. Hint: The CCCD is an array of 2 uint8_t values.

b. Hint: Initialize the CCCD value array to {0x00, 0x00}.

6. Add the CCCD handle and array name to the GATT attribute lookup table.

7. In the GATT connect handler function for a disconnection add code to turn off the CCCD

notifications.

8. In the button callback, check to see if there is a connection (i.e. connection_id is not 0) and if

notifications are enabled. If both are true, send the notification.

a. Hint: There is a bitmask defined called GATT_CLIENT_CONFIG_NOTIFICATION which can

be used to mask out the bit for notifications.

b. Hint: the API to send the notification is wiced_bt_gatt_send_notification.

Testing

1. Create a Make Target and run it to program the project to the board. Make sure you include the

option for BT_DEVICE_ADDRESS=random.

2. Open the mobile CySmart app.

3. Connect to the device.

Chapter 4B More Advanced BLE Peripherals Page 30 of 44

4. Open the GATT browser. Traverse down to the Button Characteristic and notice that there are

now selections for Read and Notify. Turn on Notify and then press the button to observe that

changes are reported real-time.

5. Disconnect from the mobile CySmart app and start the PC CySmart app.

6. Start scanning. When you see your device show up, stop scanning and then connect to your

device.

7. Notice that the address that appears in the scan results is the "Public Address". This is because

we have disabled privacy.

8. Click on "Discover all Attributes" and then on "Enable All Notifications".

a. Hint: you can also turn on/off notifications individually by selecting the Client

Characteristic Configuration Description attribute and writing a 1 (to enable) or a 0 (to

disable) to the LSB.

i. Hint: Remember that BLE is little-endian so the left-most byte is the LSB.

9. Press the button and observe that the value updates real-time due to the notifications.

10. Click on "Disable All Notifications"

11. Press the button again and observe that the values are no longer updated.

12. Click "Disconnect".

Chapter 4B More Advanced BLE Peripherals Page 31 of 44

Exercise 4B.3 BLE Pairing and Security

Introduction

In this exercise, you will add Pairing and Security (Encryption) to the previous project.

Below is a table showing the events that occur during this exercise. Arrows indicate the cause/effect of

the stack events. New events introduced in this exercise are highlighted.

External Event BLE Stack Event Action

Board reset → BTM_LOCAL_IDENTITY_KEYS_REQUEST_EVT → Not used yet.

BTM_ENABLED_EVT → Initialize application.

 BTM_BLE_ADVERT_STATE_CHANGED_EVT
(BTM_BLE_ADVERT_ UNDIRECTED _HIGH)

 Start advertising

CySmart will now see
advertising packets

Connect to device from
CySmart →

GATT_CONNECTION_STATUS_EVT → Set the connection ID
and enable pairing

BTM_BLE_ADVERT_STATE_CHANGED_EVT
(BTM_BLE_ADVERT_OFF)

Pair → BTM_SECURITY_REQUEST_EVT → Grant security

BTM_PAIRING_IO_CAPABILITIES_BLE_REQUEST_EVT→ Capabilities are set

BTM_ENCRYPTION_STATUS_EVT Not used yet

BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT Not used yet

BTM_PAIRING_COMPLETE_EVT Not used yet

Read Button
characteristic while
pressing button →

GATT_ATTRIBUTE_REQUEST_EVT, GATTS_REQ_TYPE_READ →

Returns button state

Read Button CCCD → GATT_ATTRIBUTE_REQUEST_EVT, GATTS_REQ_TYPE_READ →

Returns button
notification setting

Write 01:00 to Button
CCCD →

GATT_ATTRIBUTE_REQUEST_EVT, GATTS_REQ_TYPE_WRITE → Enables notifications

Press button → Send notifications

Disconnect → GATT_CONNECTION_STATUS_EVT → Clear the connection
ID

BTM_BLE_ADVERT_STATE_CHANGED_EVT
(BTM_BLE_ADVERT_UNDIRECTED_HIGH)

Re-start advertising

Wait for timeout → BTM_BLE_ADVERT_STATE_CHANGED_EVT
(BTM_BLE_ADVERT_ UNDIRECTED _LOW)

Stack switches to
lower advertising rate
to save power

Wait for timeout → BTM_BLE_ADVERT_STATE_CHANGED_EVT
(BTM_BLE_ADVERT_OFF)

Stack stops
advertising

Chapter 4B More Advanced BLE Peripherals Page 32 of 44

Project Creation

1. Copy the folder from the class files at WBT101_Files/Templates/ch04b/ex03_ble_pair into the

ch04b folder for your workspace.

a. Hint: The template is just the solution from exercise ex02_ble_ntfy so if you prefer, you

can instead copy your answer to that exercise and rename things as necessary.

b. Hint: Change the name from key_pair to use your initials instead of "key" in the

wiced_bt_cfg.c file and the ex03_ble_pair.c file.

c. Hint: If your initials are more than 3 letters, make sure you also update the maxlen and

curlen in the GATT database lookup table (gatt_db_lookup_table).

2. Find the call to wiced_bt_set_pairable_mode mode that was changed earlier and set it to

WICED_TRUE to allow pairing.

3. In the BTM_PAIRING_IO_CAPABILITIES_BLE_REQUEST_EVT event, change the following two

settings:
a. p_event_data->pairing_io_capabilities_ble_request.auth_req = BTM_LE_AUTH_REQ_SC_MITM_BOND;

b. p_event_data->pairing_io_capabilities_ble_request.init_keys = BTM_LE_KEY_PENC|BTM_LE_KEY_PID;

These settings are used to determine the type of security used during pairing. The new settings

specify to use a secure connection. The authorization request and init_keys each have many

options which can be explored in wiced_bt_dev.h. The values we selected determine that the

link must use an LE secure connection with MITM and bonding, and that the encryption

information and identity keys of the peer device are distributed.

4. In the GATT database C file, update the Button Characteristic Permissions so that Reads require

an authenticated link. Update the CCCD Permissions so that both Reads and Writes require an

authenticated link. We will leave the LED Characteristic as-is so that will be Readable and

Writable with either an authenticated or an unauthenticated link.

a. Hint: You need both "LEGATTDB_PERM_READABLE" and "

LEGATTDB_PERM_AUTH_READABLE" to make a Characteristic readable only in an

authenticated link. The same goes for " LEGATTDB_PERM_WRITE_REQ" and

LEGATTDB_PERM_AUTH_WRITABLE". That is, you will ORing in new permissions but not

removing any existing ones.

Chapter 4B More Advanced BLE Peripherals Page 33 of 44

Testing

1. Create a Make Target and run it to program the project to the board. Be sure to include the

option for BT_DEVICE_ADDRESS=random.

2. Open the mobile CySmart app.

3. Connect to the device.

4. Open the GATT browser, navigate to the Button characteristic, enable notifications and observe

the button value while pressing and releasing the button on the kit.

5. Disconnect from the mobile CySmart app.

6. Go to the phone's Bluetooth settings and remove the <inits>_pair device from the paired

devices list. This is necessary so that when you re-program the kit the phone won't have stale

bonding information stored which could prevent you from re-connecting. In the next exercise

we'll store bonding information on the device so that you will be able to leave the devices

paired.

7. Start the PC CySmart app. Scan for your device and connect to it.

8. Click on "Discover all Attributes" and then on "Enable Notifications". Notice that you will get an

authentication error. Click "OK" to close the error window.

9. Try reading the Button Characteristic Value manually. Notice that you again get an

authentication error. Click "OK" to close the error window.

10. Try reading and writing the LED Characteristic and notice that it works even though pairing has

not been done.

11. Click on "Pair" and click "No" when asked if you want to add the device to the resolving list since

we haven't yet enabled privacy.

12. Click on "Enable All Notifications" again. Now when you press the button you will see the

characteristic value change.

13. Click on "Disable All Notifications" and then read the Button Characteristic Value manually. It

should now work.

14. Try reading and writing the LED Characteristic again to see that it is still accessible.

15. Click "Disconnect".

16. From the Device List, select a Device Address and select "Clear -> All" since we have not stored

bonding information in the device yet.

Questions

1. How long does the device stay in high duty cycle advertising mode? How long does it stay in low

duty cycle advertising mode? Where are these values set?

Chapter 4B More Advanced BLE Peripherals Page 34 of 44

Exercise 4B.4 (Advanced) Save BLE Pairing Information (i.e. Bonding) and Enable Privacy

Introduction

The prior exercise has been modified for you to save and restore bonding information to NVRAM. You

will copy over the code, program it to your kit, experiment with it, and then answer questions about the

stack events that occur.

By saving Bonding information on both sides (i.e. the client and the server) future connections between

the devices can be established more quickly with fewer steps. This is particularly useful for devices that

require a pairing passkey (which will be added in the next exercise) since saving the bonding information

means the passkey doesn't have to be entered every time the device connects.

Moreover, since the keys are saved on both devices, they don't need to be exchanged again. This means

that after the first connection, there is no possibility of a MITM attack since the keys are not sent out

over the air.

The firmware has two "modes": bonding mode and bonded mode. After programming, the kit will start

out in bonding mode. LED1 will blink slowly (1 sec duty cycle) to indicate that the kit is waiting to be

Paired/Bonded. Once a Client connects to the kit and pairs with it, the Bonding information will be saved

in non-volatile memory. The LED will be ON since the kit is connected. The only Client that will be

allowed to pair with the kit is the one that is bonded (the firmware only allows 1 bonded device at a

time for now). If the Bonding information is removed from the Client, it will no longer be able to

Pair/Bond with the kit without going through the Paring/Bonding process again.

When you disconnect, LED1 will flash rapidly (200ms duty cycle) to indicate that it is bonded. To remove

Bonding information from the kit and return bonding mode, press 'e' in the UART terminal window. This

will erase the stored bonding information and put the kit back into Bonding mode. LED1 will now go

back to a slow flashing rate. When you reconnect, the key must be entered again to connect. This allows

you to Pair/Bond from a Client that has "lost" the bonding information or to Pair/Bond with a new

device without having to reprogram the kit.

Project Creation

1. Copy Templates/ch04b/ex04_ble_bond from the electronic class material folder. All of the code

for this exercise has already been implemented for you.

a. Create a new make target. Don't forget the BT_DEVICE_ADDRESS option.

b. Update the device name in wiced_bt_cfg.c and ex04_ble_bond.c to <inits>_bond where

<inits> is your initials instead of "key".

Testing

1. Open a UART terminal window to the PUART.

2. Build the project and program it to the board.

3. Open the CySmart PC application and connect to the dongle.

4. Click ‘Configure Master Settings’ and, under ‘Privacy 1.2’, change the Address Generation

Interval to match the rpa_refresh_timeout in wiced_bt_cfg.

Chapter 4B More Advanced BLE Peripherals Page 35 of 44

5. If there is anything listed in the "Device List" near the bottom of the screen, click on any device

from the list and choose "Clear > All". This will remove any stored bonding information from

CySmart so that it will not conflict with your new firmware. It is necessary to do this each time

you re-program the kit so that the old information is not used.

6. Start scanning. Once you see your device in the list stop scanning. Note that your device shows

up with a Random Bluetooth address now since privacy is enabled.

7. Connect to your device.

8. Click on "Discover all Attributes".

9. Click on "Pair" and click "Yes" when asked if you want to add the device to the resolving list so

that the privacy keys will be remembered by CySmart.

a. Note down the Bluetooth Stack events that occur during pairing. This information is

displayed in the UART.

10. Click on "Enable All Notifications". Press the button and observe the characteristic value

changes.

11. Click "Disconnect". Do NOT remove the device from the Device List this time – we want bonding

information retained.

12. Start a new scan and stop when your device appears in the list.

13. Notice how the Address is now listed as a Public Identity Address rather than Random in the

table of discovered devices. Look at the Resolving List; both the Random Device Address and the

Public Identity Address are listed. If you click on ‘View …’, some Details concerning the device

appear. Multiple things, including the Identity Resolving Key, are listed. The IRK is used to map

the Private Random Address to the Public Identity Address.

14. Re-connect to your device.

15. Click on "Discover all Attributes" and "Pair".

a. Once again note down the Bluetooth Stack events that occur during pairing. You will

notice that fewer steps are required this time.

16. Press the button and observe that notifications are already enabled since they were enabled

when you disconnected. This information was retained in NVRAM.

17. Disconnect again.

18. Reset or power cycle the board.

a. Hint: If you power cycle the board, you will need to either reset or re-open the UART

terminal window.

19. Start scanning, stop when your device appears, and then connect to your device for a third time.

20. Click on "Discover all Attributes" and "Pair".

a. Note down the Bluetooth Stack events that occur this time during pairing. Compare to

the previous two connections.

21. Note that notifications are still enabled.

22. Disconnect again.

23. Clear the Device List.

24. Start scanning and stop when your device appears. Notice that it again has a Random address

type.

25. Connect to your device, "Discover all Attributes" and then try to "Pair". Note that paring will not

complete because CySmart no longer has the required keys to use.

Chapter 4B More Advanced BLE Peripherals Page 36 of 44

a. Hint: If you look in the UART window you will see a message about the security request

being denied.

26. Click on Disconnect and close the Authentication failed message window.

27. Press "e" in the UART window and note that LED1 begins flashing slowly. This indicates that the

bonding information has been cleared from the device and it will now allow a new connection.

28. Connect, Discover Attributes, and Pair again. This time it should work.

29. Note the steps that the firmware goes through this time.

30. Disconnect a final time and clear the Device List so that the saved boding information won't

interfere with the next exercise.

a. Hint: You should clear the bonding information from CySmart anytime you are going to

reprogram the kit since it will no longer have the bonding information on its side.

Overview of Changes

1. A structure called "hostinfo" is created which holds the BD_ADDR of the bonded device and the

value of the Button CCCD. The BD_ADDR is used to determine when we have reconnected to the

same device while the CCCD value is saved so that the state of notifications can be retained

across connections for bonded devices.

2. Before initializing the GATT database, existing keys (if any) are loaded from NVRAM. If no keys

are available this step will fail so it is necessary to look at the result of the NVRAM read. If the

read was successful, then the keys are copied to the address resolution database and the

variable called "bond_mode" is set as FALSE. Otherwise, it stays TRUE, which means the device

can accept new pairing requests.

3. In the BTM_SECURITY_REQUEST_EVENT look to see if bond_mode is TRUE. Security is only

granted if the device is in bond_mode.

4. In the Bluetooth stack event BTM_PAIRING_COMPLETE_EVT if bonding was successful write the

information from the hostinfo structure into the NVRAM and set bond_mode to FALSE.

a. This saves hostinfo upon initial pairing. This event is not called when bonded devices

reconnect.

5. In the Bluetooth stack event BTM_ENCRYPTION_STATUS_EVT, if the device is bonded (i.e.

bond_mode is FALSE), read bonding information from the NVRAM into the hostinfo structure.

a. This reads hostinfo upon a subsequent connection when devices were previously

bonded.

6. In the Bluetooth stack event BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT, save the keys for

the peer device to NVRAM.

7. In the Bluetooth stack event BTM_PAIRED_DEVICE_LINK_KEYS_REQUEST_EVT, read the keys for

the peer device from NVRAM.

8. In the Bluetooth stack event BTM_LOCAL_IDENTITY_KEYS_UPDATE_EVT, save the keys for the

local device to NVRAM.

9. In the Bluetooth stack event BTM_LOCAL_IDENTITY_KEYS_REQUEST_EVT, read the keys for the

local device from NVRAM.

10. In the GATT connect callback:

Chapter 4B More Advanced BLE Peripherals Page 37 of 44

a. For a connection, save the BD_ADDR of the remote device into the hostinfo structure.

This will be written to NVRAM in the BTM_PAIRING_COMPLETE_EVT.

b. For a disconnection, clear out the BD_ADDR from the hostinfo structure and reset the

CCCD to 0.

11. In the GATT set value function, save the Button CCCD value to the hostinfo structure whenever

it is updated and write the value into NVRAM.

12. The UART is configured to accept input. The rx_cback function looks for the key "e". If it has

been sent, the sets bond_mode to TRUE, removes the bonded device from the list of bonded

devices, removes the device from the address resolution database, and clears out the bonding

information stored in NVRAM.

13. The timer that blinks the LED during advertising has two different rates. The timer is started

during initialization, and then stopped/restarted when a disconnect happens or when bonding

information is removed. The timeout is set depending on the value of bond_mode.

14. Finally, privacy is enabled in wiced_bt_cfg.c by updating the rpa_refresh_timeout to

WICED_BT_CFG_DEFAULT_RANDOM_ADDRESS_CHANGE_TIMEOUT.

Questions

1. What items are stored in NVRAM?

2. Which event stores each piece of information?

3. Which event retrieves each piece of information?

4. In what event is the privacy info read from NVRAM?

Chapter 4B More Advanced BLE Peripherals Page 38 of 44

5. Which event is called if privacy information is not retrieved after new keys have been generated

by the stack?

Chapter 4B More Advanced BLE Peripherals Page 39 of 44

Exercise 4B.5 (Advanced) Add a Pairing Passkey

Introduction

In this exercise, you will modify the previous exercise to require a Passkey to be entered to pair the

device the first time. The Passkey will be randomly generated by the device and will be sent to the

UART. The Passkey will need to be entered in CySmart on the PC or in your Phone's Bluetooth

connection settings before Pairing/Bonding will be allowed.

Project Creation

1. Copy the folder from the class files at WBT101_Files/Templates/ch04b/ex05_ble_pass into the

ch04b folder for your workspace.

a. Hint: The template is just the solution from exercise ex04_ble_bond so if you prefer, you

can instead copy your answer to that exercise and rename things as necessary.

b. Hint: Change the name from key_pass to use your initials instead of "key" in the

wiced_bt_cfg.c file and the ex05_ble_pass.c file.

c. Hint: If your initials are more than 3 letters, make sure you also update the maxlen and

curlen in the GATT database lookup table (gatt_db_lookup_table).

2. In the Bluetooth Stack event BTM_PAIRING_IO_CAPABILITIES_BLE_REQUEST_EVT:

a. Change the value for pairing_io_capabilities_ble_request.local_iop_cap from

BTM_IO_CAPABILITIES_NONE to BTM_IO_CAPABILITIES_DISPLAY_ONLY.

i. This indicates that the device can display a key value.

3. Add a Bluetooth stack callback event for BTM_PASSKEY_NOTIFICATION_EVT to send the value of

the Passkey to the UART.

a. Hint: Make sure you print something around the value so that it is easy to find in the

terminal window.

b. Hint: The Passkey must be 6 digits so print leading 0's if the value is less than 6 digits.

(i.e. use %06d).

c. Hint: The key is passed to the callback event as:

i. p_event_data->user_passkey_notification.passkey

Testing

1. Create a Make Target and run it to program the project to the board. As usual, don't forget the

BT_DEVICE_ADDRESS=random option.

2. Open a UART terminal window.

3. Open the mobile CySmart app.

4. Attempt to Connect to the device and then navigate down to the button characteristic in the

GATT browser. You will see a notification from the Bluetooth system asking for the Passkey to

be entered. Find the Passkey on the UART terminal window and enter it into the device.

5. Once Pairing and Bonding completes, verify that the application still works.

6. Disconnect and reconnect. Observe that the key does not need to be entered to Pair this time.

7. Disconnect, then manually remove the bonding information from the phone's Bluetooth

settings.

Chapter 4B More Advanced BLE Peripherals Page 40 of 44

8. Press 'e' in the UART terminal to put the kit into Bonding mode (i.e. erase the stored bonding

information) and then reconnect. Observe that the key must be entered again to connect.

9. Disconnect again and remove the bonding information from the phone's Bluetooth settings.

10. Now try the same thing using the PC version of CySmart. It will pop up a window when the

Passkey is needed.

a. Hint: Remember to put the kit into Bonding mode first to remove the phone's Bonding

information from the kit. This is necessary since we only allow bonding information from

one device to be stored in our firmware. The next exercise will fix that.

Questions

1. Other than BTM_IO_CAPABILITIES_NONE and BTM_IO_CAPABILITIES_DISPLAY_ONLY, what

other choices are available? What do they mean?

2. What additional stack callback event occurs compared to the previous exercise? At what point

does it get called?

Chapter 4B More Advanced BLE Peripherals Page 41 of 44

Exercise 4B.6 (Advanced) Add Numeric Comparison

Introduction

In this exercise, you will modify the previous exercise to require the user to compare a 6-digit number

on both devices to pair the first time. After comparing that both numbers are the same, the user needs

to click "Yes" in CySmart on the PC or in your Phone's Bluetooth connection settings before

Pairing/Bonding will be allowed.

Project Creation

1. Copy the folder from the class files at WBT101_Files/Templates/ch04b/ex06_ble_num into the

ch04b folder for your workspace.

a. Hint: The template is just the solution from exercise ex05_ble_pass so if you prefer, you

can instead copy your answer to that exercise and rename things as necessary.

b. Hint: Change the name from key_num to use your initials instead of "key" in the

wiced_bt_cfg.c file and the ex05_ble_pass.c file.

c. Hint: If your initials are more than 3 letters, make sure you also update the maxlen and

curlen in the GATT database lookup table (gatt_db_lookup_table).

2. In the Bluetooth Stack event BTM_PAIRING_IO_CAPABILITIES_BLE_REQUEST_EVT:

a. Change the value for pairing_io_capabilities_ble_request.local_iop_cap to

BTM_IO_CAPABILITIES_DISPLAY_AND_YES_NO_INPUT.

i. This indicates that the device can display a numeric value and can accept a

Yes/No response.

3. The BTM_PASSKEY_NOTIFICATION_EVT Stack event won't be called anymore. You can remove it

or leave it in if you want to support both connection types depending on the Central's

capabilities.

4. WICED Bluetooth Designer already includes the stack event called

BTM_USER_CONFIRMATION_REQUEST_EVT so you don't need to implement it. It is setup to

automatically send confirmation so that you don't have to enter "Yes" on both the Central

device and the Peripheral, but you could add code to read an input before providing the

confirmation if you wanted to verify on both devices.

a. Hint: You may want to change how the value is displayed so that it is more prominent

on the UART terminal.

Chapter 4B More Advanced BLE Peripherals Page 42 of 44

Testing

1. Create a Make Target and run it to program the project to the board. As usual, don't forget the

BT_DEVICE_ADDRESS=random option.

2. Open a UART terminal window.

3. Open the PC CySmart app.

4. Attempt to Connect and then Pair to the device. You will see a notification from CySmart asking

for you to verify the number printed by both devices is the same. Find the number on the UART

terminal window and click "Yes" if it matches.

5. Once Pairing and Bonding completes, verify that the application still works.

6. Disconnect and reconnect. Observe that the number does not need to be verified to Pair this

time.

7. Disconnect, then clear the Device List in CySmart.

8. Enter "e" in the UART window to put the kit into Bonding mode and then reconnect. Observe

that the comparison must be done again to connect.

9. Disconnect again and clear the Device List in CySmart.

Chapter 4B More Advanced BLE Peripherals Page 43 of 44

Exercise 4B.7 (Advanced) Add Multiple Bonding Capability

Introduction

In this exercise, you will copy the multiple bonding project from the templates folder and use it to bond

to up to 4 different devices at one time. Note that this application stores bonding information for

multiple devices, it does NOT allow multiple simultaneous BLE connections. That is also possible but it is

not demonstrated by this example.

Project Creation

1. Copy templates/ch04b/ex07_ble_multi from the folder provided in the electronic class material,

create the Make Target, and make the necessary updates.

a. Hint: Make sure you change "key" to your initials in both the ex07_ble_multi.c file and

wiced_bt_cfg.c file to so that you will be able to find your device.

Testing

1. Download the project onto the kit.

2. Open a UART terminal window.

3. The device starts out in bonding mode (LED_1 should be flashing slowly – once per second).

4. Open the mobile CySmart app.

5. Discover all attributes in the GATT database, and attempt to Pair with the device.

6. Once Pairing completes, verify that the application still works. The device will now be in “normal

mode”.

7. Disconnect from the device. The LED will be flashing rapidly – once every 200ms. Keep the

bonding information on the phone.

8. To put the device back in bonding mode, press "e" in the UART terminal. The LED will begin

flashing slowly.

a. Note: If you already have the max number of devices bonded and enter "e" in the UART,

it will remove the oldest bonded device before going back into bonding mode.

9. Connect to the device using the PC version of CySmart and Pair with the device.

10. Verify that the application still works.

11. Enter "l" (lower-case letter L) in the UART terminal. You should see a list of the bonded devices

on the terminal window.

12. Disconnect from the PC CySmart app, connect again from the phone, and verify that the

application still works. It should connect and pair without requiring the passkey.

13. Disconnect from the device, re-connect from the PC, Pair, and verify that the application still

works. Again, a passkey should not be required to Pair with the device.

14. Disconnect from the device.

15. Clear the bonding information from the phone and CySmart on the PC.

16. Note: you may not be able to bond to multiple computers running CySmart, but you can connect

to a PC and a phone or multiple phones.

Chapter 4B More Advanced BLE Peripherals Page 44 of 44

Overview of Changes

1. A #define for BOND_MAX which is the maximum number of devices that can be bonded at a

time (default is set to 4).

2. NVSRAM is organized so that we have:

a. 1 VSID for the local keys (i.e. privacy keys).

b. 1 VSID to keep track of how many bonded devices we have and the next one to be over-

written.

c. VSIDs to hold host information (i.e. BD_ADDR and CCCD values). There is one VSID for

each bonded device so this is BOND_MAX VSIDs.

d. VSIDs to hold encryption keys for each bonded host. There is one VSID for each bonded

device so this is BOND_MAX VSIDs.

3. Update UART receive callback function so that it just toggles whether we are in bonding mode

or not when "e" is pressed. Upon entering bonding mode, if the max number of devices is

already bonded, it will remove the oldest information from the bonded device list, address

resolution database, and NVRAM (hostinfo and paired device keys).

4. Update UART receive callback function that prints bonding information when "l" is pressed.

5. Update BTM_PAIRING_COMPLETE_EVT so that it stores the newly bonded device's host

information into the correct VSID slot in NVRAM. That is, it needs to store the information in the

first free location. This case also increments the number of bonded devices and increments the

next free slot location since a new device has just completed bonding.

6. Update BTM_ENCRYPTION_STATUS_EVT so that it searches for the BD_ADDR of the device that

was just paired. If it is found, then the device was previously bonded, so its host information can

be read from NVRAM.

7. Update BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT so that it stores the newly bonded

device's encryption key information into the correct VSID slot in NVSRAM. That is, it needs to

store the information in the first free location.

8. Update BTM_PAIRED_DEVICE_LINK_KEYS_REQUEST_EVT so that it searches through all bonded

devices to determine if the device that is currently trying to pair already has bonding

information. If the information is found, it is loaded from NVRAM. If the information is not

found, this case returns WICED_BT_ERROR which causes the stack to generate new keys and

then call BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT.

9. Update the GATT set_value function so that it stores any changes to the CCCD value to the

proper NVRAM location. That is, the value must be stored in the location that is assigned to the

currently connected host.

	4B.1 Notify & Indicate
	4B.2 Other Characteristic Descriptors
	4B.3 Security
	4B.3.1 Pairing
	4B.3.2 Bonding
	4B.3.3 Pairing & Bonding Process Summary
	4B.3.4 Authentication, Authorization and the GATT DB
	4B.3.5 Link Layer Privacy

	4B.4 WICED Configuration: wiced_bt_cfg.c
	4B.5 WICED Configuration: Buffer Pools
	4B.6 WICED Bluetooth Designer
	4B.6.1 Running the Tool
	4B.6.2 Editing the Firmware
	4B.6.3 Testing the Project

	4B.7 WICED Bluetooth Firmware Architecture
	4B.8 Exercises
	Exercise 4B.1 Simple BLE Project with Notifications using WICED BT Designer
	Exercise 4B.2 BLE Notifications for Wiced101 Button
	Introduction
	Project Creation
	Testing

	Exercise 4B.3 BLE Pairing and Security
	Introduction
	Project Creation
	Testing
	Questions

	Exercise 4B.4 (Advanced) Save BLE Pairing Information (i.e. Bonding) and Enable Privacy
	Introduction
	Project Creation
	Testing
	Overview of Changes
	Questions

	Exercise 4B.5 (Advanced) Add a Pairing Passkey
	Introduction
	Project Creation
	Testing
	Questions

	Exercise 4B.6 (Advanced) Add Numeric Comparison
	Introduction
	Project Creation
	Testing

	Exercise 4B.7 (Advanced) Add Multiple Bonding Capability
	Introduction
	Project Creation
	Testing
	Overview of Changes

