

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 001-97110 Rev. *C Revised August 12, 2015

Features

 8- or 16-bit resolution

 Multiple pulse width output modes

 Configurable trigger

 Configurable capture

 Configurable hardware/software enable

 Configurable dead band

 Multiple configurable kill modes

 Customized configuration tool

 Fixed-function (FF) implementation for PSoC 3 and PSoC 5LP devices

General Description

The PWM component provides compare outputs to generate single or continuous timing and
control signals in hardware. The PWM provides an easy method of generating complex real-time
events accurately with minimal CPU intervention. PWM features may be combined with other
analog and digital components to create custom peripherals.

For PSoC 3 and PSoC 5LP devices, the component can be implemented using FF blocks or
universal digital blocks (UDBs). PSoC 4 devices support only UDB implementation. A UDB
implementation typically has more features than an FF implementation. If the design is simple
enough, consider using FF and save UDB resources for other purposes. The PWM generates up
to two left- or right-aligned PWM outputs or one center-aligned or dual-edged PWM output. The
PWM outputs are double buffered to avoid glitches caused by duty cycle changes while running.
Left-aligned PWMs are used for most general-purpose PWM uses. Right-aligned PWMs are
typically only used in special cases that require alignment opposite of left-aligned PWMs. Center-
aligned PWMs are most often used in AC motor control to maintain phase alignment. Dual-
edged PWMs are optimized for power conversion where phase alignment must be adjusted.

The optional dead band provides complementary outputs with adjustable dead time where both
outputs are low between each transition. The complementary outputs and dead time are most
often used to drive power devices in half-bridge configurations to avoid shoot-through currents

Pulse Width Modulator (PWM)
3.30

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 2 of 51 Document Number: 001-97110 Rev. *C

and resulting damage. A kill input is also available that immediately disables the dead band
outputs when enabled. Four kill modes are available to support multiple use scenarios.

Two hardware dither modes are provided to increase PWM flexibility. The first dither mode
increases effective resolution by two bits when resources or clock frequency preclude a standard
implementation in the PWM counter. The second dither mode uses a digital input to select one of
the two PWM outputs on a cycle-by-cycle basis; this mode is typically used to provide fast
transient response in power converts.

The trigger and reset inputs allow the PWM to be synchronized with other internal or external
hardware. The optional trigger input is configurable with the Trigger Mode parameter. Only
hardware trigger is available in the component for starts the PWM. The PWM cannot be
triggered with an API call. A rising edge on the reset input causes the PWM counter to reset its
count as if the terminal count was reached. The enable input provides hardware enable to gate
PWM operation based on a hardware signal.

An interrupt can be programmed to be generated under any combination of the following
conditions: when the PWM reaches the terminal count or when a compare output goes high.

When to Use a PWM

The most common use of the PWM is to generate periodic waveforms with adjustable duty
cycles. The PWM also provides optimized features for power control, motor control, switching
regulators, and lighting control. You can also use the PWM as a clock divider by driving a clock
into the clock input and using the terminal count or a PWM output as the divided clock output.

PWMs, timers, and counters share many capabilities, but each provides specific capabilities. A
Counter component is better used in situations that require the counting of a number of events
but also provides rising edge capture input as well as a compare output. A Timer component is
better used in situations focused on timing the length of events, measuring the interval of
multiple rising and/or falling edges, or for multiple capture events.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 3 of 51

Input/Output Connections

This section describes the various input and output connections for the PWM. Some I/Os may be
hidden on the symbol under the conditions listed in the description of that I/O.

Note All signals are active high unless otherwise specified.

Input
May Be
Hidden Description

clock N The “clock” input defines the signal to count. The counter is incremented or decremented on
each rising edge of the clock.

reset N This input resets the period counter to Period and continues normal operation.

Note For UDB implementation in Reset, the “pwm”, “pwm1”, and “pwm2” outputs are driven to
‘0’. The “reset” signal is synchronous for the component. The outputs will reflect component
reset state up to two clock cycles.

For FF implementation, see Reset Signal in Fixed Function Implementation section.

In fixed-function implementation, if dead band is enabled then both outputs (“ph1” and “ph2”)
will be driven to ‘0’. If dead band is disabled, then ”pwm” output will be driven to ‘0’.

enable Y The “enable” input works in conjunction with software enable and “trigger” input (if the “trigger”
input is enabled) to enable the period counter and apply it to the “pwm” outputs. The “enable”
input is not visible if the Enable Mode parameter is set to Software Only. This input is not
available when the fixed-function PWM implementation is chosen.

Note The “enable” signal is synchronous for the component. The outputs and component
behavior will reflect component enable state up to two clock cycles.

kill Y If “kill” signal is active, the PWM block behaves differently for different configurations.

In fixed-function implementation, if dead band is enabled then both outputs (“ph1” and “ph2”)
will be driven to ‘0’. If dead band is disabled, then ”pwm” output will be driven to ‘0’. Kill signal
has no impact on period counter operation. The “tc” signal will be triggered every period
independently from the logic level on the “kill” input.

In UDB implementation for both devices, if dead band is enabled then the “pwm”, “pwm1” and
“pwm2” outputs will be driven to ‘0’, “ph1” output to ‘0’ and “ph2” output to ‘0’. If dead band is
disabled, then “pwm”, “pwm1” and “pwm2” will be driven to ‘0’. The “kill” signal has no impact
on period counter operation. The “tc” signal will be triggered every period independently from
the logic level on the “kill” input.

cmp_sel Y The “cmp_sel” input selects either the “pwm1” or “pwm2” output as the final output to the
“pwm” terminal. When the input is ‘0’ (low), the “pwm” output is “pwm1” and when the input is
‘1’ (high), the “pwm” output is “pwm2”, as shown in the configuration tool waveform viewer.
The “cmp_sel” input is visible when the PWM Mode parameter is set to Hardware Select.

capture Y The “capture” input forces the period counter value into the read FIFO. There are several
modes defined for this input in the Capture Mode parameter. The “capture” input is not visible
if the Capture Mode parameter is set to None.

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 4 of 51 Document Number: 001-97110 Rev. *C

Input
May Be
Hidden Description

trigger Y The “trigger” input enables the operation of the PWM. The functionality of this input is defined
by the Trigger Mode and Run Mode parameters. After the PWM_Start() API command, the
PWM is enabled. However, the counter does not decrement, and outputs do not changes until
the trigger condition has occurred. For the UDB implementation of the PWM, the “trigger”
input is registered with the input clock and so the counter starts and outputs change one clock
after the “trigger” input is asserted. The trigger condition is set with the Trigger Mode
parameter. The “trigger” input is not visible if the parameter is set to None. The PWM cannot
be triggered with an API call.

Output
May Be
Hidden Description

tc N The terminal count (“tc”) output is ‘1’ when the period counter is equal to zero. In normal
operation this output is ‘1’ for a single cycle where the counter is reloaded with period.
This output is registered and synchronized to the block clock input of the component.

Note For FF implementation, the “tc” output is “ph2” output, if dead band is enabled. If
the PWM is stopped with the period counter equal to zero, then this signal remains high
until the period counter is no longer zero.

interrupt Y The “interrupt” output is registered logical OR of the group of possible interrupt sources.
This signal goes high while any of the enabled interrupt sources are true. The “interrupt”
output remains asserted until the software reads out the status register. In order to
receive subsequent interrupts, the interrupt is cleared by reading the status register using
the PWM_ReadStatusRegister() API. The “interrupt” output is only visible if the Use
Interrupt parameter is set. This allows the status register to be removed for resource
optimization as necessary.

pwm/pwm1 Y The “pwm” or “pwm1” output is the first or only pulse-width modulated output. This signal
is defined by PWM Mode, compare modes, and compare values, as indicated in
waveforms in the Configure dialog. When the instance is configured in One Output,
Dual Edge, Hardware Select, Center Align, or Dither PWM modes, then the output
“pwm” is visible. Otherwise, the output “pwm1” is visible with “pwm2” the other pulse-
width signal. This output is registered and synchronized to the block clock input of the
component.

Note For FF implementation, the “pwm” output is “ph1” output, if dead band is enabled.

pwm2 Y The “pwm2” output is the second pulse width modulated output. The “pwm2” output is
only visible when PWM Mode is set to Two Outputs. This output is registered and
synchronized to the block “clock” input of the component.

ph1/ph2 Y The “ph1” and “ph2” outputs are the dead band phase outputs of the PWM. In all modes
where only the “pwm” output is visible, these are the phased outputs of the “pwm” signal,
which is also visible. When PWM Mode is set to Two Outputs, these signals are the
phased outputs of the “pwm1” signal only. Both of these outputs are visible if dead band
is enabled in 2 to 4 or 2 to 256 modes and are not visible if dead band is disabled. These
outputs are registered and synchronized to the block clock input of the component.

Note These ouput signals are available for UDB implementation only. For FF
implementation, see the pwm and tc output descriptions, as well as the Fixed-Function
Block Limitations section for details.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 5 of 51

Component Parameters

Drag a PWM component onto your design and double click it to open the Configure dialog. The
dialog contains two main tabs: Configure and Advanced.

Hardware versus Software Configuration Options

Hardware configuration options change the way the project is synthesized and placed in the
hardware. You must rebuild the hardware if you make changes to any of these options. Software
configuration options do not affect synthesis or placement. When setting these parameters
before build time you are setting their initial value, which may be modified at any time with the
APIs provided. Most parameters described in the next sections are hardware options. The
software options are noted as such.

Configure Tab (Default Configuration)

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 6 of 51 Document Number: 001-97110 Rev. *C

Implementation

This parameter allows you to choose between a Fixed Function and a UDB implementation of
the PWM. If this parameter is set to Fixed Function, the PWM is implemented in a fixed function
block with the associated limitations (see Fixed-Function Block Limitations section) of that block.

Resolution

The Resolution parameter defines the bit-width resolution of the period counter.

Resolution Maximum Period Count Values

8 (default) 255

16 65,535

Note If PWM Mode is set to Center Align, the component requires counting up to the
incremented period value and then back down to zero, doubling the incremented period of the
PWM. In this mode, configured period is limited to 254 for an 8-bit PWM and to 65534 for 16-bit
PWM. The real PWM period will be equal to (configured in customizer period + 1) x 2. See
Center Aligned section for details.

PWM Mode

The PWM Mode parameter defines the overall functionality of the PWM. It is disabled if
Implementation is set to Fixed Function.

This parameter has a tremendous influence on the visible pins of the symbol as well as the
functionality of the pwm, pwm1, and pwm2 outputs as depicted in the waveforms shown in the
configuration tool. Options include:

 One Output – Only a single PWM output. In this mode the pwm output is visible

 Two Output – Two individually configurable PWM outputs. In this mode the pwm1 and
pwm2 outputs are visible

 Dual Edge – A single dual-edged output created by ANDing together the pwm1 and
pwm2 signals. In this mode the pwm output is visible.

 Center Align – A single center-aligned output created by having the counter count up to
the incremented period value and back down to zero, while creating one center-aligned
pulse width based on the compare value. In this mode the pwm output is visible.

 Dither – A single output selected from the two internal pwm signals (pwm1 and pwm2) by
a hardware state machine included in the pwm hardware implementation. You select
between a 0.00, 0.25, 0.50 or 0.75 bit increase in the output pulse width and the hardware
controls the selection between the two pwm signals to make this happen. In this case the
compare values are set to compare and compare+1. In this mode the pwm output is
visible.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 7 of 51

 Hardware Select – A single output selected from the two internal pwm signals by a
hardware input pin cmp_sel. When cmp_sel is low the pwm1 signal is output on the pwm
output pin, when cmp_sel is high the pwm2 signal is output on the pwm output pin. In this
mode the pwm output is visible.

Period (Software)

The Period parameter defines the initial starting value of the counter and the value any time the
terminal count is reached and the PWM mode allows reloading of the period counter.

The PWM is implemented as a down counter counting from the Period value to zero. The period
is limited on the high side by the resolution of the PWM. For an 8-bit PWM the period value has a
maximum of 255. Otherwise the period value has a maximum of 65535. When the PWM mode is
configured in Center Aligned mode the PWM counts up from zero to the period value and then
back down to zero. The period value in Center Aligned mode is twice as long as all other modes
because of this special functionality. The period value may be changed at any time by the
PWM_WritePeriod() API Call. The parameter holds only the initial value written during
configuration.

CMP Value 1 / CMP Value2 (Software)

The compare values define the compare output functionality in conjunction with the hardware
Compare Type options.

The compare values are limited on the high side by the resolution of the PWM. For an 8-bit PWM
the compare value has a maximum of 255. Otherwise the compare value has a maximum of
65535. The compare values may be changed at any time by the PWM_WriteCompare1() and
PWM_WriteCompare2() API calls. These parameters hold only the initial value written during
configuration.

Dither Offset

The Dither Offset parameter configures the functionality of the pwm output when PWM Mode is
set to Dither.

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 8 of 51 Document Number: 001-97110 Rev. *C

A dither-mode PWM is implemented as a hardware-select-mode PWM with the caveat that the
first and compare values have a difference of 1 and both compare modes are identical. There is
also a built-in state machine controlling the hardware select. In this mode, the cmp_sel input is
not available. You can set the offset as 0.00, 0.25, 0.50, and 0.75, with the parameter field visible
in this mode. If the offset is configured as 0.00, then the output is always the compare1 output.
When set to 0.25 the output is compare1 for three cycles and compare1 + 1 for a single cycle.

Dither Mode Cycle 0 Cycle 1 Cycle 2 Cycle 3

0.00 Compare1 Compare1 Compare1 Compare1

0.25 Compare1 + 1 Compare1 Compare1 Compare1

0.50 Compare1 Compare1 + 1 Compare1 Compare1 + 1

0.75 Compare1 + 1 Compare1 + 1 Compare1 + 1 Compare 1

Alignment

The Alignment parameter is available when PWM Mode is set to Dither. Options include:

 Right Aligned

 Left Aligned

CMP Type 1 / CMP Type 2 (Software)

The compare value parameters define the two period counter comparisons that make up the
PWM outputs. These are implemented differently for each of the PWM Modes, so they are
typically controlled with the configuration tool. Each of the two compare mode parameters can be
set independently to one of the following enumerated types. Options include:

 Less – Compare output is true if period counter is less than the corresponding compare
value.

 Less or Equal – Compare output is true if period counter is less than or equal to the
corresponding compare value.

 Greater – Compare output is true if period counter is greater than the corresponding
compare value.

 Greater or Equal – Compare output is true if period counter is greater than or equal to
the corresponding compare value.

 Equal – Compare output is true if period counter is equal to the corresponding compare
value.

 Firmware Control – The Firmware Control option provides for a more flexible resource
usage model in which the compare mode can be set during run time. The compare modes

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 9 of 51

may be changed at any time by the PWM_SetCompareMode1 and
PWM_SetCompareMode2 API calls. Default value is Greater_Or_Equal. These
parameters hold only the initial mode written during configuration. If any option other than
Firmware Control is chosen, the hardware is preconfigured and fixed at that
configuration at build time. In this case, the SetCompareMode APIs are removed from the
compilation and therefore are not available.

Dead Band

The Dead Band parameter enables or disables the dead band functionality of the PWM. Dead
band modes are slightly different in the fixed-function implementation. If dead band mode is one
of the two enabled options then the ph1 and ph2 outputs are visible. Options include:

 Disabled – No dead band

 0-3 Counts – Dead band is implemented on the pwm or the pwm1 output with a
maximum of three counts. This mode is applicable for FF implementation only.

 2-4 Clock Cycles – Dead band is implemented on the pwm or the pwm1 output with a
maximum of four clock cycles. This mode is applicable for UDB implementation only.

 2-256 Clock Cycles – Dead band is implemented on the pwm or the pwm1 output with a
maximum of 256 clock cycles. This is implemented in a datapath for the counter. This
mode is applicable for UDB implementation only.

Dead Time (Software)

The dead time value defines the amount of dead time implemented in the dead band output
signals ph1 and ph2. This parameter is only valid when Dead Band is enabled and is limited
based on the hardware configuration option defined in the Dead Band parameter.

Dead time is only software configurable when the dead band is enabled with a 2-256 range. This
data is controlled with the PWM_WriteDeadTime(n) and the n = PWM_ReadDeadTime() API
calls. These APIs correspond with the Dead Band setting (in the customizer) of "n-1". When
dead band is enabled with the 2-4 range, the value set in the configuration is built into the
hardware and cannot be set using an API.

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 10 of 51 Document Number: 001-97110 Rev. *C

Advanced Tab (Default Configuration)

Enable Mode

The Enable Mode parameter defines what hardware and software combination is required to
enable the overall functionality of the PWM. Options include:

 Software Only – The PWM is only enabled when the enable bit in the control register is
set by software. The enable input is not visible when the enable mode is set to Software
Only.

 Hardware Only – The PWM is only enabled while the hardware enable input is active
(high). In this mode, the PWM_Start() API must be called for proper initialization of the
component, to avoid unexpected behavior.

 Hardware And Software – The PWM is enabled while both the bit in the control register
and the hardware input are active (high).

Run Mode

The Run Mode parameter defines how the PWM is triggered to start and continue running. The
PWM runs depending on the enable inputs, as described by the following enumerated values.

 Continuous – The PWM runs forever on a trigger event.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 11 of 51

 One Shot with Single Trigger – The PWM runs once on a trigger event

 One Shot with Multi Trigger – The PWM runs once on a trigger event. Upon completion
of each period the PWM halts until the next trigger event occurs. The PWM cannot be
triggered with an API call.

Trigger Mode

The Trigger Mode parameter defines what hardware event constitutes a valid trigger event. The
PWM cannot be triggered with an API call. The trigger input is not visible when Trigger Mode is
set to None. Options include:

 None – No trigger is enabled (trigger is treated as always true)

 Rising Edge – A trigger event is signaled on a rising edge of the trigger input.

 Falling Edge – A trigger event is signaled on the falling edge of the trigger input.

 Either Edge – A trigger event is signal on either a rising edge or a falling edge of the
trigger input.

Kill Mode

The Kill Mode parameter defines how the hardware handles the pwm outputs when the
hardware kill input is active. The kill input is not visible when the kill mode is set to Disabled.
Options include:

 Disabled – No kill is enabled

 Asynchronous – The pwm outputs are disabled while kill is active. The pwm outputs are
synchronous, so outputs will be disabled when a raising edge of clock has occurred.

 Single Cycle – The pwm outputs are disabled while kill is active and are not re-enabled
until the end of the period has been reached (that is, tc).

 Latched – The pwm outputs are disabled on kill and remain disabled until the PWM is
reset.

 Minimum Time – The pwm outputs are disabled while kill is active and are not re-enabled
until the minimum time has elapsed. The pulse width of kill signal should be less than
minimum Kill time.

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 12 of 51 Document Number: 001-97110 Rev. *C

Minimum Kill Time (Software)

The minimum kill time parameter defines the minimum length of the kill signal to be applied to
the pwm outputs (minimum of the necessary kill signal duration in clock cycles) when the Kill
Mode parameter is set to Minimum Time.

The minimum kill time value is defined in the number of clock counts limited to 1 to 255 and it is
controlled with the PWM_WriteKillTime() and PWM_ReadKillTime() API calls.

Capture Mode

The Capture Mode parameter defines what hardware event will cause a capture of the period
counter value to the read FIFO. It is always possible to read the current counter value (that is, a
software capture) by calling the PWM_ReadCounter() API. The capture input is not visible when
the capture mode is set to None. Options include:

 None – No capture is enabled

 Rising Edge – A capture event is signaled on a rising edge of the capture input.

 Falling Edge – A capture event is signaled on the falling edge of the capture input.

 Either Edge – A capture event is signaled on either a rising edge or a falling edge of the
capture input.

Interrupts

The Interrupts parameters allow you to configure the initial interrupt sources. These values are
ORed with any of the other interrupt parameters to give a final group of events that can trigger an
interrupt. The software can reconfigure this mode at any time, as long as Interrupts is not set to
None. This parameter defines an initial configuration.

 None – No interrupts are set.

 Interrupt On Terminal Count Event – This option is always available; it is deselected by
default.

 Interrupt On Compare 1 Event – This option is deselected by default. It is always shown.
See the difference in Interrupt generation (one clock cycle) for a compare event between
UDB and FF implementation in the Enable / Reset Signals in UDB Implementation and
Reset Signal in Fixed Function Implementation sections.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 13 of 51

 Interrupt On Compare 2 Event – This option is deselected by default. It is only available
when UDB is selected for Implementation and PWM Mode is set appropriately.

 Interrupt On Kill Event – This option is deselected by default. It is only available when
UDB is selected for Implementation and PWM Mode is set appropriately.

Local Parameters (For API usage)

These parameters are used in the APIs and not exposed in the GUI.

 FixedFunctionUsed – Defined as a ‘1’ (true) if you have chosen to implement the PWM
using the fixed-function block.

 KillModeMinTime – Defined as a ‘1’ (true) if you have set the Kill Mode as Minimum
Time. This allows PWM_WriteKillTIme() and PWM_ReadKillTime() functions to be
included as necessary.

 PWMModeCenterAligned – Defined as ‘1’ (true) if you have set the PWM Mode as
Center Aligned. The PWM_ReadCompare() and PWM_WriteCompare() functions are
defined differently for this mode than other modes. This parameter is used to add the
correct functions and remove the unnecessary functions.

 DeadBandUsed – Defined as ‘1’ (true) if you have chosen to implement dead band with
the 2-256 enable mode. This is used to conditionally include PWM_WriteDeadTime() and
PWM_ReadDeadTime() API functions.

 DeadBand2_4 – Defined as ‘1’ (true) if you have chosen to implement dead band with the
2-4 counts range. This is used inside of the PWM_WriteDeadTime() and
PWM_ReadDeadTime() functions for the different operations that must happen to handle
the DeadTime.

 UseStatus – Defined as ‘1’ (true) when the configuration warrants the use of a status
register. This allows the status register resource to be removed if it is not necessary in the
design.

 UseControl – Defined as ‘1’ (true) when the configuration warrants the use of a control
register. This allows the control register resource to be removed if it is not necessary in
the design.

 UseOneCompareMode – Defined as ‘1’ (true) when the configuration requires only a
single compare mode API to be available. This allows the API to be removed, as defined
by the architecture chosen.

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 14 of 51 Document Number: 001-97110 Rev. *C

Clock Selection

There is no internal clock in this component. You must attach a clock source.

WARNING When configured to use the fixed-function block in the device, the PWM component
has the following restrictions:

 The clock input must be from a local clock that is synchronized to the bus clock or directly
sourced from the bus clock (configure the clock type as Existing and the source as
BUS_CLK).

 If the frequency of the clock matches the bus clock, then the clock must be a direct
connection to the bus clock (again configure the clock type as Existing and the source as
BUS_CLK). A local clock with a frequency that matches the bus clock generates an error
during the build process.

For UDB-Based Components

If the component allows asynchronous clocks, you may use any clock input frequency within the
device's frequency range.

If the component requires synchronization to the bus clock, then when using a routed clock [1] to
clock the component, the frequency of the routed clock cannot exceed one half the routed
clock’s source clock frequency.

 If the routed clock is synchronous to the bus clock, then it is one half the bus clock.

 If the routed clock is synchronous to one of the clock dividers, its maximum is one half of
that clock rate.

1 A routed clock is anything that is not a clock symbol directly attached to the clock input.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 15 of 51

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.

By default, PSoC Creator assigns the instance name “PWM_1” to the first instance of a
component in a given design. You can the rename the instance to any unique value that follows
the syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “PWM.”

Functions

Function Description

PWM_Start() Initializes the PWM with default customizer values.

PWM_Stop() Disables the PWM operation. Clears the enable bit of the control register for
either of the software controlled enable modes.

PWM_SetInterruptMode() Configures the interrupts mask control of the interrupt source status register.

PWM_ReadStatusRegister() Returns the current state of the status register.

PWM_ReadControlRegister() Returns the current state of the control register.

PWM_WriteControlRegister() Sets the bit field of the control register.

PWM_SetCompareMode() Writes the compare mode for compare output when PWM Mode is set to
Dither mode, Center Align mode or One Output mode.

PWM_SetCompareMode1() Writes the compare mode for compare1 output into the control register.

PWM_SetCompareMode2() Writes the compare mode for compare2 output into the control register.

PWM_ReadCounter() Reads the current counter value (software capture).

PWM_ReadCapture() Reads the capture value from the capture FIFO.

PWM_WriteCounter() Writes a new counter value directly to the counter register. This will be
implemented only for that currently running period.

PWM_WritePeriod() Writes the period value used by the PWM hardware.

PWM_ReadPeriod() Reads the period value used by the PWM hardware.

PWM_WriteCompare() Writes the compare value when the instance is defined as Dither mode,
Center Align mode or One Output mode.

PWM_ReadCompare() Reads the compare value when the instance is defined as Dither mode,
Center Align mode or One Output mode.

PWM_WriteCompare1() Writes the compare value for the compare1 output.

PWM_ReadCompare1() Reads the compare value for the compare1 output.

PWM_WriteCompare2() Writes the compare value for the compare2 output

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 16 of 51 Document Number: 001-97110 Rev. *C

Function Description

PWM_ReadCompare2() Reads the compare value for the compare2 output.

PWM_WriteDeadTime() Writes the dead time value used by the hardware in dead band
implementation.

PWM_ReadDeadTime() Reads the dead time value used by the hardware in dead band
implementation.

PWM_WriteKillTime() Writes the kill time value used by the hardware when the kill mode is set as
Minimum Time.

PWM_ReadKillTime() Reads the kill time value used by the hardware when the kill mode is set as
Minimum Time.

PWM_ClearFIFO() Clears all capture data from the capture FIFO.

PWM_Sleep() Stops and saves the user configuration.

PWM_Wakeup() Restores and enables the user configuration.

PWM_Init() Initializes component's parameters to those set in the customizer placed on
the schematic.

PWM_Enable() Enables the PWM block operation.

PWM_SaveConfig() Saves the current user configuration of the component.

PWM_RestoreConfig() Restores the current user configuration of the component.

void PWM_Start(void)

Description: This function intended to start component operation. PWM_Start() sets the initVar variable,
calls the PWM_Init function, and then calls the PWM_Enable function.

Parameters: None

Return Value: None

Side Effects: Sets the enable bit in the control registers of the PWM. If the Enable Mode is set to Hardware
Only, this has no effect on the PWM. If the Enable Mode is set to Hardware and Software,
then this will only enable the software portion of this mode and the hardware input must also
be enabled to finally enable the PWM.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 17 of 51

void PWM_Stop(void)

Description: Disables the PWM operation by resetting the seventh bit of the control register for either of
the software-controlled enable modes. Disables the fixed-function block that has been
chosen.

Parameters: None

Return Value: None

Side Effects: Clears the enable bit in the control register of the PWM. If the Enable Mode is set to
Hardware Only, this function has no effect on the PWM. If the Enable Mode is set to
Hardware and Software, this function will disable the software portion of this mode and the
hardware input will have no further effect on the enable of the PWM.

For FF implementation, if the component is stopped, the “pwm” output retains the state of the
previous value and the “ph1” output will be driven to 0.

For UDB implementation, if the component is stopped, the “pwm” output (“pwm1”, ”pwm2”)
will be driven to 0.

void PWM_SetInterruptMode(uint8 interruptMode)

Description: Configures the interrupts mask control of the interrupt source status register.

Parameters: uint8 interruptMode: Bit mask containing the interrupt sources enabled

Available interrupt sources for the fixed-function implementation:

Bit Define Description

[3] PWM_STATUS_TC_INT_EN_MASK Enables interrupt that triggered on terminal count
event.

[2] PWM_STATUS_CMP1_INT_EN_MASK Enables interrupt that triggered on compare event on
PWM channel. Intended to use in dual-channel mode
only.

Available interrupt sources for the UDB implementation:

Bit Define Description

[5] PWM_STATUS_KILL_INT_EN_MASK Enables interrupt that triggered on active kill signal.

[4] PWM_STATUS_FIFONEMPTY_INT_EN_MASK This bit is not used.

[3] PWM_STATUS_FIFOFULL_INT_EN_MASK Enables interrupt that triggered if FIFO is full.

[2] PWM_STATUS_TC_INT_EN_MASK Enables interrupt that triggered on terminal count
event.

[1] PWM_STATUS_CMP2_INT_EN_MASK Enables interrupt that triggered on compare event on
PWM2 channel. Intended to use in dual-channel mode
only.

[0] PWM_STATUS_CMP1_INT_EN_MASK Enables interrupt that triggered on compare event on
PWM1 channel. Intended to use in dual-channel mode
only.

Return Value: None

Side Effects: None

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 18 of 51 Document Number: 001-97110 Rev. *C

uint8 PWM_ReadStatusRegister(void)

Description: Returns the current state of the status register.

Parameters: None

Return Value: uint8: Current status register value.

Available statuses for the fixed-function implementation.

Bit Mask Description

[7] PWM_STATUS_TC Set to 1 on terminal count event. This bit clears on read.

[6] PWM_STATUS_CMP1 Set to 1 on compare event on PWM channel. This bit clears on read.

Available statuses for the UDB implementation.

Bit Mask Description

[5] PWM_STATUS_KILL Set to 1 when kill signal is active. This bit clears on read.

[4] PWM_STATUS_FIFONEMPTY This bit is not used.

[3] PWM_STATUS_FIFOFULL Set to 1 if capture FIFO is full.

[2] PWM_STATUS_TC Set to 1 on terminal count event. This bit clears on read.

[1] PWM_STATUS_CMP2 Set to 1 on compare event on PWM2 channel. Intended to use in dual-
channel mode only. This bit clears on read.

[0] PWM_STATUS_CMP1 Set to 1 on compare event on PWM channel for one-channel mode and
on PWM1 channel for dual-channel mode. This bit clears on read.

Side Effects: None

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 19 of 51

uint8 PWM_ReadControlRegister(void)

Description: Returns the current state of the control register. This API is available only if the enable mode
is not “Hardware Only” or compare mode is software controlled at least for one channel. See

Control (FF) section for fixed function implementation.

Parameters: None

Return Value: uint8: Current control register value

UDB implementation

Bit Mask Description

[7] PWM_CTRL_ENABLE Reads enable state of the PWM block.

[6] PWM_CTRL_RESET Reads reset state of the PWM block.

[5:3] PWM_CTRL_CMPMODE2_MASK Reads the compare mode configuration for compare2/compare1
modes from the control register.

For compare mode defines, see the description for the
PWM_SetCompareMode() function.

[2:0] PWM_CTRL_CMPMODE1_MASK

FF implementation

Bit Mask Description

[7:6] PWM_DEADBAND_COUNT_MASK Reads the Deadband Period of the PWM block.

[5] PWM_CFG0_DB Reads Deadband mode state of the PWM block.

[1] PWM_CFG0_MODE Reads enable state of the compare mode of the PWM block.

[0] PWM_CTRL_ENABLE Reads enable state of the PWM block.

Side Effects: None

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 20 of 51 Document Number: 001-97110 Rev. *C

void PWM_WriteControlRegister(uint8 control)

Description: Sets the bit field of the control register. This API is available only if the enable mode is not
“Hardware Only” or compare mode is software controlled at least for one channel. See

Control (FF) section for fixed function implementation.

Parameters: uint8 control: Control register bit mask.

UDB implementation

Bit Mask Description

[7] PWM_CTRL_ENABLE Setting this bit to 1 enables the PWM module.

[6] PWM_CTRL_RESET Setting this bit to 1 resets the PWM block.

[5:3] PWM_CTRL_CMPMODE2_MASK Writes the compare mode configuration for compare2/compare1
modes into the control register.

For compare mode defines, see the description for the
PWM_SetCompareMode() function.

[2:0] PWM_CTRL_CMPMODE1_MASK

FF implementation

Bit Mask Description

[7:6] PWM_DEADBAND_COUNT_MASK Writes Deadband Period from 0 to 3.

[5] PWM_CFG0_DB Setting this bit to 1 routes compare output to TC output port.

[1] PWM_CFG0_MODE Setting this bit to 1 enables compare mode of the PWM block.

[0] PWM_CTRL_ENABLE Setting this bit to 1 enables the PWM block.

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 21 of 51

void PWM_SetCompareMode(enum comparemode)

Description: Writes the compare mode for compare output when PWM Mode is set to Dither mode,
Center Align mode or One Output mode.

Parameters: enum comparemode: Compare mode enumerated type.

Mask Description

PWM__B_PWM__LESS_THAN Compare output is true if period counter is less than
the corresponding compare value.

PWM__B_PWM__LESS_THAN_OR_EQUAL Compare output is true if period counter is less than
or equal to the corresponding compare value.

PWM__B_PWM__GREATER_THAN Compare output is true if period counter is greater
than the corresponding compare value.

PWM__B_PWM__GREATER_THAN_OR_EQUAL_TO Compare output is true if period counter is greater
than or equal to the corresponding compare value.

PWM__B_PWM__EQUAL Compare output is true if period counter is equal to
the corresponding compare value.

Return Value: None

Side Effects: None

void PWM_SetCompareMode1(enum comparemode)

Description: Writes the compare mode for compare1 output into the control register.

Parameters: enum comparemode: For compare mode defines, see the description for the
PWM_SetCompareMode() function.

Return Value: None

Side Effects: None

void PWM_SetCompareMode2(enum comparemode)

Description: Writes the compare mode for compare2 output into the control register. This API is valid only
for UDB implementation and not available for fixed function PWM implementation.

Parameters: enum comparemode: For compare mode defines, see the description for the
PWM_SetCompareMode() function.

Return Value: None

Side Effects: None

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 22 of 51 Document Number: 001-97110 Rev. *C

uint8/16 PWM_ReadCounter(void)

Description: Reads the current counter value (software capture). This API is valid only for UDB
implementation and not available for fixed function PWM implementation.

Parameters: None

Return Value: uint8/uint16: The current period counter value

Side Effects: None

uint8/16 PWM_ReadCapture(void)

Description: Reads the capture value from the capture FIFO. This API is valid only for UDB implementation
and not available for fixed function PWM implementation.

Parameters: None

Return Value: uint8/uint16: The current capture value

Side Effects: None

Note FIFOs are cleared after going into low-power mode. You must read any data from the capture FIFO before
going into low-power mode, if required.

void PWM_WriteCounter(uint8/16 counter)

Description: Writes a new counter value directly to the counter register. This will be implemented for that
currently running period and only that period. This API is valid only for UDB implementation
and not available for fixed function PWM implementation.

Parameters: uint8/uint16 counter: The new period counter value

Return Value: None

Side Effects: If API is called with counter parameter equal to zero, the PWM counter value will be
reloaded with period value.

void PWM_WritePeriod(uint8/16 period)

Description: Writes the period value used by the PWM hardware.

Parameters: period: uint8 or 16 depending on resolution, the new period value

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 23 of 51

uint8/16 PWM_ReadPeriod(void)

Description: Reads the period value used by the PWM hardware.

Parameters: None

Return Value: uint8/16: Period value

Side Effects: None

void PWM_WriteCompare(uint8/16 compare)

Description: Writes the compare values for the compare output when the PWM Mode parameter is set
to Dither mode, Center Aligned mode, or One Output mode.

Parameters: uint8/16: Compare value

Return Value: None

Side Effects: Using the PWM_WriteCompare() API when the PWM is running will cause the comparison
to use the new compare value immediately and that result will propagate to the output
terminal on the next clock. A change in the PWM output also triggers deadband logic if
Deadband Mode is enabled.

uint8/16 PWM_ReadCompare(void)

Description: Reads the compare value for the compare output when the PWM Mode parameter is set to
Dither mode, Center Aligned mode, or One Output mode.

Parameters: None

Return Value: uint8/uint16: Current compare value

Side Effects: This function is only available if the PWM Mode parameter is set to one of the modes
described above. Otherwise the ReadCompare1/2 functions must be called.

void PWM_WriteCompare1(uint8/16 compare)

Description: Writes the compare value for the compare1 output.

Parameters: uint8/uint16: New compare value for pwm1

Return Value: None

Side Effects: Using the PWM_WriteCompare1() API when the PWM is running will cause the comparison
to use the new compare value immediately and that result will propagate to the output
terminal on the next clock. A change in the PWM output also triggers deadband logic if
Deadband Mode is enabled.

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 24 of 51 Document Number: 001-97110 Rev. *C

uint8/16 PWM_ReadCompare1(void)

Description: Reads the compare value for the compare1 output.

Parameters: None

Return Value: uint8/uint16: Current compare value 1

Side Effects: None

void PWM_WriteCompare2(uint8/16 compare)

Description: Writes the compare value for the compare2 output. This API is valid only for UDB
implementation and not available for fixed function PWM implementation.

Parameters: uint8/uint16: New compare value for pwm2

Return Value: None

Side Effects: Using the PWM_WriteCompare2() API when the PWM is running will cause the comparison
to use the new compare value immediately and that result will propagate to the output
terminal on the next clock. A change in the PWM output also triggers deadband logic if
Deadband Mode is enabled.

uint8/16 PWM_ReadCompare2(void)

Description: Reads the compare value for the compare2 output. This API is valid only for UDB
implementation and not available for fixed function PWM implementation.

Parameters: None

Return Value: uint8/uint16: The current compare value

Side Effects: None

void PWM_WriteDeadTime(uint8 deadband)

Description: Writes the dead time value used by the hardware in dead band implementation.

Parameters: uint8: Dead Band counts - 1

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 25 of 51

uint8 PWM_ReadDeadTime(void)

Description: Reads the dead time value used by the hardware in dead band implementation.

Parameters: None

Return Value: uint8: The current setting of Dead Band counts - 1

Side Effects: None

void PWM_WriteKillTime(uint8 killtime)

Description: Writes the kill time value used by the hardware when the Kill Mode is set to Minimum Time.
This API is valid only for UDB implementation and not available for fixed function PWM
implementation.

Parameters: uint8: Minimum Time kill counts

Return Value: None

Side Effects: None

uint8 PWM_ReadKillTime(void)

Description: Reads the kill time value used by the hardware when the Kill Mode is set to Minimum Time.
This API is valid only for UDB implementation and not available for fixed function PWM
implementation.

Parameters: None

Return Value: uint8: The current Minimum Time kill counts

Side Effects: None

void PWM_ClearFIFO(void)

Description: Clears the capture FIFO of any previously captured data. Here PWM_ReadCapture() is
called until the FIFO is empty. This API is valid only for UDB implementation and not
available for fixed function PWM implementation.

Parameters: None

Return Value: None

Side Effects: None

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 26 of 51 Document Number: 001-97110 Rev. *C

void PWM_Sleep(void)

Description: Stops and saves the user configuration.

Parameters: None

Return Value: None

Side Effects: None

void PWM_Wakeup(void)

Description: Restores and enables the user configuration.

Parameters: None

Return Value: None

Side Effects: None

void PWM_Init(void)

Description: Initializes component's parameters to those set in the customizer placed on the schematic.
The compare modes are set by setting the respective bits of the control register. The
interrupts are chosen as the output from the status register. If you are using fixed-function
mode, the chosen fixed-function block is enabled. FIFO is cleared to enable FIFO full bit to
be set in the status register. Usually called in PWM_Start().

Parameters: None

Return Value: None

Side Effects: All registers will be reset to their initial values. This reinitializes the component

void PWM_Enable(void)

Description: Enables the PWM block operation by setting the seventh bit of the control register. The
outputs and component behavior will reflect component enable state after two clock cycles.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 27 of 51

void PWM_SaveConfig(void)

Description: Saves the current user configuration of the component. The period, dead band, counter, and
control register values are saved.

Parameters: None

Return Value: None

Side Effects: None

void PWM_RestoreConfig(void)

Description: Restores the current user configuration of the component.

Parameters: None

Return Value: None

Side Effects: None

Global Variables

Variable Description

PWM_initVar Indicates whether the PWM has been initialized. The variable is initialized to 0 and set to 1 the
first time PWM_Start() is called. This allows the component to restart without reinitialization after
the first call to the PWM_Start() routine.

If reinitialization of the component is required, then the PWM_Init() function can be called before
the PWM_Start() or PWM_Enable() function.

Sample Firmware Source Code

PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

 project deviations – deviations that are applicable for all PSoC Creator components

 specific deviations – deviations that are applicable only for this component

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 28 of 51 Document Number: 001-97110 Rev. *C

This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The PWM component does not have any specific deviations.

API Memory Usage

The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.

The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design the map file generated by the compiler can
be analyzed to determine the memory usage.

Configuration

PSoC 3 (Keil_PK51) PSoC 4 (GCC) PSoC 5LP (GCC)

Flash

(Bytes)

RAM

(Bytes)

Flash

(Bytes)

RAM

(Bytes)

Flash

(Bytes)

RAM

(Bytes)

8-bit One Output Mode[2] 279 6 456 9 464 9

8-bit Two Outputs Mode[2]
(FW Control, Minimum Time for kill)

362 7 580 7 580 7

8-bit Dual Edged Mode[2] 284 6 452 6 448 6

8-bit Center Align Mode[2] 263 5 452 5 456 5

8-bit HW Select Mode[2] 284 6 484 9 492 9

8-bit Dither Mode[2] 284 6 488 6 476 6

16-bit One Output Mode[2] 342 8 480 9 480 9

8-bit with Dead Band 2-4[3] 325 7 520 7 536 7

16-bit with Dead Band 2-4[3] 388 9 536 11 552 11

8-bit with Dead Band 2-256[3] 312 7 508 7 512 7

16-bit with Dead Band 2-256[3] 375 9 524 11 528 11

8 Bits Fixed Function 243 2 - - 356 2

2 Configuration 1: The PWM in the corresponding PWM mode and resolution is configured with Software Only
Enable mode, Continuous Run Mode, Trigger mode set to None, Kill mode and Capture mode disabled with no
dead band and Interrupt on TC.

3 Configuration 2: 2-4 Dead Band range and 2-256 Dead Band range are mutually exclusive. The PWM is
configured for the corresponding resolution and One Output PWM mode with Software Only Enable mode,
Trigger mode set to None, Kill mode and Capture mode disabled with Interrupt on TC.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 29 of 51

Configuration

PSoC 3 (Keil_PK51) PSoC 4 (GCC) PSoC 5LP (GCC)

Flash

(Bytes)

RAM

(Bytes)

Flash

(Bytes)

RAM

(Bytes)

Flash

(Bytes)

RAM

(Bytes)

16 Bits Fixed Function 247 2 - - 356 2

Functional Description

Block Diagram and Configuration

The PWM can be implemented using a fixed-function block or using UDB components. The
Implementation parameter allows you to specify the block in which you expect to place this
component. The fixed-function implementation consumes one of the Timer/Counter/PWM blocks.
In both the fixed-function or UDB configurations, all of the registers and APIs are consolidated to
give a single entity look and feel. The API is described earlier and the registers are described
here to define the overall implementation of the PWM.

The two hardware implementations you chose are selected from a top-level schematic as shown
in Figure 1.

Figure 1. Top-Level Schematic

This configuration allows you to select either the fixed-function block or the UDB implementation.
The routing of the I/Os is handled in the background to give this single component look and feel.
The UDB implementation is described in Figure 2.

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 30 of 51 Document Number: 001-97110 Rev. *C

Figure 2. UDB Implementation

Dead-

Band

Period

CounterTrigger

Logic

Enable

Logic

Control Logic

Kill
pwm

pwm1

pwm2

ph1

ph2

PWM

Mode

Center

Align

Logic

CPU Access

ph1

ph2

pwm

pwm1

pwm2

clock

enable

trigger

cmp_sel
capture

reset

tc

Run-

Mode

Default Configuration

The default configuration for the PWM is as a two-output 8-bit PWM that creates one output with
a compare of less than 127 (with a period of 255) and a second output of less than 63. Figure 3
shows the inputs and outputs of the PWM when it is left in the default configuration.

Figure 3. PWM Inputs and Outputs

Fixed-Function Block Limitations

The fixed-function implementation of the PWM provides for less UDB resource use by
implementing a PWM with reduced functionality in a configurable hardware block. The
functionality of the PWM within one of these blocks has the following limitations:

 No counter value access – PWM_ReadCapture() and PWM_ReadCounter() are not
available.

 One output mode only – No Center Align, Dual Edge, Dither, or Two Outputs modes

 Asynchronous kill mode only

 No trigger

 Continuous run mode only

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 31 of 51

 Software enable only – No Hardware enable mode

 Reduced dead band functionality – Limited to 0 to 3 counts of dead band

 Reduced I/O when dead band is enabled – TC and PWM become PH2 and PH1,
respectively.

When you choose the Fixed Function implementation, the Configure tab and the Advanced
tab indicate these limitations by setting the parameter fields and disabling the options, as shown
in Figure 4.

Figure 4. Fixed Function Settings

PWM Mode

One Output

A one-output PWM has only one output that is controlled by a single compare value and a single
compare mode. This waveform can be left-aligned with a compare mode of Greater or Greater
or Equal or it can be right-aligned with a compare mode of Less or Less or Equal.

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 32 of 51 Document Number: 001-97110 Rev. *C

Two Outputs

The two-output PWM is the default configuration. The two PWM outputs are defined
independently of each other using two compare values and two compare modes. Each of these
two outputs can be left aligned or right aligned, as described previously in One Output mode.

Dual Edge

A dual-edge PWM uses the two compare outputs and two compare modes to generate a single
PWM output. The final output is an ANDing of the two different signals defined by the two
compare values and compare modes. This mode requires you to have some understanding of
what the different modes will generate. The waveform examples in the parameter editing
customizer provide help as to what the final waveform will look like. However, the compare
values, compare modes, and period values can all be set at run time. Changing these values
without understanding the final configuration can easily create a 0 value output.

Center Aligned

A center-aligned PWM implements the PWM differently from all of the other modes. The desired
output requires that the period counter start at zero and count up to the period value, and when
the period value is reached the counter starts counting back down to zero. In this mode, the
period value is actually half of the period of the final output. A single compare value and compare
mode are available for this functionality.

All other modes of the PWM start the period counter at the period setting counting down to 0 and
reloading to the period value which makes them period+1 for the actual period time. This is
represented in the calculated period displayed in the customizer. For center-aligned mode the
calculated period is NOT period+1. This is because the period counter counts from 0 to period+1
and immediately starts counting back down. For example, with a period of 4 the counter will
count, 0,1,2,3,4,5,4,3,2,1,0,1,2… making the period 10 clock cycles.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 33 of 51

Hardware Select

A hardware-select PWM is implemented as a two-output PWM, where the implementation has
two independent compare values and compare modes. A hardware input cmp_sel selects which
of the two inputs is the final PWM output. This allows you to switch between two preconfigured
values as necessary, without modifying the parameters.

Dither

A dither-mode PWM is implemented as a hardware-select-mode PWM with the caveat that the
first and compare values have a difference of 1 and both compare modes are identical. There is
also a built-in state machine controlling the hardware select. In this mode, the cmp_sel input is
not available. You can set the offset as 0.00, 0.25, 0.50, and 0.75, with the parameter field visible
in this mode. If the offset is configured as 0.00, then the output is always the compare1 output.
When set to 0.25 the output is compare1 for three cycles and compare1 + 1 for a single cycle.

Dither Mode Cycle 0 Cycle 1 Cycle 2 Cycle 3

0.00 Compare1 Compare1 Compare1 Compare1

0.25 Compare1 + 1 Compare1 Compare1 Compare1

0.50 Compare1 Compare1 + 1 Compare1 Compare1 + 1

0.75 Compare1 + 1 Compare1 + 1 Compare1 + 1 Compare 1

Dead Band

Dead band is an add-on option to any of the PWM modes just described. When dead band is
enabled, two new outputs (UDB implementation), ph1 and ph2 (PWM and TC, respectively, for
FF implementation), become visible on the symbol. The dead band outputs work on a single
PWM output. In all modes except two-output mode, the dead band outputs are related to the
single PWM output. In two-output mode, the dead band is only implemented on the pwm1
output. In all dead band modes, the original output is available, along with the ph1 and ph2
outputs.

FF implementation: Dead band can be configured as having a range of 0 to 3 clock cycles for
dead band time.

UDB implementation: Dead band can be configured as having a range of 2 to 4 or 2 to 256 clock
cycles for dead band time. The 2 to 4 cycle range is provided to reduce resource usage by
implementing the counter in PLDs instead of using a full datapath. When the 2 to 256 range
dead band is selected, a full datapath and the necessary logic are used from the UDB array.

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 34 of 51 Document Number: 001-97110 Rev. *C

Kill Mode

Like dead band, kill mode is an add-on function that does not interrupt the implementation of the
PWM internally. This add-on is placed at the outputs of the PWM and manipulates only the final
output signals. When dead band is not implemented, the kill operation disables the PWM outputs
by pulling them low. If dead band is implemented, the kill operation disables the ph1 and ph2
outputs by pulling them low.

Asynchronous

In asynchronous kill mode, the outputs are disabled while the kill input is active (high) and the
outputs are re-enabled as soon as the kill input goes inactive.

Single Cycle

In single cycle kill mode, the outputs are disabled while the kill input is active (high) and the
outputs are re-enabled at the beginning of the next period.

Latched

In latched kill mode, the outputs are disabled when the kill input goes high. After the PWM has
been reset, if the kill input is not still active, the PWM outputs are re-enabled; otherwise, they
remain in the kill state until the next reset of the PWM with an inactive kill input.

Minimum Time

In minimum-time kill mode, the outputs are disabled while the kill input is active (high). The
outputs are re-enabled after the minimum time has elapsed, if the kill input is no longer active.
For this mode, you define the minimum kill time in the number of clock counts 1 to 255. The API
necessary for controlling the minimum kill time counts is only available if this kill mode is
selected.

Run Mode

Continuous

Continuous run mode is the default configuration of the PWM. This mode allows the PWM to run
forever while enabled. As long as the PWM is enabled, the output cycles through period after
period implementing the specified pulse width output.

One Shot Single

One Shot Single run mode runs the PWM for a single period on a valid trigger event. After the
period has completed the PWM halts. The PWM halts after reloading the counter with the value
from the period register. The “pwm”, “pwm1” and “pwm2” (if visible) will be driven to ‘0’. A
hardware reset pulse will re-arm the PWM and allow the next trigger event to cause the PWM to
run another period. See examples in the PWM Component as a Pulse Generator section.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 35 of 51

One Shot Multi

One Shot Multi run mode runs the PWM for a single period on a valid trigger event. After the
period has completed the PWM halts and re-arms waiting for the next trigger event. The PWM
halts after reloading the counter with the value from the period register. The “pwm”, “pwm1” and
“pwm2” (if visible) will be driven to ‘0’. The difference between One Shot Single and One Shot
Multi run modes is that One Shot Multi is re-armed without requiring a reset.

PWM Component as a Pulse Generator

A PWM component can be used to design a software-triggered pulse generator circuit to
generate a timing pulse of a known period. The following timing diagrams describe examples of
a pulse generation application that generates a timing pulse on a software trigger.

A PWM configured in One Shot Single mode can be used with a control register component to
realize this design. In the One Shot Single mode, the PWM should be reset after it reaches the
period value to make sure it functions correctly. You can do this by connecting the TC output to
its reset input. The schematic features a UDB implementation of the PWM that creates such a
circuit and timing diagram (Period = 6, CMP Value = 5, CMP Type = Less, Trigger mode = Rising
Edge).

0X06 0X05 0X04 0X03 0X02 0X01 0X06

Trigger input
latched

Terminal
count

latched

CLOCK

TRIGGER

PWM

COUNT 0X00

TC

Compare event
latched

Compare event
latched

The schematic features a UDB implementation of the PWM that creates such a circuit and timing
diagram (Period = 6, CMP Value = 5, CMP Type = Greater, Trigger mode = Rising Edge).

0X06 0X05 0X04 0X03 0X02 0X01 0X06

Trigger input
latched

Terminal
count

latched

CLOCK

TRIGGER

PWM

COUNT 0X00

TC

Compare event
latched

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 36 of 51 Document Number: 001-97110 Rev. *C

Enable / Reset Signals in UDB Implementation

The following timing diagram shows the rising edge of the enable input signal using the PWM
configuration: Period = 6, CMP Value = 5, CMP Type = Greater.

0X06 0X05 0X04 0X03 0X02 0X01

Enable input
latched

Terminal
count

latched

CLOCK

ENABLE

PWM

COUNT 0X00

TC

Compare event
latched

0X06 0X05

Compare event
latched

The following timing diagram shows the falling edge of the enable input signal using the PWM
configuration: Period = 6, CMP Value = 5, CMP Type = Less or Equal, Interrupt On Compare 1
Event.

0X03 0X02

CLOCK

ENABLE

PWM

COUNT

TC

Compare event
latched

Enable signal
latched

0X05 0X040X06 0X01

INTERRUPT

Clears on Read Status Register

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 37 of 51

The following timing diagram shows the reset input signal using the PWM configuration:
Period = 6, CMP Value = 2, CMP Type = Greater or Equal.

0X05 0X04

Reset input

Compare
signal

latched

CLOCK

RESET

PWM

COUNT 0X03 0X02 0X010X03 0X02 0X060X04

Reset input
latched

Reset Signal in Fixed Function Implementation

The following timing diagram shows the reset input signal using the PWM configuration:
Period = 6, CMP Value = 5, CMP Type = Less or Equal,Interrupt On Compare 1 Event.

0X05

Reset input

CLOCK

RESET

PWM

COUNT 0X04 0X03 0X020X03 0X02 0X060X04

Reset input
latched

Compare event
latched

INTERRUPT

Clears on Read
Status Register

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 38 of 51 Document Number: 001-97110 Rev. *C

Immediate Reaction to Enable/Reset signals

If you need an immediate reaction to the Enable/Reset signals on the component outputs, use
the following design as a reference:

It is recommended to use an additional trigger after the logic AND gate.

Registers

Status

The status register is a read-only register that contains the various status bits defined for the
PWM. The PWM_ReadStatusRegister() function call gives you the value of this register. The
interrupt output signal (interrupt) is generated from an ORing of the masked bit fields within this
register. You can set the mask using the PWM_SetInterruptMode() function call and upon
receiving an interrupt you can retrieve the interrupt source by reading the status register with the
PWM_ReadStatusRegister() function call. The status register is a clear-on-read register so the
interrupt source is held until the PWM_ReadStatusRegister() function is called. The
PWM_ReadStatusRegister() API handles which interrupts are enabled to provide an accurate
report of the actual source of the interrupt. All operations on the status register must use the
following defines for the bit fields because these bit fields may be moved within the status
register during place and route.

You may choose to remove the status register completely from the hardware by setting the None
option in the Interrupts section of the configuration editor. If this option is set, the API does not
support access to the status register. Building a design with API access to the status register will
have errors stating that the PWM_1_PWMUDB_sSTSReg_stsreg__STATUS_REG is an
undefined identifier. This can be corrected by removing the API and deselecting the None option
for interrupts in the configuration editor.

The status data is registered at the input clock edge of the counter, giving all bits configured as
Mode = 1 the timing resolution of the counter. These bits are sticky and are cleared on a read of
the status register. All other bits configured as Mode = 0 are transparent and read directly from
the inputs to the status register; they are not sticky and therefore not clear on read. All bits

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 39 of 51

configured as Mode = 1 are indicated with an asterisk (*) in the following defines. There are
several bit-fields masks defined in the status register. Any of these bit fields may be included as
an interrupt source. The #defines are available in the generated header file (.h) as follows:

PWM_STATUS_TC *

Status of the terminal count output. This bit goes high when the terminal count output is high.

PWM_STATUS_CMP1 *

Status of the pwm1 compare value as it relates to the period counter. For a fixed-function
implementation, this bit goes high when the comparison output is high. For a UDB
implementation, this bit is asserted with the registered version of the comparison output; so, the
bit is asserted two clocks after the comparison output is high.

PWM_STATUS_CMP2 *

Status of the pwm2 compare value as it relates to the period counter. For a fixed-function
implementation, this bit goes high when the comparison output is high. For a UDB
implementation, this bit is asserted with the registered version of the comparison output; so, the
bit is asserted two clocks after the comparison output is high.

PWM_STATUS_KILL

Status of the output kill. If it is currently active the output will be high.

PWM_STATUS_FIFOFULL

Status of the Capture FIFO level. This bit is a real-time status of the FIFO level indicating that the
FIFO is currently Full. A “0” in this bit of the status register indicates that the FIFO is not full but
does not indicate that there is not data in the FIFO.

Control (UDB)

The control register allows you to control the general operation of the PWM. This register is
written with the PWM_WriteControlRegister() function call and read with
PWM_ReadControlRegister(). When reading or writing the control register you must use the bit-
field definitions as defined in the header (.h) file. The #defines for the control register are as
follows:

PWM_CTRL_ENABLE

The enable bit controls software enabling of the PWM operation. The PWM has a configurable
enable mode defined at build time. If the Enable Mode parameter is set to Hardware Only, this
bit has no function. However, in either of the other modes the PWM does not decrement unless
this bit is set high. Normal operation requires that this bit is set and held high during all operation
of the PWM.

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 40 of 51 Document Number: 001-97110 Rev. *C

PWM_CTRL_CMPMODE1_MASK

The compare mode control is a three-bit field used to define the expected compare output
operation for the pwm1 output. This bit field is three consecutive bits in the control register. All
operations on this bit-field must use the #defines associated with the compare modes available.
These are:

 PWM_1_B_PWM_CM_LESSTHAN

 PWM_1_B_PWM_CM_LESSTHANOREQUAL

 PWM_1_B_PWM_CM_EQUAL

 PWM_1_B_PWM_CM_GREATERTHAN

 PWM_1_B_PWM_CM_GREATERTHANOREQUAL

This bit field is configured at initialization with the compare mode defined in the CompareMode1
parameter and may be modified with the PWM_SetCompareMode() or
PWM_SetCompareMode1() API call.

PWM_CTRL_CMPMODE2_MASK

The compare mode control is a three-bit field used to define the expected compare output
operation for the pwm2 output. This bit field is three consecutive bits in the control register. All
operations on this bit field must use the #defines associated with the compare modes available.
These are:

 PWM_1_B_PWM_CM_LESSTHAN

 PWM_1_B_PWM_CM_LESSTHANOREQUAL

 PWM_1_B_PWM_CM_EQUAL

 PWM_1_B_PWM_CM_GREATERTHAN

 PWM_1_B_PWM_CM_GREATERTHANOREQUAL

This bit field is configured at initialization with the compare mode defined in the CompareMode2
parameter and may be modified with the PWM_SetCompareMode2() API call.

PWM_Control

Bits 7 6 5 4 3 2 1 0

Name Enable RSVD PWM_CTRL_CMPMODE2_MASK
[5:3]

PWM_CTRL_CMPMODE1_MASK
[2:0]

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 41 of 51

Control (FF)

The control register allows you to control the general operation of the PWM. This register is
written with the PWM_WriteControlRegister() function call and read with
PWM_ReadControlRegister().

Note When writing to the control register, you must not change any of the reserved bits. All
operations must be read-modify-write with the reserved bits masked.

PWM_Control

Bits 7 6 5 4 3 2 1 0

Name Dead Period [1:0] Deadband
mode

RSVD RSVD RSVD Enable
Compare

Mode

Enable

Bit Name #define in header file Description / Enumerated Type

Dead Period PWM_DEADBAND_COUNT_MASK Deadband Period from 0 to 3

Deadband
mode

PWM_CFG0_DB Deadband mode - routes compare output to TC output port

 1: compare output goes out on TC output port

 0: terminal count goes out on TC output port

Enable
Compare
Mode

PWM_CFG0_MODE This bit enables CNT/CMP register holds comparator
threshold value.

Enable PWM_CTRL_ENABLE This bit enables counting under software control

Period (8 or 16-bit based on Resolution)

The period register contains the period value set by the user through the PWM_WritePeriod()
function call and defined by the Period parameter at initialization. The PWM_ReadPeriod()
function may be used to find the current value of this register. The period register has no effect
on the PWM until a terminal count is reached, at which time the period counter is reloaded with
this value.

Compare1/Compare2 (8 or 16-bit based on Resolution)

The compare registers contains the compare values used to determine the state of the pwm or
pwm1 and pwm2 outputs (depending on the setting of the PWM Mode parameter). The
pwm/pwm1 and pwm2 outputs are based on how these registers compare to the period counter
value in relation to the compare modes defined in the control register.

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 42 of 51 Document Number: 001-97110 Rev. *C

Period Counter (8 or 16-bit based on Resolution)

The period counter register contains the counter value throughout the operation of the PWM.
During basic operation, this register decrements by 1 while the PWM is enabled and on each
rising edge of the clock input. You can read the contents of this register at any time with the
PWM_ReadCounter() function call. When the terminal count is reached, this register is reloaded
with the period value you define in the period register through the PWM_WritePeriod() function
call or during initialization with the Period parameter.

The pwm, pwm1, and pwm2 outputs are based on the relationship between the value held in this
register and the value defined in the compare registers through the PWM_WriteCompare()
function calls or during initialization with the Compare1/Compare2 parameters.

Conditional Compilation Information

The PWM API requires several conditional compile definitions to handle the multiple
configurations it must support. The API must conditionally compile on the resolution chosen, the
implementation chosen between the fixed-function block or the UDB blocks, dead band modes,
kill modes, and PWM modes. The conditions defined are based on the parameters
Implementation, Resolution, Dead Band, Kill Mode, and PWM Mode. The API should never
use these parameters directly but should use the following defines.

PWM_Resolution

The resolution define is assigned to the resolution value at build time. It is used throughout the
API to compile in the correct data width types for the API functions relying on this information.

PWM_UsingFixedFunction

Using the fixed function define is used mostly in the header file to make the correct register
assignments. This is necessary because the registers provided in the fixed-function block are
different than those used when the PWM is implemented in UDBs.

PWM_DeadBandMode

The dead band mode define is used to conditionally compile in PWM_WriteDeadTime() and
PWM_ReadDeadTime() APIs.

PWM_KillModeMinTime

The kill mode minimum time define is used to conditionally compile in PWM_WriteKillTime() and
PWM_ReadKillTime() APIs.

PWM_KillMode

The kill mode define is used to define the register access point for the Kill Mode Min Time
register if Kill Mode is set to Minimum Time.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 43 of 51

PWM_PWMMode

The PWM mode define is used to include the correct PWM_WriteCompare() and
PWM_ReadCompare() API functions as necessary for the mode in use.

PWM_PWMModeIsCenterAligned

The PWM mode is center aligned define is used to redefine the period register address. Center
aligned is different from other modes in implementation and requires the use of different registers
for operation that must be handled in the header file.

PWM_DeadBandUsed

The deadband used define controls conditionally compiling the PWM_WriteDeadTime() and
PWM_ReadDeadTime() APIs.

PWM_DeadBand2_4

The deadband 2-4 define controls conditionally compiling the implementation within the
PWM_WriteDeadTime() and PWM_ReadDeadTime() APIs.

PWM_UseStatus

The use status define is used to remove the status register, if the design requires it, in the
Verilog code and to conditionally compile out the status register definitions and APIs in the
header and C files.

PWM_UseControl

The use control define is used to remove the control register, if the design requires it, in the
Verilog code and to conditionally compile out the control register definitions and APIs in the
header and C files.

PWM_UseOneCompareMode

The use one compare mode is used to conditionally compile in and out the expected API calls
necessary for 1 or 2 compare mode PWM mode functions.

PWM_MinimumKillTime

Provides the initial minimum kill time programmed into the min-time datapath when the Kill
Mode is set to Minimum Kill Time.

PWM_EnableMode

Allows for condition compilation to remove the API provided for specific Enable modes.

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 44 of 51 Document Number: 001-97110 Rev. *C

Constants

There are several constants defined for the status and control registers, as well as some of the
enumerated types. Most of the constants for the control and status registers have been
described earlier in this datasheet. However, there are more constants needed in the header file
to make all of this happen. Each of the register definitions requires either a pointer into the
register data or a register address. Because of multiple Endianness of the compilers, the
CY_GET_REGX and CY_SET_REGX macros must be used for register accesses greater than
eight bits. These macros require the use of the _PTR definition for each of the registers.

It is also required that the control and status register bits be allowed to be placed and routed by
the fitter engine, because the component must have constants that define the placement of the
bits. For each of the status and control register bits there is an associated _SHIFT value that
defines the bit’s offset within the register. These are used in the header file to define the final bit
mask as a _MASK definition. (The _MASK extension is only added to bit fields greater than a
single bit, all single bit values drop the _MASK extension.)

The fixed-function block has some limitations compared to the UDB implementations because it
is designed with limited configurability.

Resources

Depending on the Implementation parameter, the PWM component uses one FF block or is
placed throughout the UDB array. The UDB Implementation utilizes the following resources.

Configuration

Resource Type

Datapath
Cells

Macrocells
Status
Cells

Control
Cells

DMA
Channels

Interrupts

8-bit One Output Mode[4] 1 6 1 1 – –

8-bit Two Outputs Mode[4] 1 9 1 1 – –

8-bit Dual Edged Mode[4] 1 8 1 1 – –

8-bit Center Align Mode[4] 1 10 1 1 – –

8-bit HW Select Mode[4] 1 8 1 1 – –

8-bit Dither Mode[4] 1 7 1 1 – –

16-bit One Output Mode[4] 2 6 1 1 – –

8-bit with Dead Band 2-4[5] 1 12 1 2 – –

4 Configuration 1: The PWM in the corresponding PWM mode and resolution is configured with Software Only
Enable mode, Continuous Run Mode, Trigger mode set to None, Kill mode and Capture mode disabled with no
dead band and Interrupt on TC.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 45 of 51

Configuration

Resource Type

Datapath
Cells

Macrocells
Status
Cells

Control
Cells

DMA
Channels

Interrupts

16-bit with Dead Band 2-4[5] 2 12 1 2 – –

8-bit with Dead Band 2-256[5] 2 11 1 1 – –

16-bit with Dead Band 2-256[5] 3 11 1 1 – –

DC and AC Electrical Characteristics for PSoC 3
(FF Implementation)
Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Specifications

Parameter Description Conditions Min Typ Max Units

 16-bit PWM block current
consumption

Input clock frequency - 3 MHz – 15 – μA

 Input clock frequency - 12 MHz – 60 – μA

 Input clock frequency - 48 MHz – 260 – μA

 Input clock frequency - 67 MHz – 350 – μA

AC Specifications

Parameter Description Conditions Min [6] Typ Max Units

 Operating frequency DC – 67.01 MHz

 Pulse width T – – ns

 Pulse width (external) T*2 – – ns

 Kill pulse width T ns

 Kill pulse width (external) T*2 – – ns

 Enable pulse width T – – ns

 Enable pulse width (external) T*2 – – ns

5 Configuration 2: 2-4 Dead Band range and 2-256 Dead Band range are mutually exclusive. The PWM is
configured for the corresponding resolution and One Output PWM mode with Software Only Enable mode,
Trigger mode set to None, Kill mode and Capture mode disabled with Interrupt on TC.

6 T(clock period) = 1/f (Operating frequency)

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 46 of 51 Document Number: 001-97110 Rev. *C

Parameter Description Conditions Min [6] Typ Max Units

 Reset pulse width T – – ns

 Reset pulse width (external) T*2 – – ns

DC and AC Electrical Characteristics for PSoC 5LP
(FF Implementation)

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 2.7 V to 5.5 V, except where noted.

DC Specifications

Parameter Description Conditions Min Typ Max Units

 16-bit PWM block current
consumption

Input clock frequency - 3 MHz – 65 – μA

Input clock frequency - 12 MHz – 170 – μA

Input clock frequency - 48 MHz – 650 – μA

Input clock frequency - 67 MHz – 900 – μA

AC Specifications

Parameter Description Conditions Min [6] Typ Max[7] Units

 Operating frequency DC – 80.01 MHz

 Pulse width T – – ns

 Pulse width (external) T*2 – – ns

 Kill pulse width T – – ns

 Kill pulse width (external) T*2 – – ns

 Enable pulse width T – – ns

 Enable pulse width (external) T*2 – – ns

 Reset pulse width T – – ns

 Reset pulse width (external) T*2 – – ns

7 Review the device-specific datasheet to determine the maximum frequency for a particular device.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 47 of 51

DC and AC Electrical Characteristics (UDB Implementation)

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Characteristics

Parameter Description Min Typ [8] Max Units

IDD Component current consumption

8-bit One Output Mode in Continuous Run
Mode

– 6 – µA/MHz

8-bit One output in Continuous Run Mode
with Dither

– 7 – µA/MHz

8-bit Center Aligned Output – 7 – µA/MHz

8-bits One output with Dead Band – 8 – µA/MHz

8-bit Continuous Run mode with Kill Mode – 8 – µA/MHz

16-bit One output in Continuous Run Mode – 10 – µA/MHz

16-bit One output in Continuous Run Mode
with Dither

– 11 – µA/MHz

16 bit Center Aligned Output – 10 – µA/MHz

16-bit One output with Dead Band – 12 – µA/MHz

16-bit Continuous Run mode with Kill Mode – 11 – µA/MHz

AC Characteristics

Parameter Description Min Typ Max [9] Units

fCLOCK Component clock frequency

8-bit One Output Mode in Continuous Run
Mode

– – 50 MHz

8-bit One output in Continuous Run Mode with
Dither

– – 51 MHz

8-bit Center Aligned Output – – 43 MHz

8-bits One output with Dead Band – – 38 MHz

8 Device IO and clock distribution current not included. The values are at 25 °C.

9 The values provide a maximum safe operating frequency of the component. The component may run at higher
clock frequencies, at which point validation of the timing requirements with STA results is necessary.

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 48 of 51 Document Number: 001-97110 Rev. *C

Parameter Description Min Typ Max [9] Units

8-bit Continuous Run mode with Kill Mode – – 49 MHz

16-bit One output in Continuous Run Mode – – 43 MHz

16-bit One output in Continuous Run Mode with
Dither

– – 41 MHz

16 bit Center Aligned Output – – 34 MHz

16-bit One output with Dead Band – – 36 MHz

16-bit Continuous Run mode with Kill Mode – – 40 MHz

Component Errata

This section lists known problems with the component.

Cypress
ID

Component
Version Problem Workaround

215899 All The UDB version of the component has an
incorrect define of the status register mask
for KILL signal (PWM_STATUS_KILL,
PWM_STATUS_KILL_INT_EN_MASK):
(0x00u << PWM_STATUS_KILL_SHIFT)
instead of (0x01u <<
PWM_STATUS_KILL_SHIFT).

It could impact the following APIs:
PWM_SetInterruptMode,
PWM_ReadStatusRegister.

If you are using the interrupt for KILL
signal, use the define (0x01u <<
PWM_STATUS_KILL_SHIFT) for the
following APIs:
PWM_SetInterruptMode(),
PWM_ReadStatusRegister().

209259 All An unintended interrupt pulse can appear
on the interrupt output of the PWM
component during Start() function
execution.

If you are facing this problem, apply the
following workaround:

CyGlobalIntDisable;

PWM_Start();

isr_ClearPending();

CyGlobalIntEnable;

where “isr” is the name of an interrupt
component connected to the interrupt
output of the PWM component.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 49 of 51

Component Changes

This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

3.30.c Updated datasheet. Updated Component Errata section to document an
issue with an incorrect define of the status register mask
for KILL signal.

3.30.b Updated datasheet. Updated Input/Output Connections section.

Updated Functional Description (Run Mode, PWM
Component as a Pulse Generator) section.

3.30.a Updated datasheet. Updated Input/Output Connections section.

Updated Component Parameters section.

Updated Application Programming Interface section.

Updated Functional Description section.

Updated Registers section.

3.30 Addressed an issue where version 3.20
of the PWM component consumes too
many resources.

Reverted fix in the 3.20 version of the PWM component
that addressed output signal behavior when the enable
signal goes low. Projects that use the 3.20 version of the
component contain additional restrictions for the UDB
resources placement, potentially leading to a build
failure.

Updated datasheet. Clarified in the Input/Output Connections section that

“enable” and “reset” signals are synchronous.

Clarified PWM_Enable() API description in the

Application Programming Interface section.

Updated Resources section.

Updated Functional Description section with timing
diagrams to show Enable/Reset signals for the FF and
UDB implementations; removed obsolete information not
related to the PWM component.

Added Component Errata section to document a
potential issue with an unintended interrupt pulse.

3.20 Updated PWM output signals behavior
when enable input signal is low.

Corrected first cycle of the PWM output
signals when enable input signal value is
changed to high.

Corrected PWM output signals behavior for "Greater",
"Greater or Equal" compare modes with enable input
signal dependency.

 Updated datasheet. Updated Component Parameters section.

Updated DC and AC Electrical Characteristics for PSoC
5LP section.

Clarified Firmware Control value for CMP Type 1 / CMP
Type 2 parameters.

Pulse Width Modulator (PWM) PSoC® Creator™ Component Datasheet

Page 50 of 51 Document Number: 001-97110 Rev. *C

Version Description of Changes Reason for Changes / Impact

3.10.a Updated the datasheet. Corrected the Fixed-Function Block Limitations
subsection.

Clarify the Input/Output Connections section.

Clarify the side effects for the Start API.

3.10 Added support for Bluetooth Low Energy
devices.

Updated the datasheet. Clarify API usage (updated API descriptions).

3.0.b Updated the datasheet. Clarified PWM_WriteControlRegister API description.

Clarified Reset signal behavior.

Updated DC and AC Electrical Characteristics (FF
Implementation) sections.

Updated dead time parameter description.

3.0.a Updated the datasheet. Clarified the dither description and removed references
to obsolete PSoC 5 device.

3.0 Changed ph2 output behavior when kill
high in the UDB implementation from high
to low

2.40 Added PSoC 4 support.

2.30 Added MISRA Compliance section. The component does not have any specific deviations.

 Updated API description. Not full descriptions in previous version.

 Updated incorrect figures.

2.20 Removed WriteCounter() API support for
Fixed Function PWM.

This function is not supported in Fixed function PWM.

Updated the customizer to fix the issue
with waveform display

The waveform is not displayed properly.

2.10 Customizer related updates To fix minor GUI related issues.

Updated PWM_RestoreConfig() API To fix an issue with interrupt trigger after wakeup from
low power mode.

Updated PWM_Stop() and
PWM_Enable() APIs

To enable the alternate active power mode for FF PWM.

Updated PWM_SaveConfig() and
PWM_RestoreConfig()updates

To restore PWM period register after wakeup.

Added PSoC 5 FF DC and AC
characteristics to datasheet

2.0.a Datasheet updates

2.0 Synchronized inputs All inputs are synchronized in the fixed function
implementation, at the input of the block.

PSoC® Creator™ Component Datasheet Pulse Width Modulator (PWM)

Document Number: 001-97110 Rev. *C Page 51 of 51

Version Description of Changes Reason for Changes / Impact

PWM_GetInterruptSource() function was
converted to a Macro

The PWM_GetInterruptSource() function is exactly the
same implementation as the
PWM_ReadStatusRegister() function. To save code
space this was converted to a macro substitution of the
PWM_ReadStatusRegister() function.

Outputs are now Registered to the
component clock

To avoid glitches on the outputs of the component it was
required that all outputs are synchronized. This is done
inside of the Datapath when possible, to avoid excess
resource usage.

Implemented critical regions when writing
to Aux Control registers.

CyEnterCriticalSection and CyExitCriticalSections
functions are used when writing to Aux Control registers
so that it is not modified by any other process thread.

Added characterization data to datasheet

Minor datasheet edits and updates

© Cypress Semiconductor Corporation, 2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	When to Use a PWM

	Input/Output Connections
	Component Parameters
	Hardware versus Software Configuration Options
	Configure Tab (Default Configuration)
	Implementation
	Resolution
	PWM Mode
	Period (Software)
	CMP Value 1 / CMP Value2 (Software)
	Dither Offset
	Alignment
	CMP Type 1 / CMP Type 2 (Software)
	Dead Band
	Dead Time (Software)

	Advanced Tab (Default Configuration)
	Enable Mode
	Run Mode
	Trigger Mode
	Kill Mode
	Minimum Kill Time (Software)
	Capture Mode
	Interrupts

	Local Parameters (For API usage)

	Clock Selection
	For UDB-Based Components

	Application Programming Interface
	Functions
	void PWM_Start(void)
	void PWM_Stop(void)
	void PWM_SetInterruptMode(uint8 interruptMode)
	uint8 PWM_ReadStatusRegister(void)
	uint8 PWM_ReadControlRegister(void)
	void PWM_WriteControlRegister(uint8 control)
	void PWM_SetCompareMode(enum comparemode)
	void PWM_SetCompareMode1(enum comparemode)
	void PWM_SetCompareMode2(enum comparemode)
	uint8/16 PWM_ReadCounter(void)
	uint8/16 PWM_ReadCapture(void)
	void PWM_WriteCounter(uint8/16 counter)
	void PWM_WritePeriod(uint8/16 period)
	uint8/16 PWM_ReadPeriod(void)
	void PWM_WriteCompare(uint8/16 compare)
	uint8/16 PWM_ReadCompare(void)
	void PWM_WriteCompare1(uint8/16 compare)
	uint8/16 PWM_ReadCompare1(void)
	void PWM_WriteCompare2(uint8/16 compare)
	uint8/16 PWM_ReadCompare2(void)
	void PWM_WriteDeadTime(uint8 deadband)
	uint8 PWM_ReadDeadTime(void)
	void PWM_WriteKillTime(uint8 killtime)
	uint8 PWM_ReadKillTime(void)
	void PWM_ClearFIFO(void)
	void PWM_Sleep(void)
	void PWM_Wakeup(void)
	void PWM_Init(void)
	void PWM_Enable(void)
	void PWM_SaveConfig(void)
	void PWM_RestoreConfig(void)

	Global Variables
	Sample Firmware Source Code
	MISRA Compliance
	API Memory Usage

	Functional Description
	Block Diagram and Configuration
	Default Configuration
	Fixed-Function Block Limitations
	PWM Mode
	One Output
	Two Outputs
	Dual Edge
	Center Aligned
	Hardware Select
	Dither

	Dead Band
	Kill Mode
	Asynchronous
	Single Cycle
	Latched
	Minimum Time

	Run Mode
	Continuous
	One Shot Single
	One Shot Multi

	PWM Component as a Pulse Generator
	Enable / Reset Signals in UDB Implementation
	Reset Signal in Fixed Function Implementation
	Immediate Reaction to Enable/Reset signals

	Registers
	Status
	PWM_STATUS_TC *
	PWM_STATUS_CMP1 *
	PWM_STATUS_CMP2 *
	PWM_STATUS_KILL
	PWM_STATUS_FIFOFULL

	Control (UDB)
	PWM_CTRL_ENABLE
	PWM_CTRL_CMPMODE1_MASK
	PWM_CTRL_CMPMODE2_MASK

	Control (FF)
	Period (8 or 16-bit based on Resolution)
	Compare1/Compare2 (8 or 16-bit based on Resolution)
	Period Counter (8 or 16-bit based on Resolution)
	Conditional Compilation Information
	PWM_Resolution
	PWM_UsingFixedFunction
	PWM_DeadBandMode
	PWM_KillModeMinTime
	PWM_KillMode
	PWM_PWMMode
	PWM_PWMModeIsCenterAligned
	PWM_DeadBandUsed
	PWM_DeadBand2_4
	PWM_UseStatus
	PWM_UseControl
	PWM_UseOneCompareMode
	PWM_MinimumKillTime
	PWM_EnableMode

	Constants

	Resources
	DC and AC Electrical Characteristics for PSoC 3 (FF Implementation)
	DC Specifications
	AC Specifications

	DC and AC Electrical Characteristics for PSoC 5LP (FF Implementation)
	DC Specifications
	AC Specifications

	DC and AC Electrical Characteristics (UDB Implementation)
	DC Characteristics
	AC Characteristics

	Component Errata
	Component Changes

