
Development of a Low-Cost Potentiostat with Cyclic
Voltammetry and Amperometry Techniques
Implemented
A Prototype Platform for Medical Applications using a
Programmable System on Chip (PSoC)

Olav Bjerke
Thesis submitted for the degree of Master in Physics,
60 credits, Autumn 2020

Abstract

The Oslo Bioimpedance and Medical Technology Group at the Department of
Physics (UiO) and the Department of Clinical and Biomedical Engineering (OUS)
are involved in an EU-project named Training4CRM. The purpose of the project
is to address gaps in Cell-based Regenerative Medicine (CRM) to treat neurode-
generative disorders, among others, Parkinson’s disease. A potentiostat is needed
to detect and characterize Dopamine in the project.

This thesis investigates the feasibility of making a prototype potentiostat on
the PSoC 5LP by Cypress Semiconductors for Training4CRM. The device is small,
portable, low-cost, and has extensive amounts of documentation. The firmware
and software code needed to set up and control the potentiostat is provided and
explained throughout the thesis.

The developed potentiostat was tested and verified as functioning, with some
flaws considering noise. The noise issue was corrected and documented in the dis-
cussion, but the device lacks testing after the correction. The device was compared
with another potentiostat developed on the same platform.

i

ii

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goals . 3

2 Theoretical Background 5
2.1 Electrochemistry . 5

2.1.1 Half-Cell Potential . 6
2.1.2 The Electrode . 6
2.1.3 The Nernst Equation . 7

2.2 Potentiostat . 8
2.2.1 The Three-Electrode System 9

2.2.1.1 Working Electrode 10
2.2.1.2 Reference Electrode 10
2.2.1.3 Counter Electrode 10

2.2.2 Proof of Regulation . 10
2.2.3 Schematic and Components 12

2.2.3.1 Digital to Analog Converter 13
2.2.3.2 Operational Amplifier (Control Amplifier) 14
2.2.3.3 Transimpedance Amplifier 15
2.2.3.4 Analog to Digital Converter 16
2.2.3.5 Microcontroller . 16

2.3 PSoC-Stat: A single chip open source potentiostat by Lopin and
Lopin (2018) . 17

3 Material 19
3.1 Embedded Platform . 19
3.2 Electrodes . 22

4 Method 23
4.1 Electroanalytical Techniques . 23

4.1.1 Cyclic Voltammetry . 23

iii

iv CONTENTS

4.1.1.1 Cyclic Voltammogram 24
4.1.1.2 Scan Rate . 26

4.1.2 Amperometry . 26
4.2 Potentiostat . 27

4.2.1 Instrument Setup . 27
4.2.1.1 Hardware setup . 27
4.2.1.2 Firmware, Software, and Driver Setup 30

4.2.2 Graphical User Interface . 30
4.2.2.1 Cyclic Voltammetry 31
4.2.2.2 Amperometry . 32
4.2.2.3 Saving of Data . 32

4.2.3 Electrode Preparation . 33

5 Instrument Design and Development 35
5.1 System Overview . 35
5.2 Potentiostat - Hardware . 36

5.2.1 Documentation . 37
5.2.2 Schematic Overview . 38
5.2.3 Applied Voltage . 38
5.2.4 Current Measurement . 39
5.2.5 Timing . 40
5.2.6 Communication and Display 40

5.3 Potentiostat - Firmware . 41
5.3.1 Overview . 41
5.3.2 Communication During Scans 42
5.3.3 Cyclic Voltammetry . 43
5.3.4 Amperometry . 45

5.4 Potentiostat - Software . 45
5.4.1 Software Overview . 46
5.4.2 Communication . 46
5.4.3 Constants . 47
5.4.4 Graphical User Interface . 48
5.4.5 Userinput . 48
5.4.6 Functionality . 49

6 Results 51
6.1 Cyclic voltammetry . 51

6.1.1 Ferri-/Ferrocyanide 1mM . 53
6.1.1.1 Measurement - 1 Cycle - Scan Rate 50 mV/s 53
6.1.1.2 Measurement Corrected - 1 Cycle - Scan Rate 50

mV/s . 54

CONTENTS v

6.1.1.3 Measurement - 5 Cycles - Scan Rate 50 mV/s . . . 55
6.1.1.4 Measurement Corrected - 5 Cycles - Scan Rate 50

mV/s . 56
6.2 Amperometry . 57

7 Discussion 59
7.1 Results - Cyclic Voltammetry . 59

7.1.1 Noise . 60
7.1.2 Voltammogram Shape . 62

7.2 Comparison of the Potentiostats . 63

8 Conclusions and Further Work 65
8.1 Conclusion . 65
8.2 Further Work . 66

Appendix 73
8.3 Firmware . 73

8.3.1 Source Code (.c-files) . 73
8.3.1.1 main.c . 73
8.3.1.2 general_functions.c 79
8.3.1.3 usb_protocol.c . 84

8.3.2 Header Code (.h-files) . 87
8.3.2.1 globals.h . 87
8.3.2.2 general_functions.h 89
8.3.2.3 usb_protocol.h . 90

8.4 Software . 91
8.4.0.1 Potentiostat_GUI.py 91
8.4.0.2 Potentiostat_userinput.py 101
8.4.0.3 Potentiostat_functionality.py 106
8.4.0.4 Potentiostat_communication.py 111
8.4.0.5 Potentiostat_Constants.py 113

8.5 Potentiostat Datasheet . 116

vi CONTENTS

List of Figures

2.1 Illustration of the basic prinicple of a redox reaction. Adapted from
Chang (2008). 5

2.2 A simplified schematic of a three-electrode system. Adapted from
Gamry Instruments (2020) . 9

2.3 Equivalent circuit to a three-electrode system. Adapted from Umar
et al. (2018). 11

2.4 A simplifies schematic of a potentiostat. 13
2.5 Difference between the output voltage from an 8-bit DAC and an

analog signal. 14
2.6 Schematic of a transimpedance amplifier, also called a current-to-

voltage converter (Scherz and Monk, 2016). 15

3.1 Illustration of the PSoCs build-up and sub-system (Cypress Semi-
conductors, 2020b). 21

3.2 Illustration of the size differences between the PSoC5 LP develop-
ment board, prototyping board, TQFP packaging and QFN pack-
aging. The illustration is made by Ruud (2019). 21

3.3 Too the left, a close-up of the carbon electrode chip used in this
thesis is displayed. Here the electrode chip is mounted in a chip
holder with wires attached, and a solution covering the electrodes.
On the right side, a cross section of the electrode chip is displayed
(Hassan et al., 2017). 22

4.1 An example of the applied voltage for a cyclic voltammetry ex-
periment. Here two cycles are displayed. The starting voltage is
deliberately chosen at another position than the minimum voltage,
they are often the same. The scan rate is also visualized in the figure. 24

4.2 The process of cyclic voltammetry displayed in a cyclic voltammo-
gram. Adapted from Elgrishi et al. (2018). 25

4.3 Overview of the PSoC5LP development kit. Image is taken from
the development kit start-up guide (Cypress Semiconductors, 2020d). 28

vii

viii LIST OF FIGURES

4.4 Overview of the PSoC5LP development kit. A: The arrows points
to where the electrodes and analog ground shall be connected. B:
Connection for communication with computer and power to the
device. C: Correct placement of jumpers. Image is taken from the
development kit start-up guide (Cypress Semiconductors, 2020d). . 29

4.5 Graphical user interface for the potentiostat. 31

5.1 The figure illustrates a system overview for the potentiostat, both
software and hardware. On the software side of the overview, the
blocks’ names refer to the names of the Python classes used. The
hardware block is the schematic from PSoC Creator. 36

5.2 A block diagram / schematic of the potentiostat. 38

5.3 An overview of the firmware of the potentiostat. "main.c" has a
main loop that checks the input of the USB interface for each iter-
ation. If there is an input, one of the colored blocks will initialize.
The initialization involves a configuration of a component (black
boxes), an enable signal for one or several components, or a disable
signal for one or several components. 42

5.4 An overview of the software of the potentiostat. Blue corresponds
to cyclic voltammetry, green corresponds to amperometry, black
corresponds to both cyclic voltammetry and amperometry functions
or general settings. 46

6.1 Cyclic voltammogram of 1 mM Ferri-/Ferrocyanide with a scan rate
of 50 mV/s, 1 cycle. Ref is the potentiostat by Lopin and Lopin
(2018), Raw is the measurements from the potentiostat from this
thesis, Average is a moving average of 5% of the raw data. 53

6.2 Cyclic voltammogram of 1 mM Ferri-/Ferrocyanide with a scan rate
of 50 mV/s, 1 cycle. Ref is the potentiostat by Lopin and Lopin
(2018), Raw x factor is the corrected measurements with the poten-
tiostat from this thesis, Average is a moving average of 5% of the
raw data. 54

6.3 Cyclic voltammogram of 1 mM Ferri-/Ferrocyanide with a scan rate
of 50 mV/s.5 cycles for the potentiostat in this thesis, 1 cycle for the
reference. Ref is the potentiostat by Lopin and Lopin (2018), Raw
is the measurements from the potentiostat from this thesis, Average
is a moving average of 5% of the raw data. 55

LIST OF FIGURES ix

6.4 Cyclic voltammogram of 1 mM Ferri-/Ferrocyanide with a scan rate
of 50 mV/s. 5 cycles for the potentiostat in this thesis, 1 cycle for
the reference. Ref is the potentiostat by Lopin and Lopin (2018),
Raw x factor is the corrected measurements with the potentiostat
from this thesis, Average is a moving average of 5% of the raw data. 56

6.5 Amperometry measurement of 1 mM dopamine. 20 µL were applied
every 8th second for 62 seconds. 350 mV of applied voltage were
provided by the potentiostat. 57

7.1 Snippet of the schematic of the potentiostat. The output capacitor
of the DVDAC is wrongly placed causing switching noise on the
working electrode. 60

7.2 Picture of oscilloscope during an AC analysis of the counter elec-
trode vs. analog ground. A 100 nF capacitor is mounted directly
to the counter electrode output of the potentiostat. 61

7.3 Picture of oscilloscope during an AC analysis of the counter elec-
trode vs. analog ground. A 100 nF capacitor is mounted between
the DAC and the control amplifier vs analog ground. 61

x LIST OF FIGURES

Acknowledgement

I would like to express my deepest gratitude to my supervisor Ørjan Grøttem Mar-
tinsen. You gave me the exciting opportunity to research and write about medical
electronics, and you have given me lots of support throughout the work of this
thesis.

A big thanks to my co-supervisors Christin Schuelke and André Cunha. They
have both joined in on good discussions and taught me a lot each time. I would
like to express extra gratitude to Christin Schuelke for taking some of her personal
time to support me in the lab during measurements.

During my time at the University of Oslo, I have been a member of Real-
istforeningen, and I still am writing this. The association has taken a massive
amount of my time during my degrees, but I do not regret it at all. This is also
where I met my fiancee, and I would never undo that. Thank you for all the fun
Realistforeningen.

I have met way too many people during my time at the university to show my
gratitude to each one of them, but some of you that have made a special friendship
with me. So to you, I would like to give my sincerest gratitude.

To my mom, my dad, and my sister, I would like to express how much it has
meant for me that you have supported me through all of these years. There have
been some bumps along the way, but you have always given me some motivational
words to keep me going. This has meant the world to me. Thank you!

And finally, to my fiancee Jeanette. You have lifted me up, kept me strong,
and inspired me to never give up. We have started a life together, and our family
is growing as I write this ("Hi, Junior!") with Penny along, always happy to see
us. To all of you, I love you. Thank you!

Olav Bjerke, October 2020, Algarheim

xi

xii LIST OF FIGURES

Chapter 1

Introduction

1.1 Background and Motivation

The Oslo Bioimpedance and Medical Technology Group at the Department of
Physics, UiO, and the Department of Clinical and Biomedical Engineering, OUS,
are involved in an EU-project named Training4CRM. The purpose of the project is
to address gaps in Cell-based Regenerative Medicine (CRM) to treat neurodegener-
ative disorders, among others, Parkinson’s disease. In the research on Parkinson’s
disease, the amount of dopamine in the brain is less than normal. Training4CRM
is planning to develop a device that can measure the amount of dopamine and
generate the needed amount with optogenetically modified human stem cells, and
in the end, implement such a device in the human brain.

Dopamine is an electroactive neurotransmitter that can be analyzed with elec-
troanalytical techniques such as amperometry and cyclic voltammetry (Bucher
and Wightman, 2015). Amperometry is a technique that can measure the amount
of substance in an analyte (David, 2013). Cyclic voltammetry is usually used
to analyze redox processes and obtain the stability of reaction products (Elgrishi
et al., 2018). To conduct these types of electroanalytical techniques, a potentio-
stat is needed. A potentiostat is a device used in electrochemistry to study the
relation between electricity and chemical solutions (Elgrishi et al., 2018). Electron-
transfer from one element to another generates the electricity and is called a redox
(oxidation-reduction) reaction. With a potentiostat, it is possible to analyze a
redox reaction and gather information about its electrochemical properties.

Potentiostats are commonly desktop versions and are expensive (Dryden and
Wheeler, 2015). Today, with inexpensive microcontrollers and other electronics,
several potentiostats are small and inexpensive; some also have wireless data trans-

1

2 CHAPTER 1. INTRODUCTION

fer. The DStat by Dryden and Wheeler (2015) is a potentiostat developed from
scratch, meaning that the entire potentiostat is produced on a produced PCBA
(Printed Circuit Board Assembly). Dryden and Wheeler designed the schematic
with relatively affordable components and have shared their design as open-source.
They document measurements that are comparable with commercial potentiostats.
Another potentiostat developed by Ainla et al. (2018) named UWED is based on a
microcontroller with an RFDUINO Bluetooth adapter attached to make the data
transfer wireless. As the DStat, the UWED is comparable with a commercial po-
tentiostat and is also relatively affordable. By comparable, it is meant as not as
precise in measurement as commercial potentiostats, but with only small devia-
tions.

The suggested platform in the Training4CRM project is PSoC5LP by Cypress
Semiconductor. PSoC 5LP is a versatile platform since it is a Programmable Sys-
tem on Chip (PSoC), which implies a microcontroller with configurable hardware
on the platform. One of such a platform’s benefits is that there is no need for
external components since they are already integrated and configurable. Both the
DStat and UWED are custom built and have to be produced for testing, versus
a PSoC where all the configurations can be developed directly on a development
board.

During the research, and after starting the development of a potentiostat on
PSoC5LP, a new article by Lopin and Lopin (2018) was discovered. Lopin and
Lopin (2018) developed a potentiostat on the PSoC5LP prototyping platform,
where they documented promising results as for the DStat and UWED. Their
work was open-source, with all configurations and software code available. Based
on the recently published article by Lopin and Lopin (2018), it was decided during
the work for this thesis to use their work as the base for a new potentiostat.

From the research on potentiostats, there are often documentation missing. As
an example, the miniStat by Adams et al. (2019) lacks open-source software and
firmware. However, they have documented how each component in the potentio-
stat is behaving, the purpose of each component, and how to use it. The problem
occurs when there is a need to re-develop such an instrument. Here, Lopin and
Lopin’s work is standing out. Nevertheless, there are some difficulties with the
documentation by Lopin and Lopin; the code (both software and firmware) is very
complex and challenging to follow, and therefore also difficult to modify. To make
sure the work in this thesis is easy to reproduce, all of the code will be well docu-
mented and explained throughout the thesis.

1.2. GOALS 3

1.2 Goals

This thesis will research and develop an example of an inexpensive and small
potentiostat as a prototype for the Training4CRM project. Its main purpose is
to develop a potentiostat that can conduct experiments with the electroanalytical
techniques cyclic voltammetry and amperometry. The hardware and software shall
be well documented for future use. A simple Graphical User Interface (GUI) will
be developed. As a starting point for the thesis, the firmware and software devel-
oped by Lopin and Lopin (2018) will be used. The software will be re-developed,
and the system will be simplified for ease of use and the possibility to implement
other functionalities in the Training4CRM project. Possible improvements of the
potentiostat by Lopin and Lopin (2018) will also be researched.

This thesis seeks to answer:

1. Is PSoC by Cypress an appropriate platform for a potentiostat?

2. Is the work by Lopin and Lopin (2018) sufficient as a potentiostat?

3. If the work by Lopin and Lopin (2018) is sufficient for a potentiostat, are
there any improvements that are possible to implement?

4 CHAPTER 1. INTRODUCTION

Chapter 2

Theoretical Background

2.1 Electrochemistry

This section is based on chapter 19 in "General chemistry : the essential concepts"
(Chang, 2008).

Electrochemistry is a branch of chemistry that studies the relationship between
electrical energy and chemical energy; or the relationship between electricity and
an identifiable chemical change. The electrochemical process is called a redox
(oxidation-reduction) reaction where electrons are transferred from one substance
to another. A substance losing an electron is oxidized and is called the reducing
agent, while the substance receiving an electron is reduced and is called the oxidiz-
ing agent. By applying this on figure 2.1, A loses an electron and becomes more
positive, and is thus oxidized by B. The same approach can be used on B, where
B becomes more negative and is thus reduced by A.

A B

REDUCING AGENT OXIDIZING AGENT

e-

Figure 2.1: Illustration of the basic prinicple of a redox reaction. Adapted from
Chang (2008).

5

6 CHAPTER 2. THEORETICAL BACKGROUND

By definition, a redox reaction involves both oxidation and reduction of a sub-
stance. The atoms’ electrons will not freely move away from the atom as long as
the positive nuclear charge (protons in the atom) and the surrounding electrons
are in equilibrium. Thus, redox reactions involve both positively- and negatively
charged ions. This reaction can be divided into two half-cell potentials in which
one can study the electron transfer in a solution.

2.1.1 Half-Cell Potential

The solution mentioned in the previous section is more precisely an electrolyte.
An electrolyte is a substance that contains ions free to move with a positive or
negative charge. The ions act as charge carriers in the electrolyte, as electrons are
charge carriers in metals. Current, the movement of charged particles per time,
is divided between ionic current and electronic current. For this thesis, the ion
movement of interest is electrophoresis; the movement of charged particles due to
an exogenous electric field (Grimnes and Martinsen, 2015).

To measure the ionic current in an electrolyte, the current has to be trans-
formed into an electric current. By inserting two electrodes in an electrolytic cell,
a completed circuit establishes which will let the ionic current transform to the
electric current flowing through the circuit. One electrode will be oxidized, and
the other reduced. These two electrodes are both defined as half-cell potentials.
The half-cell potentials of each electrode can summarize the overall potential of
the electrolytic cell (Chang, 2008).

2.1.2 The Electrode

As mentioned in the previous section, each electrode works as a half-cell and is
where the ionic current transforms into the electric current. This section will de-
scribe what happens at the electrodes and about different types of electrodes. The
information in this section is found in chapter 7 of "Bioimpedance and bioelectric-
ity" by Grimnes and Martinsen (2015).

By itself, an electrode is just a conducting material. With two electrodes, a
circuit is closed, and there can be conductivity in the electrolytic cell. The elec-
trode is said to be polarized when electrons are flowing through it. One of the
basic phenomena at a polarized electrode is called the electric double layer. This
layer is relatively thin and is the boundary between the electric conductor (the
electrode) and the ionic conductor (the electrolyte). The ions in a bulk electrolyte
are free to move except at the electrode. At the electrode, bonds establish caused

2.1. ELECTROCHEMISTRY 7

by the charge distribution in the double layer. Since the electrodes consist of a
conducting material with atoms in strict bonds, the double layer occurs in the
electrolyte. The electric double layer is where the transfer of electrons happens,
from ionic current to electric current.

In a bulk electrolyte with polarized electrodes, ions flow toward an electrode
with opposite polarity. The electric double layer will occur nearly instantly, but the
ionic current will reach a peak. The current peak is due to another phenomenon
that takes place in an electrolyte called diffusion. Diffusion is the tendency for
components in a solution to flow from higher concentration to lower concentra-
tion. The phenomena occur due to random motions in the solution, related to
Brownian motion, and is described by Fick’s law. As the concentration of the
solution at the electrode grows, the diffusion layer grows. The concentration in
the diffusion layer decreases exponentially the further away from the electrode the
ions are. At some point, the ions will no longer be affected by the electrode, which
gives the current peak and a decrease of ionic current towards the electrode. The
consequence of Fick’s law is essential to understand what happens in the elec-
trolyte during measurements.

2.1.3 The Nernst Equation

This section is based on chapter 19 in "General chemistry: the essential con-
cepts" (Chang, 2008) and chapter 7.6.2 in "Bioimpedance and bioelectricity ba-
sics" (Grimnes and Martinsen, 2015).

An essential tool to understand the output of experiments in an electrolytic
cell is the Nernst equation (see equation 2.1). The equation gives the relationship
between the half-cell reduction potential and the electrode potential, temperature,
and chemical concentration.

E = E0 +
RT

nF
· ln (Ox)

(Red)
(2.1)

In the Nernst equation (2.1), E is the reduction half-cell potential, E0 is the
standard reduction half-cell potential in equilibrium, RT is the universal gas con-
stant multiplied by the environmental temperature (in Kelvin), nF is the number
of electrons transferred in the reaction multiplied by the Faraday constant, and
Ox
Red

is the relative activities of the oxidized and reduced analyte in the system. Ox
Red

is equivalent to the concentration of the reducing- and oxidizing agent, and can be
expressed as follows (see equation 2.2):

8 CHAPTER 2. THEORETICAL BACKGROUND

E = E0 +
RT

nF
· ln (COx)

(CRed)
(2.2)

In room temperature, the factor RT
nF

can be replaced with approximately 61 mV
which simplifies the equation to (see equation 2.3):

E = E0 + 0.061 · log (COx)

(CRed)
(2.3)

Note that the logarithm is changed to base 10 instead of e. The purpose of
simplifying the Nernst equation is to visualize that the potential in the electrolytic
cell can be simplified to:

• E0, the potential in equilibrium

• RT
nF

, a factor dependent on temperature

• (COx)
(CRed)

, the ratio of the oxidizing- and reducing agent

In other words, the Nernst equation estimates the potential of the reduction half-
cell by knowing the concentration of the electrolytes in the electrolytic cell. The
equation prerequisites that the reaction in the electrolytic cell is reversible. A
reversible reaction is when reactants and products can react and return the reac-
tants; a reaction where no bi-products occur.

2.2 Potentiostat

This section is based on an introduction to potentiostats by Gamry Instruments
(2020). It will explain what a potentiostat is, what it does, and why it is a versatile
instrument to conduct electrochemistry measurements.

A potentiostat is an electronic hardware device that controls the voltage differ-
ence between two electrodes; the working electrode and the reference electrode. An
ionic current is flowing from a third electrode, the counter electrode, to the work-
ing electrode. All of the electrodes are in contact with the electrolytic cell. The
primary usage of a potentiostat is to measure the current flow from the counter-
to the working electrode while controlling the potential in the electrolytic cell.
Sensing the voltage difference between the reference electrode and the working
electrode achieves regulation of the voltage in the cell by adjusting the current
from the counter electrode.

2.2. POTENTIOSTAT 9

2.2.1 The Three-Electrode System

This section is based on chapter 7.10.2 in "Bioimpedance and bioelectricity basics"
by Grimnes and Martinsen (2015).

Electroanalytical experiments need at least two half-cells (two electrodes) to
be achievable. An ionic current will flow through the cell between the electrodes
by applying a voltage over the electrolytic cell. By utilizing only two electrodes,
the problem is that the applied voltage will be dependent on the current due to
Ohm’s law: U = R · I. Hence, there will be difficulties controlling the applied
voltage.

A common method to avoid this problem is to utilize three electrodes. The
general principle is that the current will flow between the counter electrode and
the working electrode (see figure 2.2), while the reference electrode senses the volt-
age over the cell without any current flowing through the electrode (high input
impedance).

COUNTER ELECTRODE

WORKING ELECTRODE

REFERENCE ELECTRODE

CONTROL AMPLIFIER

INPUT VOLTAGE

CURRENT SENSING

ELECTROLYTIC

CELL

- CURRENT FLOW

V - VOLTAGE IN CELL

THREE-ELECTRODE

SYSTEM

V

Figure 2.2: A simplified schematic of a three-electrode system. Adapted from
Gamry Instruments (2020)

By sensing the voltage, the reference electrode feeds the measured voltage back
to a control amplifier. The control amplifier has two inputs; on the positive in-
put, the desired voltage is applied; on the negative input, the reference electrode’s
feedback is applied. The output of the control amplifier is the difference between
the two inputs. In conclusion, the three-electrode configuration can regulate the

10 CHAPTER 2. THEORETICAL BACKGROUND

voltage because of the reference electrode versus a two-electrode system.

For the electrodes to serve their purpose, some choices concerning the electrode
geometry and material are needed. The material should be an inert material like
inert metals (e.g., gold or platinum) or inert carbon materials (e.g., glassy car-
bon). A reference electrode should have a constant electrochemical potential when
no current is flowing through it. Ag/AgCl is a common choice of material.

Section 2.2.1.1, 2.2.1.2 and 2.2.1.3 describe the different electrodes in the three-
electrode system, and are all based on a document made by Gamry Instruments
(Gamry Instruments, 2020).

2.2.1.1 Working Electrode

The working electrode is the electrode where the current is measured and where
the electrochemical reaction occurs (as described in section 2.1.2). Its purpose is
to transfer charge to and from the analyte.

2.2.1.2 Reference Electrode

The reference electrodes’ purpose is to sense the potential in the cell. The elec-
trode has to have very high impedance so that an infinitesimal amount of current is
flowing through it. The input of the control amplifier obtains the high impedance,
which ideally has infinite input impedance. The electrode should have a known
half-cell potential and should not be affected by reactions occurring in the cell.

2.2.1.3 Counter Electrode

The counter electrodes’ purpose is to complete the circuit. When current flows
through the working electrode, the voltage difference between the working elec-
trode and the reference electrode changes. The potentiostat will instantly regulate
that change in a regulation loop by pumping an equal amount of current back
into the electrolytic cell through the counter electrode. Due to this regulation, the
potentiostat controls the voltage in the cell.

2.2.2 Proof of Regulation
To fully understand the regulation in the circuit, a proof will be provided. The
proof is adapted from Umar et al. (2018).

2.2. POTENTIOSTAT 11

The three-electrode system is visualized in figure 2.3 as an equivalent circuit.
Vin is the desired applied voltage, Vout is the output voltage from the control am-
plifier, Vr is the reference voltage, Z1 and Z2 is a voltage divider for the reference
electrode, and the working electrode has ground (return path) as the common ref-
erence for the entire system.

COUNTER ELECTRODE

WORKING ELECTRODE

REFERENCE ELECTRODE

CONTROL AMPLIFIER

Vin

ELECTROLYTIC

CELL

Z1

Z2

Vr

Vout

REGULATION

EQUIVALENT

Figure 2.3: Equivalent circuit to a three-electrode system. Adapted from Umar
et al. (2018).

The current flowing through the electrolytic cell originates at the counter elec-
trode and flows through Z1 and Z2 to the working electrode and ground. As
mentioned earlier, there is ideally zero current flowing through the reference elec-
trode.

Vr can be rewritten as in equation 2.4 due to the voltage divider:

Vr =
Z2

Z1 + Z2

· Vout (2.4)

The control amplifier has an amplification (denoted A), and as mentioned ear-
lier, the output of the control amplifier is the difference between the positive and
negative input. This sums up to equation 2.5:

Vout = A · (Vin − Vr) (2.5)

By combining equation 2.4 and 2.5, and denoting β = Z2

Z1+Z2
, it gives equation

2.6:

12 CHAPTER 2. THEORETICAL BACKGROUND

Vr = β · A(Vin − Vr)→
Vr
Vin

=
1

1 + 1
Aβ

(2.6)

Equation 2.6 is a proof that the relation between Vr and Vin is only depen-
dent on the maximum amplification of the control amplifier (A) and the series of
impedance in the cell. The relation is as follows:

Aβ � 1 =⇒ Vr
Vin
→ 1 =⇒ Vr = Vin (2.7)

Equation 2.7 shows that the control amplifier will keep the voltage between the
reference electrode and the working electrode close to the applied voltage. This
equation is the essence of how the potentiostat operates.

2.2.3 Schematic and Components

The three-electrode system described in section 2.2.1 is the crucial part of a po-
tentiostat. To build the system, there is a need for a device generating the desired
applied voltage, a device that can measure the current flowing through the working
electrode, and a device to read out the measured current. A simplified schematic
has been made in figure 2.4 to give an overview of the components usually used in
the development of a potentiostat. This section will describe the functionality of
each of the components.

2.2. POTENTIOSTAT 13

COUNTER ELECTRODE

WORKING ELECTRODE

REFERENCE ELECTRODE

CONTROL AMPLIFIER

ELECTROLYTIC CELL

POTENTIOSTAT

OVERVIEW
DAC

Rf

ADC

CPU

TRANSIMPEDANCE

AMPLIFIER

Figure 2.4: A simplifies schematic of a potentiostat.

2.2.3.1 Digital to Analog Converter

To generate a desired voltage, a DAC (Digital to Analog Converter) is often a
preferred component (Gamry Instruments, 2020). The component has a limited
voltage range where the total range is divided by the number of bits, which is
the resolution of the DAC (Cypress Semiconductors and Infineon, 2020a). As an
example, a DAC with a voltage range of 1 V and 8-bits will have a resolution
calculated in the following way: ∆V = 1V

28
= 1V

256
≈ 3.9mV . This voltage step

is often called the LSB (Least Significant Bit). Since the component is digital,
it can not generate every possible voltage between 0 V and 1 V. The DAC can
generate every possible voltage step on the form N ·∆V where the maximum value
of N = 256 − 1 (see figure 2.5). A large variety of resolutions and voltage range
for DACs exists (Digikey and Mouser are examples of places to see the variety).

14 CHAPTER 2. THEORETICAL BACKGROUND

Voltage /

LSB Steps

Time

3.9 mV / 1

7.8 mV / 2

11.7 mV / 3

15.6 mV / 4

17.5 mV / 5

23.4 mV / 6

3.9 mV / 1

7.8 mV / 2

11.7 mV / 3

15.6 mV / 4

17.5 mV / 5

23.4 mV / 6

DAC output voltage

Desired analog output voltage

Figure 2.5: Difference between the output voltage from an 8-bit DAC and an
analog signal.

2.2.3.2 Operational Amplifier (Control Amplifier)

The control amplifier was described in section 2.2.2, but the list below has some
of the most important aspects for an ideal operational amplifier (OPAMP) listed
(Scherz and Monk, 2016):

• The open-loop voltage gain is infinite, meaning that the OPAMP has infinite
amplification.

• The inputs (positive and negative) have very high input impedance (ideally
infinite).

• The output has very low output impedance (ideally zero).

• The inputs draw zero current.

• The general formula is Vout = A0(V+−V−), where Vout is the output voltage,
A0 is the amplification, V+ and V− are respectively the positive and negative
inputs.

It is important to clarify that the list above are notes for an ideal OPAMP.
For real OPAMPs, there are limitations to all the notes above. However, for many

2.2. POTENTIOSTAT 15

purposes, the real OPAMPs behave very similarly to the notes above, with only
small deviations in the result.

2.2.3.3 Transimpedance Amplifier

A transimpedance amplifier, also called a current-to-voltage converter, has the
purpose of converting current to voltage (Scherz and Monk, 2016). One of the
purposes of a potentiostat is to measure the current flowing through the working
electrode, and the transimpedance amplifier is one alternative to achieve that.

Rf

TRANSIMPEDANCE

AMPLIFIER

Iin

Vout

Figure 2.6: Schematic of a transimpedance amplifier, also called a current-to-
voltage converter (Scherz and Monk, 2016).

In figure 2.6, a schematic of a transimpedance amplifier has been provided.
From the theory of operational amplifiers provided in section 2.2.3.2, the current
flowing from Iin can only flow through Rf since the negative input of the OPAMP
draws no current. By Ohm’s law, the output voltage has to be Vout = Rf · Iin.

When the output voltage is sampled the current can be calculated by reversing

16 CHAPTER 2. THEORETICAL BACKGROUND

Ohm’s law like this (equation 2.8):

Iin =
Vout
Rf

(2.8)

2.2.3.4 Analog to Digital Converter

The component used to sample the measured current, or more precisely the cur-
rent transformed to voltage, is an ADC (Analog to Digital Converter). ADCs work
similarly as a DAC, but instead of transforming a digital signal to an analog signal,
the ADC transforms an analog signal to a digital signal. There are several methods
to achieve this, e.g., successive approximation (SAR) ADC and Delta-Sigma ADC
(Kester, 2005).

As Kester (2005) describes, the SAR ADC utilizes a comparator that measures
the difference between the signal and an internal reference voltage. It will then
feed the measurement, whether the signal is higher or lower than the reference,
to a logic block that will set a new reference. By doing this several times, the
reference that is closest to the signal will be the correct bit. The signal is then
converted from analog to digital. A SAR ADC is very appropriate for high-speed
acquisition designs and is a common choice for ADCs. However, if the goal is to
acquire high precision measurements at moderate speeds, the Delta-Sigma ADC
is often considered a better choice.

Baker (2011) gives a detailed description of how a Delta-Sigma ADC operates.
A brief, adapted version will be provided here. Instead of comparing the signal
with a reference voltage for each bit as the SAR ADC, the Delta-Sigma ADC trans-
forms the signal into the frequency domain with a Delta-Sigma modulator. The
signal’s lower frequencies will be pushed up to higher frequencies by oversampling
the signal, increasing the signal-to-noise ratio. Digital filtering is then applied to
remove noise, and then downsampling of the signal occurs as a counterpart to the
oversampling. The benefit of the Delta-Sigma ADC is the higher precision and
larger signal-to-noise ratio than the SAR ADC. The downside of a Delta-Sigma
ADC is that each measurement takes more time to achieve (depending on resolu-
tion) than for the SAR ADC.

2.2.3.5 Microcontroller

The last essential component for a potentiostat is the device controlling all of the
other components, the microcontroller or equivalent. In the most basic way, a
microcontroller can be explained as a computer on a chip, as described in Scherz

2.3. PSOC-STAT: A SINGLE CHIP OPEN SOURCE POTENTIOSTAT BY ?17

and Monk (2016). The book further explains that a microcontroller usually con-
tain a processing unit, memory units, communication ports, ADC, DAC, etc. Its
functionality is to control ports and components in an integrated circuit (IC). The
device is usually configurable by a programming language.

The microcontrollers’ manufacturers often make evaluation/development boards
for users to experiment with and verify if the controller is suitable for their project.
Arduino is one of the more popular firms for people curious about playing with
electronics.

There are several types of devices available for users to use for their projects
(Scherz and Monk, 2016). Some are application-specific integrated circuits (ASIC)
and is only usable for its intended purpose. The microcontroller is very versatile
concerning its application area, and can be configured to almost anything within its
maximum electrical ratings. The system on chip (SoC) is one step more advanced
than the microcontroller since it can not only configure the electronics within the
microcontroller, but also configure the hardware surrounding the microcontroller.
This makes the SoC a good alternative for projects where external components
are unwanted.

2.3 PSoC-Stat: A single chip open source poten-
tiostat by Lopin and Lopin (2018)

A good guideline for this project was mentioned in the introduction, the work
documented in the article by Lopin and Lopin (2018). Their work used the same
platform as this project to make a potentiostat. This section will be based on that
article and enhance the essential aspects of their work. Also, the aspects of their
work where improvements may be feasible will be highlighted.

Lopin and Lopin (2018) developed their potentiostat to demonstrate that a
potentiostat can be developed on a programmable system on chip (PSoC), where
they highlight the benefit of a system where no external components are needed in
the design. They document their work well and conclude their work as a successful
potentiostat with some limitations. The limitations they highlight are that the po-
tentiostats’ precision is limited to the components inside the PSoC. Selecting each
component in the design specifically to the necessary limitations for high precision
will make the potentiostat even more comparable to a commercial potentiostat.
However, that is not possible with a PSoC since all the components are integrated

18 CHAPTER 2. THEORETICAL BACKGROUND

within the platform. An ASIC will have to be developed to account for that issue
or an SoC with "better" components. With that said, the potentiostat has a high
precision if the correct filtering after each measurement is accomplished. The noise
picked up by electromagnetic radiation in the potentiostat, as the 50 Hz in the
power net, is filtered out by a moving average of a least two samples. With all the
implementations made by Lopin and Lopin (2018), this potentiostat is solid work
and a feasible start for this thesis, but the potentiostat has more functionalities
than needed for this thesis. The rest of this section will involve possible modifica-
tions for the work of this thesis.

For this thesis’s scope, there is a point in developing a potentiostat with the
least amount of extra functionalities. This is due to other measurement techniques
that might be implemented on the PSoC in the Training4CRM project. Therefore,
the only techniques needed are the amperometry and the cyclic voltammetry.

The potentiostat by Lopin and Lopin (2018) is designed with the optional two-
electrode configuration. This will not be implemented in the potentiostat for this
thesis with the arguments described in section 2.2.1.

Lopin and Lopin (2018) made a graphical user interface (GUI) and software
which are very impressive, but the complexity of their work makes it very difficult
to follow. Therefore, all of the software and GUI will be re-developed with an
extensive effort to make it re-producible.

Their design for amperometry and cyclic voltammetry is functional but can-
not continuously transfer the data to the personal computer (PC). This implies
that the PSoC memory might eventually be filled up, which will lead to an error
in the system. Continuous data transfer is an improvement that will be researched.

To make the cyclic voltammetry triangle shape, Lopin and Lopin (2018) used a
look-up table (LUT). This is also an element that uses memory on the PSoC. Re-
search for an improvement where the cyclic voltammetry’s triangle shape is made
during the experiments will be researched.

Chapter 3

Material

This section will describe the materials needed for the potentiostat designed in this
thesis and the materials needed for the potentiostat by Lopin and Lopin (2018).
In addition, the electrodes will be presented.

3.1 Embedded Platform

The chosen platform for this project is the PSoC 5LP, mostly due to the intention
of using that platform in the Training4CRM project, but also due to its abilities
presented in table 3.1. PSoC 5LP is lacking the wireless communication compared
to the other versions of PSoC, but is, as table 3.1 displays, considered a better
choice for high precision measurements due to its ADCs, number of DACs, num-
ber of universal digital blocks (UDB), and a suitable number of general purpose
input/outputs (GPIO) (Cypress Semiconductors, 2020b).

PSoC 5LP comes in two different versions of development kits:

• CY8CKIT-059 PSoC 5LP prototyping kit (Cypress Semiconductors, 2020e)
- Cost: 143 NOK (www.digikey.com, October 14th 2020)

• CY8CKIT-050 PSoC PSoC 5LP development kit (Cypress Semiconductors,
2020e) - Cost: 894 NOK (www.digikey.com, October 14th 2020)

The prototyping kit is simpler and smaller than the development kit, mean-
ing it has fewer peripherals and opportunities, but with the same processor and
DAC/ADC. Whereas the development kit has a breadboard implemented for sim-
ple hardware configurations, an LCD display, and all the peripherals available.
Lopin and Lopin (2018) used the prototyping kit for their potentiostat. For this

19

20 CHAPTER 3. MATERIAL

thesis, the development kit will be used due to its breadboard and LCD, mak-
ing the development easier when it comes to testing throughout the development
process.

PSoC Family
PSoC 4 PSoC 5LP PSoC 6

CPU ARM Cortex-M0 ARM Cortex-M3 ARM Cortex-M4
ARM Cortex-M0+

Flash / SRAM 256 kB / 32 kB 256 kB / 63 kB 2048 kB / 512 kB
GPIO 98 72 104

Bluetooth Yes No Yes
DAC 2 x DAC (8-bit) 4 x DAC (8-bit) 1 x DAC (12-bit)

ADC 1 x SAR ADC
(12-bit)

1 x Delta Sigma ADC
(8 to 20-bit)

2 x SAR ADC
(12-bit)

1 x SAR ADC
(12-bit)

Digital blocks 8 24 12

Table 3.1: Overview of the different PSoC microcontrollers: PSoC 4 (Cypress
Semiconductors, 2020c), PSoC 5LP (Cypress Semiconductors, 2020b) and PSoC 6
(Cypress Semiconductors, 2020a).

PSoC is a Programmable System on Chip, which is what makes the circuit
very suitable for development. It consists of programmable routing and config-
urable analog and digital blocks that are interconnected with the CPU (Central
Processing Unit) sub-system (see figure 3.1). As the illustration presents, the
top-level consist of all the ports and programmable routing. This is one of the
strengths of an SoC versus a microcontroller (briefly explained in section 2.2.3.5).
The mid-layer is divided into two parts: the digital block and the analog block. By
separating analog and digital signals, there is a smaller risk of having interference
between them. In order to fully achieve this, the two blocks have isolated return
paths from each other. The bottom layer involves digital processing through the
CPU, as well as the communication peripherals.

3.1. EMBEDDED PLATFORM 21

Figure 3.1: Illustration of the PSoCs build-up and sub-system (Cypress Semicon-
ductors, 2020b).

Figure 3.2: Illustration of the size differences between the PSoC5 LP development
board, prototyping board, TQFP packaging and QFN packaging. The illustration
is made by Ruud (2019).

22 CHAPTER 3. MATERIAL

It should be noted that the use of development kits are not the end of the
line concerning the size of the potentiostat. Training4CRM is planning to make a
device that can be implemented in the human brain, and, of course, a development
kit is too large. It is possible to buy the actual SoC on the development board
and implement it on a custom made PCB. The IC comes in different packages
visualized in figure 3.2.

3.2 Electrodes

The carbon electrode chip used in this project is the same as Cunha et al. (2019)
used for their bioimpedance measurements. They were provided by Technical Uni-
versity of Denmark (Hassan et al., 2017), and consist of a circular pyrolytic carbon
working electrode with an area of 12.5 mm2, surrounded by a carbon counter elec-
trode with an area of 25.2 mm2 and a gold reference electrode with an area of 0.8
mm2 (see figure 3.3). To isolate the electrodes from each other, a passivation layer
of SU-8 is used (see figure 3.3, right picture, marked C).

Figure 3.3: Too the left, a close-up of the carbon electrode chip used in this
thesis is displayed. Here the electrode chip is mounted in a chip holder with wires
attached, and a solution covering the electrodes. On the right side, a cross section
of the electrode chip is displayed (Hassan et al., 2017).

This electrode system is suitable for cyclic voltammetry and amperometry mea-
surements (Hassan et al., 2017).

Chapter 4

Method

This section will explain the use of the potentiostat. Firstly, it will explain the
electroanalytical techniques implemented in the potentiostat for this thesis, and
then explain the setup and use of the potentiostat.

4.1 Electroanalytical Techniques

Electroanalytical techniques are the methods used to perform measurements in
the electrolytic cell. Several techniques are possible with a potentiostat, but this
thesis will focus on cyclic voltammetry and amperometry, as explained in the
introduction.

4.1.1 Cyclic Voltammetry

This section is based on a review article by Elgrishi et al. (2018) where they have
given a practical approach for the use of cyclic voltammetry.

Cyclic voltammetry is a technique used to investigate the reduction and oxi-
dation processes in an electrolytic cell. In order to conduct such an experiment,
a cycling voltage is applied to the cell. The voltage is ramped up linearly from
a starting voltage to a maximum, then ramped linearly down to a minimum and
back up to the starting voltage (see figure 4.1). This will be referred to as one
cycle or one period (the cycle may also be reversed). The increase rate of the slope
is known as the scan rate, υ = dV

dt
, and is one of the most essential parameters for

cyclic voltammetry. While the voltage is cycling over the electrolytic cell, an ionic
current will flow through the working electrode. This current will be measured
and is equivalent to the ionic current flow in the electrolytic cell. A cyclic voltam-

23

24 CHAPTER 4. METHOD

mogram is an appropriate visualization for cyclic voltammetry, where it displays
the voltage and current in the same plot.

VOLTAGE

TIME

MAXIMUM

MINIMUM

START

CYCLIC VOLTAMMETRY

APPLIED VOLTAGE

FIRST CYCLE

COMPLETE

SECOND CYCLE

COMPLETE

1 PERIOD 1 PERIOD

dV

dt

SCAN RATE

υ= dV/dt

Figure 4.1: An example of the applied voltage for a cyclic voltammetry experi-
ment. Here two cycles are displayed. The starting voltage is deliberately chosen
at another position than the minimum voltage, they are often the same. The scan
rate is also visualized in the figure.

The potentiostat is the device used to perform the experiment. By utilizing
the three-electrode system, the given voltage will be kept at a known level (see
description in section 2.2.1). An ADC in the potentiostat will measure the current
flowing through the working electrode by utilizing the transimpedance amplifier,
converting the current to voltage. Since the ADC samples at a known time (con-
trolled by clocks in the instrument) and the DAC sets the voltage in the rate of
the scan rate, the relationship between current and voltage is known. This will be
further explained in the next section.

4.1.1.1 Cyclic Voltammogram

The cyclic voltammogram displays the relation between the current and the voltage
in an electrolytic cell. Elgrishi et al. (2018) used a popular example with ferrocene,

4.1. ELECTROANALYTICAL TECHNIQUES 25

which is a reversible electrochemical solution. This implies that the voltammogram
peaks have the same amplitude (as in figure 4.2). Reversible solutions were also
mentioned in section 2.1.3, where it was noted that the Nernst equation prerequi-
sites that the solution is reversible. This will be an important aspect of this section.

Fc → Fc+ + e -

CURRENT

VOLTAGE

A

B

C

D

E

F

G

Fc+ + e - → Fc

OXIDATION

REDUCTION

0 V

0 A

MaximumMinimum

Figure 4.2: The process of cyclic voltammetry displayed in a cyclic voltammogram.
Adapted from Elgrishi et al. (2018).

The cyclic voltammogram will be explained with figure 4.2 as reference. First,
it is important to understand that A represents the start of the cyclic voltammetry
and that G represents the end of one period. These two dots will also represent
the starting- and minimum voltage for the cyclic voltammetry. D represents the
maximum voltage. From A to D is where oxidation of the chemical ferrocene oc-
curs; it looses electrons. The interval D to G represent reduction of ferrocene; it
gains electrons. At the peaks, C and F, diffusion is the limiting factor of the reac-
tion due to Fick’s law (mentioned in section 2.1.2). All the Fc in close proximity
to electrode surface is oxidized at peak C, and the diffusion has a slower rate to
transport more Fc to the electrode surface than the rate of oxidation. Therefore,
the current will decrease from C to D. At D, the voltage scan is reversed and will
decrease, causing a decreased current until F. Here an opposite reaction occurs;
Fc+ is reduced, and the diffusion has a slower rate to transport more Fc+ to the
electrode surface than the rate of reduction. This will lead to an increase in cur-

26 CHAPTER 4. METHOD

rent between peak F and G. B and E is where the concentration of oxidized- and
reduced molecules are equal at the electrode surface, and is known as the halfway
potential between the two peaks (C and F). By the Nernst equation, this poten-
tial gives a straight forward approach to find the standard half-cell potential in
equilibrium (E0) and is often used to calibrate the device for the electrodes.

The Nernst equation is a powerful tool to predict the cell’s chemical reactions,
but as with the halfway potential, the Nernst equation can also be utilized to
give E0. The cyclic voltammetry is a powerful technique to characterize chemical
solutions, and the voltammogram is the product of such an experiment. For an
irreversible chemical, e.g., ascorbic acid, there will be no occurrence of reduction.
This implies that there are developed bi-products which no longer are electroac-
tive. The next cycle applied to the solution will then have a peak C at a lower
current level than the first cycle. After a while, further cycles will have zero ionic
current flow due to only bi-products left in the solution.

4.1.1.2 Scan Rate

The scan rate in the cyclic voltammetry is one of the most important parameters
for this type of experiment. This parameter sets the rate of the voltage change for
the potentiostat. An increased scan rate influences how large the diffusion layer
at the electrode will be. Hence, an increased scan rate will give higher peaks in
the voltammogram, while a decreased scan rate will have smaller peaks. The peak
height will change linearly to the square root of the scan rate.

4.1.2 Amperometry

Amperometry is an electroanalytical technique where the applied voltage is kept
constant throughout the experiment (Bucher and Wightman, 2015). Current flow-
ing through the working electrode is measured per time, and the quantity of the
electroactive substance can be calculated by Cottrells law (Adeloju, 2005). As
Adeloju (2005) explains, Cottrell’s law gives a relation between the current flowing
through the working electrode and the concentration of a substance in the elec-
trolytic cell. This technique is very powerful when the substance that is measured
has known electrochemical properties as dopamine (Bucher and Wightman, 2015).
This is why this technique is implemented in the potentiostat since the Train-
ing4CRM project are developing an instrument detecting and measuring dopamine
in the human brain.

4.2. POTENTIOSTAT 27

As in cyclic voltammetry, the potentiostat will control the applied voltage dur-
ing the amperometric measurements due to the three-electrode system. The only
parameter to control in the potentiostat to perform amperometry is the applied
voltage level. The DAC and the three-electrode system will keep that voltage
steady while the ADC measures the current-to-voltage converted values. If the
reaction in the electrolytic cell is quick, the ADC should have a more rapid sam-
pling. Otherwise, the sampling rate can be kept at a moderate level.

4.2 Potentiostat

In this section, the instructions for the use of the potentiostat will be presented. It
will involve the graphical user interface, electrodes’ preparations before conducting
an electrochemical technique, and how to set up the instrument.

4.2.1 Instrument Setup

The device setup is divided between the hardware setup and electrode connections,
and the firmware setup.

4.2.1.1 Hardware setup

The PSoC5LP has to be configured in order to use it for electroanalytical mea-
surements. Figure 4.3 has an overview of the device provided by Cypress Semicon-
ductors (2020d) in the development kit start-up guide. In order to provide swift
feedback from the device during measurement, an LCD display has been used and
shall be mounted on the device (see figure 4.3, "Character LCD Interface").

28 CHAPTER 4. METHOD

Figure 4.3: Overview of the PSoC5LP development kit. Image is taken from the
development kit start-up guide (Cypress Semiconductors, 2020d).

Figure 4.4 has three narrow images from figure 4.3. Image A in figure 4.4
points to where the connections of the potentiostats electrodes and analog ground
shall be connected. The counter electrode (CE) shall be mounted to P3_7, the
reference electrode (RE) shall be connected to P3_2, the working electrode shall
be connected to P0_0, and the analog ground shall be connected to VSSA. Since

4.2. POTENTIOSTAT 29

there is a need for an external capacitor of 0.1µF for the dithering DAC, the ca-
pacitor shall be mounted between VSSA and P3_7. If desired, an LED can be
connected in order to see when an experiment is running. The LED has to be
connected by adding a strap wire between P6_0 and LED1. Another additional
option is to mount a capacitor to ground between the transimpedance amplifier
and the ADC to reduce noise. This capacitor has to be connected between P0_3
and VSSA.

CE RE WE

GNDA

A

B

C

Figure 4.4: Overview of the PSoC5LP development kit. A: The arrows points to
where the electrodes and analog ground shall be connected. B: Connection for
communication with computer and power to the device. C: Correct placement
of jumpers. Image is taken from the development kit start-up guide (Cypress
Semiconductors, 2020d).

The image marked B in figure 4.4 shows where to connect the USB cable pow-
ering the device and data transfer between the computer and the device. There is
another connection to the right of the one marked in the image. That connection is
meant for programming only and shall not be used when conducting an experiment.

The image marked C in figure 4.4 displays how the jumpers shall be connected.
This is important since a wrong connection will make the device malfunction since
it only can provide 3.3 V maximum voltage instead of 5 V maximum voltage. The

30 CHAPTER 4. METHOD

consequence of a wrong connection is that the potentiostat will have a limited
voltage range.

4.2.1.2 Firmware, Software, and Driver Setup

In order to operate the device, the following have to be done:

1. Obtain the PSoC5LP development kit (CY8CKIT-050) or the PSoC5LP pro-
totyping kit (CY8KIT-059). The development kit is preferred due to the
pin-out for this thesis. However, it is possible to perform some simple con-
figurations to transfer the functionalities over to the prototyping kit.

2. Download the PSoC Creator (Cypress Semiconductors, 2020f). This is a
program developed by Cypress Semiconductors specifically to configure their
product’s firmware.

3. Load in the project files attached in the appendix into PSoC Creator and
program the device. The .hex - and .c - files have to be included.

4. Install the necessary USB drivers. This can be accomplished by downloading
a free software from Zadig (Zadig, 2020).

5. Select "List all devices" in Zadig, select the "Potentiostat" device, select
libusb-win32, and install the driver.

6. Install Python 3 with the packages Numpy, Matplotlib, TKinter, time, and
Pandas.

7. Acquire all the python scripts provided in the appendix into the same folder
on a computer.

8. Attach all the needed wires, components, and connections on the device.

9. Run GUI.py in a terminal on the computer.

10. Your device is now ready for measurements.

4.2.2 Graphical User Interface
The graphical user interface (GUI) for this thesis is developed by the author and
is a simple method to communicate with the device. Figure 4.5 is a snapshot of
the GUI named "Potentiostat Controller", and this section will give instructions
on how to use it.

4.2. POTENTIOSTAT 31

Figure 4.5: Graphical user interface for the potentiostat.

4.2.2.1 Cyclic Voltammetry

To conduct a cyclic voltammetry experiment, the following configurations have to
be set in "Potentiostat Controller":

1. Select the bullet option "Cyclic Voltammetry".

2. Set desired "Scan Rate", "Minimum Voltage", "Maximum Voltage", "Start
Voltage" and "Number of cycles".

3. "Plot Title" is an option if it is desired to give the plot a name.

4. "Solution name" is an option if it is desired to give the plot a legend name.
The operator of the device is free to choose whether it should be the name
of the solution or other information desired for the legend.

5. "Send CV settings" is a button to be pressed when all the settings above are
provided. All the settings will be transferred to the potentiostat.

6. When the settings are transferred to the potentiostat, the experiment may
begin by pressing "Run CV Scan". A red lighted LED will be lit (if configured
as explained in section 4.2.1.1), and the LCD on the potentiostat will inform
the operator that an experiment is running.

32 CHAPTER 4. METHOD

7. The duration of the experiment varies with the settings transferred to the
potentiostat. When the experiment is done, a plot will pop up in a new
window. This plot can be saved directly as an image to the computer by the
GUI provided by the matplotlib package.

4.2.2.2 Amperometry

To conduct an amperometry experiment, the following configurations have to be
set in "Potentiostat Controller":

1. Select the bullet option "Amperometry".

2. Set desired applied voltage in "Voltage".

3. "Plot Title" is an option if it is desired to give the plot a name.

4. "Solution name" is an option if it is desired to give the plot a legend name.
The operator of the device is free to choose whether it should be the name
of the solution or other information desired for the legend.

5. "Run AMP Scan" is a button to be pressed when all the settings above
are provided. The button will start the amperometry experiment, and this
information will also be provided by the LCD display of the potentiostat.

6. The operator can stop the measurements by pressing the button "Stop AMP
Scan". Data are transferred continuously to the computer, so the only limi-
tation is the amount of free data memory on the computers RAM.

7. When the experiment is done, a plot will pop up in a new window. This plot
can be saved directly as an image to the computer by the GUI provided by
the matplotlib package.

4.2.2.3 Saving of Data

When either a cyclic voltammetry or amperometry experiment is finished and the
plot has popped up, the operator can fill in the "File name" to give the saved data
a name. The files will be saved locally (the same folder as the python files are
stored) as a .csv-file (comma separated file).

4.2. POTENTIOSTAT 33

4.2.3 Electrode Preparation
Before an experiment, it is advised to prepare the electrodes. This is accomplished
by conducting an oxygen plasma treatment. The plasma treatment will clean the
surface of the electrodes to remove contamination. The plasma treatment will also
make the electrodes more hydrophilic, increasing the electrode’s wettability. This
improves the redox system’s response, e.g., higher peaks in the cyclic voltammo-
gram than a hydrophobic electrode (Yagi et al., 1999).

34 CHAPTER 4. METHOD

Chapter 5

Instrument Design and
Development

This chapter will describe how the potentiostat was developed. It contains a sec-
tion with an overview of the entire potentiostat, a section describing the hardware
design, and a section describing the software development.

5.1 System Overview

The platform used for the potentiostat is a PSoC5LP by Cypress Semiconduc-
tors, which communicates with a computer through a USB interface (see figure 5.1
for system overview). There are two methods implemented in the device: cyclic
voltammetry and amperometry. To provide for the applied voltage in the elec-
trolytic cell, a DAC with a resolution of 12-bits and a voltage span of 4.080 V is
used. The resolution of the DAC corresponds to 1 mV per bit with full voltage span
utilized. An integrated transimpedance amplifier is used as a current-to-voltage
converter that is connected to a Delta-Sigma ADC. As for Lopin and Lopin (2018),
the precision of the ADC is configured to 12-bits with a voltage span from -2.032
V to 2.032 V. Since PSoC5LP does not provide for negative voltages, a virtual
ground is constructed with an 8-bit DAC that holds a voltage at 2.032 V. This
virtual ground sets the reference voltage for the transimpedance amplifier and the
ADC. A timer is utilized to configure when the DAC sets a new voltage, triggered
with an interrupt. At half of the timer period, an interrupt for the ADC is trig-
gered, and the ADC samples and stores the sampled value as one signed 16-bit
value. The 16-bit value is then transferred to the USB interface, which transfers
the data to the computer. The transfer occurs for each measurement of the ADC.

35

36 CHAPTER 5. INSTRUMENT DESIGN AND DEVELOPMENT

SYSTEM OVERVIEW

SOFTWARE - CLASSES HARDWARE

USERINPUT

GRAPHICAL USER

INTERFACE

CONSTANTS

COMMUNICATION

FUNCTIONALITY

OPERATOR

Figure 5.1: The figure illustrates a system overview for the potentiostat, both
software and hardware. On the software side of the overview, the blocks’ names
refer to the names of the Python classes used. The hardware block is the schematic
from PSoC Creator.

As figure 5.1 illustrates, the graphical user interface, on the software side of
the overview, controls the entire potentiostat. An operator gives commands in the
graphical user interface, communicating with a Python class named "Userinput".
The "Userinput" class is connected to three other Python classes: "Constants",
"Functionality" and "Communication". Together they store the values inserted
by the operator, convert the values into a format understandable for the potentio-
stat, and communicate with the potentiostat through USB. After a scan has been
completed, the potentiostat will have transferred all the measurements to the com-
puter. The Python classes will do the necessary calculations for the operator to
see plots of either a voltammogram or a current-vs-time plot, and give the option
to save the measured data locally on the operator’s computer.

5.2 Potentiostat - Hardware

This section will give an overview of the hardware of the potentiostat and how it
operates.

5.2. POTENTIOSTAT - HARDWARE 37

5.2.1 Documentation
The PSoC5LP has extensive amounts of datasheets. PSoC Creator has the option
to export a compressed datasheet of the potentiostat, where only the components
utilized in the PSoC5LP are explained, and all configurations are documented (see
chapter 8.5).

Throughout the hardware section there will be referred to different components
on the device, and each of the components have their own datasheet. Instead of
referring to the datasheet for every statement made, a list of the most important
datasheets are listed below. This implies that it will be taken for granted that e.g.
information about the Full Speed USB is documented in the reference provided
for that component in the list below:

• Dithered Voltage Digital to Analog Converter (Cypress Semiconductors and
Infineon, 2020d)

• 8-Bit Voltage Digital to Analog Converter (Cypress Semiconductors and In-
fineon, 2020a)

• Operational Amplifier (Cypress Semiconductors and Infineon, 2020g)

• Delta Sigma Analog to Digital Converter (Cypress Semiconductors and In-
fineon, 2020c)

• Trans-Impedance Amplifier (Cypress Semiconductors and Infineon, 2020i)

• Timer (Cypress Semiconductors and Infineon, 2020h)

• Interrupt (Cypress Semiconductors and Infineon, 2020f)

• Full Speed USB (Cypress Semiconductors and Infineon, 2020e)

• Character LCD (Cypress Semiconductors and Infineon, 2020b)

38 CHAPTER 5. INSTRUMENT DESIGN AND DEVELOPMENT

5.2.2 Schematic Overview

Figure 5.2 provides the schematic for the entire potentiostat. All the components
are integrated into the PSoC except for the connections marked in dotted blue;
these are external connections to the potentiostat. The schematic will be a refer-
ence throughout the hardware chapter.

Figure 5.2: A block diagram / schematic of the potentiostat.

5.2.3 Applied Voltage

A 12-bit dithering DAC (DVDAC) generates the applied voltage for the control
amplifier. The DVDAC is an 8-bit DAC, but the dithering switches the output
voltage high and low systematically, which generates an average output with a
12-bit resolution. If the switching frequency is relatively high, the switching will
not be noticeable on the output. An external capacitor added to the DVDAC’s
output smooths out the signal. As a result of the DVDAC’s dithering, the output
voltage is of 12-bit resolution generated with an 8-bit DAC.

The capacitor value on the output of the DAC needs to be calculated. Fortu-
nately, PSoC Creator does the calculation if the following are provided: voltage
range, resolution, and switching frequency. The potentiostat’s chosen settings are

5.2. POTENTIOSTAT - HARDWARE 39

the highest resolution at 12-bit, with a full voltage range of 0 V - 4.080 V and
the maximum switching frequency of 250 kHz. By implementing these settings,
an external capacitor of 100 µF is needed on the output of the DVDAC.

The output of the DVDAC is connected to the control amplifier where the reg-
ulation in the potentiostat happens. As explained in section 2.2.1, the difference
between the applied voltage from the DVDAC and the reference electrode poten-
tial generates the necessary current at the counter electrode. The control amplifier
is a standard, low powered, operational amplifier, with allocated output pins on
the PCB. By utilizing the recommended pins for the control amplifier, unnecessary
routing length is avoided within the PSoC, which will lead to reduced noise on the
board.

5.2.4 Current Measurement
The current measured in the potentiostat flows through the working electrode.
As the current has to flow through the transimpedance amplifier (TIA), the only
current path available is through the integrated resistor in the TIA feedback loop.
The resistor is set to 20kΩ with a parallel feedback capacitor of 4.6 pF to reduce
the bandwidth to 567 kHz. Unfortunately, the TIA’s integrated feedback resistor
has low accuracy of -25% to +35%. This can be adjusted for in the ADC by
adjusting the offset and gain offset of the current path. Another option is to use
external resistors with high precision, but this is not utilized for this potentiostat
to reduce the amount of necessary external components.

There is implemented an option to reduce the noise of the input of the ADC
with a parallel external capacitor. This implementation is not critical for the po-
tentiostat to operate, but it will work as a low-pass filter and reduce high frequency
transients.

A virtual ground reference has been added to the design to operate with nega-
tive voltages in the electrolytic cell since the PSoC5LP does not produce negative
voltages. The electrolytic cell will not see the analog ground, but only the virtual
ground since the TIA and ADC have the virtual ground as its reference voltage.
The reference voltage is set to 2.032 V.

The ADC samples the current flowing through the electrodes with help from
the TIA that converts the current into a voltage that the ADC can measure. As
for the DAC, the ADC has a resolution of 12-bit with a voltage span of 4.096 V,
which implies a voltage resolution of 1 mV. Due to the virtual ground, the ADC

40 CHAPTER 5. INSTRUMENT DESIGN AND DEVELOPMENT

can measure from -2.048 V to +2.048 V. The Delta-Sigma ADC has a conversion
rate of 30000 samples per second, as for Lopin and Lopin (2018). This should
be an appropriate conversion rate since the Delta-Sigma ADC depends on having
oversampling of the signal for it to work. This potentiostat’s highest expected fre-
quency is 1 kHz (maximum for the triangular signal during cyclic voltammetry),
where 30 kHz sampling frequency should be well beyond the minimum.

5.2.5 Timing
In order to control the scan rate of the potentiostat, an integrated, configurable
timer is utilized. The timer is set to have a resolution of 24-bits with a clock input
of 24 MHz. This gives the timer limitations with a minimum period of 83.333 ns
and a maximum period of 699.051 ms, with a precision of 15 ns. The timer counts
clock pulses from the 24 MHz clock and enables its "tc"-pin when the configured
number of counts is achieved. This "tc"-pin is connected to two interrupts; one for
the DAC and one for the ADC. The interrupt for the ADC will occur at a rising
edge from the timer, while the interrupt for the DAC is inverse; it will enable
the DAC interrupt at a falling edge. This implies that the ADC will measure the
current flowing through the working electrode one half period after the DAC has
set a new voltage during a cyclic voltammetry experiment.

5.2.6 Communication and Display
The communication interface chosen for the potentiostat is the same as for Lopin
and Lopin (2018), Full Speed Universal Serial Bus (USBFS). This communication
interface has lots of possible configurations and options. Since the work by Lopin
and Lopin (2018) already were functioning, the same configurations were used for
this potentiostat. There are three out of eight endpoints utilized:

• EP0 - control endpoint for the interface to communicate with a computer

• EP1 - endpoint to transfer data from the potentiostat to the computer

• EP2 - endpoint to transfer commands from the computer to the potentiostat

EP1 has a maximum package size to send of 64 bytes with a maximum rate
to send of 1 bulk package every 1 ms. This endpoint is configured to transfer the
data collected by the potentiostat to the computer. EP2 has a maximum package
size to transfer of 32 bytes with a maximum rate to send of 1 package every 10
ms. This endpoint is configured to receive commands from the computer, and is

5.3. POTENTIOSTAT - FIRMWARE 41

therefore an interrupt endpoint while EP2 is a bulk endpoint.

In addition to the USBFS, the potentiostat has an LCD display mounted to
the PSoC5LP. This display is mostly used for development but is a versatile con-
figuration where information may be displayed during experiments.

5.3 Potentiostat - Firmware

This section describes the firmware of the potentiostat. Each component in the
potentiostat has its own application guide in its datasheet. A brief explanation
of how the applications are utilized will be explained. In addition, the cyclic
voltammetry and amperometry firmware will be explained. All firmware code can
be found in chapter 8.3.

5.3.1 Overview

Figure 5.3 visualize how the information flow of the potentiostat is working to-
gether. The "main.c" file is where the input from the computer is enabled. All
commands from the computer are in the form of a capital letter followed by initial-
ization values for either amperometry or cyclic voltammetry. Each capital letter
corresponds to its own functionality, checked for each iteration of the main loop.
If a capital letter is detected, the functionality of the function will start.

There are six possible inputs for the potentiostat:

• CV_TIMER - Sets timer period for the timer component

• CV_NO_CYCLES - Sets the number of cycles for a cyclic voltammetry
scan. The number is stored as a variable, but is used in the DAC interrupt
routine.

• CV_DEFINE_RANGE Sets minimum-, maximum- and start- voltage for a
cyclic voltammetry scan. The values are stored as variables, and are used in
the DAC interrupt routine.

• CV_RUN - Enables a cyclic voltammetry scan. This will enable all of the
necessary components for a scan and initialize the necessary variables.

• AMP_RUN - Enables an amperometry scan. This will enable all of the
necessary components for a scan and initialize the necessary variables.

42 CHAPTER 5. INSTRUMENT DESIGN AND DEVELOPMENT

• AMP_STOP - Disables an amperometry scan. This will disable all of the
operating components and send the final measured data through the USB
interface.

FIRMWARE OVERVIEW

CV_TIMER

USBFS

CV_DEFINE_RANGE

CV_NO_CYCLES

main.c

CV_RUN

AMP_RUN

AMP_STOP

TIA

DAC

TIMER

ADC

isr_ADC

isr_DAC

OPAMP

MAIN

LOOP

–

CHECK

USB INPUT ENABLE

ENABLE

DIASBLE

CONFIGURE

CONFIGURE

CONFIGURE

Figure 5.3: An overview of the firmware of the potentiostat. "main.c" has a main
loop that checks the input of the USB interface for each iteration. If there is
an input, one of the colored blocks will initialize. The initialization involves a
configuration of a component (black boxes), an enable signal for one or several
components, or a disable signal for one or several components.

5.3.2 Communication During Scans

One of the major differences from the work by Lopin and Lopin (2018) is that
all data transfer during electroanalytical scans is continuous. This configuration
change was done in order to run scans for an increased duration. Another benefit
was that the potentiostat’s memory never would be filled up since the measured
data would be overwritten after a data transfer had finished.

By implementing that configuration change, a limitation of the potentiostat
occurred. With bulk transfer as the USB transfer type, the data transfer rate is
limited to 1 kHz.

5.3. POTENTIOSTAT - FIRMWARE 43

The USBFS can only send data of UINT8 (8-bit unsigned integer), while mea-
sured data are INT16 (16-bit signed integer). This implies that all measured data
are converted into two UINT8 instead of one INT16 and then converted back on
the computer. The conversion is a function implemented in the "usb_protocol.c"
(see chapter 8.3.1.3).

5.3.3 Cyclic Voltammetry

To run a cyclic voltammetry scan, the following will be initialized:

1. Set the scan rate of the scan by transferring the period of the timer through
the USB interface. This is done by utilizing the function "CV_TIMER".
The function will write to the timer component what the period is with a
command documented in the application user guide of the component.

2. Set the number of cycles by utilizing the function "CV_NO_CYCLES".
The number of cycles will be stored as a global variable used by the DAC
interrupt routine.

3. Set the minimum-, maximum- and start- voltage by utilizing the function
"CV_DEFINE_RANGE". The function will store the values as global vari-
ables used by the DAC interrupt routine. In addition, the function does a
calculation to check whether the next voltage after the start voltage should
be higher or lower than the start voltage. This is to initialize a variable (UP
and DOWN) used in the DAC interrupt routine.

4. The potentiostat is now ready to begin the cyclic voltammetry scan. This is
done by utilizing the command "CV_RUN". This function will first initial-
ize variables used in the DAC interrupt routine, then enable all the hardware
through the function "helper_HardwareWakeup()", then set the start volt-
age for the DVDAC and let it stabilize for 70 ms. When all hardware is ready,
the ADC will start its conversion, and the first measurement will be done
and transferred directly to the computer. The rest of the cycle will begin
right after this by enabling the DAC and the ADC’s interrupt routines.

The following will describe how the cyclic voltammetry scan sets new voltages
for the DVDAC and how the potentiostat knows when the scan is complete. This
is visualized in the code snippet below.

When the timer component enables the DAC interrupt, the "dacInterrupt" is
enabled. The first thing that happens is that the interrupt releases the interrupt
from the timer component by the "ReadStatusRegister()" function. It will then

44 CHAPTER 5. INSTRUMENT DESIGN AND DEVELOPMENT

check the "index_value", which is a value that sets the voltage to the DVDAC,
whether the next value should be iterated higher or lower than the previous value.
This is where the "UP" and "DOWN" variables are configured with a TRUE/-
FALSE statement for a higher or lower value. Another routine will, after that,
check if one entire cycle is complete. If the number of cycles has reached the
maximum number of cycles for the scan, the hardware components and firmware
configuration will be set to sleep (disabled). If not, another IF-test will check if
the "index_value" for the next iteration should start increasing or decreasing by
configuring the "UP" and "DOWN" variables. Finally, the "index_value" is sent
to the DVDAC that sets the next voltage in the scan.

1 CY_ISR(dacInterrupt) {
2 TIMER_ReadStatusRegister (); // Release

dacInterrupt
3 /* Define next voltage value */
4 if (direction == UP) { index_value += step_size; }
5 else { index_value -= step_size; }
6

7 /* Check if one cyclus is done */
8 if (index_value == start_value) { // One cycle

completed
9 cycles_index += 1; // Iterate cycle

index
10 if (cycles_index == number_of_cycles) { // CV complete
11 isr_ADC_Disable (); // Disable ADC

interrupt
12 isr_DAC_Disable (); // Disable ADC

interrupt
13 helper_HardwareSleep (); // Set hardware to

sleep mode
14 data_usb16 = 49152; // Determintaion

value for ADC_array
15 USB_Export_Data(data_usb16); // Transfer last

array
16 helper_LCD_write0("CV DONE"); // Write to LCD
17 helper_LCD_clear1 (); // Clear line two

of LCD
18 LED_DAC_Write (0); // LED_DAC off
19 }
20 }
21

22 /* Check if direction should change */
23 if (index_value >= max_value) {
24 direction = DOWN;
25 }
26 if (index_value <= min_value) {

5.4. POTENTIOSTAT - SOFTWARE 45

27 direction = UP;
28 }
29

30 /* Set next value to DAC*/
31 DVDAC_SetValue(index_value);
32 }

5.3.4 Amperometry

An amperometry scan is easier implemented than the cyclic voltammetry scan.
The user does not have the option to set the ADC sampling rate; this is pre-
configured in the potentiostat and is set to an ADC measurement every 25th ms.
An operator only needs to send the desired voltage level for the amperometry to
start. The firmware is already configured to start all of the necessary hardware
components and give the DVDAC time to stabilize. After that, every 25th ms,
data is transferred to the computer in the form of double UINT8.

Another function is implemented for the operator to stop the amperometry
scan. This command will shut all of the hardware components off (disable them),
and the potentiostat is ready for a new scan.

5.4 Potentiostat - Software

This section will introduce how the software is implemented and how the different
classes of the software communicate with each other. The software is deliberately
written in Python to make the potentiostat available for everyone since Python is
open-source and free of charge. Python 3 is the version used for this thesis. All of
the software code can be found in chapter 8.4.

For all of the code produced in this thesis, there has been an effort to make
the code as simple as possible and document each function in the scripts. Some
of the code will be described in the thesis, but the rest have documentation in the
scripts found in the appendix.

Most of the code has an output to the terminal as a confirmation that a com-
mand has been conducted. Several tests in the software will catch an error and
write an error report to the terminal. There are boundaries for the user inputs so
that the user does not send settings to the potentiostat out of bounds.

46 CHAPTER 5. INSTRUMENT DESIGN AND DEVELOPMENT

5.4.1 Software Overview

Figure 5.4 gives an overview of how the software classes and functions work to-
gether. Everything marked with green color are functions used within amperom-
etry, everything marked with blue color are functions used within cyclic voltam-
metry, and everything marked with black color are functions used both by cyclic
voltammetry and amperometry, or a general function.

These classes will have their own sub-section within this chapter, where its
functionalities are described.

SOFTWARE OVERVIEW

PLOT

Run_CyclicVoltammetry()

class: USERINPUT

make_LookUpTable()

set_scan_rate()

Save_Data_CV()

set_number_of_cycles()

Save_Data_AMP()

Convert_voltage_to_DVDAC_value()

class: POTENTIOSTAT

convert_uint8_to_int16()

Scan_Rate()

Compute_voltage_data()

Plot_CV_data()

AMP_Time_array()

Plot_AMP_data()

Stop_amperometry()

class: GUI

Start_amperometry()

Send_CV_Settings()

collect_data_amperometry()

Start_CV_scan()

Save_data_and_settings()

class: Constants

class: Communication

usb_collect_data()

usb_connect()

usb_write()

LOCAL FILES

Figure 5.4: An overview of the software of the potentiostat. Blue corresponds to
cyclic voltammetry, green corresponds to amperometry, black corresponds to both
cyclic voltammetry and amperometry functions or general settings.

5.4.2 Communication

The communication interface between the potentiostat and the computer is USB.
Lopin and Lopin (2018) used PyUSB for their potentiostat, and the same is used
for this potentiostat. PyUSB is an open-source package used for communication
over USB with Python. There exist other options, but PyUSB is well documented
online with well described forums as well.

5.4. POTENTIOSTAT - SOFTWARE 47

The setup of a USB interface with Python is quite similar to other setups. This
will not be further described here, but the code is available in the appendix.

There are three functions within the communication class that are of impor-
tance:

• usb_connect() - is the function that establishes the connection with the po-
tentiostat and initializes the input- and output descriptors used to send and
receive data. The configurations done in the firmware of the potentiostat
matches the descriptors in this function.

• usb_write() - is the function that transfers commands from the computer
to the potentiostat. The commands sent are in the form of strings. This is
a configuration constructed by PyUSB, which means that the potentiostat
receives it as strings. The potentiostat has implemented functions in the
firmware that converts from string to the wanted type.

• usb_collect data() - is the function that receives data from the potentiostat.
This is configured to operate continuously. The potentiostat transfers a dou-
ble UINT8, which is converted back to INT16 in another class, and then this
function is ready to receive new data straight afterward.

5.4.3 Constants
The "Constants" class is developed to make the software as general as possible.
All the constant parameters are stored here. In addition, all of the messages writ-
ten to the terminal are stored here. When a scan has finished, the data from the
measurements will be stored in this class to ensure that all the classes have it
available. This has been an issue throughout software development since some of
the classes can not communicate. The reason is that one class will try to import
another, and then that class will try to import the other class, and then an eternal
loop will be established. Python notices this and will write an error message and
terminate the scripts running. The "Constants" class is developed to come around
this issue and is doing its intended job.

Another reason for the development of the class is to make it easier to change
the constant parameters. E.g., a change of the resolution of the ADC should be
inserted in this class.

48 CHAPTER 5. INSTRUMENT DESIGN AND DEVELOPMENT

5.4.4 Graphical User Interface

The GUI of the potentiostat is constructed in this class. Lopin and Lopin (2018)
used the same package to do this, "tkinter". This is also an open-source package
with good documentation. However, it is difficult to get an overview of the code
since the graphics are written as code and coordinates. This is also the reason
why several classes have been established; to get a better overview of the entire
software code of the potentiostat.

There will not be a walk-through of this code, but a general description is pro-
vided. All of the user inputs are caught by a variable where it is stored or used.
Each variable is then inserted into their given function, bringing the settings from
the user one step closer to sending it to the potentiostat. All of the code is sent to
another class for further processing, with one exception; the amperometry settings.

The amperometry code is sent directly from this class to the potentiostat due
to issues with the termination of the amperometry scan. The "tkinter" window
has an update function so that the operator can press the stop button. For this
to happen, there is a concise time window for the Python script to process the
information it has been given. A solution to the problem was to insert the amper-
ometry settings within the GUI class, and this solution is working.

5.4.5 Userinput

The "Userinput" class is where most user inputs are processed before they are sent
to the potentiostat. The most important functions are listed below:

• set_Scan_rate() - acquire the scan rate from the user and converts it into
the period of the timer in the potentiostat. This is done by first sending
it to the functionality class that converts it and sends the converted value
back. The value is then zero padded (to make sure the potentiostat can
interpret the value) and transferred to the communication class that sends
the potentiostat’s command.

• set_number_of_cycles() - acquire the number of cycles from the user, zero
pads it, and send the command to the potentiostat.

• make_LookUpTable() - acquire the minimum-, maximum- and start- value
of the user. The values are sent to the functionality class to convert the
voltages to ensure the virtual ground is accounted for. The values are then
zero padded and sent to the potentiostat.

5.4. POTENTIOSTAT - SOFTWARE 49

• run_CyclicVoltammetry() - sends a command to the potentiostat that the
cyclic voltammetry shall begin. The function then starts a loop to receive
data continuously from the potentiostat. This loop will only terminate when
the potentiostat has ended its scan and transferred a determination value to
the computer. All data are converted into current, by utilizing Ohms law,
with the received voltage and the known 20 kΩ as the resistance. To reduce
noise, a filtering function is applied to all of the received data (5% moving
average); a post scan low pass filtering. The applied voltages from the scan
are re-constructed with a function, and the unfiltered data is plotted.

• Save_Data_CV() - the data is stored in the same folder as the scripts are
stored. The user has the option to give the file a name, which is inserted
in this function. The applied voltage data, measured current data, and the
filtered measured current data are stored in a CSV-file. To order the data in
columns, a package in Python called Pandas is used.

• Save_Data_AMP() - the data is stored in the same folder as the scripts are
stored. The user has the option to give the file a name, which is inserted in
this function. The time data and the measured current data are stored in a
CSV-file. To order the data in columns, a package in Python called Pandas
is used.

5.4.6 Functionality

The "Functionality" class (or the "Potentiostat" class, a difference between file-
name and class name) is where most of the calculations of the user inputs are done
before they are sent to the potentiostat. The most important functions are listed
below:

• Scan_Rate() - is the function that converts the scan rate from Volts/seconds
into the period of the timer in the potentiostat. There are three variables
necessary to calculate the period: the step size of the DAC, the clock fre-
quency for the timer, and the scan rate. The period is calculated as follows:
P = (step · clock/scanRate) − 1, where the step size is 1 mV (since the
voltage span is 4.080 V with 12-bits resolution), the clock frequency is 48
MHz (firmware configured), and the scan rate is inputted by the user. One is
subtracted from the calculation, as described by the datasheet of the timer.
The period value is then exported to the timer.

• Convert_voltage_to_DVDAC_value() - is the function that takes into ac-
count the virtual ground (2.032 V) from the given minimum- and maximum

50 CHAPTER 5. INSTRUMENT DESIGN AND DEVELOPMENT

voltages given by the user. This implies that the DC-level of the applied
voltage will be increased with the analog ground as a reference.

• convert_uint8_to_int16() - is the function that converts the two UINT8
values to INT16 after the computer have received the data.

• Plot_CV_data() - is the function that plots the measured current versus
the applied voltage and makes a voltammogram. This is accomplished by
utilizing the "matplotlib" package.

• Plot_AMP_data() - is the function that plots the measured current versus
the time for the amperometry scan. This is accomplished by utilizing the
"matplotlib" package.

Chapter 6

Results

This chapter will present the results from measurements conducted with the po-
tentiostat developed in this thesis. The potentiostat made by Lopin and Lopin
(2018) will be used as a reference.

Cyclic voltammetry with Ferri-/Ferrocyanide has been preformed, and results
were obtained. After a few measurements, the electrodes were damaged. Unfortu-
nately, there was not enough time to perform more experiments after acquiring new
electrodes. The measurements that were obtained were only from cyclic voltam-
metry at one scan rate, and non from amperometry.

As a start of this thesis, the potentiostat developed by Lopin and Lopin (2018)
was tested. The amperometry measurements on dopamine will be provided as the
only results from amperometry.

6.1 Cyclic voltammetry

This section presents the measurements conducted with cyclic voltammetry. Table
6.1 has all the settings for the potentiostats listed. These settings will be used for
all the measurements obtained unless otherwise are informed for each measure-
ment.

In the following voltammograms, "Ref" refers to the reference potentiostat by
Lopin and Lopin (2018), "Raw" refers to the potentiostat developed in this thesis,
and "Average" refers to a moving average of 5% of the "Raw" data. The "Average"
data is added to reduce noise and works as a low-pass filter.

51

52 CHAPTER 6. RESULTS

In the voltammograms, there are provided additional information such as the
scan rate, the number of cycles (only one cycle for the reference potentiostat since
the number of cycles is not an option for that potentiostat), and a close-up area
of the origin. The close-up is added for easier visualization of the noise from the
measurements.

Before the measurements were conducted, the electrodes had oxygen plasma
treatment to remove contamination on the electrodes’ surface. It should be noted
that the plasma treatment was only applied before the start of the first measure-
ment and not in between each measurement. This implies that the electrodes
became more hydrophobic for each measurement conducted. The potentiostat
measurement and the reference potentiostat measurement were done consecutively
to minimize the risk of contamination and change of the electrodes’ wettability.
After each measurement, the electrodes were cleaned with destilled water. Fine
paper was used to dry off the water after cleaning.

Settings for Cyclic Voltammetry
Scan rate: 50 mV/s
Minimum voltage: -500 mV
Maximum voltage: 500 mV
Starting voltage: -500 mV

Reference potentiostat: always 1 cycle
Number of cycles: Potentiostat: presented for each measurement

Table 6.1: Settings of the potentiostats for cyclic voltammetry measurements.

6.1. CYCLIC VOLTAMMETRY 53

6.1.1 Ferri-/Ferrocyanide 1mM
All the following measurements have a solution of 1 mM Ferri-/Ferrocyanide on
the electrodes. PBS was mixed with the Ferri-/Ferrocyanide as a buffer.

In addition to the voltammograms of the raw data, average data, and the refer-
ence data, additional plots with "Raw x factor" are provided. These measurements
are added due to a wrong configuration in the potentiostat and will be further ex-
plained in the discussion.

6.1.1.1 Measurement - 1 Cycle - Scan Rate 50 mV/s

400 200 0 200 400
Voltage [mV]

100

80

60

40

20

0

20

C
ur

re
nt

 [µ
A

]

• Scan rate = 50 mV/s

• Raw: 1 cycle

Ferrocyanide 1mM

100 50 0 50 100
10

5

0

5

10

Ref
Raw
Average

Figure 6.1: Cyclic voltammogram of 1 mM Ferri-/Ferrocyanide with a scan rate of
50 mV/s, 1 cycle. Ref is the potentiostat by Lopin and Lopin (2018), Raw is the
measurements from the potentiostat from this thesis, Average is a moving average
of 5% of the raw data.

54 CHAPTER 6. RESULTS

6.1.1.2 Measurement Corrected - 1 Cycle - Scan Rate 50 mV/s

400 200 0 200 400
Voltage [mV]

100

80

60

40

20

0

20

40

C
ur

re
nt

 [µ
A

]

• Scan rate = 50 mV/s

• Raw: 1 cycle

Ferrocyanide 1mM

100 50 0 50 100
10

5

0

5

10

Ref
Raw × factor
Average

Figure 6.2: Cyclic voltammogram of 1 mM Ferri-/Ferrocyanide with a scan rate of
50 mV/s, 1 cycle. Ref is the potentiostat by Lopin and Lopin (2018), Raw x factor
is the corrected measurements with the potentiostat from this thesis, Average is a
moving average of 5% of the raw data.

6.1. CYCLIC VOLTAMMETRY 55

6.1.1.3 Measurement - 5 Cycles - Scan Rate 50 mV/s

400 200 0 200 400
Voltage [mV]

100

80

60

40

20

0

20

40

C
ur

re
nt

 [µ
A

]

• Scan rate = 50 mV/s

• Raw: 5 cycles

Ferrocyanide 1mM

100 50 0 50 100
10

5

0

5

10

Ref
Raw
Average

Figure 6.3: Cyclic voltammogram of 1 mM Ferri-/Ferrocyanide with a scan rate of
50 mV/s.5 cycles for the potentiostat in this thesis, 1 cycle for the reference. Ref
is the potentiostat by Lopin and Lopin (2018), Raw is the measurements from the
potentiostat from this thesis, Average is a moving average of 5% of the raw data.

56 CHAPTER 6. RESULTS

6.1.1.4 Measurement Corrected - 5 Cycles - Scan Rate 50 mV/s

400 200 0 200 400
Voltage [mV]

100

80

60

40

20

0

20

40

C
ur

re
nt

 [µ
A

]

• Scan rate = 50 mV/s

• Raw: 5 cycles

Ferrocyanide 1mM

100 50 0 50 100
10

5

0

5

10

Ref
Raw × factor
Average

Figure 6.4: Cyclic voltammogram of 1 mM Ferri-/Ferrocyanide with a scan rate
of 50 mV/s. 5 cycles for the potentiostat in this thesis, 1 cycle for the reference.
Ref is the potentiostat by Lopin and Lopin (2018), Raw x factor is the corrected
measurements with the potentiostat from this thesis, Average is a moving average
of 5% of the raw data.

6.2. AMPEROMETRY 57

6.2 Amperometry

The results from amperometry are obtained with the potentiostat by Lopin and
Lopin (2018). These measurements were obtained early in the process of this thesis
before the potentiostat developed in this thesis was ready for measurements.

Figure 6.5 displays the result from an amperometry experiment. Initially, the
electrodes only contained a PBS buffer. The solution applied was 1 mM dopamine,
where approximately 20 µL was added to the electrode with a pipette every 8th
second for 62 seconds. At the beginning of the measurements, the working elec-
trode had 16 seconds to stabilize. The applied voltage for the experiment was 350
mV.

-10

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

C
u
rr

en
t

[μ
A

]

Time [s]

Dopamine 1mM

Applied voltage: 350 mV

Figure 6.5: Amperometry measurement of 1 mM dopamine. 20 µL were applied
every 8th second for 62 seconds. 350 mV of applied voltage were provided by the
potentiostat.

58 CHAPTER 6. RESULTS

Chapter 7

Discussion

This section will discuss the results presented in chapter 6 and discuss how this
potentiostat behaves compared to the potentiostat developed by Lopin and Lopin
(2018). The potentiostat developed in this thesis will be denoted "the Potentio-
stat", while the potentiostat developed by Lopin and Lopin (2018) will be denoted
"the Reference Potentiostat" throughout this chapter.

7.1 Results - Cyclic Voltammetry

As mentioned in chapter 6, the electrodes used in the experimental setup for
measurements were damaged and were unusable after only a few measurements
with cyclic voltammetry. Therefore, there are limited data obtained from the
potentiostats during measurements. Nevertheless, there are some observations
from the results that will be discussed in the following subsections:

1. It is very noticeable that the Potentiostat had issues with noise. In the plots
from cyclic voltammetry (figure 6.1 and 6.3), the Reference Potentiostat had
a significantly more stable response compared to the Potentiostat.

2. In figure 6.1 and 6.3, the Potentiostat and the Reference Potentiostat have
different shapes; their peaks are at different current levels, the derivative of
their slopes are different and their peaks are at different voltages levels. In
the close-up plots, it is visualized that the potentiostats have approximately
even distance from the origin (apart from the Potentiostats rolling mean
plot).

59

60 CHAPTER 7. DISCUSSION

7.1.1 Noise
The source of the noise in the Potentiostat was for a long time a mystery during
the work of this thesis, but after the measurements presented in chapter 6 were
obtained, a probable source of the noise was discovered. In chapter 5.2.3, the
dithering of the DVDAC was explained. A capacitor mounted on the output of
the DVDAC was inserted to low-pass filter the dithering switching noise. This
functionality was tested (before measurements were conducted on an electrolytic
cell) by measuring the output of the DVDAC directly with an oscilloscope. The
output behaved as expected, with no significant noise observed on the oscilloscope.
When the control amplifier was inserted into the schematic, the error occurred;
the capacitor was placed directly on the output pin for the working electrode (see
figure 7.1). The consequence of the error was that the control amplifier subtracted
its inputs before low-pass filtering the dithering of the DVDAC.

Figure 7.1: Snippet of the schematic of the potentiostat. The output capacitor of
the DVDAC is wrongly placed causing switching noise on the working electrode.

To test if the possible noise source had been found, the Potentiostat ran a
cyclic voltammetry experiment without any electrodes connected. Then, the volt-
age over the working electrode’s output and the analog ground was measured with
an oscilloscope. Figure 7.2 is an image of the result from the measurement with
the capacitor for the DVDAC misplaced in the schematic. The image shows in-
stability and an average frequency at 56 Hz. This frequency has not yet been
mentioned, but is close to the measured main frequency of the noise in figure 6.1
and 6.3 at 62.5 Hz. This implies that the output of the control amplifier generates
an unstable, low frequency.

Figure 7.3 is an image of the result from the measurement with the capacitor
for the DVDAC correctly placed in the schematic. The result is a stable signal

7.1. RESULTS - CYCLIC VOLTAMMETRY 61

implying that the modification should impact the stability of the Potentiostat.
Unfortunately, there was no time to test the impact of this modification on an
electrolytic cell. The modification is presented in chapter 5 to make sure the fu-
ture use of this work can be reproduced correctly.

Figure 7.2: Picture of oscilloscope during an AC analysis of the counter electrode
vs. analog ground. A 100 nF capacitor is mounted directly to the counter electrode
output of the potentiostat.

Figure 7.3: Picture of oscilloscope during an AC analysis of the counter electrode
vs. analog ground. A 100 nF capacitor is mounted between the DAC and the
control amplifier vs analog ground.

62 CHAPTER 7. DISCUSSION

7.1.2 Voltammogram Shape
The voltammograms in figure 6.1 and 6.3 shows that the current peaks are at
different levels for the potentiostats, that the derivatives of the slopes are differ-
ent, and that the current peaks are at different voltage levels. Since both of the
potentiostats are based on the same platform and have implemented the same
functionality, this result was unexpected. Again, an error in the Potentiostat was
found after these results were gathered. The Python function that calculates the
period of the timer component was implemented incorrectly. The impact of this er-
ror is an applied scan rate that deviates from what the operator inserts in the GUI.

The correct calculation for period of the timer with the scan rate as input, is
what was provided in chapter 5.4.6:

P =
step · clock
scanRate

− 1 (7.1)

where P is the period sent to the Potentiostat, step is the minimum voltage step
of the DVDAC (1 mV), clock is the clock frequency for the timer component,
scanRate is the scan rate provided by the operator and the subtracted one is an
implementation instructed by the datasheet of the timer component.

The results in figure 6.1 and 6.3 had the following calculated period for the
timer component:

P =
step · clock

2 · scanRate
− 1 (7.2)

The division by two makes the scan rate twice of its intended rate, and was unfor-
tunately not discovered in advance of the measurements. A doubling of the scan
rate have direct impact on the current peaks in the voltammogram (as explained
in chapter 4.1.1.2) as follows:

peak ∝
√
scanRate (7.3)

Because of this discovery, the current data of the plots in figure 6.1 and 6.3 were
all multiplied by

√
2. Since the current peaks in the voltammogram should behave

linearly with the scan rate as formula 7.3 states, the voltammogram of the Poten-
tiostat should be more similar to the voltammogram of the Reference Potentiostat.
The results are plotted in figure 6.2 and 6.4.

Figure 6.2 shows an improvement in the level of the current peak. The shape of
the voltammogram for the Potentiostat is also improved overall except for at pos-
itive voltages. Figure 6.4 has some of the same results but overshoots the current
peak of the Reference Potentiostat. The results imply that the scan rate formula

7.2. COMPARISON OF THE POTENTIOSTATS 63

7.1 should have been the implementation used while conducting measurements. As
an additional test, the scan rate was measured with an oscilloscope in retrospect,
which verified this finding.

The last observation mentioned in the introduction to the discussion was that
the voltammogram peaks had different voltage levels for the two potentiostats.
One reason for this might be that the Potentiostat does not have a calibration
routine. Lopin and Lopin (2018) have a calibration routine for their ADC that
can adjust for gain- and offset- error. As a consequence of not calibrating the
Potentiostat, the offset errors noted in the datasheets of the PSoC5LP will influ-
ence the behavior of the signals. This can further lead to differences in measured
currents for the potentiostats.

7.2 Comparison of the Potentiostats

Firstly it should be noted that the Reference Potentiostat is not commercial. This
implies that to verify the accuracy of the Potentiostat, the results in the article by
Lopin and Lopin (2018) have to be examined. As they write in their article, the
OPAMPs in the PSoC5LP have a noise of 45nV/

√
Hz with an offset uncertainty

of 12 mV. These uncertainties are also in the Potentiostat since it is based on
the same platform, which means that the Potentiostat’s uncertainties are approx-
imately 12 mV as well.

One of the improvements added to the Potentiostat compared to the Reference
Potentiostat was that it could transfer data continuously while conducting scans.
This functionality worked as expected. With this functionality, it is theoretically
possible to conduct measurements for as long as the operator desires. There were,
however, some communication issues with the USB interface. Sporadically, the
communication between the Potentiostat and the computer stopped, and the GUI
and Potentiostat had to be rebooted. This has not been experienced with the
Reference Potentiostat, but others at the Department of Physics (University of
Oslo) have had the same experience. A probable cause for this problem is that
the driver installed with Zadig is unstable. Other drivers have been tested by the
university and were functional. Lopin and Lopin (2018) utilized the same driver as
was used for the Potentiostat, but they had extensive amounts of tests and error
corrections in their software. These error corrections were not implemented on the
Potentiostat software due to the complexity of the code.

Another implementation for the Potentiostat compared to the Reference Po-

64 CHAPTER 7. DISCUSSION

tentiostat was the possibility to set the number of cycles for cyclic voltammetry.
This implementation was successful. The Reference Potentiostat can start a new
scan right after a scan has been completed, but there has to be a human operator
to start the new scan. The time it takes to start a new scan might be too long for
a cyclic voltammetry experiment.

Figure 6.5 shows how the Reference Potentiostat behaved during an ampero-
metric scan with dopamine. The plot illustrates that the device can detect that
dopamine has been applied to the electrodes. It is expected that the Potentiostat
would behave similarly to the Reference Potentiostat, but this is not verified by
testing on an electrolytic cell. There were conducted more experiments with the
Reference Potentiostat than provided in the result chapter. Cyclic voltammetry
performed on ascorbic acid, dopamine and Ferri-/Ferrocyanide were conducted, in
addition to amperometry on dopamine. These results verified that the Reference
Potentiostat gave similar results as in the article by Lopin and Lopin (2018).

The Reference Potentiostat can choose the sensing resistor in the TIA both
from the integrated resistors and as an externally connected resistor. This func-
tionality was not implemented on the Potentiostat, where the only resistor value
available at the moment is 20 kΩ. The resistor value is an important variable for
the potentiostat to adjust the possible current range to measure. The only reason
for the Potentiostat’s lack of that option was that the functionality was not needed
during testing without an electrolytic cell.

Chapter 8

Conclusions and Further Work

8.1 Conclusion

A potentiostat has been developed as a prototype for The Oslo Bioimpedance
and Medical Technology Group at the Department of Physics (UiO) and the De-
partment of Clinical and Biomedical Engineering (OUS). They are involved in an
EU-project named Training4CRM. The purpose of the project is to address gaps
in Cell-based Regenerative Medicine (CRM) to treat neurodegenerative disorders,
among others, Parkinson’s disease. A potentiostat is needed to detect and char-
acterize dopamine in the project.

The prototype potentiostat can conduct cyclic voltammetry and amperometry
experiments. The device was developed on a PSoC 5LP development kit with the
possibility to conduct experiments with a voltage range of -2.032 V to +2.032 V, a
scan rate of maximum 1 V/s, and a current sense limited to ±101µA. The device
communicates with a computer via a USB interface. During measurements, data
is transferred continuously from the device to a computer. A Python program
has been developed to control the potentiostat, receive data from it, and plot the
measured data.

The work by Lopin and Lopin (2018) was the basis for the development of the
potentiostat developed in this thesis. The potentiostat by Lopin and Lopin (2018)
has been successfully reproduced and tested for functionality in cyclic voltamme-
try and amperometry experiments on Ferri-/Ferrocyanide and ascorbic acid. The
results are similar to the results presented in their article. Their work was exten-
sive, with too many measurement techniques implemented for the scope of this
project. Some of their source code was re-used, but all of the software had to
be re-developed. Their potentiostat had room for improvement. Continuous data

65

66 CHAPTER 8. CONCLUSIONS AND FURTHER WORK

transfer was implemented to conduct as many cycles in a cyclic voltammetry scan
as feasible (not fill up the platform’s internal memory). There has been a focus
on writing good documentation for all the code and writing code to give a better
overview of the system. This was lacking in the work by Lopin and Lopin (2018),
which lead to the re-development of their work instead of re-use.

The results obtained with the potentiostat have flaws due to errors in firmware
and software. These errors have been corrected after the results were provided,
but the device has not been tested on an electrolytic cell with the corrections. The
results were compared with the potentiostat by Lopin and Lopin (2018). Their
potentiostat was also developed on the PSoC 5LP, which implies that the platform
is feasible as a potentiostat. There are, however, limitations to the platform since
it is a system on chip where all components are integrated into the platform. This
means that the accuracy of measurements can not be better than the precision of
the integrated components.

8.2 Further Work

The potentiostat needs improvements for it to work in the Training4CRM project.
First of all, the device must be tested to verify that the new corrections/implemen-
tations are functioning. Then it is important to implement a calibration routine
to make sure the measurements are correct. There should be a possibility of ad-
justing the resistor in TIA, either by changing to another integrated resistor or by
connecting a resistor externally. The resolution of the ADC can be improved by
setting the resolution to 20-bits instead of 12-bits. This depends on the needed
resolution and the needed sampling rate, since an ADC with better resolution also
needs more time to convert.

When the potentiostat is functioning properly, it would be feasible to make the
data transfer wireless by, e.g., a Bluetooth module. For this to be possible, there
should be a serial interface utilized instead of USB, e.g., UART. If there is a need
for better efficiency of the CPU in the PSoC 5LP, it is possible to utilize its direct
memory access (DMA). This will make sure processes bypass the CPU and let the
CPU do other jobs simultaneously.

As a final product, the PSoC 5LP should be designed on a PCB to minimize
the area used for the brain implant in the Training4CRM project. At that point,
power consumption could be an issue, so all the firmware codes should be reviewed
to improve efficiency.

8.2. FURTHER WORK 67

68 CHAPTER 8. CONCLUSIONS AND FURTHER WORK

References

Adams, S. D., Doeven, E. H., Quayle, K., and Kouzani, A. Z. (2019). MiniStat:
Development and Evaluation of a Mini-Potentiostat for Electrochemical Mea-
surements. IEEE Access, 7:31903–31912. Conference Name: IEEE Access.

Adeloju, S. B. (2005). AMPEROMETRY. In Worsfold, P., Townshend, A., and
Poole, C., editors, Encyclopedia of Analytical Science (Second Edition), pages
70–79. Elsevier, Oxford.

Ainla, A., Mousavi, M. P. S., Tsaloglou, M.-N., Redston, J., Bell, J. G., Fernández-
Abedul, M. T., and Whitesides, G. M. (2018). Open-Source Potentiostat for
Wireless Electrochemical Detection with Smartphones. Analytical Chemistry,
90(10):6240–6246. Publisher: American Chemical Society.

Baker, B. (2011). How delta-sigma ADCs work, Part 1. Analog Applications, 7.

Bucher, E. S. and Wightman, R. M. (2015). Electrochemical Analysis of Neuro-
transmitters. Annual review of analytical chemistry (Palo Alto, Calif.), 8:239–
261.

Chang, R. (2008). General chemistry : the essential concepts. McGraw-Hill, 5th
ed. edition.

Cunha, A. B., Schuelke, C., Heiskanen, A., Asif, A., Hassan, Y., Keller, S. S.,
Kalvøy, H., Martínez-Serrano, A., Emnéus, J., and Martinsen, G. (2019).
Bioimpedance measurements on human neural stem cells as a benchmark for
the development of smart mobile biomedical applications. EasyChair, 991.

Cypress Semiconductors (2020a). 32-bit Arm R© Cortex R©-M0 PSoC R© 4. Re-
trieved from https://www.cypress.com/products/32-bit-arm-cortex-m0-psoc-4,
28.09.2020.

Cypress Semiconductors (2020b). 32-bit Arm R© Cortex R©-M3 PSoC R© 5LP.
Retrieved from https://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-
5lp, 28.09.2020.

69

70 REFERENCES

Cypress Semiconductors (2020c). 32-bit Arm R© Cortex R©-M4 Cortex-M0+
PSoC R© 6. Retrieved from https://www.cypress.com/products/32-bit-arm-
cortex-m4-cortex-m0-psoc-6, 28.09.2020.

Cypress Semiconductors (2020d). CY8CKIT-050 PSoC R© 5LP Development
Kit. Retrieved from https://www.cypress.com/documentation/development-
kitsboards/cy8ckit-050-psoc-5lp-development-kit, 28.09.2020.

Cypress Semiconductors (2020e). CY8CKIT-059 PSoC R© 5LP Prototyp-
ing Kit With Onboard Programmer and Debugger. Retrieved from
https://www.cypress.com/documentation/development-kitsboards/cy8ckit-
059-psoc-5lp-prototyping-kit-onboard-programmer-and, 28.09.2020.

Cypress Semiconductors (2020f). PSoC R© CreatorTM Integrated Design Environ-
ment (IDE). Retrieved from https://www.cypress.com/products/psoc-creator-
integrated-design-environment-ide, 04.10.2020.

Cypress Semiconductors and Infineon (2020a). 8-Bit Volt-
age Digital to Analog Converter (VDAC8). Retrieved from
https://www.cypress.com/documentation/component-datasheets/8-bit-
voltage-digital-analog-converter-vdac8, 26.09.2020.

Cypress Semiconductors and Infineon (2020b). Character LCD (CharLCD).
Retrieved from https://www.cypress.com/documentation/component-
datasheets/character-lcd-charlcd, 07.10.2020.

Cypress Semiconductors and Infineon (2020c). Delta Sigma
Analog to Digital Converter (ADC_delsig). Retrieved from
https://www.cypress.com/documentation/component-datasheets/delta-sigma-
analog-digital-converter-adcdelsig, 07.10.2020.

Cypress Semiconductors and Infineon (2020d). Dithered Volt-
age Digital to Analog Converter (DVDAC). Retrieved from
https://www.cypress.com/documentation/component-datasheets/dithered-
voltage-digital-analog-converter-dvdac, 07.10.2020.

Cypress Semiconductors and Infineon (2020e). Full Speed USB (US-
BFS). Retrieved from https://www.cypress.com/documentation/component-
datasheets/full-speed-usb-usbfs, 07.10.2020.

Cypress Semiconductors and Infineon (2020f). Interrupt. Retrieved from
https://www.cypress.com/interrupt, 07.10.2020.

REFERENCES 71

Cypress Semiconductors and Infineon (2020g). Operational Amplifier (Opamp).
Retrieved from https://www.cypress.com/documentation/component-
datasheets/operational-amplifier-opamp, 07.10.2020.

Cypress Semiconductors and Infineon (2020h). Timer. Retrieved from
https://www.cypress.com/documentation/component-datasheets/timer,
07.10.2020.

Cypress Semiconductors and Infineon (2020i). Trans-Impedance Amplifier
(TIA). Retrieved from https://www.cypress.com/documentation/component-
datasheets/trans-impedance-amplifier-tia, 07.10.2020.

David, H. (2013). 11.4: Voltammetric Methods. Retrieved from
https://chem.libretexts.org/Under_Construction/Purgatory/Book%3A_ An-
alytical_Chemistry_2.0_(Harvey)/11_ Electrochemical_Methods/11.4%3A_
Voltammetric_Methods, 21.09.2020.

Dryden, M. D. M. and Wheeler, A. R. (2015). DStat: A Versatile, Open-Source
Potentiostat for Electroanalysis and Integration. PLOS ONE, 10(10):e0140349.
Publisher: Public Library of Science.

Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T.,
and Dempsey, J. L. (2018). A Practical Beginner’s Guide to Cyclic Voltammetry.
Journal of Chemical Education, 95(2):197–206. Publisher: American Chemical
Society.

Gamry Instruments (2020). Potentiostat/Galvanostat Electrochemical In-
strument Basics. Retrieved from https://www.gamry.com/application-
notes/instrumentation/potentiostat-fundamentals/, 21.09.2020.

Grimnes, S. and Martinsen, G. (2015). Bioimpedance and Bioelectricity Basics,
3rd Edition. Academic Press, 3 edition.

Hassan, Y. M., Caviglia, C., Hemanth, S., Mackenzie, D. M. A., Alstrøm, T. S.,
Petersen, D. H., and Keller, S. S. (2017). High temperature SU-8 pyrolysis for
fabrication of carbon electrodes. Journal of Analytical and Applied Pyrolysis,
125:91–99.

Kester, W. (2005). Which ADC Architecture Is Right for Your Applica-
tion? | Analog Devices. Retrieved fromhttps://www.analog.com/en/analog-
dialogue/articles/the-right-adc-architecture.html, 27.09.2020.

Lopin, P. and Lopin, K. V. (2018). PSoC-Stat: A single chip open source potentio-
stat based on a Programmable System on a Chip. PLOS ONE, 13(7):e0201353.

72 REFERENCES

Ruud, S. K. (2019). Embedded Development of a Wireless SoC Instrument for
Electrical Impedance Spectroscopy on Cells. Master’s thesis, University of Oslo.

Scherz, P. and Monk, S. (2016). Practical Electronics for Inventors, Fourth Edition,
4th Edition. McGraw-Hill Education TAB, 4 edition.

Umar, S. N. H., Bakar, E. A., Kamaruddin, N. M., and Uchiyama, N. (2018). A
Low Cost Potentiostat Device For Monitoring Aqueous Solution. MATEC Web
of Conferences, 217:04001. Publisher: EDP Sciences.

Yagi, I., Notsu, H., Kondo, T., Tryk, D. A., and Fujishima, A. (1999). Electro-
chemical selectivity for redox systems at oxygen-terminated diamond electrodes.
Journal of Electroanalytical Chemistry, 473(1):173–178.

Zadig (2020). Zadig - USB driver installation made easy. Retrieved from
https://zadig.akeo.ie/, 04.10.2020.

Appendix

8.3 Firmware

8.3.1 Source Code (.c-files)

8.3.1.1 main.c

1 /* ==
2 * File name: main.c
3 * Version: A8
4 *
5 * Description:
6 * Main code for the controller. All functionality will be

controlled
7 * from the main loop. Pointers will access functions placed in
8 * other scripts.
9 *

10 * Progress:
11 * ---
12 * | ISSUE * STATUS * TESTED |
13 * ---
14 * |Communication with computer * OK * YES |
15 * |DAC setup * OK * YES |
16 * |DAC timing * OK * YES |
17 * |Enabling functions * OK * YES |
18 * |ADC * OK * YES |
19 * |REFERENCE DAC * OK * YES |
20 * |TRANSFER DATA * OK * YES |
21 * |ADC Timing * OK * YES |
22 * |TIA * OK * YES |
23 * |OPAMP * OK * YES |
24 * |Cyclic Voltammetry * OK * YES |
25 * |Amperometry * OK * YES |
26 * |Code cleanup * OK * YES |
27 * ---
28 *
29 * ISSUE:

73

74 APPENDIX

30 * Measurements misbehaving
31 * USB communication not working as expected
32 *
33 * Copyright Univeristy of Oslo , 2020
34 * ==
35 */
36 /* Project Files */
37 #include "project.h"
38 #include "general_functions.h"
39 #include "globals.h"
40 #include "usb_protocol.h"
41

42

43 /* Declaration of variables */
44 uint8 Input_Flag = FALSE; // True if EP2 has

changed.
45 uint8 OUT_Data_Buffer[MAX_NUM_BYTES]; // Buffer USB.
46

47 CY_ISR(dacInterrupt) {
48 TIMER_ReadStatusRegister (); // Release

dacInterrupt
49 /* Define next voltage value */
50 if (direction == UP) { index_value += step_size; }
51 else { index_value -= step_size; }
52

53 /* Check if one cyclus is done */
54 if (index_value == start_value) { // One cycle

completed
55 cycles_index += 1; // Iterate cycle

index
56 if (cycles_index == number_of_cycles) { // CV complete
57 isr_ADC_Disable (); // Disable ADC

interrupt
58 isr_DAC_Disable (); // Disable ADC

interrupt
59 helper_HardwareSleep (); // Set hardware to

sleep mode
60 data_usb16 = 49152; // Determintaion

value for ADC_array
61 USB_Export_Data(data_usb16); // Transfer last

array
62 helper_LCD_write0("CV DONE"); // Write to LCD
63 helper_LCD_clear1 (); // Clear line two

of LCD
64 LED_DAC_Write (0); // LED_DAC off
65 }
66 }
67

68 /* Check if direction should change */

8.3. FIRMWARE 75

69 if (index_value >= max_value) {
70 direction = DOWN;
71 }
72 if (index_value <= min_value) {
73 direction = UP;
74 }
75

76 /* Set next value to DAC*/
77 DVDAC_SetValue(index_value);
78 }
79

80 CY_ISR(adcInterrupt) {
81 TIMER_ReadStatusRegister (); // Release adcInterrupt
82 data_usb16 = ADC_GetResult16 (); // Fetch adc measurement in

data_usb16
83 USB_Export_Data(data_usb16); // Export the data
84 }
85

86

87 int main(void){
88 CyGlobalIntEnable; // Enable global

interrupts.
89

90 /* Initialize hardware and interrupts */
91 isr_DAC_StartEx(dacInterrupt); // Setup interrupt
92 isr_DAC_Disable (); // Disable interrupt
93 isr_ADC_StartEx(adcInterrupt); // Setup interrupt
94 isr_ADC_Disable (); // Disable interrupt
95 helper_HardwareSetup (); // Setup HW
96

97 USB_Start(0, USB_DWR_VDDD_OPERATION); // Start the USB
peripherals.

98

99 while(! USB_GetConfiguration ()); // Wait until USB is
configured.

100 USB_EnableOutEP(OUT_ENDPOINT); // Enable out endpoint
(EP2).

101

102 for (;;) {
103 USB_Config_Change (); // Check if

configuration has changed
104

105 /* Check if host has tranferred commands to device. If yes
: Input_Flag = True. */

106 if (Input_Flag == FALSE) { Input_Flag = USB_CheckInput(
OUT_Data_Buffer); }

107

108 /* Input_Flag == TRUE -> Switch statement checks input
for functionalities below. */

76 APPENDIX

109 /* Input_Flag == FALSE -> Skip switch statement. Loop. */
110 if (Input_Flag == TRUE) {
111 switch (OUT_Data_Buffer [0]) {
112 case CV_TIMER:
113 // User input: C xxxxxxxx
114 counter = helper_Convert2Dec32 (&

OUT_Data_Buffer [2], 8);
115 TIMER_WritePeriod(counter);
116 break;
117

118 case CV_NO_CYCLES:
119 // User input: N xx
120 number_of_cycles = helper_Convert2Dec8 (&

OUT_Data_Buffer [2],2);
121 break;
122

123 case CV_DEFINE_RANGE:
124 // User input: L xxxx xxxx xxxx
125 min_value = helper_Convert2Dec16 (&

OUT_Data_Buffer [2],4);
126 max_value = helper_Convert2Dec16 (&

OUT_Data_Buffer [7],4);
127 start_value = helper_Convert2Dec16 (&

OUT_Data_Buffer [12] ,4);
128

129 // Set direction of next step in sweep
130 // Direction = DOWN IF start_value ==

max_value
131 // Direction = UP IF else
132 if (start_value == min_value) {

direction_initial = UP;}
133 else if (start_value == max_value) {

direction_initial = DOWN;}
134 else {direction_initial = UP;}
135

136 helper_LCD_write0("Data uploaded."); //
Write to display

137 helper_LCD_write1("Ready for CV."); //
Write to display

138 break;
139

140 case CV_RUN:
141 // User input: R
142 index_value = start_value; // Set

initial value
143 buffer_index = 0; // Set

buffer_count to initial count
144 cycles_index = 0; // Set

cycle_index to initial state

8.3. FIRMWARE 77

145 channel = 1; // Set
initial channel

146 step_size = 1; // Set
step size

147 direction = direction_initial; // Set
start direction as initial direction

148 helper_HardwareWakeup (); //
Wakeup hardware

149 DVDAC_SetValue(index_value); // Set
initial dac value

150 CyDelay (70); //
Delay for DVDAC to stabilize

151 data_usb16 = ADC_GetResult16 (); //
Save first ADC measurement in ADC_array

152 USB_Export_Data(data_usb16); //
Send first value to USB

153 isr_ADC_Enable (); //
Enable ADC interrupt

154 isr_DAC_Enable (); //
Enable DAC interrupt

155 LED_DAC_Write (1); // LED
indicating CV is running

156 helper_LCD_write0("CV start. Cycles:"); //
Write to display

157 helper_LCD_format1(number_of_cycles); //
Write no of cycles on line two

158 break;
159

160 case AMP_RUN:
161 // User input: A
162 LCD_ClearDisplay ();
163 helper_LCD_write0("Amperometry");
164 helper_LCD_write1("is running");
165 amp_voltage = helper_Convert2Dec16 (&

OUT_Data_Buffer [2],4);
166 TIMER_WritePeriod (600000); // 25 ms period
167 helper_HardwareWakeup ();
168 DVDAC_SetValue(amp_voltage);
169 isr_ADC_Enable ();
170 break;
171

172 case AMP_STOP:
173 isr_ADC_Disable ();
174 helper_HardwareSleep ();
175 LCD_ClearDisplay ();
176 helper_LCD_write0("Amperometry");
177 helper_LCD_write1("has ended");
178 break;
179 } // End of switch statement

78 APPENDIX

180 OUT_Data_Buffer [0] = ’0’; // Clear data buffer ,
ready for new loop.

181 Input_Flag = FALSE; // Set flag to False ,
ready for new loop.

182 }
183 }
184 }
185 /* [] END OF FILE */

8.3. FIRMWARE 79

8.3.1.2 general_functions.c

1 /* ==
2 * File name: general_functions.c
3 *
4 * Description:
5 * Functions to assist main.c.
6 * Involves functions to edit formats and to display on LCD.
7 *
8 * Copyright Univeristy of Oslo , 2020
9 * ==

10 */
11 #include "general_functions.h"
12

13

14 /*

15 * Function Name: helper_HardwareSetup
16 ***

17 *
18 * Summary:
19 * Setup all the hardware needed for an experiment. This will

start all the hardware
20 * and then put them to sleep so they can be awoke for an

experiment.
21 *
22 **

*/
23 void helper_HardwareSetup(void) {
24 LCD_Start (); // Start LCD
25 helper_LCD_write0("Potentiostat: A8"); // Start message
26 helper_LCD_write1("Created by: OBJ"); // Created by message
27 DVDAC_Start (); // Initialize DVDAC
28 DVDAC_Sleep (); // DVDAC sleep
29 OPAMP_Start (); // Start OPAMP for DAC
30 OPAMP_Sleep (); // OPAMP sleep
31 TIA_Start (); // TIA start
32 TIA_Sleep (); // TIA sleep
33 VDAC_REF_Start (); // VDAC_REF start
34 VDAC_REF_Sleep (); // VDAC_REF sleep
35 ADC_Start (); // ADC start
36 ADC_Sleep (); // ADC sleep
37 TIMER_Start (); // TIMER start
38 TIMER_Sleep (); // TIMER sleep
39 LED_DAC_Write (0); // LED off
40 }
41

80 APPENDIX

42 /*

43 * Function Name: helper_HardwareWakeup
44 ***

45 *
46 * Summary:
47 * Wakes up all the desired hardware.
48 *
49 **

*/
50 void helper_HardwareWakeup(void) {
51 DVDAC_Wakeup (); // Wakeup DVDAC
52 OPAMP_Wakeup (); // Wakeup OPAMP
53 TIA_Wakeup (); // Wakeup TIA
54 VDAC_REF_Wakeup (); // Wakeup VDAC_REF
55 ADC_Wakeup (); // Wakeup ADC
56 ADC_StartConvert (); // Start ADC

conversion
57 TIMER_Wakeup (); // Wakeup TIMER
58 }
59

60 /*

61 * Function Name: helper_HardwareSleep
62 ***

63 *
64 * Summary:
65 * Sets all hardware to sleep mode.
66 *
67 **

*/
68 void helper_HardwareSleep(void) {
69 TIMER_Sleep (); // Sleep TIMER
70 DVDAC_Sleep (); // Sleep DVDAC
71 OPAMP_Sleep (); // Sleep OPAMP
72 TIA_Sleep (); // Sleep TIA
73 VDAC_REF_Sleep (); // Sleep VDAC_REF
74 ADC_StopConvert (); // Stop ADC conversion
75 ADC_Sleep (); // Sleep ADC
76 }
77

78 /*

79 * Function Name: helper_LCD_write

8.3. FIRMWARE 81

80 ***

81 *
82 * Summary:
83 * Function to print message to the LCD.
84 * Purpose is to save space in main.c
85 *
86 **

*/
87 // Write text in the first row of LCD
88 void helper_LCD_write0(char message []) {
89 helper_LCD_clear0 ();
90 LCD_Position (0u,0u);
91 LCD_PrintString(message);
92 }
93

94 // Write text in the second row of LCD
95 void helper_LCD_write1(char message []) {
96 helper_LCD_clear1 ();
97 LCD_Position (1u,0u);
98 LCD_PrintString(message);
99 }

100

101 // Write number in the first row of LCD
102 void helper_LCD_format0(uint16 message) {
103 helper_LCD_clear0 ();
104 char a[32];
105 LCD_Position (0,3);
106 sprintf(a,"%4u",message);
107 LCD_PrintString(a);
108 }
109

110 // Write number in the second row of LCD
111 void helper_LCD_format1(uint16 message) {
112 helper_LCD_clear1 ();
113 char b[32];
114 LCD_Position (1,3);
115 sprintf(b,"%4u",message);
116 LCD_PrintString(b);
117 }
118

119 // Clear the first row of LCD
120 void helper_LCD_clear0(void) {
121 LCD_Position (0,0);
122 LCD_PrintString(" ");
123 }
124

125 // Clear the second row of LCD
126 void helper_LCD_clear1(void) {

82 APPENDIX

127 LCD_Position (1,0);
128 LCD_PrintString(" ");
129 }
130

131 /*

132 * Function Name: helper_Convert2Dec
133 ***

134 *
135 * Summary:
136 * Takes in an array of numbers and length , returns the number

as
137 * a number not an array of text.
138 *
139 **

*/
140 uint32 helper_Convert2Dec32(uint8 array[], uint8 len){
141 uint32 num = 0;
142 for (int i = 0; i < len; i++){
143 num = num * 10 + (array[i] - ’0’);
144 }
145 return num;
146 }
147 uint16 helper_Convert2Dec16(uint8 array[], uint8 len){
148 uint16 num = 0;
149 for (int i = 0; i < len; i++){
150 num = num * 10 + (array[i] - ’0’);
151 }
152 return num;
153 }
154 uint8 helper_Convert2Dec8(uint8 array[], uint8 len){
155 uint8 num = 0;
156 for (int i = 0; i < len; i++){
157 num = num * 10 + (array[i] - ’0’);
158 }
159 return num;
160 }
161 /*

162 * Function Name: helper_Convert16to8
163 ***

164 *
165 * Summary:
166 * Takes in a UINT16 and converts it to double UINT8.
167 * The convertion is on the form low to high. Least significant

8.3. FIRMWARE 83

first and then most significant.
168 *
169 **

*/
170 void helper_Convert16to8(uint16 value){
171 data_usb8 [0] = (uint8) value;
172 data_usb8 [1] = (uint8)(value >> 8);
173 }
174 /* [] END OF FILE */

84 APPENDIX

8.3.1.3 usb_protocol.c

1 /* ==
2 * File Name: usb_protocols.c
3 *
4 * Description:
5 * Source code for the protocols used by the USB.
6 *
7 * Copyright University of Oslo , 2019
8 * ==
9 */

10

11 #include <project.h>
12 #include "usb_protocol.h"
13 #include "stdio.h"
14 #include "stdlib.h"
15

16 /*

17 * Function Name: USB_CheckInput
18 ***

19 *
20 * Summary:
21 * Check if any incoming USB data and store it to the input buffer
22 *
23 * Parameters:
24 * uint8 buffer: array where the data is stored
25 *
26 * Return:
27 * true (1) if data has been inputed or false (0) if no data
28 *
29 * Global variables:
30 * OUT_ENDPOINT: EP2
31 *
32 **

*/
33

34 uint8 USB_CheckInput(uint8 buffer []) {
35

36 if(USB_GetEPState(OUT_ENDPOINT) == USB_OUT_BUFFER_FULL) {
37 uint8 OUT_COUNT = USB_GetEPCount(OUT_ENDPOINT); //

There is data coming in , get the number of bytes.
38 USB_ReadOutEP(OUT_ENDPOINT , buffer , OUT_COUNT); //

Read the OUT endpoint and store data in OUT_COUNT.
39 USB_EnableOutEP(OUT_ENDPOINT); // Re-

enable OUT endpoint.
40 return TRUE;

8.3. FIRMWARE 85

41 }
42

43 return FALSE;
44 }
45

46 /*

47 * Function Name: USB_Export_Data
48 ***

49 *
50 * Summary:
51 * Take a buffer as input and export it, the number of bytes to

send is the second argument.
52 *
53 * Parameters:
54 * uint16 array: array of data to export
55 * uint16 size: the number of bytes to send in the array
56 *
57 * Return:
58 * None
59 *
60 * Global variables:
61 * MAX_BUFFER_SIZE: the number of bytes the USB EP1 device can

transfer
62 *
63 **

*/
64

65 void USB_Export_Data(uint16 value) {
66 data_usb8 [0] = (uint8) value;
67 data_usb8 [1] = (uint8)(value >> 8);
68 while(USB_GetEPState(IN_ENDPOINT) != USB_IN_BUFFER_EMPTY); //

Wait until EP1 is empty
69

70 if(USB_GetEPState(IN_ENDPOINT) == USB_IN_BUFFER_EMPTY){
71 USB_LoadInEP(IN_ENDPOINT , data_usb8 , 2);
72 USB_EnableOutEP(OUT_ENDPOINT);
73 }
74 }
75

76 /*

77 * Function Name: USB_Config_Change
78 ***

79 *

86 APPENDIX

80 * Summary:
81 * If configurations is changed , reenable the OUT endpoint.
82 * Wait for the configuration.
83 * Re -enable out endpoint
84 *
85 * Parameters:
86 * None
87 *
88 * Return:
89 * None
90 *
91 * Global variables:
92 * OUT_ENDPOINT: out endpoint number
93 *
94 **

*/
95

96 void USB_Config_Change () {
97 if (USB_IsConfigurationChanged ()) {
98 while(! USB_GetConfiguration ()) {}
99 USB_EnableOutEP(OUT_ENDPOINT);

100 }
101 }
102 /* [] END OF FILE */

8.3. FIRMWARE 87

8.3.2 Header Code (.h-files)

8.3.2.1 globals.h

1 /* ==
2 * File name: cv_functions.h
3 *
4 * Description:
5 * User input functionality is defined here.
6 *
7 * Copyright Univeristy of Oslo , 2020
8 * ==
9 */

10

11

12 #if !defined(GLOBALS)
13 #define GLOBALS
14

15 #include "cytypes.h"
16 /* *************************************
17 * USB INPUT OPTIONS
18 ************************************* */
19 #define CV_TIMER ’C’
20 #define CV_NO_CYCLES ’N’
21 #define CV_DEFINE_RANGE ’L’
22 #define CV_RUN ’R’
23 #define START_DAC ’D’
24 #define VALUE_DAC ’V’
25 #define USB_TEST ’T’
26 #define AMP_RUN ’A’
27 #define AMP_STOP ’S’
28

29 /* *************************************
30 * Global Variables
31 ************************************* */
32 #define MAX_BUFFER_SIZE 64
33 #define CHANNEL_MAX 300
34

35 /* *************************************
36 * ADC -> USB VARIABLES
37 ************************************* */
38 uint16 channel; //

initializer for adc channels for storage
39 uint16 data_usb16; // array

for ADC values UINT16 with four channels
40 uint8 data_usb8[MAX_BUFFER_SIZE]; // array

for ADC values converted to double UINT8
41

42 /* *************************************

88 APPENDIX

43 * CV VARIABLES
44 ************************************* */
45 uint16 buffer_index; // indexing for adc usb transfer
46 uint8 number_of_cycles; // number of cycles for cyclic

voltammetry
47 uint8 cycles_index; // index for number of cycles in

cuyclic voltammetry
48 uint16 step_size; // incremental step size
49 uint16 index_value; // Counter for dac values
50 uint8 direction; // Direction for dac values (next

value up or down)
51 uint8 direction_initial; // Direction for dac values stored

in this variable
52 uint16 start_value; // Initial value for CV
53 uint16 min_value; // Minimum value for CV
54 uint16 max_value; // Maximum value for CV
55 uint32 counter; // Value to set correct timing for

the TIMER
56 #define UP 1
57 #define DOWN 0
58

59 /* *************************************
60 * AMP VARIABLES
61 ************************************* */
62 uint16 amp_voltage; // Amperometry voltage
63

64 #endif
65 /* [] END OF FILE */

8.3. FIRMWARE 89

8.3.2.2 general_functions.h

1 /* ==
2 * File name: general_functions.h
3 *
4 * Description:
5 * Functions to assist main.c.
6 * The variables are defined in this header.
7 *
8 * Copyright Univeristy of Oslo , 2020
9 * ==

10 */
11 #if !defined(GENERAL_FUNCTIONS_H)
12 #define GENERAL_FUNCTIONS_H
13

14 /* Project Files */
15 #include <project.h>
16 #include "globals.h"
17

18 /* Standard C Files */
19 #include "stdio.h"
20 #include "cytypes.h"
21

22 /* **************************************
23 * Function Prototypes
24 ************************************** */
25

26 uint8 helper_Convert2Dec8(uint8 array[], uint8 len);
27 uint16 helper_Convert2Dec16(uint8 array[], uint8 len);
28 uint32 helper_Convert2Dec32(uint8 array[], uint8 len);
29 void helper_Convert16to8(uint16 value);
30 void helper_HardwareSetup(void);
31 void helper_HardwareWakeup(void);
32 void helper_HardwareSleep(void);
33 void helper_LCD_write0(char message []);
34 void helper_LCD_write1(char message []);
35 void helper_LCD_format0(uint16 message);
36 void helper_LCD_format1(uint16 message);
37 void helper_LCD_clear0(void);
38 void helper_LCD_clear1(void);
39

40 #endif
41 /* [] END OF FILE */

90 APPENDIX

8.3.2.3 usb_protocol.h

1 /* ==
2 * File name: usb_protocal.h
3 *
4 * Description:
5 * Contains function prototypes and constants for the
6 * USB protocals.
7 *
8 **
9 * Copyright University of Oslo , 2019

10 * ==
11 */
12 #if !defined(USB_PROTOCOL_H)
13 #define USB_PROTOCOL_H
14

15 #include <project.h>
16 #include "general_functions.h"
17

18 /* *************************************
19 * Constants
20 ************************************* */
21

22 #define IN_ENDPOINT 1 // Endpoint for transfer
to host.

23 #define OUT_ENDPOINT 2 // Endpoint for transfer
from host.

24 #define MAX_BUFFER_SIZE 64 // Maximum output to host
package size.

25 #define MAX_NUM_BYTES 512 // Maximum size of USB
buffer.

26 #define FALSE 0 // Define boolean
statement False.

27 #define TRUE (! FALSE) // Define boolean
statement True.

28

29 /* **************************************
30 * Function Prototypes
31 ************************************** */
32 uint8 USB_CheckInput(uint8 buffer []);
33 void USB_Export_Data(uint16 value);
34 void USB_Config_Change ();
35

36 #endif
37 /* [] END OF FILE */

8.4. SOFTWARE 91

8.4 Software

8.4.0.1 Potentiostat_GUI.py

1 import tkinter as tk
2 from tkinter import ttk as ttk
3

4 import Potentiostat_communication
5 import Potentiostat_functionality
6 import Potentiostat_Constants
7 import Potentiostat_userinput
8

9 comm = Potentiostat_communication.Communication ()
10 dev , ep_out , ep_in = comm.usb_connect(comm.vendor_id , comm.

product_id)
11

12 class Potentiostat_GUI(tk.Frame):
13 """
14 Potentiostat_GUI makes the interface from the Potentiostat

commands.
15 The GUI is made using Tkinter.
16 """
17 def __init__(self , master=None):
18 """
19 The layout is made in this function.
20 All buttons have a corresponding function underneath this

class that calls for other classes.
21 """
22 #### Importing classes to variables ####
23 self.con = Potentiostat_Constants.Constants ()
24 self.func = Potentiostat_functionality.Potentiostat ()
25 self.user = Potentiostat_userinput.UserInput ()
26 self.comm = Potentiostat_communication.Communication () # Path

to communication class
27

28 #### Storage of data arrays for amperometry ####
29 self.time_data_store = None
30 self.current_data_store = []
31

32 tk.Frame.__init__(self , master) # Main frame
33

34 self.master.title("Potentiostat Controller") # Set name to
window

35 self.master.configure(background = "black") # Set background
color

36 self.master.geometry("870 x525") # Set size of window
37

38 self.after_id = None # Determination for GUI

92 APPENDIX

39

40 ### Make title ###
41 tk.Label(self.master , text = "Potentiostat", fg = "white", bg

= "black", width = 40,
42 font=("Courier", 30)).grid(rowspan = 2, columnspan =

10)
43 tk.Label(self.master , text = "

",

44 fg = "red", bg = "black", font=("Courier", 10)).grid(
rowspan = 2, columnspan = 10)

45

46 ### Make design ###
47 tk.Label(self.master , text = "Choose type of experiment: ", fg

= "white", bg = "black",
48 font=("Courier", 15)).grid(rowspan = 1,

columnspan = 10)
49 tk.Label(self.master , text = "

--",
50 fg = "red", bg = "black", font=("Courier", 10)).grid(

rowspan = 2, columnspan = 10)
51 tk.ttk.Separator(self.master , orient="vertical").grid(row =

11, column =2, rowspan =11, sticky=’ns’)
52 tk.Label(self.master , text = "Scan Rate: ", fg = "white", bg =

"black", # Scan rate text
53 font=("Courier", 12)).grid(row = 17, column = 0,

sticky = "e")
54 tk.Label(self.master , text = "V/s", fg = "white", bg = "black"

, # Scan rate unit
55 font=("Courier", 12)).grid(row = 17, column = 2,

sticky = "w")
56 tk.Label(self.master , text = "Minimum Voltage: ", fg = "white"

, bg = "black", # Min voltage text
57 font=("Courier", 12)).grid(row = 18, column = 0,

sticky = "e")
58 tk.Label(self.master , text = "mV", fg = "white", bg = "black",

Min voltage unit
59 font=("Courier", 12)).grid(row = 18, column = 2,

sticky = "w")
60 tk.Label(self.master , text = "Maximum Voltage: ", fg = "white"

, bg = "black", # Max voltage text
61 font=("Courier", 12)).grid(row = 19, column = 0,

sticky = "e")
62 tk.Label(self.master , text = "mV", fg = "white", bg = "black",

Max voltage unit
63 font=("Courier", 12)).grid(row = 19, column = 2,

sticky = "w")
64 tk.Label(self.master , text = "Voltage: ", fg = "white", bg = "

black", # Amperometry voltage text

8.4. SOFTWARE 93

65 font=("Courier", 12)).grid(row = 19, column = 3,
sticky = "e")

66 tk.Label(self.master , text = "mV", fg = "white", bg = "black",
Amperometry voltage unit

67 font=("Courier", 12)).grid(row = 19, column = 5,
sticky = "w")

68 tk.Label(self.master , text = "Start Voltage: ", fg = "white",
bg = "black", # Start voltage text

69 font=("Courier", 12)).grid(row = 20, column = 0,
sticky = "e")

70 tk.Label(self.master , text = "mV", fg = "white", bg = "black",
Start voltage unit

71 font=("Courier", 12)).grid(row = 20, column = 2,
sticky = "w")

72 tk.Label(self.master , text = "Number of cycles: ", fg = "white
", bg = "black", # Number of cycles text

73 font=("Courier", 12)).grid(row = 21, column = 0,
sticky = "e")

74 tk.Label(self.master , text = "#", fg = "white", bg = "black",
Start voltage unit

75 font=("Courier", 12)).grid(row = 21, column = 2,
sticky = "w")

76 tk.Label(self.master , text = "", fg = "white", bg = "black",
Horizontal space

77 font=("Courier", 12)).grid(row = 22, column = 0,
sticky = "e")

78 tk.Label(self.master , text = "", fg = "white", bg = "black",
Horizontal space

79 font=("Courier", 12)).grid(row = 25, column = 0,
sticky = "e")

80 tk.Label(self.master , text = "Plot Title: ", fg = "white", bg
= "black", # Plot title text

81 font=("Courier", 12)).grid(row = 24, column = 1,
sticky = "e")

82 tk.Label(self.master , text = "Solution name: ", fg = "white",
bg = "black", # Plot legend text

83 font=("Courier", 12)).grid(row = 25, column = 1,
sticky = "e")

84 tk.ttk.Separator(self.master , orient="horizontal").grid(row =
27, column = 1, columnspan =3, sticky=’ew’)

85 tk.Label(self.master , text = "", fg = "white", bg = "black",
Horizontal space

86 font=("Courier", 12)).grid(row = 27, column = 0,
sticky = "e")

87 tk.Label(self.master , text = "", fg = "white", bg = "black",
Horizontal space

88 font=("Courier", 12)).grid(row = 29, column = 0,
sticky = "e")

89 tk.Label(self.master , text = "", fg = "white", bg = "black",

94 APPENDIX

Horizontal space
90 font=("Courier", 12)).grid(row = 30, column = 0,

sticky = "e")
91 tk.Label(self.master , text = "", fg = "white", bg = "black",

Horizontal space
92 font=("Courier", 12)).grid(row = 29, column = 0,

sticky = "e")
93 tk.ttk.Separator(self.master , orient="vertical").grid(row =

28, column =2, rowspan=2, sticky=’ns’)
94 tk.ttk.Separator(self.master , orient="horizontal").grid(row =

30, column = 1, columnspan =3, sticky=’ew’)
95 tk.Label(self.master , text = "File name: ", fg = "white", bg =

"black", # File name text
96 font=("Courier", 12)).grid(row = 33, column = 1,

sticky = "e")
97

98

99 #### Choice of experiment radiobutton ####
100 # Disables the experiment that is not choosen.
101 # Calls for Disable_CV or Disable_AMP functions
102 self.choose_experiment = tk.IntVar () # Choose experiment

variable
103

104 self.CV_button = tk.Radiobutton(self.master , text = "Cyclic
Voltammetry", font=("Courier", 15), bg = "grey",

105 variable = self.choose_experiment , value = 1,
106 command = self.Disable_AMP).grid(row = 13, column =

0, columnspan = 3)
107 self.AMP_button = tk.Radiobutton(self.master , text = "

Amperometry", font=("Courier", 15), bg = "grey",
108 variable = self.choose_experiment , value = 2,
109 command = self.Disable_CV).grid(row = 13, column =

3, columnspan = 3)
110

111 #### Cyclic Voltammetry User Interface ####
112 # Scan rate
113 self.Scan_rate = tk.Entry(self.master , justify = "right

")
114 self.Scan_rate.grid(row = 17, column = 1, sticky = "e,w")
115 self.Scan_rate.insert(0, self.con.scan_rate)
116

117 # Min voltage
118 self.Min_voltage = tk.Entry(self.master , justify = "right")
119 self.Min_voltage.grid(row = 18, column = 1, sticky = "e,w")
120 self.Min_voltage.insert(0, self.con.min_voltage)
121

122 # Max voltage
123 self.Max_voltage = tk.Entry(self.master , justify = "right")
124 self.Max_voltage.grid(row = 19, column = 1, sticky = "e,w")

8.4. SOFTWARE 95

125 self.Max_voltage.insert(0, self.con.max_voltage)
126

127 # Start voltage
128 self.Start_voltage = tk.Entry(self.master , justify = "right

")
129 self.Start_voltage.grid(row = 20, column = 1, sticky = "e,w")
130 self.Start_voltage.insert(0, self.con.start_voltage)
131

132 # Number of cycles
133 self.Number_of_cycles = tk.Entry(self.master , justify = "

right")
134 self.Number_of_cycles.grid(row = 21, column = 1, sticky = "e,w

")
135 self.Number_of_cycles.insert(0, self.con.number_of_cycles)
136

137

138

139 # Send CV settings
140 self.send_cv_settings = tk.Button(self.master , text = "Send

CV settings", command = self.Send_CV_Settings)
141 self.send_cv_settings.grid(row = 28, column = 1, columnspan =

1, sticky = "e,w")
142

143 # Plot CV title name
144 self.plot_title = tk.Entry(self.master)
145 self.plot_title.grid(row = 24, column = 2, sticky = "e,w")
146

147 # Plot CV legend name
148 self.plot_legend = tk.Entry(self.master)
149 self.plot_legend.grid(row = 25, column = 2, sticky = "e,w")
150

151 # Run CV
152 self.run_CV_scan = tk.Button(self.master , text = "Run CV

Scan", command = self.Start_CV_scan)
153 self.run_CV_scan.grid(row = 29, column = 1, columnspan = 1,

sticky = "e,w")
154

155 # File name
156 self.file_name = tk.Entry(self.master)
157 self.file_name.grid(row = 33, column = 2, sticky = "e,w")
158

159 # Save data
160 self.save_data = tk.Button(self.master , text = "Save Data

and Settings", command=self.Save_data_and_settings)
161 self.save_data.grid(row = 34, column = 2, columnspan = 1,

sticky = "e,w")
162

163

164 #### Amperometry ####

96 APPENDIX

165 # Run AMP
166 self.run_AMP_scan = tk.Button(self.master , text = "Run AMP

Scan", command=self.Start_amperometry) # Run AMP button
167 self.run_AMP_scan.grid(row = 28, column = 3, columnspan = 1,

sticky = "e,w")
168

169 # Stop AMP
170 self.stop_AMP_scan = tk.Button(self.master , text = "Stop

AMP Scan", command=self.Stop_amperometry) # Run AMP button
171 self.stop_AMP_scan.grid(row = 29, column = 3, columnspan = 1,

sticky = "e,w")
172

173

174 # Amperometry voltage
175 self.amp_voltage = tk.Entry(self.master , justify = "right

")
176 self.amp_voltage.grid(row = 19, column = 4, sticky = "e,w")
177 self.amp_voltage.insert(0, self.con.amp_voltage)
178

179

180

181 #####################
182

183 self.choose_experiment.set (1) # Initial state is CV
184 self.Disable_AMP () # Disable amperometry options
185

186 def Disable_AMP(self):
187 """
188 If Cyclic Voltammetry is choosen , all entrys for Amperometry

will be disabled.
189 """
190 self.run_AMP_scan["state"] = "disable"
191 self.stop_AMP_scan["state"] = "disable"
192 self.amp_voltage["state"] = "disable"
193 self.run_CV_scan["state"] = "normal"
194 self.send_cv_settings["state"] = "normal"
195 self.Start_voltage["state"] = "normal"
196 self.Max_voltage["state"] = "normal"
197 self.Min_voltage["state"] = "normal"
198 self.Scan_rate["state"] = "normal"
199

200 def Disable_CV(self):
201 """
202 If Amperometry is choosen , all entrys for Cyclic Voltammetry

will be disabled.
203 """
204 self.run_CV_scan["state"] = "disable"
205 self.send_cv_settings["state"] = "disable"
206 self.Start_voltage["state"] = "disable"

8.4. SOFTWARE 97

207 self.Max_voltage["state"] = "disable"
208 self.Min_voltage["state"] = "disable"
209 self.Scan_rate["state"] = "disable"
210 self.run_AMP_scan["state"] = "normal"
211 self.amp_voltage["state"] = "normal"
212 self.stop_AMP_scan["state"] = "normal"
213

214

215 def Send_CV_Settings(self):
216 """
217 Functions collects all settings from user and sends them to

the potentiostat.
218 """
219 #### Collect all settings for Cyclic Voltammetry ####
220 _scan_rate = float(self.Scan_rate.get())
221 _min_voltage = int(self.Min_voltage.get())
222 _max_voltage = int(self.Max_voltage.get())
223 _start_voltage = int(self.Start_voltage.get())
224 _number_of_cycles = int(self.Number_of_cycles.get())
225

226 #### Send scan rate if value is within range ####
227 if (self.con.min_scan_rate <= _scan_rate) and (self.con.

max_scan_rate >= _scan_rate):
228 self.user.set_Scan_rate(_scan_rate)
229 else:
230 self.con.scan_rate_out_of_range ()
231 return
232

233 #### Send min , max , start , number of cycles to LUT ####
234 # Min voltage
235 if (_min_voltage <= self.con.min_voltage_limit) or (

_min_voltage >= self.con.max_voltage_limit):
236 self.con.min_voltage_out_of_range ()
237 return
238 # Max voltage
239 elif (_max_voltage <= self.con.min_voltage_limit) or (

_max_voltage >= self.con.max_voltage_limit):
240 self.con.max_voltage_out_of_range ()
241 return
242 # Start voltage
243 elif (_start_voltage < _min_voltage) or (_start_voltage >

_max_voltage):
244 self.con.start_voltage_out_of_range ()
245 # Send values to potentiostat
246 else:
247 self.user.make_LookUpTable(_min_voltage , _max_voltage ,

_start_voltage)
248

249 #### Send number of cycles ####

98 APPENDIX

250 if (_number_of_cycles >= self.con.min_number_of_cycles) and (
_number_of_cycles <= self.con.max_number_of_cycles):

251 self.user.set_number_of_cycles(_number_of_cycles)
252 else:
253 self.con.number_of_cycles_out_of_range ()
254 return
255

256 #### Print to command window what happens ####
257 self.con.settings_sent ()
258

259 def Start_CV_scan(self):
260 """
261 Function start cyclic voltammetry with given settings.
262 """
263 #### Store plot settings in variables ####
264 self.user.plot_title_store = str(self.plot_title.get())
265 self.user.plot_legend_store = str(self.plot_legend.get())
266

267 #### Print to command window what happens ####
268 self.user.con.plot_title_message ();
269 self.con.plot_legend_message ();
270 self.con.start_CV_message ()
271

272 #### Start cyclic voltammetry ####
273 self.user.run_CyclicVoltammetry ()
274

275 #### Print to command window what happens ####
276 self.con.end_CV_message ()
277

278 def Start_amperometry(self):
279 """
280 Function start amperometry with given settings.
281 """
282 #### Store plot settings in variables ####
283 self.user.plot_title_store = str(self.plot_title.get())
284 self.user.plot_legend_store = str(self.plot_legend.get())
285

286 #### Print to command window what happens ####
287 self.user.con.plot_title_message ();
288 self.con.plot_legend_message ();
289 self.con.start_AMP_message ()
290

291 #### Start amperometry ####
292 send_amp_voltage = str(self.func.

Convert_voltage_to_DVDAC_value(self.con.amp_voltage)).zfill (4)
293

294 #### Potentiostat command to start amperometry ####
295 amp_voltage_formatted = "A {}".format(send_amp_voltage)
296 self.comm.usb_write(amp_voltage_formatted)

8.4. SOFTWARE 99

297

298 #self.current_data_store = [] # Empty stored data
299 self.collect_data_amperometry ()
300

301 def Stop_amperometry(self):
302 """
303 Function stops amperometry
304 """
305 #### Stop cyclic voltammetry ####
306 if self.after_id:
307 self.master.after_cancel(self.after_id)
308 self.after_id = None
309

310 self.comm.usb_write("S")
311

312 #### Print to command window what happens ####
313 self.con.stop_AMP_message ()
314

315 ### Generate time array ###
316 self.time_data_store = self.func.AMP_Time_array(self.

current_data_store)
317

318 #### Plot data ####
319 self.func.Plot_AMP_data(self.current_data_store , self.

time_data_store , self.user.plot_title_store , self.user.
plot_legend_store)

320

321 def collect_data_amperometry(self):
322 #### Collect data ####
323 data_raw = []
324

325 data = self.comm.usb_collect_data ()
326 data_raw.extend(data)
327

328 data_int16 = self.func.convert_uint8_to_int16_AMP(data)
329 current_value = (-1* data_int16 / 20000)
330 self.current_data_store.append(current_value)
331

332 self.after_id = self.master.after(20, self.
collect_data_amperometry)

333

334 def Save_data_and_settings(self):
335 self.user.filename_store = str(self.file_name.get()) # Store

filename in variable
336

337 if self.choose_experiment.get() == 1: # Check if CV is
the data to be saved

338 self.user.Save_Data_CV ()
339 else: # Check if AMP is the data to be

100 APPENDIX

saved
340 self.user.Save_Data_AMP(self.current_data_store , self.

time_data_store)
341

342 #### Print to command window what happens ####
343 self.con.save_data_message ()
344

345

346

347 if __name__ == ’__main__ ’:
348 app = Potentiostat_GUI ()
349 app.mainloop ()

8.4. SOFTWARE 101

8.4.0.2 Potentiostat_userinput.py

1 import time
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import Potentiostat_communication
5 import Potentiostat_functionality
6 import Potentiostat_Constants
7 import Potentiostat_GUI
8

9 class UserInput:
10 """
11 Class that collects all userinputs and sends them to the

potentiostat
12 """
13

14 def __init__(self):
15 #### Importing classes to variables ####
16 self.func = Potentiostat_functionality.Potentiostat () # Path

to functionality class
17 self.con = Potentiostat_Constants.Constants ()
18 self.comm = Potentiostat_communication.Communication () # Path

to communication class
19 self.dev , self.ep_out , self.ep_in = self.comm.usb_connect(self

.comm.vendor_id , self.comm.product_id) # Communication
variables

20

21 #### Storage for users set values. Used for later saving. ####
22 self.scan_rate_store = None
23 self.min_voltage_store = None
24 self.max_voltage_store = None
25 self.start_voltage_store = None
26 self.current_range_store = None
27 self.number_of_cycles_store = None
28

29 #### Storage for users plot settings ####
30 self.filename_store = "CV"
31 self.plot_title_store = " "
32 self.plot_legend_store = "Data"
33

34 #### Storage of data arrays ####
35 self.voltage_data_store = None
36 self.current_data_store = None
37 self.moving_average_store = None
38

39 def set_Scan_rate(self , scan_rate):
40 """
41 Function recieves users scan_rate and convert it to formatted

text , and sends it to the potentiostat.

102 APPENDIX

42 :param scan_rate: users scan rate [V/s]
43 """
44 send_scan_rate = self.func.Scan_Rate(scan_rate) # Converts

scan rate to appropriate clock timing
45 scan_rate_formatted = "C {}".format(send_scan_rate) #

Potentiostat command for scan rate: "C xxxxxxxx"
46 self.comm.usb_write(scan_rate_formatted) # Send command
47 time.sleep (0.3) # Wait 0.1 s for messages

to be recieved and handled
48 self.scan_rate_store = scan_rate # Storing scan

rate variable
49

50 #### Print to command window what happens ####
51 print(self.con.divider)
52 print("Scan rate input: {} V/s".format(scan_rate))
53 print("Command sent: {}".format(scan_rate_formatted))
54

55

56 def set_number_of_cycles(self , number_of_cycles):
57 """
58 Function that sends the number of cycles to the potentiostat.
59 :param number_of_cycles: integer of cycles
60 """
61 #### Zeropad to two digits ####
62 send_number_of_cycles = str(number_of_cycles).zfill (2)
63

64 #### Potentiostat command for number of cycles: "N xx"
65 number_of_cycles_formatted = "N {0}".format(

send_number_of_cycles)
66 self.comm.usb_write(number_of_cycles_formatted) # Send

command
67 time.sleep (0.3) # Wait 0.2 s for

messages to be recieved and handled
68

69 #### Store variable for later settings save function ####
70 self.number_of_cycles_store = number_of_cycles
71

72 #### Print to command window what happens ####
73 print(self.con.divider)
74 print("Number of cycles input: {}".format(number_of_cycles))
75 print("Command sent: {}".format(number_of_cycles_formatted))
76

77 def make_LookUpTable(self , min_voltage , max_voltage ,
start_voltage):

78 """
79 Function recieves min , max and start voltage , convert it to

formatted text and sends it to the potentiostat.
80 The potentistat will then make a lookup table from the values.
81 :param min_voltage: minimum voltage

8.4. SOFTWARE 103

82 :param max_voltage: maximum voltage
83 :param start_voltage: start voltage
84 """
85 #### Convert to DVDAC values and zeropad to 4 digits each ####
86 send_min_voltage = str(self.func.

Convert_voltage_to_DVDAC_value(min_voltage)).zfill (4)
87 send_max_voltage = str(self.func.

Convert_voltage_to_DVDAC_value(max_voltage)).zfill (4)
88 send_start_voltage = str(self.func.

Convert_voltage_to_DVDAC_value(start_voltage)).zfill (4)
89

90 #### Potentiostat command for LUT: "L xxxx yyyy zzzz" [min ,
max , start]

91 lut_values_formatted = "L {0} {1} {2}".format(send_min_voltage
, send_max_voltage , send_start_voltage)

92 self.comm.usb_write(lut_values_formatted) # Send command
93 time.sleep (0.3) # Wait 0.2 s for messages

to be recieved and handled
94

95 #### Store variable for later settings save function ####
96 self.min_voltage_store = min_voltage
97 self.max_voltage_store = max_voltage
98 self.start_voltage_store = start_voltage
99

100 #### Print to command window what happens ####
101 print(self.con.divider)
102 print("Minimum voltage input: {} mV".format(min_voltage))
103 print("Maximum voltage input: {} mV".format(max_voltage))
104 print("Start voltage input: {} mV".format(start_voltage))
105 print("Command sent: {}".format(lut_values_formatted))
106

107 def run_CyclicVoltammetry(self):
108 """
109 Function starts cyclic voltammetry and collects data in a list

and plot the data.
110 """
111

112 #### Potentiostat command to start cyclic voltammetry ####
113 self.comm.usb_write("R")
114

115 #### Collect data ####
116 data_raw = []
117 formatted_data = []
118 CV_RUN = True
119 while CV_RUN:
120 data = self.comm.usb_collect_data ()
121 data_raw.extend(data)
122

123 status , data_int16 = self.func.convert_uint8_to_int16(data)

104 APPENDIX

124 formatted_data.extend(data_int16)
125 CV_RUN = status
126

127 #### Convert voltage to current ####
128 # Current values are inverted , therefore *-1
129 # Divide by 20k by Ohms law. Resistance in TIA is set to 20k

Ohm.
130 current_data = []
131 for elements in formatted_data:
132 current = (-1* elements / 20000)
133 current_data.append(current)
134

135 #### Moving average ####
136 # Rolling mean at 5% of the total number of steps
137 N = int(abs(self.max_voltage_store - self.min_voltage_store)

*0.05)
138

139 # Moving average of data
140 moving_average = []
141 average = 0
142

143 for i in range(N):
144 average += current_data[i]
145 moving_average.append(average / (i+1))
146

147 for i in range(N, len(current_data)):
148 average += -current_data[i-N] + current_data[i]
149 moving_average.append(average/N)
150

151 #### Generate voltage data for plotting ####
152 voltage_data = self.func.Compute_voltage_data(self.

min_voltage_store , self.max_voltage_store , self.
start_voltage_store , self.number_of_cycles_store)

153

154 #### Store data in class ####
155 self.voltage_data_store = voltage_data
156 self.current_data_store = current_data
157 self.moving_average_store = moving_average
158

159 #### Plot data ####
160 self.func.Plot_CV_data(voltage_data , current_data ,

moving_average , self.min_voltage_store ,
161 self.max_voltage_store , self.plot_title_store , self.

plot_legend_store)
162

163 def Save_Data_CV(self):
164 d = {’Voltage[mV]’: self.voltage_data_store , ’Current Raw [mA]

’: self.current_data_store , ’Current Movinger Average[mA]’:
self.moving_average_store}

8.4. SOFTWARE 105

165

166 df = pd.DataFrame(d)
167

168 df.to_csv("{0}_{1}V-s_{2} cycles.csv".format(self.
filename_store , self.scan_rate_store , self.
number_of_cycles_store), index=False)

169

170 def Save_Data_AMP(self , current_data , time_data):
171 d = {’Time[s]’: time_data , ’Current Raw [mA]’: current_data}
172

173 df = pd.DataFrame(d)
174

175 df.to_csv("Amperometry_ {0}. csv".format(self.filename_store),
index=False)

106 APPENDIX

8.4.0.3 Potentiostat_functionality.py

1 ######## Potentiostat functionality ########
2 """
3 Class to generate functions to the potentiostat
4 """
5 import matplotlib.pyplot as plt
6 import numpy as np
7

8 import Potentiostat_Constants
9 import Potentiostat_userinput

10 import Potentiostat_functionality
11 con = Potentiostat_Constants.Constants ()
12

13 class Potentiostat(object):
14 """
15 Class for all calculations to be sent to the potentiostat.
16 """
17 def __init__(self):
18 self.clk_freq = con.clk_freq
19 self.voltage_range = con.voltage_range
20 self.dac_resolution = con.dac_resolution
21 self.voltage_step = con.voltage_step
22

23

24 def Scan_Rate(self , voltage_rate):
25 """
26 Function that converts scan rate [V/s] to number of clock

counts in potentiostat.
27 Thereafter it zero -padds the period to 8 digits for it to send

to the potentiostat.
28 :param voltage_rate: scan rate in V/s
29 :return Period_padded: period in potentiostat with 8 digits
30 """
31 step_size = self.voltage_step # V/step
32 #Period = int((step_size * self.clk_freq / voltage_rate) / 2)

- 1 # number of clk pulses to count
33 Period = int((step_size * self.clk_freq / voltage_rate)) - 1

number of clk pulses to count
34 print(con.divider)
35 frequency = (self.clk_freq / Period) / 2
36 print("Measurement frequency: {} Hz".format(frequency))
37 Period_padded = str(Period).zfill (8) # pads

with zero on left side , total of 8 digits
38 return Period_padded
39

40 def Convert_voltage_to_DVDAC_value(self , input_voltage):
41 """
42 Converts input voltage to a value recognized by the DVDAC.

8.4. SOFTWARE 107

43 :param input_voltage: voltage to be converted
44 :return dac_voltage: converted voltage
45 """
46 dac_voltage = input_voltage + con.reference_voltage
47

48 return dac_voltage
49

50 def Number_of_steps(self , min_voltage_bit , max_voltage_bit ,
number_of_cycles):

51 """
52 Function to calculate number of steps the potentiostat will do

for a complete scan.
53 :param min_voltage_bit: minimum voltage value
54 :param max_voltage_bit: maximum voltage value
55 :param number_of_cycles: number of cycles
56 :return number_of_steps: number of steps
57 """
58 number_of_steps = int (2*(abs(max_voltage_bit - min_voltage_bit

) - 1) * number_of_cycles) # -1 start_value (double count)
59 return number_of_steps
60

61 def convert_uint8_to_int16(self , uint8_data):
62 """
63 Converts data from double uint8 to int16.
64 :param uint8_data: data set with uint8 values
65 :return
66 """
67 not_found = True
68 data_length = int(len(uint8_data) / 2)
69 int16_array = [0] * data_length
70 max_value = (2 ** 16) / 2
71 for i in range(data_length):
72 hold = uint8_data.pop (0) + uint8_data.pop (0) * 256
73 if hold == con.determination_value:
74 int16_array.pop(-1)
75 not_found = False
76 return not_found , int16_array
77 if hold >= max_value:
78 hold -= 2 * max_value
79 int16_array[i] = hold
80

81 return not_found , int16_array
82

83 def convert_uint8_to_int16_AMP(self , uint8_data):
84 """
85 Converts data from double uint8 to int16.
86 :param uint8_data: data set with uint8 values
87 :return
88 """

108 APPENDIX

89 hold = uint8_data.pop (0) + uint8_data.pop (0) * 256
90 max_value = (2 ** 16) / 2
91 if hold >= max_value:
92 hold -= 2 * max_value
93 return hold
94

95 def Compute_voltage_data(self , min_value , max_value , start_value
, number_of_cycles):

96 """
97 Generates the voltage data array for the CV-cycle.
98 :param min_value: minimum voltage value
99 :param max_value: maximum voltage value

100 :param start_value: start voltage value
101 :param number_of_cycles: number of cycles to run
102 :return array of the voltage data
103 """
104 array = []
105

106 # Defines UP and DOWN direction for the sweep
107 if (start_value == min_value):
108 direction_up = True
109

110 elif (start_value == max_value):
111 direction_up = False
112

113 else:
114 direction_up = True
115

116 array.append(start_value) # Sets initial voltage data value
117 index_value = start_value # Index for iterating through the

range
118 cycles_index = 0 # Index for number of cycles
119

120 while (cycles_index <= number_of_cycles):
121 if (direction_up == True):
122 index_value += 1
123 else:
124 index_value -= 1
125

126 if (index_value == start_value):
127 cycles_index += 1
128 if (cycles_index == number_of_cycles):
129 return array
130

131 if (index_value >= max_value):
132 direction_up = False
133 if (index_value <= min_value):
134 direction_up = True
135

8.4. SOFTWARE 109

136 array.append(index_value)
137

138 def Plot_CV_data(self , voltage , current , average , x_min , x_max ,
title , legend):

139 """
140 Function to plot the measured data.
141 :param voltage: voltage data
142 :param current: current data
143 :param average: averag current data with 5% rolling average
144 :param x_min: minimum voltage
145 :param x_max: maximum voltage
146 :param title: plot title
147 :param legend: plot legend
148 """
149 user = Potentiostat_userinput.UserInput ()
150

151 #### Convert to uA ####
152 current_data = []
153 average_data = []
154 for i in range(len(current)):
155 current_data.append(current[i]*1000)
156 average_data.append(average[i]*1000)
157

158 #### Configure x-axis ####
159 xmin = x_min - abs(x_min *0.15)
160 xmax = x_max + abs(x_max *0.15)
161

162 current_data_np = np.array(current_data)
163 voltage_np = np.array(voltage)
164

165 plt.ion()
166

167 plt.figure ()
168 plt.suptitle("CV - {}".format(title))
169 plt.title("Raw data")
170 plt.xlim(xmin , xmax)
171 plt.xlabel("Voltage [mV]")
172 plt.ylabel("Current [μA]")
173 plt.plot(voltage , current_data , label="{} - raw data".format(

legend))
174 plt.legend(loc="best")
175

176 plt.show()
177

178 def AMP_Time_array(self , current):
179 """
180 Generates an array of the time of the amperometric scan.
181 :param voltage: current
182 :return time array

110 APPENDIX

183 """
184 total_time = len(current)*0.025 #25 ms per sample
185 time_np = np.linspace(0, total_time , len(current))
186 return time_np
187

188 def Plot_AMP_data(self , current , time , title , legend):
189 """
190 Function to plot the measured data.
191 :param current: current data
192 :param time: time data
193 :param title: plot title
194 :param legend: plot legend
195 """
196 user = Potentiostat_userinput.UserInput ()
197

198 #### Convert to uA ####
199 current_data = []
200 for i in range(len(current)):
201 current_data.append(current[i]*1000)
202

203 current_data_np = np.array(current_data)
204

205 plt.ion()
206

207 #### Plot data ####
208 plt.figure ()
209 plt.suptitle("AMP - {}".format(title))
210 plt.title("Amperometry")
211 plt.xlabel("Time [s]")
212 plt.ylabel("Current [μA]")
213 plt.plot(time , current_data , label="{} - raw data".format(

legend))
214 plt.legend(loc="best")
215

216 plt.show()

8.4. SOFTWARE 111

8.4.0.4 Potentiostat_communication.py

1 ######## Potentiostat_communication ########
2 """
3 Communication script to control the potentiostat.
4 """
5

6 ### Standard librabries ###
7

8 ### Installed libraries ###
9 import usb.core

10 import usb.util
11 ### Local files ###
12 import Potentiostat_Constants
13 con = Potentiostat_Constants.Constants ()
14

15

16 class Communication(object):
17 """
18 Class that handles all communication with usb microcontroller.
19 """
20 def __init__(self , vendor_id=con.USB_VENDOR_ID , product_id=con.

USB_PRODUCT_ID):
21 self.vendor_id = vendor_id
22 self.product_id = product_id
23 self.found = False
24 self.device , self.ep_out , self.ep_in = self.usb_connect(

vendor_id , product_id)
25

26 def usb_connect(self , vendor_id , product_id):
27 """
28 Attempt to connect with the PSoC device with a USBFS module.
29 If the device is not found returns None.
30

31 The pyUSB module is used. See documentation: https :// pyusb.
github.io/pyusb/.

32

33 :param vendor_id: the USB vendor id , used to identify the
proper device connected to the computer

34 :param product_id: the USB product id
35 :return: the device if found , None if not
36 """
37 try:
38 dev = usb.core.find(idVendor=vendor_id , idProduct=product_id

)
39 except usb.core.NoBackendError:
40 self.found = False
41 return None , None , None
42

112 APPENDIX

43 if dev is None:
44 self.found = False
45 return None , None , None
46 else:
47 self.found = True
48

49 dev.set_configuration ()
50 interface = dev.get_active_configuration ()[(0, 0)]
51

52 ep_out = usb.util.find_descriptor(interface ,
53 custom_match= lambda e: \
54 usb.util.endpoint_direction(
55 e.bEndpointAddress) ==
56 usb.util.ENDPOINT_OUT)
57

58 ep_in = usb.util.find_descriptor(interface ,
59 custom_match= lambda e: \
60 usb.util.endpoint_direction(
61 e.bEndpointAddress) ==
62 usb.util.ENDPOINT_IN)
63 assert ep_out is not None
64 assert ep_in is not None
65

66 return dev , ep_out , ep_in
67

68 def usb_connection_test(self):
69 self.usb_write(con.TEST_MESSAGE)
70 self.usb_read ()
71

72 def usb_write(self , message):
73 if len(message) > con.USB_OUT_BYTE_SIZE:
74 print("ERROR: --- Message is too long. Maximum out byte size

is {:d} ---".format(con.USB_OUT_BYTE_SIZE))
75 else:
76 self.ep_out.write(message)
77

78 def usb_read(self , size=con.USB_IN_BYTE_SIZE , timeout=None):
79 try:
80 usb_input = self.ep_in.read(size , timeout)
81 except Exception as error:
82 print("ERROR: --- Failed to read. ---")
83 print(self.ep_in.read(size , timeout))
84 return usb_input
85

86 def usb_collect_data(self):
87 data_collect = self.usb_read (64, timeout =10000)
88 return data_collect

8.4. SOFTWARE 113

8.4.0.5 Potentiostat_Constants.py

1

2 class Constants:
3

4 def __init__(self):
5 # USB constants
6 self.USB_OUT_BYTE_SIZE = 32
7 self.USB_IN_BYTE_SIZE = 64
8 self.USB_VENDOR_ID = 0x4B5
9 self.USB_PRODUCT_ID = 0x81

10

11 # DVDAC constants
12 self.clk_freq = 24000000 # Hz [24 MHz]
13 self.dac_resolution = 4080 # 12-bit DVDAC
14 self.voltage_range = 4.080 # V
15 self.voltage_step = float(self.voltage_range / self.

dac_resolution) # V/bit
16 self.reference_voltage = 2032 # mV
17

18 # Cyclic Voltammetry settings
19 self.min_voltage = -500
20 self.max_voltage = 500
21 self.start_voltage = -500
22 self.scan_rate = 1.0
23 self.number_of_cycles = 1
24 self.current_range = [100, 70, 50, 25, 17, 8, 4, 2] # uA
25 self.test = 0
26 self.determination_value = 49152
27

28 # Amperometry settings
29 self.amp_voltage = 500
30 self.current_data_store = []
31 self.amp_time_store = []
32

33 #### Limitations on user inputs ####
34 # Scan rate limitation
35 self.min_scan_rate = self.voltage_step / 0.699051 # max

period = 699 ms
36 self.max_scan_rate = self.voltage_step / (83.33 * 10**(-9)) #

min period = 83 ns
37

38 # Voltage limitations
39 self.min_voltage_limit = -1 * self.reference_voltage # mV
40 self.max_voltage_limit = self.reference_voltage # mV
41

42 # Number of cycles limitation
43 self.min_number_of_cycles = 1 # cycles
44 self.max_number_of_cycles = 99 # cycles

114 APPENDIX

45

46 # Messages format
47 self.divider = "

---"
48 self.error = "##################### ERROR

#####################"
49

50 def scan_rate_out_of_range(self):
51 print(self.divider)
52 print(self.error)
53 print("SCAN RATE IS OUT OF RANGE.")
54 print("Keep scan rate within: {0:.2f} mV/s and {1:.2f} V/s".

format(self.min_scan_rate *1000, self.max_scan_rate))
55

56 def min_voltage_out_of_range(self):
57 print(self.divider)
58 print(self.error)
59 print("MINIMUM VOLTAGE IS OUT OF RANGE.")
60 print("Keep minimum voltage within: {0} mV and {1} mV.".format

(self.min_voltage_limit , self.max_voltage_limit))
61

62 def max_voltage_out_of_range(self):
63 print(self.divider)
64 print(self.error)
65 print("MAXIMUM VOLTAGE IS OUT OF RANGE.")
66 print("Keep maximum voltage within: {0} mV and {1} mV.".format

(self.min_voltage_limit , self.max_voltage_limit))
67

68 def start_voltage_out_of_range(self):
69 print(self.divider)
70 print(self.error)
71 print("START VOLTAGE IS OUT OF RANGE.")
72 print("Keep start voltage within minimum and maximum voltage

of your desire")
73

74 def number_of_cycles_out_of_range(self):
75 print(self.divider)
76 print(self.error)
77 print("NUMBER OF CYCLES IS OUT OF RANGE.")
78 print("Keep number of cycles within: {0} and {1}.".format(self

.min_number_of_cycles , self.max_number_of_cycles))
79

80 def settings_sent(self):
81 print(self.divider)
82 print("Settings have been sent.")
83

84 def start_CV_message(self):
85 print(self.divider)
86 print("Cyclic Voltammetry initialization has started.")

8.4. SOFTWARE 115

87

88 def end_CV_message(self):
89 print(self.divider)
90 print("Cyclic Voltammetry is done.")
91

92 def start_AMP_message(self):
93 print(self.divider)
94 print("Amperometry is running.")
95

96 def stop_AMP_message(self):
97 print(self.divider)
98 print("Amperometry has ended.")
99

100 def plot_title_message(self):
101 print(self.divider)
102 print("Plot title is stored.")
103

104 def plot_legend_message(self):
105 print(self.divider)
106 print("Plot legend is stored.")
107

108 def save_data_message(self):
109 print(self.divider)
110 print("Data is saved locally.")

116 APPENDIX

8.5 Potentiostat Datasheet

The following document is generated by PSoC Creator and is a datasheet for all
the configurations of the potentiostat.

PSoC® Creator™
Project Datasheet for Potentiostat_RevA8

Creation Time: 10/07/2020 16:41:24
User: DESKTOP-51KCO67\Reodor Felgen

Project: Potentiostat_RevA8
Tool: PSoC Creator 4.2

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone (USA): 800.858.1810
Phone (Intl): 408.943.2600

http://www.cypress.com

117

Copyright

Potentiostat_RevA8 Datasheet 10/07/2020 16:41

Copyright
Copyright © 2020 Cypress Semiconductor Corporation. All rights reserved. Any design information or
characteristics specifically provided by our customer or other third party inputs contained in this document are not
intended to be claimed under Cypress's copyright.

Trademarks
PSoC and CapSense are registered trademarks of Cypress Semiconductor Corporation. PSoC Creator is a
trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced
herein are the property of their respective owners.

Philips I2C Patent Rights
Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license
under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system
conforms to the I2C Standard Specification as defined by Philips. As from October 1st, 2006 Philips
Semiconductors has a new trade name, NXP Semiconductors.

Disclaimer
CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. While reasonable precautions have been taken, Cypress assumes
no responsibility for any errors that may appear in this document. Cypress reserves the right to make changes
without further notice to the materials described herein. Cypress does not assume any liability arising out of the
application or use of any product or circuit described herein. Cypress does not authorize its products for use as
critical components in life support systems where a malfunction or failure may reasonably be expected to result in
significant injury to the user. The inclusion of a Cypress product in a life support systems application implies that
the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection
Cypress products meet the specifications contained in their particular Cypress PSoC Datasheets. Cypress
believes that its family of PSoC products is one of the most secure families of its kind on the market today,
regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code
protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither
Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection
does not mean that we are guaranteeing the product as 'unbreakable.'
Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is
constantly evolving. We at Cypress are committed to continuously improving the code protection features of our
products.

118

Contents

Potentiostat_RevA8 Datasheet 10/07/2020 16:41

Table of Contents

1 Overview... 1
2 Pins... 3

2.1 Hardware Pins... 4
2.2 Hardware Ports.. 7
2.3 Software Pins... 9

3 System Settings.. 11
3.1 System Configuration... 11
3.2 System Debug Settings... 11
3.3 System Operating Conditions.. 11

4 Clocks... 12
4.1 System Clocks... 13
4.2 Local and Design Wide Clocks.. 13

5 Interrupts and DMAs... 15
5.1 Interrupts.. 15
5.2 DMAs... 15

6 Flash Memory... 16
7 Design Contents... 17

7.1 Schematic Sheet: Potentiostat... 17
8 Components... 18

8.1 Component type: ADC_DelSig [v3.30]...18
8.1.1 Instance ADC.. 18

8.2 Component type: CharLCD [v2.20].. 20
8.2.1 Instance LCD... 20

8.3 Component type: DVDAC [v2.10].. 20
8.3.1 Instance DVDAC... 20

8.4 Component type: OpAmp [v1.90]...21
8.4.1 Instance OPAMP... 21

8.5 Component type: TIA [v2.0]... 21
8.5.1 Instance TIA.. 21

8.6 Component type: Timer [v2.80].. 21
8.6.1 Instance TIMER... 21

8.7 Component type: USBFS [v3.20]... 22
8.7.1 Instance USB.. 23

8.8 Component type: VDAC8 [v1.90]... 25
8.8.1 Instance VDAC_REF...25

9 Other Resources...26

119

1 Overview

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 1

1 Overview

The Cypress PSoC 5 is a family of 32-bit devices with the following characteristics:

• High-performance 32-bit ARM Cortex-M3 core with a nested vectored interrupt controller (NVIC)
and a high-performance DMA controller

• Digital system that includes configurable Universal Digital Blocks (UDBs) and specific function
peripherals, such as USB, I2C and SPI

• Analog subsystem that includes 20-bit Delta Sigma converters (ADC), SAR ADCs, 8-bit DACs
that can be configured for 12-bit operation, comparators, op amps and configurable switched
capacitor (SC) and continuous time (CT) blocks to create PGAs, TIAs, mixers, and more

• Several types of memory elements, including SRAM, flash, and EEPROM
• Programming and debug system through JTAG, serial wire debug (SWD), and single wire

viewer (SWV)
• Flexible routing to all pins

Figure 1 shows the major components of a typical CY8C58LP series member PSoC 5LP device. For
details on all the systems listed above, please refer to the PSoC 5LP Technical Reference Manual .

Figure 1. CY8C58LP Device Series Block Diagram

120

1 Overview

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 2

Table 1 lists the key characteristics of this device.

Table 1. Device Characteristics
Name Value

Part Number CY8C5868AXI-LP035
Package Name 100-TQFP
Family PSoC 5LP
Series CY8C58LP
Max CPU speed (MHz) 0
Flash size (kB) 256
SRAM size (kB) 64
EEPROM size (bytes) 2048
Vdd range (V) 1.71 to 5.5
Automotive qualified No (Industrial Grade Only)
Temp range (Celsius) -40 to 85
JTAG ID 0x2E123069

NOTE: The CPU speed noted above is the maximum available speed. The CPU is clocked by Bus
Clock, listed in the System Clocks section below.

Table 2 lists the device resources that this design uses:

Table 2. Device Resources
Resource Type Used Free Max % Used

Digital Clocks 2 6 8 25.00 %
Analog Clocks 1 3 4 25.00 %
CapSense Buffers 0 2 2 0.00 %
Digital Filter Block 0 1 1 0.00 %
Interrupts 9 23 32 28.13 %
IO 18 54 72 25.00 %
Segment LCD 0 1 1 0.00 %
CAN 2.0b 0 1 1 0.00 %
I2C 0 1 1 0.00 %
USB 1 0 1 100.00 %
DMA Channels 1 23 24 4.17 %
Timer 0 4 4 0.00 %
UDB
Macrocells 4 188 192 2.08 %
Unique P-terms 2 382 384 0.52 %
Total P-terms 3
Datapath Cells 3 21 24 12.50 %
Status Cells 1 23 24 4.17 %
StatusI Registers 1

Control Cells 1 23 24 4.17 %
Control Registers 1

Opamp 1 3 4 25.00 %
Comparator 0 4 4 0.00 %
Delta-Sigma ADC 1 0 1 100.00 %
LPF 0 2 2 0.00 %
SAR ADC 0 2 2 0.00 %
Analog (SC/CT) Blocks 1 3 4 25.00 %
DAC
VIDAC 2 2 4 50.00 %

121

2 Pins

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 3

2 Pins

Figure 2 shows the pin layout of this device.

Figure 2. Device Pin Layout

122

2 Pins

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 4

2.1 Hardware Pins

Table 3 contains information about the pins on this device in device pin order. (No connection ["n/c"]
pins have been omitted.)

Table 3. Device Pins

Pin Port Name Type Drive Mode Reset State
1 P2[5] \LCD:LCDPort[5]\ Software

In/Out
Strong drive HiZ Analog Unb

2 P2[6] \LCD:LCDPort[6]\ Software
In/Out

Strong drive HiZ Analog Unb

3 P2[7] GPIO [unused] HiZ Analog Unb
4 P12[4] SIO [unused] HiZ Analog Unb
5 P12[5] SIO [unused] HiZ Analog Unb
6 P6[4] GPIO [unused] HiZ Analog Unb
7 P6[5] GPIO [unused] HiZ Analog Unb
8 P6[6] GPIO [unused] HiZ Analog Unb
9 P6[7] GPIO [unused] HiZ Analog Unb
10 VSSB VSSB Dedicated
11 IND IND Dedicated
12 VB VB Dedicated
13 VBAT VBAT Dedicated
14 VSSD VSSD Power
15 XRES_N XRES_N Dedicated
16 P5[0] GPIO [unused] HiZ Analog Unb
17 P5[1] GPIO [unused] HiZ Analog Unb
18 P5[2] GPIO [unused] HiZ Analog Unb
19 P5[3] GPIO [unused] HiZ Analog Unb
20 P1[0] Debug:SWD_IO Reserved
21 P1[1] Debug:SWD_CK Reserved
22 P1[2] GPIO [unused] HiZ Analog Unb
23 P1[3] Debug:SWV Reserved
24 P1[4] GPIO [unused] HiZ Analog Unb
25 P1[5] GPIO [unused] HiZ Analog Unb
26 VDDIO1 VDDIO1 Power
27 P1[6] GPIO [unused] HiZ Analog Unb
28 P1[7] GPIO [unused] HiZ Analog Unb
29 P12[6] SIO [unused] HiZ Analog Unb
30 P12[7] SIO [unused] HiZ Analog Unb
31 P5[4] GPIO [unused] HiZ Analog Unb
32 P5[5] GPIO [unused] HiZ Analog Unb
33 P5[6] GPIO [unused] HiZ Analog Unb
34 P5[7] GPIO [unused] HiZ Analog Unb
35 P15[6] \USB:Dp\ Analog HiZ analog HiZ Analog Unb
36 P15[7] \USB:Dm\ Analog HiZ analog HiZ Analog Unb
37 VDDD VDDD Power
38 VSSD VSSD Power
39 VCCD VCCD Power
42 P15[0] GPIO [unused] HiZ Analog Unb
43 P15[1] GPIO [unused] HiZ Analog Unb
44 P3[0] GPIO [unused] HiZ Analog Unb
45 P3[1] GPIO [unused] HiZ Analog Unb
46 P3[2] Reference_Electrode Analog HiZ analog HiZ Analog Unb

123

2 Pins

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 5

Pin Port Name Type Drive Mode Reset State
47 P3[3] pin_DAC Analog HiZ analog HiZ Analog Unb
48 P3[4] GPIO [unused] HiZ Analog Unb
49 P3[5] GPIO [unused] HiZ Analog Unb
50 VDDIO3 VDDIO3 Power
51 P3[6] GPIO [unused] HiZ Analog Unb
52 P3[7] Counter_Electrode Analog HiZ analog HiZ Analog Unb
53 P12[0] SIO [unused] HiZ Analog Unb
54 P12[1] SIO [unused] HiZ Analog Unb
55 P15[2] GPIO [unused] HiZ Analog Unb
56 P15[3] GPIO [unused] HiZ Analog Unb
63 VCCA VCCA Power
64 VSSA VSSA Power
65 VDDA VDDA Power
66 VSSD VSSD Power
67 P12[2] SIO [unused] HiZ Analog Unb
68 P12[3] SIO [unused] HiZ Analog Unb
69 P4[0] GPIO [unused] HiZ Analog Unb
70 P4[1] GPIO [unused] HiZ Analog Unb
71 P0[0] Working_Electrode Analog HiZ analog HiZ Analog Unb
72 P0[1] GPIO [unused] HiZ Analog Unb
73 P0[2] GPIO [unused] HiZ Analog Unb
74 P0[3] pin_TIA_CAP Analog HiZ analog HiZ Analog Unb
75 VDDIO0 VDDIO0 Power
76 P0[4] GPIO [unused] HiZ Analog Unb
77 P0[5] GPIO [unused] HiZ Analog Unb
78 P0[6] GPIO [unused] HiZ Analog Unb
79 P0[7] GPIO [unused] HiZ Analog Unb
80 P4[2] GPIO [unused] HiZ Analog Unb
81 P4[3] GPIO [unused] HiZ Analog Unb
82 P4[4] GPIO [unused] HiZ Analog Unb
83 P4[5] GPIO [unused] HiZ Analog Unb
84 P4[6] GPIO [unused] HiZ Analog Unb
85 P4[7] GPIO [unused] HiZ Analog Unb
86 VCCD VCCD Power
87 VSSD VSSD Power
88 VDDD VDDD Power
89 P6[0] LED_DAC Software

In/Out
Strong drive HiZ Analog Unb

90 P6[1] GPIO [unused] HiZ Analog Unb
91 P6[2] GPIO [unused] HiZ Analog Unb
92 P6[3] GPIO [unused] HiZ Analog Unb
93 P15[4] GPIO [unused] HiZ Analog Unb
94 P15[5] GPIO [unused] HiZ Analog Unb
95 P2[0] \LCD:LCDPort[0]\ Software

In/Out
Strong drive HiZ Analog Unb

96 P2[1] \LCD:LCDPort[1]\ Software
In/Out

Strong drive HiZ Analog Unb

97 P2[2] \LCD:LCDPort[2]\ Software
In/Out

Strong drive HiZ Analog Unb

98 P2[3] \LCD:LCDPort[3]\ Software
In/Out

Strong drive HiZ Analog Unb

99 P2[4] \LCD:LCDPort[4]\ Software
In/Out

Strong drive HiZ Analog Unb

100 VDDIO2 VDDIO2 Power

124

2 Pins

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 6

Abbreviations used in Table 3 have the following meanings:
• HiZ Analog Unb = Hi-Z Analog Unbuffered
• HiZ analog = High impedance analog

125

2 Pins

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 7

2.2 Hardware Ports

Table 4 contains information about the pins on this device in device port order. (No connection ["n/c"],
power and dedicated pins have been omitted.)

Table 4. Device Ports

Port Pin Name Type Drive Mode Reset State
P0[0] 71 Working_Electrode Analog HiZ analog HiZ Analog Unb
P0[1] 72 GPIO [unused] HiZ Analog Unb
P0[2] 73 GPIO [unused] HiZ Analog Unb
P0[3] 74 pin_TIA_CAP Analog HiZ analog HiZ Analog Unb
P0[4] 76 GPIO [unused] HiZ Analog Unb
P0[5] 77 GPIO [unused] HiZ Analog Unb
P0[6] 78 GPIO [unused] HiZ Analog Unb
P0[7] 79 GPIO [unused] HiZ Analog Unb
P1[0] 20 Debug:SWD_IO Reserved
P1[1] 21 Debug:SWD_CK Reserved
P1[2] 22 GPIO [unused] HiZ Analog Unb
P1[3] 23 Debug:SWV Reserved
P1[4] 24 GPIO [unused] HiZ Analog Unb
P1[5] 25 GPIO [unused] HiZ Analog Unb
P1[6] 27 GPIO [unused] HiZ Analog Unb
P1[7] 28 GPIO [unused] HiZ Analog Unb
P12[0] 53 SIO [unused] HiZ Analog Unb
P12[1] 54 SIO [unused] HiZ Analog Unb
P12[2] 67 SIO [unused] HiZ Analog Unb
P12[3] 68 SIO [unused] HiZ Analog Unb
P12[4] 4 SIO [unused] HiZ Analog Unb
P12[5] 5 SIO [unused] HiZ Analog Unb
P12[6] 29 SIO [unused] HiZ Analog Unb
P12[7] 30 SIO [unused] HiZ Analog Unb
P15[0] 42 GPIO [unused] HiZ Analog Unb
P15[1] 43 GPIO [unused] HiZ Analog Unb
P15[2] 55 GPIO [unused] HiZ Analog Unb
P15[3] 56 GPIO [unused] HiZ Analog Unb
P15[4] 93 GPIO [unused] HiZ Analog Unb
P15[5] 94 GPIO [unused] HiZ Analog Unb
P15[6] 35 \USB:Dp\ Analog HiZ analog HiZ Analog Unb
P15[7] 36 \USB:Dm\ Analog HiZ analog HiZ Analog Unb
P2[0] 95 \LCD:LCDPort[0]\ Software

In/Out
Strong drive HiZ Analog Unb

P2[1] 96 \LCD:LCDPort[1]\ Software
In/Out

Strong drive HiZ Analog Unb

P2[2] 97 \LCD:LCDPort[2]\ Software
In/Out

Strong drive HiZ Analog Unb

P2[3] 98 \LCD:LCDPort[3]\ Software
In/Out

Strong drive HiZ Analog Unb

P2[4] 99 \LCD:LCDPort[4]\ Software
In/Out

Strong drive HiZ Analog Unb

P2[5] 1 \LCD:LCDPort[5]\ Software
In/Out

Strong drive HiZ Analog Unb

P2[6] 2 \LCD:LCDPort[6]\ Software
In/Out

Strong drive HiZ Analog Unb

126

2 Pins

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 8

Port Pin Name Type Drive Mode Reset State
P2[7] 3 GPIO [unused] HiZ Analog Unb
P3[0] 44 GPIO [unused] HiZ Analog Unb
P3[1] 45 GPIO [unused] HiZ Analog Unb
P3[2] 46 Reference_Electrode Analog HiZ analog HiZ Analog Unb
P3[3] 47 pin_DAC Analog HiZ analog HiZ Analog Unb
P3[4] 48 GPIO [unused] HiZ Analog Unb
P3[5] 49 GPIO [unused] HiZ Analog Unb
P3[6] 51 GPIO [unused] HiZ Analog Unb
P3[7] 52 Counter_Electrode Analog HiZ analog HiZ Analog Unb
P4[0] 69 GPIO [unused] HiZ Analog Unb
P4[1] 70 GPIO [unused] HiZ Analog Unb
P4[2] 80 GPIO [unused] HiZ Analog Unb
P4[3] 81 GPIO [unused] HiZ Analog Unb
P4[4] 82 GPIO [unused] HiZ Analog Unb
P4[5] 83 GPIO [unused] HiZ Analog Unb
P4[6] 84 GPIO [unused] HiZ Analog Unb
P4[7] 85 GPIO [unused] HiZ Analog Unb
P5[0] 16 GPIO [unused] HiZ Analog Unb
P5[1] 17 GPIO [unused] HiZ Analog Unb
P5[2] 18 GPIO [unused] HiZ Analog Unb
P5[3] 19 GPIO [unused] HiZ Analog Unb
P5[4] 31 GPIO [unused] HiZ Analog Unb
P5[5] 32 GPIO [unused] HiZ Analog Unb
P5[6] 33 GPIO [unused] HiZ Analog Unb
P5[7] 34 GPIO [unused] HiZ Analog Unb
P6[0] 89 LED_DAC Software

In/Out
Strong drive HiZ Analog Unb

P6[1] 90 GPIO [unused] HiZ Analog Unb
P6[2] 91 GPIO [unused] HiZ Analog Unb
P6[3] 92 GPIO [unused] HiZ Analog Unb
P6[4] 6 GPIO [unused] HiZ Analog Unb
P6[5] 7 GPIO [unused] HiZ Analog Unb
P6[6] 8 GPIO [unused] HiZ Analog Unb
P6[7] 9 GPIO [unused] HiZ Analog Unb

Abbreviations used in Table 4 have the following meanings:
• HiZ analog = High impedance analog
• HiZ Analog Unb = Hi-Z Analog Unbuffered

127

2 Pins

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 9

2.3 Software Pins

Table 5 contains information about the software pins on this device in alphabetical order. (Only
software-accessible pins are shown.)

Table 5. Software Pins

Name Port Type Reset State
\LCD:LCDPort[0]\ P2[0] Software

In/Out
HiZ Analog Unb

\LCD:LCDPort[1]\ P2[1] Software
In/Out

HiZ Analog Unb

\LCD:LCDPort[2]\ P2[2] Software
In/Out

HiZ Analog Unb

\LCD:LCDPort[3]\ P2[3] Software
In/Out

HiZ Analog Unb

\LCD:LCDPort[4]\ P2[4] Software
In/Out

HiZ Analog Unb

\LCD:LCDPort[5]\ P2[5] Software
In/Out

HiZ Analog Unb

\LCD:LCDPort[6]\ P2[6] Software
In/Out

HiZ Analog Unb

\USB:Dm\ P15[7] Analog HiZ Analog Unb
\USB:Dp\ P15[6] Analog HiZ Analog Unb
Counter_Electrode P3[7] Analog HiZ Analog Unb
Debug:SWD_CK P1[1] Reserved
Debug:SWD_IO P1[0] Reserved
Debug:SWV P1[3] Reserved
GPIO [unused] P6[1] HiZ Analog Unb
GPIO [unused] P2[7] HiZ Analog Unb
GPIO [unused] P6[6] HiZ Analog Unb
GPIO [unused] P3[5] HiZ Analog Unb
GPIO [unused] P6[4] HiZ Analog Unb
GPIO [unused] P15[3] HiZ Analog Unb
GPIO [unused] P6[5] HiZ Analog Unb
GPIO [unused] P3[6] HiZ Analog Unb
GPIO [unused] P15[2] HiZ Analog Unb
GPIO [unused] P4[2] HiZ Analog Unb
GPIO [unused] P0[2] HiZ Analog Unb
GPIO [unused] P0[1] HiZ Analog Unb
GPIO [unused] P0[6] HiZ Analog Unb
GPIO [unused] P0[5] HiZ Analog Unb
GPIO [unused] P0[4] HiZ Analog Unb
GPIO [unused] P4[3] HiZ Analog Unb
GPIO [unused] P4[5] HiZ Analog Unb
GPIO [unused] P4[6] HiZ Analog Unb
GPIO [unused] P4[7] HiZ Analog Unb
GPIO [unused] P4[1] HiZ Analog Unb
GPIO [unused] P4[0] HiZ Analog Unb
GPIO [unused] P4[4] HiZ Analog Unb
GPIO [unused] P5[7] HiZ Analog Unb
GPIO [unused] P5[6] HiZ Analog Unb
GPIO [unused] P5[5] HiZ Analog Unb
GPIO [unused] P15[5] HiZ Analog Unb

128

2 Pins

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 10

Name Port Type Reset State
GPIO [unused] P5[2] HiZ Analog Unb
GPIO [unused] P5[3] HiZ Analog Unb
GPIO [unused] P1[5] HiZ Analog Unb
GPIO [unused] P1[4] HiZ Analog Unb
GPIO [unused] P1[2] HiZ Analog Unb
GPIO [unused] P5[4] HiZ Analog Unb
GPIO [unused] P1[7] HiZ Analog Unb
GPIO [unused] P1[6] HiZ Analog Unb
GPIO [unused] P15[4] HiZ Analog Unb
GPIO [unused] P3[1] HiZ Analog Unb
GPIO [unused] P5[0] HiZ Analog Unb
GPIO [unused] P6[2] HiZ Analog Unb
GPIO [unused] P3[4] HiZ Analog Unb
GPIO [unused] P0[7] HiZ Analog Unb
GPIO [unused] P3[0] HiZ Analog Unb
GPIO [unused] P6[7] HiZ Analog Unb
GPIO [unused] P6[3] HiZ Analog Unb
GPIO [unused] P5[1] HiZ Analog Unb
GPIO [unused] P15[1] HiZ Analog Unb
GPIO [unused] P15[0] HiZ Analog Unb
LED_DAC P6[0] Software

In/Out
HiZ Analog Unb

pin_DAC P3[3] Analog HiZ Analog Unb
pin_TIA_CAP P0[3] Analog HiZ Analog Unb
Reference_Electrode P3[2] Analog HiZ Analog Unb
SIO [unused] P12[6] HiZ Analog Unb
SIO [unused] P12[5] HiZ Analog Unb
SIO [unused] P12[4] HiZ Analog Unb
SIO [unused] P12[7] HiZ Analog Unb
SIO [unused] P12[0] HiZ Analog Unb
SIO [unused] P12[1] HiZ Analog Unb
SIO [unused] P12[2] HiZ Analog Unb
SIO [unused] P12[3] HiZ Analog Unb
Working_Electrode P0[0] Analog HiZ Analog Unb

Abbreviations used in Table 5 have the following meanings:
• HiZ Analog Unb = Hi-Z Analog Unbuffered

For more information on reading, writing and configuring pins, please refer to:
• Pins chapter in the System Reference Guide

o CyPins API routines
• Programming Application Interface section in the cy_pins component datasheet

129

3 System Settings

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 11

3 System Settings

3.1 System Configuration

Table 6. System Configuration Settings
Name Value

Device Configuration Mode Compressed
Enable Error Correcting Code (ECC) False
Store Configuration Data in ECC Memory True
Instruction Cache Enabled True
Enable Fast IMO During Startup True
Unused Bonded IO Allow but warn
Heap Size (bytes) 0x80
Stack Size (bytes) 0x0800
Include CMSIS Core Peripheral Library Files True

3.2 System Debug Settings

Table 7. System Debug Settings
Name Value

Debug Select SWD+SWV (serial
wire debug and

viewer)
Enable Device Protection False
Embedded Trace (ETM) False
Use Optional XRES False

3.3 System Operating Conditions

Table 8. System Operating Conditions
Name Value

VDDA (V) 5.0
VDDD (V) 5.0
VDDIO0 (V) 5.0
VDDIO1 (V) 5.0
VDDIO2 (V) 5.0
VDDIO3 (V) 5.0
Variable VDDA False
Temperature Range -40C -

85/125C

130

4 Clocks

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 12

4 Clocks

The clock system includes these clock resources:
• Four internal clock sources increase system integration:

o 3 to 74.7 MHz Internal Main Oscillator (IMO) ±1% at 3 MHz
o 1 kHz, 33 kHz, and 100 kHz Internal Low Speed Oscillator (ILO) outputs
o 12 to 80 MHz clock doubler output, sourced from IMO, MHz External Crystal Oscillator

(MHzECO), and Digital System Interconnect (DSI)
o 24 to 80 MHz fractional Phase-Locked Loop (PLL) sourced from IMO, MHzECO, and DSI

• Clock generated using a DSI signal from an external I/O pin or other logic
• Two external clock sources provide high precision clocks:

o 4 to 25 MHz External Crystal Oscillator (MHzECO)
o 32.768 kHz External Crystal Oscillator (kHzECO) for Real Time Clock (RTC)

• Dedicated 16-bit divider for bus clock
• Eight individually sourced 16-bit clock dividers for the digital system peripherals
• Four individually sourced 16-bit clock dividers with skew for the analog system peripherals
• IMO has a USB mode that synchronizes to USB host traffic, requiring no external crystal for

USB. (USB equipped parts only)

Figure 3. System Clock Configuration

131

4 Clocks

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 13

4.1 System Clocks

Table 9 lists the system clocks used in this design.

Table 9. System Clocks
Name Domain Source Desired

Freq
Nominal
Freq

Accuracy
(%)

Start
at

Reset

Enabled

USB_CLK DIGITAL IMO 48 MHz 48 MHz ±0.25 False True
IMO DIGITAL 24 MHz 24 MHz ±0.25 True True
MASTER_CLK DIGITAL PLL_OUT ? MHz 24 MHz ±0.25 True True
BUS_CLK DIGITAL MASTER_CLK ? MHz 24 MHz ±0.25 True True
PLL_OUT DIGITAL IMO 24 MHz 24 MHz ±0.25 True True
ILO DIGITAL ? MHz 100 kHz -55,+100 True True
XTAL 32kHz DIGITAL 32.768

kHz
? MHz ±0 False False

Digital Signal DIGITAL ? MHz ? MHz ±0 False False
XTAL DIGITAL 24 MHz ? MHz ±0 False False

4.2 Local and Design Wide Clocks

Local clocks drive individual analog and digital blocks. Design wide clocks are a user-defined
optimization, where two or more analog or digital blocks that share a common clock profile (frequency,
etc) can be driven from the same clock divider output source.

Figure 4. Local and Design Wide Clock Configuration

Table 10 lists the local clocks used in this design.

Table 10. Local Clocks
Name Domain Source Desired

Freq
Nominal
Freq

Accuracy
(%)

Start
at

Reset

Enabled

ADC_Ext_CP_-
Clk

DIGITAL MASTER_CLK ? MHz 24 MHz ±0.25 True True

timer_clock DIGITAL BUS_CLK ? MHz 24 MHz ±0.25 True True
DVDAC_BUS_-
CLK

DIGITAL BUS_CLK ? MHz 24 MHz ±0.25 True True

ADC_theACLK ANALOG MASTER_CLK 960 kHz 960 kHz ±0.25 True True
DVDAC_-
IntClock

DIGITAL MASTER_CLK 250 kHz 250 kHz ±0.25 True True

For more information on clocking resources, please refer to:
• Clocking System chapter in the PSoC 5LP Technical Reference Manual
• Clocking chapter in the System Reference Guide

o CyPLL API routines
o CyIMO API routines

132

4 Clocks

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 14

o CyILO API routines
o CyMaster API routines
o CyXTAL API routines

133

5 Interrupts and DMAs

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 15

5 Interrupts and DMAs

5.1 Interrupts

This design contains the following interrupt components: (0 is the highest priority)

Table 11. Interrupts
Name Intr

Num
Vector Priority

USB_ep_1 0 0 7
USB_ep_2 1 1 7
isr_ADC 2 2 2
isr_DAC 3 3 1
USB_dp_int 12 12 7
USB_arb_int 22 22 7
USB_bus_reset 23 23 7
USB_ep_0 24 24 7
ADC_IRQ 29 29 7

For more information on interrupts, please refer to:
• Interrupt Controller chapter in the PSoC 5LP Technical Reference Manual
• Interrupts chapter in the System Reference Guide

o CyInt API routines and related registers
• Datasheet for cy_isr component

5.2 DMAs

This design contains the following DMA components: (0 is the highest priority)

Table 12. DMAs
Name Priority Channel

Number
DVDAC_DMA 2 0

For more information on DMAs, please refer to:
• PHUB and DMAC chapter in the PSoC 5LP Technical Reference Manual
• DMA chapter in the System Reference Guide

o DMA API routines and related registers
• Datasheet for cy_dma component

134

6 Flash Memory

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 16

6 Flash Memory

PSoC 5LP devices offer a host of Flash protection options and device security features that you can
leverage to meet the security and protection requirements of an application. These requirements
range from protecting configuration settings or Flash data to locking the entire device from external
access.

Table 13 lists the Flash protection settings for your design.

Table 13. Flash Protection Settings
Start

Address
End

Address
Protection Level

0x0 0x3FFFF U - Unprotected

Flash memory is organized as rows with each row of flash having 256 bytes. Each flash row can be
assigned one of four protection levels:

• U - Unprotected
• F - Factory Upgrade
• R - Field Upgrade
• W - Full Protection

For more information on Flash memory and protection, please refer to:
• Flash Protection chapter in the PSoC 5LP Technical Reference Manual
• Flash and EEPROM chapter in the System Reference Guide

o CyWrite API routines
o CyFlash API routines

135

7 Design Contents

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 17

7 Design Contents

This design's schematic content consists of the following schematic sheet:

7.1 Schematic Sheet: Potentiostat

Figure 5. Schematic Sheet: Potentiostat

This schematic sheet contains the following component instances:
• Instance ADC (type: ADC_DelSig_v3_30)
• Instance DVDAC (type: DVDAC_v2_10)
• Instance LCD (type: CharLCD_v2_20)
• Instance OPAMP (type: OpAmp_v1_90)
• Instance TIA (type: TIA_v2_0)
• Instance TIMER (type: Timer_v2_80)
• Instance USB (type: USBFS_v3_20)
• Instance VDAC_REF (type: VDAC8_v1_90)

136

8 Components

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 18

8 Components

8.1 Component type: ADC_DelSig [v3.30]

8.1.1 Instance ADC

Description: Delta-Sigma ADC
Instance type: ADC_DelSig [v3.30]
Datasheet: online component datasheet for ADC_DelSig

Table 14. Component Parameters for ADC
Parameter Name Value Description

ADC_Alignment Right This parameter determines how
the result is aligned in the 24 bit

result word.
ADC_Alignment_Config2 Right This parameter determines how

the result is aligned in the 24 bit
result word.

ADC_Alignment_Config3 Right This parameter determines how
the result is aligned in the 24 bit

result word.
ADC_Alignment_Config4 Right This parameter determines how

the result is aligned in the 24 bit
result word.

ADC_Charge_Pump_Clock true Low power charge pump clock
selection

ADC_Clock Internal Parameter for selecting the
ADC clock type.

ADC_Input_Mode Differential Differential or Single ended
input mode

ADC_Input_Range -Input +/- 2*Vref Choose input operating mode
that best supports the range of
the signals being measured.

ADC_Input_Range_Config2 -Input +/- Vref Choose input operating mode
that best supports the range of
the signals being measured.

ADC_Input_Range_Config3 -Input +/- Vref Choose input operating mode
that best supports the range of
the signals being measured.

ADC_Input_Range_Config4 -Input +/- Vref Choose input operating mode
that best supports the range of
the signals being measured.

ADC_Power Medium Power Sets power level of ADC.
ADC_Reference Internal 1.024 Volts Selects voltage reference

source and configuration.
ADC_Reference_Config2 Internal 1.024 Volts Selects voltage reference

source and configuration.
ADC_Reference_Config3 Internal 1.024 Volts Selects voltage reference

source and configuration.
ADC_Reference_Config4 Internal 1.024 Volts Selects voltage reference

source and configuration.
ADC_Resolution 12 ADC Resolution in bits
ADC_Resolution_Config2 16 ADC Resolution in bits
ADC_Resolution_Config3 16 ADC Resolution in bits
ADC_Resolution_Config4 16 ADC Resolution in bits

137

8 Components

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 19

Parameter Name Value Description
Clock_Frequency 64000 Determines the ADC clock

frequency.
Comment_Config1 Cyclic voltammetry Parameter which holds the user

comment for the config1.
Comment_Config2 Second Config Parameter which holds the user

comment for the config2.
Comment_Config3 Third Config Parameter which holds the user

comment for the config3.
Comment_Config4 Fourth Config Parameter which holds the user

comment for the config4.
Config1_Name CV This parameter is used to create

constants in the header file for
config 1.

Config2_Name CFG2 This parameter is used to create
constants in the header file for

config 2.
Config3_Name CFG3 This parameter is used to create

constants in the header file for
config 3.

Config4_Name CFG4 This parameter is used to create
constants in the header file for

config 4.
Configs 1 Number of active configurations
Conversion_Mode 2 - Continuous ADC conversion mode
Conversion_Mode_Config2 2 - Continuous ADC conversion mode
Conversion_Mode_Config3 2 - Continuous ADC conversion mode
Conversion_Mode_Config4 2 - Continuous ADC conversion mode
Enable_Vref_Vss false Determines whether or not to

connect ADC's reference Vssa
to AGL[6].

EnableModulatorInput false When this parameter is
enabled, the modulator input
terminal will be enabled on the

symbol.
Input_Buffer_Gain 1 Gain of input amplifier
Input_Buffer_Gain_Config2 1 Gain of input amplifier
Input_Buffer_Gain_Config3 1 Gain of input amplifier
Input_Buffer_Gain_Config4 1 Gain of input amplifier
Input_Buffer_Mode Level Shift Buffer Mode type selection
Input_Buffer_Mode_Config2 Rail to Rail Buffer Mode type selection
Input_Buffer_Mode_Config3 Rail to Rail Buffer Mode type selection
Input_Buffer_Mode_Config4 Rail to Rail Buffer Mode type selection
Ref_Voltage 1.024 Set reference voltage
Ref_Voltage_Config2 1.024 Set reference voltage
Ref_Voltage_Config3 1.024 Set reference voltage
Ref_Voltage_Config4 1.024 Set reference voltage
rm_int false Removes internal interrupt

(IRQ)
Sample_Rate 30000 Sample Rate in Hz
Sample_Rate_Config2 10000 Sample Rate in Hz
Sample_Rate_Config3 10000 Sample Rate in Hz
Sample_Rate_Config4 10000 Sample Rate in Hz
Start_of_Conversion Software Continuous conversions or

hardware controlled
User Comments Instance-specific comments.

138

8 Components

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 20

8.2 Component type: CharLCD [v2.20]

8.2.1 Instance LCD

Description: Character LCD Component
Instance type: CharLCD [v2.20]
Datasheet: online component datasheet for CharLCD

Table 15. Component Parameters for LCD
Parameter Name Value Description

ConversionRoutines true Defines if the conversion
routines will be included in the

project.
CustomCharacterSet None Defines the type of custom

character set (User defined,
Vertical or Horizontal bargraph).
Based on the selection a look-
up table with proper characters
representation will be generated

in the source code.
User Comments Instance-specific comments.

8.3 Component type: DVDAC [v2.10]

8.3.1 Instance DVDAC

Description: 9 to 12 bit Dithered Voltage DAC
Instance type: DVDAC [v2.10]
Datasheet: online component datasheet for DVDAC

Table 16. Component Parameters for DVDAC
Parameter Name Value Description

DAC_Range 4 Volt This parameter allows you to
set one of the two voltage

ranges. This option cannot be
changed during runtime.

Initial_Value 2048 This parameter allows you to
set the DVDAC voltage value.
The maximum value will depend

on the resolution selected.
Refer to the DVDAC_SetValue()

function description in this
component datasheet.

InternalClock true This parameter allows you to
configure the component's clock
source: internal or external. This

option cannot be changed
during runtime.

InternalClockFreqHz 250000 When the clock source is
configured to be internal, this

parameter defines the
frequency in Hz at which DMA
is triggered. The parameter
alsowrites the next value from
the dithered array into the
VDAC8 data register.

139

8 Components

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 21

Parameter Name Value Description
Resolution 12 Bits This parameter allows you to

set the DVDAC resolution. The
resolution cannot be changed

during runtime.
User Comments Instance-specific comments.

8.4 Component type: OpAmp [v1.90]

8.4.1 Instance OPAMP

Description: Opamp
Instance type: OpAmp [v1.90]
Datasheet: online component datasheet for OpAmp

Table 17. Component Parameters for OPAMP
Parameter Name Value Description
Mode OpAmp Selects between uncommitted

op-amp or follower mode.
Power Low Power Selects the device power level.
User Comments Instance-specific comments.

8.5 Component type: TIA [v2.0]

8.5.1 Instance TIA

Description: Trans-Impedance Amplifier
Instance type: TIA [v2.0]
Datasheet: online component datasheet for TIA

Table 18. Component Parameters for TIA
Parameter Name Value Description

Capacitive_Feedback 4.6 pF Capacitive feedback for the TIA
Fcorner 567 kHz Calculated -3dB frequency for

the given feedback settings.
Power Medium Power Power setting for TIA
Resistive_Feedback 20k ohms Nominal resistive feedback for

the TIA
User Comments Instance-specific comments.

8.6 Component type: Timer [v2.80]

8.6.1 Instance TIMER

Description: 8, 16, 24 or 32-bit Timer
Instance type: Timer [v2.80]
Datasheet: online component datasheet for Timer

Table 19. Component Parameters for TIMER
Parameter Name Value Description

CaptureAlternatingFall false Enables data capture on either
edge but not until a valid falling

edge is detected first.
CaptureAlternatingRise false Enables data capture on either

edge but not until a valid rising
edge is detected first.

140

8 Components

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 22

Parameter Name Value Description
CaptureCount 2 The CaptureCount parameter

works as a divider on the
hardware input "capture". A

CaptureCount value of 2 would
result in an actual capture

taking place every other time
the input "capture" is changed.

CaptureCounterEnabled false Enables the capture counter to
count capture events (up to
127) before a capture is

triggered.
CaptureMode None This parameter defines the

capture input signal
requirements to trigger a valid

capture event
EnableMode Software Only This parameter specifies the

methods in enabling the
component. Hardware mode
makes the enable input pin
visible. Software mode may

reduce the resource usage if not
enabled.

FixedFunction false Configures the component to
use fixed function HW block

instead of the UDB
implementation.

InterruptOnCapture false Parameter to check whether
interrupt on a capture event is

enabled or disabled.
InterruptOnFIFOFull false Parameter to check whether

interrupt on a FIFO Full event is
enabled disabled.

InterruptOnTC true Parameter to check whether
interrupt on a TC is enabled or

disabled.
NumberOfCaptures 1 Number of captures allowed

until the counter is cleared or
disabled.

Period 16777215 Defines the timer period (This is
also the reload value when
terminal count is reached)

Resolution 24 Defines the resolution of the
hardware. This parameter

affects how many bits are used
in the Period counter and

defines the maximum resolution
of the internal component

signals.
RunMode Continuous Defines the hardware to run

continuously, run until a terminal
count is reached or run until an
interrupt event is triggered.

TriggerMode None Defines the required trigger
input signal to cause a valid
trigger enable of the timer

User Comments Instance-specific comments.

8.7 Component type: USBFS [v3.20]

141

8 Components

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 23

8.7.1 Instance USB

Description: USB 2.0 Full Speed Device Framework
Instance type: USBFS [v3.20]
Datasheet: online component datasheet for USBFS

Table 20. Component Parameters for USB
Parameter Name Value Description

EnableBatteryChargDetect false This parameter allows to detect
a charging supported USB host
port using the API function
USBFS_DetectPortType().

EnableCDCApi true Enables additional high level
API's that allow the CDC device
to be used similar to a UART

device.
EnableMidiApi true Enables additional high level

MIDI API's.
endpointMA MA_Static Endpoint memory allocation
endpointMM EP_Manual Endpoint memory management
epDMAautoOptimization false This parameter enables

resource optimization for DMA
with Automatic Memory

Management mode. Set this
parameter value to true only
when a single IN endpoint is
present in the device. Enabling
this parameter in a multi IN
endpoint device configuration
causes undesired effects.

extern_cls false This parameter allows for user
or other component to

implement his own handler for
Class requests. USBFS_-

DispatchClassRqst() function
should be implemented if this

parameter enabled.
extern_vbus true This parameter enables external

VBUSDET input.
extern_vnd false This parameter allows for user

or other component to
implement his own handler for
Vendor specific requests.

USBFS_HandleVendorRqst()
function should be implemented

if this parameter enabled.
extJackCount 0 Max number of External MIDI IN

Jack or OUT Jack descriptors
Gen16bitEpAccessApi false This parameter defines whether

to generate APIs for the 16-bits
endpoint access.

HandleMscRequests true This parameter is used to
enable handling MSC requests

and generate MSC APIs.
isrGroupArbiter High This parameter defines the

interrupt group of the Arbiter
Interrupt.

142

8 Components

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 24

Parameter Name Value Description
isrGroupBusReset Low This parameter defines the

interrupt group of the Bus Reset
Interrupt.

isrGroupEp0 Medium This parameter defines the
interrupt group of the Control
Endpoint Interrupt (EP0).

isrGroupEp1 Medium This parameter defines the
interrupt group of the Data

Endpoint 1 Interrupt.
isrGroupEp2 Medium This parameter defines the

interrupt group of the Data
Endpoint 2 Interrupt.

isrGroupEp3 Medium This parameter defines the
interrupt group of the Data

Endpoint 3 Interrupt.
isrGroupEp4 Medium This parameter defines the

interrupt group of the Data
Endpoint 4 Interrupt.

isrGroupEp5 Medium This parameter defines the
interrupt group of the Data

Endpoint 5 Interrupt.
isrGroupEp6 Medium This parameter defines the

interrupt group of the Data
Endpoint 6 Interrupt.

isrGroupEp7 Medium This parameter defines the
interrupt group of the Data

Endpoint 7 Interrupt.
isrGroupEp8 Medium This parameter defines the

interrupt group of the Data
Endpoint 8 Interrupt.

isrGroupLpm High This parameter defines the
interrupt group of the LPM

Interrupt.
isrGroupSof Low This parameter defines the

interrupt group of the Start of
Frame Interrupt.

max_interfaces_num 1 Defines maximum interfaces
number

Mode false Specifies whether the
implementation will create API

for interfacing to UART
component(s) for a

corresponding set of external
MIDI connections.

mon_vbus false The mon_vbus parameter adds
a single VBUS monitor pin to
the design. This pin must be
connected to VBUS and must
be assigned in the pin editor.

MscDescriptors Mass Storage Class Descriptors
MscLogicalUnitsNum 1 This parameter allows to specify

the number of logical units that
should be supported by the

Mass Storage device.
out_sof false The out_sof parameter enables

Start-of-Frame output.
Pid F232 Product ID

143

8 Components

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 25

Parameter Name Value Description
powerpad_vbus false This parameter enables VBUS

power pad
ProdactName This string is displayed by the

Operating System when it is
installing the mass storage
device as the Product Name.

ProdactRevision This string is displayed by the
Operating System when

it is installing the mass storage
device as the Product Revision.

rm_lpm_int true Removes LPM ISR
User Comments Instance-specific comments.
VendorName This string is displayed by the

Operating System when it is
installing the mass storage
device as the Vendor Name.

Vid 04B4 Vendor ID

8.8 Component type: VDAC8 [v1.90]

8.8.1 Instance VDAC_REF

Description: 8-Bit Voltage DAC
Instance type: VDAC8 [v1.90]
Datasheet: online component datasheet for VDAC8

Table 21. Component Parameters for VDAC_REF
Parameter Name Value Description
Data_Source CPU or DMA (Data Bus) Selects the method in which the

data is written to the vDAC.
Initial_Value 127 Configures the initial vDAC

output voltage. The output uses
the following relation: Initial

output voltage =
value*(FullRange/255). This

calculated output voltage value
is invalid if DAC Bus is used.

Strobe_Mode Register Write Selects how the data is strobed
into the DAC. For a register
write, the data is strobed into
the DAC on each CPU or DMA
write. If operating in External
mode, an external data strobe

signal is required.
User Comments Instance-specific comments.
VDAC_Range 0 - 4.080V (16mV/bit) Specifies the full voltage scale

range of the vDAC
VDAC_Speed Low Speed Specifies the vDAC settling

speed. Note that the 'Slow
Speed' selection consumes less

power.
Voltage 2032 This parameter sets the voltage

value.144

9 Other Resources

Potentiostat_RevA8 Datasheet 10/07/2020 16:41 26

9 Other Resources

The following documents contain important information on Cypress software APIs that might be
relevant to this design:

• Standard Types and Defines chapter in the System Reference Guide
o Software base types
o Hardware register types
o Compiler defines
o Cypress API return codes
o Interrupt types and macros

• Registers
o The full PSoC 5LP register map is covered in the PSoC 5LP Registers Technical Reference

Manual
o Register Access chapter in the System Reference Guide
§ CY_GET API routines
§ CY_SET API routines

• System Functions chapter in the System Reference Guide
o General API routines
o CyDelay API routines
o CyVd Voltage Detect API routines

• Power Management
o Power Supply and Monitoring chapter in the PSoC 5LP Technical Reference Manual
o Low Power Modes chapter in the PSoC 5LP Technical Reference Manual
o Power Management chapter in the System Reference Guide
§ CyPm API routines

• Watchdog Timer chapter in the System Reference Guide
o CyWdt API routines

• Cache Management
o Cache Controller chapter in the PSoC 5LP Technical Reference Manual
o Cache chapter in the System Reference Guide
§ CyFlushCache() API routine

145

	Introduction
	Background and Motivation
	Goals

	Theoretical Background
	Electrochemistry
	Half-Cell Potential
	The Electrode
	The Nernst Equation

	Potentiostat
	The Three-Electrode System
	Working Electrode
	Reference Electrode
	Counter Electrode

	Proof of Regulation
	Schematic and Components
	Digital to Analog Converter
	Operational Amplifier (Control Amplifier)
	Transimpedance Amplifier
	Analog to Digital Converter
	Microcontroller

	PSoC-Stat: A single chip open source potentiostat by lopinpsoc-stat2018

	Material
	Embedded Platform
	Electrodes

	Method
	Electroanalytical Techniques
	Cyclic Voltammetry
	Cyclic Voltammogram
	Scan Rate

	Amperometry

	Potentiostat
	Instrument Setup
	Hardware setup
	Firmware, Software, and Driver Setup

	Graphical User Interface
	Cyclic Voltammetry
	Amperometry
	Saving of Data

	Electrode Preparation

	Instrument Design and Development
	System Overview
	Potentiostat - Hardware
	Documentation
	Schematic Overview
	Applied Voltage
	Current Measurement
	Timing
	Communication and Display

	Potentiostat - Firmware
	Overview
	Communication During Scans
	Cyclic Voltammetry
	Amperometry

	Potentiostat - Software
	Software Overview
	Communication
	Constants
	Graphical User Interface
	Userinput
	Functionality

	Results
	Cyclic voltammetry
	Ferri-/Ferrocyanide 1mM
	Measurement - 1 Cycle - Scan Rate 50 mV/s
	Measurement Corrected - 1 Cycle - Scan Rate 50 mV/s
	Measurement - 5 Cycles - Scan Rate 50 mV/s
	Measurement Corrected - 5 Cycles - Scan Rate 50 mV/s

	Amperometry

	Discussion
	Results - Cyclic Voltammetry
	Noise
	Voltammogram Shape

	Comparison of the Potentiostats

	Conclusions and Further Work
	Conclusion
	Further Work

	Appendix
	Firmware
	Source Code (.c-files)
	main.c
	general_functions.c
	usb_protocol.c

	Header Code (.h-files)
	globals.h
	general_functions.h
	usb_protocol.h

	Software
	Potentiostat_GUI.py
	Potentiostat_userinput.py
	Potentiostat_functionality.py
	Potentiostat_communication.py
	Potentiostat_Constants.py

	Potentiostat Datasheet

