

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600

WirelessUSB™ N:1 Development Kit

Technical Reference Manual

WirelessUSB N:1 DVK Technical Reference Manual Page 2 of 86

Table of Contents

1. Introduction..6

1.1 Audience ... 6
1.2 Overview ... 6
1.3 Design Goals... 6
1.4 Definitions.. 6

2. WirelessUSB™ N:1 Protocol ..7
2.1 Introduction.. 7

2.1.1 WirelessUSB N:1 Hub..8
2.1.2 WirelessUSB N:1 Sensor (Remote Device)...8

2.2 WirelessUSB Radio... 8
2.2.1 Channel Management..8
2.2.2 Pseudo-Noise Codes ...9

2.3 Error Correction... 9
2.3.1 Chip Error Correction ...9
2.3.2 Bit Error Correction ..10
2.3.3 Cyclic Redundancy Check (CRC)..11
2.3.4 Packet Retransmission ..11

2.4 Network Parameters.. 12
2.4.1 Radio Manufacturing ID ...12
2.4.2 Network Channel..12
2.4.3 Network PN Code ..12
2.4.4 Device ID..12
2.4.5 Network Checksum Seed...12
2.4.6 Network CRC Seed..13

2.5 Bind Parameters.. 13
2.6 Packet Structures.. 13

2.6.1 Bind Request Packet (Sensor)...14
2.6.2 Bind Response Packet (Hub)...14
2.6.3 Ping Packet (Hub) ..15
2.6.4 ACK Packet (Hub and Sensor) ..15
2.6.5 Data Packet (Hub and Sensor) ..16

2.7 Protocol Modes ... 17
2.7.1 Automatic Bind Mode ...17

2.7.1.1 Sensor (Remote Device) ...17
2.7.1.2 Hub ..18

2.7.2 Seeded Bind Mode...19
2.7.2.1 Sensor (Remote Device) ...19
2.7.2.2 Hub ..20

2.7.3 Channel Selection Mode (Hub Only) ...20
2.7.4 Channel Search Mode (Sensor Only) ..22
2.7.5 Data Mode..23

2.7.5.1 Sensor ...23
2.7.5.2 Hub ..24

2.7.6 Data Toggle..24
2.7.7 Synchronous Data..26
2.7.8 Invalid Device ID ..27
2.7.9 Sequence Bit Reset ...27

3. Hardware Overview ...28
3.1 I/O pin assignments... 28

WirelessUSB N:1 DVK Technical Reference Manual Page 3 of 86

3.2 Analog interface .. 28
3.2.1 Potentiometer ...29
3.2.2 DIP Switches..29

3.3 Sensor Battery Life.. 29
3.4 Prototype Expansion Header .. 29
3.5 Serial RAM (FRAM)... 30
3.6 Hub Power Considerations.. 30

4. Protocol/Network Management ..31
4.1 Network Parameters.. 31

4.1.1 Channel Subsets..31
4.1.2 PN Code ID ..32
4.1.3 Device ID..32
4.1.4 Checksum Seed and CRC Seed ...32

4.2 Binding Methods.. 33
4.2.1 Automatic Bind ...33
4.2.2 Seeded Bind...33
4.2.3 Automatic vs. Seeded Bind Selection ..34

5. Radio Overview..35
5.1 Radio timing .. 35
5.2 Maximizing Range... 35

6. Firmware Architecture ..36
6.1 Theory of Operation .. 36
6.2 Interference Avoidance ... 37
6.3 Interface Between Hub and Sensor .. 38
6.4 Interface Between Host and Hub .. 39

6.4.1 Host Commands to the Hub...40
6.4.1.1 Get Hub Information ..40
6.4.1.2 Bind..41
6.4.1.3 Delete Node...41
6.4.1.4 Send Message...41
6.4.1.5 Enumerate Devices ...42
6.4.1.6 Network Configuration...42
6.4.1.7 Network Status ..42
6.4.1.8 Reset ...42
6.4.1.9 Change Channel..43
6.4.1.10 Miscellaneous..43

6.4.2 Hub Responses to Host Commands..43
6.4.2.1 Hub Info Response..43
6.4.2.2 Bind Response ..43
6.4.2.3 Bind Information Response ...44
6.4.2.4 Delete Node Response ...44
6.4.2.5 Send Message Response ...44
6.4.2.6 Incoming Message ..44
6.4.2.7 Enumerate Devices Response..44
6.4.2.8 Network Configure Response ...45
6.4.2.9 Network Status Response...45
6.4.2.10 Reset ...45
6.4.2.11 Change Channel Response ..46
6.4.2.12 Unknown Command Response...46
6.4.2.13 STATUS ..46

6.5 Serial Output on the Host .. 47
7. Firmware Customization...48

7.1 Development Environment .. 48

WirelessUSB N:1 DVK Technical Reference Manual Page 4 of 86

7.1.1 PSoC Designer 4.1 Patch Files..49
7.2 Data Rates .. 49
7.3 Host Baud Rate ... 49
7.4 Protocol API .. 49

7.4.1 TX data flow ...50
7.4.2 Receive data flow:..51
7.4.3 Sensor Binding process ...51

7.5 Firmware Configuration ... 52
7.5.1 Config.h ..53
7.5.2 Main.c/h (Hub and Sensor) ..53

7.5.2.1 Protocol.h ..53
7.6 Porting considerations... 54

7.6.1 Interrupts ..54
7.6.2 PSoC Analog and Digital Block Usage ..55

7.7 Files/ Functions ... 56
7.7.1 Common files ...56

7.7.1.1 config.h ..56
7.7.1.2 cydefine.h ..56
7.7.1.3 cywusb693_.h..56
7.7.1.4 debug.c & .h ..56
7.7.1.5 hardware.c & .h ...56
7.7.1.6 nvram.c & .h ..57
7.7.1.7 protocol.c & .h..57
7.7.1.8 radio.c & .h ..57
7.7.1.9 spi.c & .h..57
7.7.1.10 timer.c & .h ..58
7.7.1.11 version.h ..58

7.7.2 Hub Specific files..58
7.7.2.1 host.c & .h (Hub Only) ...58
7.7.2.2 Hub.c & .h (Hub Only) ...58
7.7.2.3 main.c (Hub Version)...58

7.7.3 Sensor specific files ...59
7.7.3.1 main.c & h..59
7.7.3.2 sensor.c & h...59
7.7.3.3 multisim.c & .h ...59

8. Software Arcitecture ...59
8.1 Overview ... 59
8.2 Development Environment .. 59

9. Software Code Classes...60
9.1 CNto1App Class.. 60
9.2 CMainFrame Class.. 60
9.3 CDetailView Class... 64
9.4 CRowListView Class ... 65
9.5 CMessageView Class ... 66
9.6 CGraphView Class .. 67
9.7 CGraphSeries Class.. 68
9.8 CGraph Class.. 68
9.9 CCobsPackets Class... 69
9.10 CSerial Class... 69
9.11 CSerialEx Class .. 72
9.12 CSerialWnd Class ... 72
9.13 CAboutDlg Class ... 73
9.14 CActuatorOjbect Class .. 73

WirelessUSB N:1 DVK Technical Reference Manual Page 5 of 86

9.15 CAppSetting Class .. 73
9.16 CAvgFuncRegistry Class .. 73
9.17 CCalibrationDlg Class ... 73
9.18 CChangeDefaultSensorIntervalDlg Class ... 73
9.19 CDefaultSensorIntervalSetting Class .. 73
9.20 CDeltaDlg Class.. 73
9.21 CGraphSetting Class... 73
9.22 CHexEditBase Class... 73
9.23 CHubConfigDlg Class ... 74
9.24 CHubInfoDlg Class.. 74
9.25 CListViewEx Class .. 74
9.26 CMainWndPlacement Class.. 74
9.27 CNetworkEfficiency Class ... 74
9.28 CNetworkInfoDlg Class ... 74
9.29 CProgressBar Class.. 74
9.30 CRegistry Class... 74
9.31 CRegSettings Class .. 74
9.32 CSelectDlg Class .. 74
9.33 CSensorName Class... 75
9.34 CSerPortDlg Class .. 75
9.35 CSerPortSetting Class .. 75
9.36 CSubclassWnd Class.. 75
9.37 CSubclassWndMap Class... 75
9.38 CSummeryl Class.. 75
9.39 CSummarySettings Class ... 75
9.40 CTemperatureGraphSettingDlg Class... 75
9.41 CXAxisSettingDlg Class .. 75

10. Appendix..76
10.1 Hub State Machine.. 76
10.2 Channel selection and Bind process ... 77
10.3 Channel Subset Table... 79
10.4 16kbps PN Codes ... 81
10.5 64kbps PN Codes ... 81

11. References...82
12. Index...83

WirelessUSB N:1 DVK Technical Reference Manual Page 6 of 86

1. INTRODUCTION

1.1 Audience
This document is intended to be read by a software, firmware, or hardware
engineer responsible for an N:1 implementation or those interested in the
detailed system architecture.

1.2 Overview
Cypress has created software and firmware to assist in the development
of N:1 projects. While it may not be the exact implementation or platform
for your application, you are encouraged to read this document (or use it
as a reference) and look at the source files to rapidly accelerate your own
development cycle.

1.3 Design Goals
The N:1 Firmware was written to demonstrate various N:1 applications
using a Cypress PSoC MCU. Some of the applications supported by the
N:1 DVK include:

• Wireless security sensor
• Wireless thermostat
• Wireless actuator

The N:1 hardware was design to allow easy prototyping for additional
applications through the Node Board expansion header and the included
Proto Board.

1.4 Definitions

Back Channel
Data

User payload sent from the Hub back to the Sensor

cpb Chips Per Bit. Each bit transmitted over the air is
broken into either 64 or 32 1µs pulses over the air.
These pulses are called chips.

COBS Consistent Overhead Byte Stuffing – encoding
scheme used for serial communication

DSSS Direct Sequence Spread Spectrum – communication
scheme that multiplies data bits by a pseudo-random
bit pattern (PN sequence) that "spreads" the data into
a large coded stream that takes the full bandwidth of
the channel.

Host An external system that communicates with the Hub
via RS-232. In the N:1 Kit a PC acts as the Host.

Node Refers to a generic board that can be programmed to
be a Hub or Sensor

WirelessUSB N:1 DVK Technical Reference Manual Page 7 of 86

Hub An N:1 Node Board acting as a Hub for all network
traffic.

ISP (or ISSP) In-circuit System Programmer or In-System Serial
Programmer – Used to program PSoC
Microcontrollers in-system.

ISR Interrupt Service Routine – The MCU switches to this
routine when an interrupt is pending.

LSB Least Significant Byte
MCU Micro Controller Unit – An integrated device that

contains a CPU and some analog or digital peripheral
interface functions.

MID Manufacturing Identification – 4-byte value read from
the radio that can be used as a unique identifier.

MSB Most Significant Byte
N:1 Pronounced “N to one”. Refers to multiple devices

communicating to a single device in a star
configuration.

Packet An array of bytes sent over the air between nodes. A
Data Packet contains a user Payload.

Payload The user application passes and receives a Payload
to the Protocol, which in turn wraps the Payload in a
Packet used for over the air transmission/reception.

RSSI Receive Signal Strength Indicator – The radio
receiver contains circuitry to measure and report the
strength of incoming RF signals.

Sensor An N:1 Node Board that collects and sends data to
the Hub. The documentation uses the term Sensor to
refer to Sensors or Actuators.

2. WIRELESSUSB™ N:1 PROTOCOL

2.1 Introduction
The primary purpose of WirelessUSB™ N:1 DVK is to add a multipoint-to–
point (N:1) wireless protocol to the existing WirelessUSB portfolio. The
N:1 DVK is capable of servicing low data rate higher density node
applications beyond simple 1:1 or 2:1 wireless connectivity. The
WirelessUSB N:1 Protocol is designed for reliable 2-way communication
between a wireless Hub and target Sensor or Actuator applications in N:1
networks.

WirelessUSB N:1 DVK Technical Reference Manual Page 8 of 86

2.1.1 WirelessUSB N:1 Hub

The WirelessUSB N:1 Hub forms the center of a star network that can
contain thousands of Sensors or Actuators. In order to accommodate
extremely power-sensitive Sensors the Hub is typically assumed to be
powered by an constant external power supply. The WirelessUSB N:1
Hub interfaces with a local host as shown in Figure 1: N:1 Star Network or
to a remote host (via Wi-Fi, Ethernet, etc) to create a multi-star network.
For simple applications, the Hub may not require connection to a host.
The entire Hub/Host application logic may be self-contained in the Hub
firmware.

2.1.2 WirelessUSB N:1 Sensor (Remote Device)

The WirelessUSB N:1 Protocol has been optimized for low-power Sensors
that require battery life to be measured in years, not days or months.
Examples of such devices are: environmental sensors, security alarms,
and hotel door locks.

Figure 1: N:1 Star Network
2.2 WirelessUSB Radio
2.2.1 Channel Management

The WirelessUSB N:1 protocol utilizes the unlicensed 2.4 GHz Industrial,
Scientific, and Medical (ISM) band for wireless connectivity. WirelessUSB
N:1 splits the band into 79 distinct 1-Mhz channels with the first channel at
2.402 GHz. Each WirelessUSB N:1 network uses a subset* of channels
spread across the 2.4 GHz frequency band in order to minimize the
probability of interference from other WirelessUSB networks, while
reducing the number of possible channels each Sensor must search in
order to find the current channel being used by the Hub (See Section 2.7.4
for more details). Figure 2 shows an example of the spectrum divided into
six channel subsets with each color representing a channel subset.

Host

WirelesUSB N:1
 Remote Device

WirelesUSB N:1
Remote Device

WirelesUSB N:1
Remote Device

WirelesUSB N:1
Remote Device

WirelesUSB N:1
Remote Device

WirelesUSB N:1
Remote Device

WirelessUSB
N:1 Hub

WirelessUSB N:1 DVK Technical Reference Manual Page 9 of 86

[* channel subset size is configurable from 6-13 channels per subset]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …….. 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

Figure 2: Channel Subsets
2.2.2 Pseudo-Noise Codes

Pseudo-Noise Codes (PN Codes) are the codes used to achieve the
special matched filter characteristics of DSSS communication. The PN
Codes used in WirelessUSB have minimal cross-correlation properties,
meaning they are less susceptible to interference caused by overlapping
transmissions on the same channel. The length of the PN Code results in
different communication characteristics. Higher data rates are achieved
with 32 chips per bit PN Codes, while 64chips per bit PN Codes allow
longer range. The number of frequency/code pairs is large enough to
comfortably accommodate hundreds of WirelessUSB devices in the same
space. All devices in a network must use the same PN Code and channel
in order to communicate. (See the WirelessUSB LS Theory of Operation
document for more details.)

2.3 Error Correction
There are four methods of error correction in WirelessUSB N:1:

• Chip error correction
• Bit error correction
• Cyclic Redundancy Check (CRC)
• ACK/retransmission

2.3.1 Chip Error Correction

Chip error correction is used to ensure reliable reception of individual data
bits. In the presence of interference (or near the limits of range), the
transmitted PN Code will often be received with some PN Code chips
corrupted. DSSS receivers use a data correlator to decode the incoming
data stream. If the number of chip errors is less than the correlator error
threshold, the data will be correctly received. It is therefore possible for
WirelessUSB systems to successfully receive data without error on
frequencies suffering from interference causing chip error rates in excess
of 10 percent. Figure 3 shows a WirelessUSB 64chips/bit PN code
example.

WirelessUSB N:1 DVK Technical Reference Manual Page 10 of 86

0 1 1 0010010110101
TX PN code for a

“1” bit

Received chips,
including errors

Decoded bit correct due to coding gain

Spurious chip errors

1Data bit to transmit

0 1 1 0010010100011
(64 ch ips per b it)

0 1 1 0~100~0~~0101 0 1 1 ~010010~0~~11

01011001 01011001

1

Data byte to transmit

Figure 3: Chip Error Correction

2.3.2 Bit Error Correction

If the correlator threshold is exceeded, the received data bit is not
corrupted; it is “erased”, or in other words invalid. There is a negligible
probability of data being corrupted rather than erased, because this would
require interference to corrupt the majority of chips in such a way that the
incoming data stream correlated with the PN Code corresponding to the
opposite logic state.

Erasures are much easier to correct than errors. By XORing each byte
(including the packet header and CRC) and the Network Checksum Seed
(See Section 2.4.5 for more details), and transmitting the resulting
checksum, it is possible to use this checksum to correct one error in each
bit position in a received packet. See below for more details.

WirelessUSB N:1 DVK Technical Reference Manual Page 11 of 86

Figure 4: Bit Error Correction
2.3.3 Cyclic Redundancy Check (CRC)

By combining the bit error correction scheme above with a 16-bit CRC the
N:1 protocol provides excellent error detection as well as excellent error
correction. The CRC is capable of detecting errors caused by bit-shifts,
dropped bits, and corrupt bits. If all bits in the packet are valid or are fixed
by the bit error correction scheme, the CRC is then calculated and
compared against the received CRC value. If the calculated CRC does not
match the received CRC the packet is discarded. The CRC is calculated
for the header and packet payload, but not on the CRC and XOR
checksum fields of the packet. The CRC is optional and may be removed
in order to reduce the packet length in quiet environments.

2.3.4 Packet Retransmission

The WirelessUSB N:1 Protocol employs an ACK/NAK scheme to
guarantee transmission. Data Packets are retransmitted until an ACK
packet is received. If a packet is corrupted during transmission and the
receiver is unable to correct the errors using the error correction schemes
described above, the receiver may send a NAK packet to the transmitter
(or the receiver may simply not respond, which is an implied NAK). If the
transmitter receives a NAK or no response from the intended receiver the
transmitter will retransmit the original packet. If the Data Packet was
received correctly by the receiver, but the ACK packet was lost or
corrupted during transmission the transmitter will retransmit the original
packet, which will be recognized as a duplicate packet by the receiver and
discarded after transmitting an ACK. (See Section 2.7.5 for more details)

0x340x560x700x12
Header Payload

XOR
Checksum

011010100000111001001000 00101100

0110-0100000111001001000 -0101-00

111101111111111111111111 01111011

TX Bytes

TX Bits

RX Bits
Valid Bits

•000•1•100 011

0x340x560x700x12RX Bytes

Recovered Erased Bits

WirelessUSB N:1 DVK Technical Reference Manual Page 12 of 86

2.4 Network Parameters
2.4.1 Radio Manufacturing ID

Each WirelessUSB radio contains a 4-byte Manufacturing ID (MID), which
has been laser fused into radio registers 0x3C - 0x3F during
manufacturing. Sensors must transmit their MID to the Hub during the bind
procedure as a means of device identification. The Hub also transmits its
Manufacturing ID to each Sensor during the bind procedure. The Hub’s
Manufacturing ID is used to calculate the Network Checksum Seed and
the Network CRC Seed. Applications may also use the MID as a pseudo-
random seed.

2.4.2 Network Channel

During Bind Mode the Hub notifies the Sensor of the current channel
being used for Data Mode; this channel is known as the current channel.
Once the current channel is known by the Sensor it can calculate the other
channels contained in the Network Channel sequence.

2.4.3 Network PN Code

All packets transmitted between bound devices use a single PN Code,
which is determined by the Hub; this PN Code is known as the Network
PN Code.

2.4.4 Device ID

During the bind procedure the Hub assigns each Sensor an 8-bit or 16-bit
device ID (the length is determined by firmware implementation), which is
used to uniquely identify each Sensor. All packets sent from Sensors
(except for Bind Request packets) contain the Sensor’s Device ID. All
packets sent from the Hub contain the Device ID of the intended recipient.

2.4.5 Network Checksum Seed

The Network Checksum Seed is XORed with each byte in the header and
payload (See Section 2.3.2 for more details) when determining the
checksum value for all packets sent between bound devices (Data and
ACK packets) in order to reduce the possibility of packets from
neighboring systems being accidentally received as valid packets. All
packets sent between non-bound devices use the default checksum seed
of 0x00 (Bind Request, Bind Response, and Broadcast Ping packets). The
Network Checksum Seed is MID 4 of the Hub’s Manufacturing ID.

WirelessUSB N:1 DVK Technical Reference Manual Page 13 of 86

2.4.6 Network CRC Seed

The Network CRC Seed is used to seed the CRC calculation for all
packets sent between bound devices (Data, ACK, and Network Ping
packets) in order to reduce the possibility of packets from neighboring
systems being accidentally received as valid packets. All packets sent
between non-bound devices use the default CRC seed of 0x00 (Bind
Request, Bind Response, and Broadcast Ping packets). The Network
CRC Seed is MID 3 of the Hub’s Manufacturing ID.

2.5 Bind Parameters
In order for all WirelessUSB N:1 devices to communicate during Bind
Mode the following parameters are always used during Bind Mode:

• CRC Seed – 0x00
• Checksum Seed – 0x00
• PN Code ID – 0x00
• Base Channel – 0x00

2.6 Packet Structures
The most significant nibble of the first byte contains the packet type.
Packet types 0x0 – 0x5 are defined below, packet types 0x6 – 0xF are
reserved. All unused bit fields in the Packet Header are set to 0. The
general WirelessUSB N:1 protocol packet format is described below:

Packet Type D Device ID 1 Device ID 2 Payload 1

Payload 2 … Payload N CRC … Checksum

Packet Header

Single Byte Device ID Bit (D) – This is a 1-bit field specifying a 1-
byte or 2-byte Device ID. If this bit is set a 1-byte Device ID will be
used, otherwise the Device ID is 2 bytes. (1-byte Device ID support
was not built into revision 1.0 of the N:1 Development Kit.)

Device ID – This is a 1-2 byte field containing the Device ID assigned to
this device. (See Section 2.4.4 for more details)

Payload – This is packet type specific data as described for each packet
type below.

CRC – This is an 16-bit field containing the CRC of all preceding bytes.
(See Section 2.3.3)

WirelessUSB N:1 DVK Technical Reference Manual Page 14 of 86

Checksum – This is an 8-bit field containing the XOR checksum of all
previous bytes in the packet. (See Section 2.3.2 and Section 2.4.5)

2.6.1 Bind Request Packet (Sensor)

0 MID 1 MID 2 MID 3

MID 4 CRC 1 CRC 2 Checksum

Manufacturing ID (MID 1 - MID 4) – This is the 4-byte Manufacturing ID
retrieved from the WirelessUSB radio of the Sensor. MID 1 is register
0x3C, MID 2 is register 0x3D, MID 3 is register 0x3E and MID 4 is register
0x3F. (See Section 2.4.1 for more details)

CRC – This is an 16-bit field containing the CRC of all preceding bytes.
(See Section 2.3.3)

Checksum – This is an 8-bit field containing an XOR checksum of all
previous bytes in the packet. The default checksum seed of 0x00 is used
for Bind Request Packets. (See Section 2.3.2)

2.6.2 Bind Response Packet (Hub)

1 D Device ID 1 Device ID 2 Current Channel

PN Code MID 1 MID 2 MID 3

MID 4 CRC 1 CRC 2 Checksum

Packet Header

Single Byte Device ID Bit (D) – This is a 1-bit field specifying a 1-
byte or 2-byte Device ID. If this bit is set a 1-byte Device ID will be
used, otherwise the Device ID is 2 bytes.

Device ID – This is a 1-2 byte field containing the Device ID being
assigned to this device. This Device ID is used in all future
communications with the Hub. 0xFFFF is returned if no Device IDs are
available (See Section 2.4.4 for more details)

Current Channel –This is an 8-bit field specifying the current channel
used by the Hub for Data Mode. (See Section 2.4.2 for more details)

PN Code – This is an 8-bit field specifying the PN code index to be used.
(See Section 2.4.3 for more details)

WirelessUSB N:1 DVK Technical Reference Manual Page 15 of 86

Manufacturing ID (MID 1 - MID 4) – This is the 4-byte Manufacturing ID
retrieved from the WirelessUSB radio of the Hub. MID 1 is register 0x3C,
MID 2 is register 0x3D, MID 3 is register 0x3E and MID 4 is register 0x3F.

CRC – This is an 16-bit field containing the CRC of all preceding bytes.
(See Section 2.3.3)

Checksum – This is an 8-bit field containing the XOR checksum of all
previous bytes in the packet. The default checksum seed of 0x00 is used
for Bind Response Packets.

2.6.3 Ping Packet (Hub)

2 R B CRC 1 CRC 2 Checksum

Packet Header

Response (R) – This is a 1-bit field specifying a Ping or Ping
Response Packet (0 = Ping, 1 = Ping Response).

Broadcast (B) – This is a 1-bit field specifying a Broadcast Ping
packet or a Network Ping packet. (See Section 2.7.3 and Section
2.7.4 for more details)

CRC – This is an 16-bit field containing the CRC of all preceding bytes.

Checksum – This is an 8-bit field containing an XOR checksum of all
previous bytes in the packet. The default 0x00 checksum seed is used for
Broadcast Ping Packets; the Network Checksum Seed is used for Network
Ping Packets.

2.6.4 ACK Packet (Hub and Sensor)

3 V A D Device ID 1 Device ID 2 CRC 1

CRC 2 Checksum

Packet Header

Valid Device ID (V) – This is a 1-bit field specifying that the Device
ID is a valid Device ID for this network. (See Section 2.7.8 for more
details)

ACK Toggle (A) – This is a 1-bit field containing the value of the
last received Sequence Bit from a Data packet.

WirelessUSB N:1 DVK Technical Reference Manual Page 16 of 86

Single Byte Device ID Bit (D) – This is a 1-bit field specifying a 1-
byte or 2-byte Device ID. If this bit is set a 1-byte Device ID will be
used, otherwise the Device ID is 2 bytes.

Device ID – This is a 1-2 byte field containing the Device ID assigned to
this device.

CRC – This is an 16-bit field containing the CRC of all preceding bytes.

Checksum – This is an 8-bit field containing an XOR checksum of all
previous bytes in the packet. The Network Checksum Seed is used for
ACK Packets.

2.6.5 Data Packet (Hub and Sensor)

4-5 T S A D Device ID 1 Device ID 2 Payload 0

Payload 1 … Payload N CRC 1 … CRC 2

Checksum … …

Packet Header

Packet Type – The packet type used in Data Packets can be any
type in the 4-7 range. Different Data Packet Types may be used to
identify packet length, packet payload type, etc. The exact meaning
of each Data Packet Type is implementation specific.

Sequence Bit (T) – This is a 1-bit field that is toggled for each new
Data Packet. It is used to distinguish between new and
retransmitted packets. The Sequence Bit is set to 0 after binding
and after a device reset.

Synchronous Data (S) – This is a 1-bit field that is used when the
packet contains synchronous data. If this bit is set the Sequence Bit
is ignored; if the packet is valid the payload will be sent to the
application layer regardless of the Seqeunce Bit. If this bit is not
set, valid packets that contain the same Sequence Bit value as the
last correctly received packet are assumed to be retransmitted
packets and are discarded. Data Packets containing synchronous
data are still ACKed by the Hub, but if an ACK is not received by
the Sensor the Sensor is not required to retransmit the original
packet. (See Section 2.7.7 for more details)

ACK Bit (A) – This is a 1-bit field containing the value of the last
received Sequence Bit from a Data packet. (The ACK bit should be
initialized to 1 during the bind procedure.)

WirelessUSB N:1 DVK Technical Reference Manual Page 17 of 86

Single Byte Device ID Bit (D) – This is a 1-bit field specifying a 1-
byte or 2-byte Device ID. If this bit is set a 1-byte Device ID will be
used, otherwise the Device ID is 2 bytes.

Device ID – This is a 1-2 byte field containing the Device ID assigned to
this device.

Payload 0-N – This is byte-aligned application data.

CRC – This is an 16-bit field containing the CRC of all preceding bytes.

Checksum – This is an 8-bit field containing an XOR checksum of all
previous bytes in the packet. The Network Checksum Seed is used for
Data Packets.

2.7 Protocol Modes
The WirelessUSB N:1 Protocol operates in the following modes:

• Automatic Bind Mode
• Seeded Bind Mode
• Channel Selection Mode (Hubs only)
• Channel Search Mode (Sensors only)
• Data Mode

This section provides detailed descriptions of each mode, including
sequence diagrams.

2.7.1 Automatic Bind Mode

2.7.1.1 Sensor (Remote Device)

Automatic Bind Mode allows the Sensor to retrieve the network
parameters from the Hub (See Section 2.4 for more details). All Sensors
must be bound before they can exchange data with the Hub. Upon
entering Bind Mode the Sensor sets the channel and PN code to the Base
Channel and PN Code reserved for Bind Mode (Base Channel 0, PN
Code 0) enabling all WirelessUSB N:1 devices to effectively communicate
during this procedure. The Sensor then alternately transmits Bind
Requests (containing its device type and Manufacturing ID) and listens for
Bind Responses (containing the network parameters) from the Hub. The
Sensor transmits a defined* number of Bind Request messages on each
channel. If a Bind Response is not received the Sensor moves to the next
channel. If a Bind Response is received the Sensor stores the network
parameters for later use and moves to Channel Search Mode. If a
defined* period of time has elapsed while in Bind Mode without receiving a
Bind Response, the Sensor assumes the Hub is not available and goes to

WirelessUSB N:1 DVK Technical Reference Manual Page 18 of 86

sleep. A user-initiated event may cause the Sensor to enter Bind Mode
from any other mode.

 [*The timeout values and number of packet transmissions are
configurable.]

2.7.1.2 Hub

Upon entering Automatic Bind Mode the Hub sets the channel and PN
Code to the Base Channel and PN Code reserved for Bind Mode (Base
Channel 0, PN Code 0) enabling all WirelessUSB N:1 devices to
effectively communicate during this procedure. The Hub listens for a
defined* period of time for Bind Request on each channel before moving
to the next channel in the subset. This reduces the possibility of the Hub
not receiving the Bind Request from the Sensor in the event of channel
interference. If the Hub receives a Bind Request from a Sensor it stores
the Sensor’s Manufacturing ID and sends a Bind Response packet, which
contains the network parameters (See Section 2.4 for more details).

 [*The timeout values and number of packet transmissions are
configurable.]

WirelessUSB N:1 DVK Technical Reference Manual Page 19 of 86

REMOTE DEVICE 1 HUB REMOTE DEVICE 2

Bind Request

Bind Response

Bind Request

Bind Response

Hub placed in
Bind Mode

Remote Device 1
placed in bind mode

Hub placed in
Data Mode

Remote Device 1 is bound
to the hub. Remote Device 1
moves to Channel Search
Mode

Hub notifies app of
bound device

Hub notifies app of
bound device

Remote Device 2
placed in bind mode

Remote Device 2 is bound
to the hub. Remote Device 2
moves to Channel Search
Mode

ACK

ACK

Figure 5: Bind Mode Sequence Diagram

2.7.2 Seeded Bind Mode

2.7.2.1 Sensor (Remote Device)

Sensors may be more easily bound by pre-programming them with the
Network Channel and Network PN Code Index of the target Hub. Devices
are able to communicate with the Hub using the Network Channel and the
Network PN Code, but they have not received a Device ID or the
remaining network parameters from the Hub yet. Therefore, upon
initialization the Sensor sets the channel to the first channel in the Network
Channel Subset and the PN Code to the Network PN Code. The Sensor
then alternately transmits Bind Requests (containing its Manufacturing ID)
and listens for Bind Responses (containing the network parameters) from
the Hub. The Sensor transmits a defined number of Bind Request
messages on each channel. If a Bind Response is not received the
Sensor moves to the next channel in the Network Channel Subset. If a
Bind Response is received the Sensor stores the network parameters for
later use and moves to Channel Search Mode. If a defined period of time
has elapsed while in Seeded Bind Mode without receiving a Bind

WirelessUSB N:1 DVK Technical Reference Manual Page 20 of 86

Response, the Sensor assumes the Hub is not available and goes to
sleep.

2.7.2.2 Hub

If the Hub is configured for Seeded Binding the Hub will respond to Bind
Request packets received during Data Mode as if the Bind Request
packet had been received on the Bind Channel Subset and Bind PN Code
during Bind Mode. If the Hub is not configured for Seeded Binding all Bind
Request packets received during Data Mode will be ignored. One
significant advantage of Seeded Bind mode for the Hub, is that it does not
need to exit Data Mode (and therefore temporarily ignore current
connected network devices) in order to bind new devices.

Figure 6: Seeded Bind Mode
2.7.3 Channel Selection Mode (Hub Only)

Channel Selection Mode is used by the Hub to find an available channel;
channels are unavailable if they are being used by another network with
the same PN code, or if there is excessive noise on the channel. The Hub
first listens for activity on the selected channel by checking the Receive
Signal Strength Indicator (RSSI) of the radio in order to determine if
channel is being used by another wireless system. If the channel is
inactive the Hub alternately transmits Broadcast Ping packets and listens

REMOTE DEVICE 1 HUB REMOTE DEVICE 2

Bind Request

Bind Response

Data

ACK

Hub is in
Data Mode

Remote Device 1 is in
Seeded Bind Mode

Random backoff

Check for
channel
silence

Remote Device 1 is bound
to the hub. Remote Device 1
moves to Data Mode.

Hub notifies host
o f

bound device

Hub sends
data to

host

Remote Device 2 is
in Data Mode

WirelessUSB N:1 DVK Technical Reference Manual Page 21 of 86

for Broadcast Ping Response packets for a defined period of time. If a
Broadcast Ping Response is received, indicating that another Hub is using
this channel, the Hub will select the next channel in the Network Channel
Subset and repeat this procedure. The Hub will also select another
channel if the RSSI is high, which indicates that the channel is being used
by another wireless system. Hubs send Broadcast Ping Response packets
in response to all received Broadcast Ping packets; Sensors never
respond to Broadcast Ping packets. If a Ping Response is not received
and the RSSI is low, the Hub assumes the channel is available, exits
Channel Selection Mode, and enters Data Mode on the selected channel.

HUB 1 HUB 2

Broadcast Ping Response

Hub 2 is in Data Mode on a
channel in the same channel
subset as Hub 1. Both hubs
are using the same PN code.

Hub 1 has entered Channel
Selection Mode due to poor
quality on the original channel.

Set channel to
next channel in
channel subset

Check for
quiet channel

Set channel to
next channel in
channel subset

Broadcast Ping

Check for
quiet channel

The channel
is not quiet

Set channel to
next channel in
channel subset

Check for
quiet channel

Exit Channel
Selection Mode

The channel
is quiet

Figure 7: Channel Selection Mode

WirelessUSB N:1 DVK Technical Reference Manual Page 22 of 86

2.7.4 Channel Search Mode (Sensor Only)

Channel Search Mode is used by the Sensor to discover the current
channel used by the Hub. Upon entering Channel Search Mode the
Sensor selects a channel from the Network Channel Subset. The Sensor
alternately transmits Data Packets containing its Device ID and listens for
an ACK Packet from the Hub. If the Sensor does not receive an ACK, it
selects the next channel in the Network Channel Subset and repeats the
procedure. If an ACK is received the Sensor exits Channel Search Mode
and enters Data Mode. If an ACK is not received on any channel in the
Network Channel Subset the Sensor may choose to immediately reenter
Channel Search Mode or wait (possibly sleeping) and enter Channel
Search Mode later.

If the Sensor does not have data to send or the data is large, the Sensor
may send Network Ping packets instead of Data Packets in Channel
Search Mode. If Network Ping packets are used, the Hub will respond with
Network Ping Response packets, not ACK packets. (This feature is not
implemented in version 1.0 of the N:1 Development Kit.)

WirelessUSB N:1 DVK Technical Reference Manual Page 23 of 86

REMOTE DEVICE 1 HUB REMOTE DEVICE 2

Data Packet

ACK

Data

ACK

The Hub has changed
channels due to excessive
interference on the original
channel. The hub is now in
Data Mode on Subset
Channel #3.

Remote Device 1 has
timed out while attempting
to transmit a packet in
Data Mode on the
original channel.

Remote Device 2 has
already reconnected to
the Hub on Subset
Channel #3 and is in
Data Mode.

Set Channel
Search Flag

Set Channel to
Subset Channel #2

Data Packet

Set Channel to
Subset Channel #3

Remote Device 1 does not
receive an ACK to the Data
Packet so it tries the next
channel in the subset.

Clear Channel
Search Flag

Figure 8: Channel Search Mode

2.7.5 Data Mode

2.7.5.1 Sensor

Data Mode allows application data to be transmitted between the Sensor
and the Hub. When the Sensor application has data to send to the Hub
the Sensor creates a Data packet and listens for a response (either an
ACK or Data packet). The Sensor may also send an empty Data packet to
the Hub in order to poll the Hub for data. If no response is received, the
Sensor retransmits the packet. If the Sensor does not receive a response
after a defined number of transmissions of the Data packet, then it
assumes the channel has become unavailable due to excessive
interference and moves to Channel Search Mode. If the received
response is a Data packet, then the Sensor may respond immediately with
an ACK or wait until the next transmitted Data packet to acknowledge the
received Data packet from the Hub.

WirelessUSB N:1 DVK Technical Reference Manual Page 24 of 86

2.7.5.2 Hub

In Data Mode the Hub listens for Data packets from the Sensors. When a
valid Data packet is received the Hub responds with an ACK packet or a
Data packet, if there is application data to be sent back to the Sensor.
During Data Mode the Hub periodically monitors the RSSI as well as the
frequency of corrupted packets in order to determine the quality of the
current channel. If the channel quality becomes too low the Hub will enter
Channel Selection Mode to find a better channel.

2.7.6 Data Toggle

In order to guarantee data integrity a data toggle bit is used in Data Mode.
Each Sensor and Hub maintains the state of their Sequence Bit, which is
initialized to 0 during Bind Mode. The Sequence Bit is transmitted in the
Data Packet header; the ACK packet contains a corresponding ACK bit
that is the same value as the received Sequence Bit as shown in Figure 9.
The Sequence Bit is toggled after an ACK is received in response to a
transmitted Data Packet.

REMOTE DEVICE HUB HOST

Data (T=0)

ACK (A=0)

Send Data to Host

Figure 9: Data Mode: Basic Data Transfer

If the Sensor does not receive the ACK the Sensor retransmits the packet
as shown in Figure 10 and Figure 11.

WirelessUSB N:1 DVK Technical Reference Manual Page 25 of 86

REMOTE DEVICE HUB HOST

ACK (A=0)

Send Data to Host

Data (T=0)

ACK (A=0)

Data (T=0)

Figure 10: Data Mode: Dropped ACK

REMOTE DEVICE HUB HOST

Data (T=0)

ACK (A=0)

Send Data to Host

Data (T=0)

Figure 11: Data Mode: Retransmitted Packet

If the Hub has data to send to the Sensor, it responds to a received Data
packet with a Data packet instead of an ACK packet as shown in Figure
12.

WirelessUSB N:1 DVK Technical Reference Manual Page 26 of 86

Figure 12: Data Mode: Back Channel Data

REMOTE DEVICE HUB HOST

Send Data to Host

Data (T=0, A=1)

Data (T=1, A=1)

Data (T=1, A=0)

Data (T=0, A=0)

ACK (A=0)

ACK (A=1)

Send Data to Host

Confirm Command Transmission

Figure 13: Data Mode: Back Channel Data with Lost ACK

2.7.7 Synchronous Data

If a Sensor has synchronous data to transmit to the Hub, such as
environmental readings (temperature, humidity, etc) guaranteed packet
delivery is not important, because each packet contains the current state
of the Sensor. If the Synchronous Data flag is set in the header of a Data
Packet the Hub will not discard the packet based on the Sequence Bit.
Therefore all received Data Packets with the Synchronous Data bit set will
be processed by the Hub, including duplicate packets.

Send Command to HUB

Store Command

Data (T=0, A=1)

Data (T=0, A=0)

ACK (A=0)

Send Data to Host

REMOTE DEVICE HUB HOST

Confirm Command Transmission
Data (T=1, A=0)

ACK (T=1)
Send Data to Host

WirelessUSB N:1 DVK Technical Reference Manual Page 27 of 86

REMOTE DEVICE HUB HOST

Data (T=0,S=1)

ACK (A=0)

Send Data to Host

Data (T=0, S=1)

ACK (A=0)
Send Data to Host

Figure 14: Data Mode with Synchronous Data

2.7.8 Invalid Device ID

If a Sensor receives an ACK packet with the Invalid Device ID Bit set the
Sensor removes itself from the network and returns to an unbound state. If
Seeded Bind Mode is available the Sensor may enter Seeded Bind Mode
using the known Network Channel Subset and Network PN Code.

2.7.9 Sequence Bit Reset

If a Sensor receives a DATA packet with a payload length of zero the
Sensor resets its Sequence Bit and ACK Toggle to zero. This allows the
Hub to reset the sensor.

WirelessUSB N:1 DVK Technical Reference Manual Page 28 of 86

3. HARDWARE OVERVIEW

3.1 I/O pin assignments
The node board was designed to support several applications requiring
some of the I/O pins to be used for multiple functions. In general Port0 is
reserved for the analog related functions. The external crystal pins P1[0]
and P1[1] (read as: Port 1 Pins 0 and 1) are shared with the ISSP
programming header and LEDs. If an external crystal is needed (for more
accurate timing) it may interfere with the ISSP function. Since the PSoC
internal I2C hardware is used, the location of the I2C pins is somewhat
limited. Please refer to the PSoC Datasheet for more information about
pinout options and limitations.

When interfacing to the 3.3V radio with a 5V powered MCU, it is important
to use series interface resistors on all signals being driven from the MCU
to the radio.

3.2 Analog interface
The N:1 Node supports up to six analog inputs. Four of the inputs are
dedicated to measuring the following:

• P0[7] Battery voltage
• P0[4] Thermistor
• P0[6] Potentiometer
• P0[5] Dip switches

P0[0], P0[1] can be used as general purpose analog inputs. In addition to
the six analog inputs there are also two analog outputs which are used to
output the internal A/D references, +Vref and –Vref. The Center point
reference, or AGnd, is generated by the internal BandGap reference of 1.3
V. The references are 1.3 Volts on either side of AGnd or +2.6 and
Ground. This arrangement was chosen in order to provide a stable
reference for battery powered systems and allows for ratiometric
measurements. All A/D measurements are single ended with offset
correction.

Offset correction is performed prior to each analog reading. Internally
AGnd is sampled by the A/D. The difference between the measured
AGnd and the Ideal AGnd is used to adjust all analog reading to correct
for offset and gain errors.

All of the analog hardware is referenced to –Vref. +Vref supplies power to
the Thermistor and Potetiometer. While the PSoC is sleeping, -Vref is not
driven in order to reduce the current drain on the battery.

WirelessUSB N:1 DVK Technical Reference Manual Page 29 of 86

More precise measurements can be taken by employing the following
techniques:

• Measure the ratio of resistance (ratioMetric) in the case of
thermistors.

• More elaborate gain and offset correction by feeding analog signals
into a programmable gain amplifier with a gain of .9. This will allow
both reference signals to be measured without causing the A/D to
clip.

• Other references may provide better accuracy (Vcc/2) The band
gap has an error of up to 2%.

3.2.1 Potentiometer

The potentiometer is provided as a demonstration of a generic analog
input device. The potentiometer can be easily removed and replaced by
almost any similar type of analog sensing device suitable for the desired
application.

3.2.2 DIP Switches

The DIP switches were connected to a single analog input using a
resistive ladder technique in order to reduce the number of PSoC pins
utilized by the DIP switches. Depending on the application and if
additional MCU pins are available, it may be more desireable to utilize
conventional digital inputs for each DIP switch.

3.3 Sensor Battery Life
For most N:1 applications, the primary factor affecting battery life is the
current drain while the PSoC is sleeping. The entire Sensor board
consumes less than 10µA of current while sleeping, which provides a
battery life of approximately 5 years. It is important to use a voltage
regulator that has a very low quiesent current and ensure that the MCU is
in a low power state with all relevant peripheral functions disabled. The
regulator used in the N:1 DVK also has a low dropout voltage which allows
more energy to be extraced from the batteries.

3.4 Prototype Expansion Header
Header J2/3 is designed for several purposes. J2 alone will allow
connection to the prototype board via the 24 conductor ribbon cable. You
can combine J2 and J3 as a set of eight, three pin connectors providing
ground, Vcc, and signal. The PSoC can support a mixture of analog and
digital input/outputs. As an example, if you wanted to connect a device
that required power and outputs an analog voltage, you could connect the
device across J2,Pin1/Pin2 and J3 Pin1.

WirelessUSB N:1 DVK Technical Reference Manual Page 30 of 86

3.5 Serial RAM (FRAM)
The Hub utilizes external non-volatile storage via the FRAM (Ramtron
FM24CL64 64Kb (8KB) Serial 3v FRAM Memory). The FRAM was
chosen for its quick write times and an almost unlimited number write/read
cycles. EEPROMs have slower write times and some are specified for
only 100k write cycles. The size was chosen based on several factors
including cost and number of sensors supported. The current FRAM
supports 512 devices (based on the default firmware configuration
options). Each device has 16 bytes of storage allocated in a memory
table. Two bytes contain status bits, four bytes contain the MID of the
Sensor, 9 bytes are allocated for back-channel data, and one byte
contains the back channel length. Because the Hub can only
communicate with a Sensor when the Sensor initiates communication,
there needs to be a way for the Hub to buffer and manage back channel
data intended for each Sensor. The serial port latency is too great to let
the Host retain this information to be retrieved on-demand. The Device ID
of the sensor is used to index efficiently into the memory table.

Depending on the target application, the Hub may not require any external
memory (for example, if there is no back-channel data required). The Hub
may also utilize external EEPROM or other types of memory depending
on the needs of the application.

3.6 Hub Power Considerations
The Hub was designed to run at 24MHz on the PSoC. This requires the
PSoC be powered at 5 volts. This was done to provide the Hub as many
MIPS as possible to service the 115.2k baud serial communication to the
Host and SPI communication to the radio. It also demontrates how to use
a 5 volt MCU with the 3.3 volt radio through the use of series interface
resistors on signals being driven from the MCU to the radio.

If your application has looser requirements, the voltage can be reduced to
3.3 volts on the Hub and the PSoC run at 12MHz. Care should be taken
to ensure that the worst case timing for serial communication or radio SPI
communication will not interfere with any ISR's operation. This means
keeping in mind that only one ISR is run at the time. If the radio ISR is
running and a serial byte from the Host becomes pending in the PSoC, the
serial receive ISR will be stalled until the radio ISR completes. If
necessary, reduce the baud rate of serial communication through the
PSoC Designer Device Editor in order to meet timing.

WirelessUSB N:1 DVK Technical Reference Manual Page 31 of 86

4. PROTOCOL/NETWORK MANAGEMENT

4.1 Network Parameters
In order for the Hub and Sensors to communicate, they must have the
same set of network parameters. The network parameters consist of a
Channel, PN Code Index, Checksum Seed, and CRC Seed. The network
parameters are derived from the Hub's radio Manufacturing ID (MID) and
can be overridden via the Host-to-Hub interface (except for Checksum
Seed and CRC Seed).

4.1.1 Channel Subsets

The ISM band consists of the frequency range from 2.400-2.483 GHz and
is divided into 1MHz channels. The DVK firmware uses the range 2.402-
2.480 GHz which maps to channels 0-78 for a total of 79 channels. When
the DVK reports that it’s transmitting on channel 4, this equates to the
frequency of 2.406 GHz, or channel + 2.

The 79 channels are organized into groups of possible Channel
Configurations that define the spacing between channels and the number
of channels in the channel sequence. A single Channel Configuration
should be chosen that best fits the needs of the target application based
on the expected number of devices in a single network and the number of
co-located networks. For example, if a large number of co-located
networks are anticipated, then the application should use a channel
configuration that has a higher number of channel subsets. The following
chart provides a summary of the channel usage.

Channel
Configuration

Subsets # Channels per
subset

Total Channels
Used

1 6 13 78
2 7 11 77
3 8 10 72
4 9 8 72
5 10 8 70
6 11 7 77
7 12 6 72
8 13 6 78

Table 2: Channel Summary
For example, Index 2 for Channel Configuration #4 consists of the
channels as follows:

2, 11, 20, 29, 38, 47, 56, 65

See the Appendix for a detailed list of channel usage.

WirelessUSB N:1 DVK Technical Reference Manual Page 32 of 86

An N:1 network will use all of the channels in the selected subset, if
needed, in order to avoid noisy channels. Channel Subset 0 in all
configurations is reserved for binding.

The Channel Configuration is defined in the firmware as
CHANNEL_CONFIG in the config.h file. The N:1 DVK Kit is configured to
use Channel Configuration #4. A Channel in the Channel Subset can be
specified in the software application by selecting "Configure Network…”
under the “Hub Command" menu.

If a channel subset other than the ones defined in this document is
needed, it is important to try to avoid using an interval/channel spacing of
4. The radio receiver can pick up inverted signals at much lower power on
the “image” frequency, which is 4 channels away from the channel you are
transmitting on. This should not cause any problems since the data will be
inverted and therefore the CRC will be corrupt.

4.1.2 PN Code ID

PN Code ID is short for Pseudo-random Noise Code Identification. The
firmware contains one set of codes for 64kbps communication and one set
for 16 kpbs communication. Cypress has created a set of PN Codes and
associated a PN Code ID with them. The N:1 Kit uses a subset of these
PN Codes as documented in the Appendix. The firmware uses simple
array indexes to communicate which PN Code it is using; therefore, the
Hub refers to a PN Code as a PN Code Index. The N:1 Software
Application contains the table and translates between the array index from
the Hub and translates it to a PN Code ID.

4.1.3 Device ID

A fixed 2-byte Device ID has been implemented for the N:1 DVK Kit
because of its simplicity. Two other implementation methods include:
single byte and dynamic. If your application does not anticipate more than
254 devices you could choose to modify the code to only support a single
byte Device ID. A more code intensive option is the dynamic Device ID
option. Those devices with a Device ID < 256 would save a transmission
byte. In both cases, a bit in the header indicates whether the packet
contains a 1-byte or 2-byte Device ID.

4.1.4 Checksum Seed and CRC Seed

Packets sent in the N:1 protocol are protected by a Checksum and CRC.
In order to increase selectivity, they are seeded with values derived from
the Hub’s MID. This selectivity prevents two co-located Networks that
happen to use the same PN code and same channel from experiencing
cross-talk.

WirelessUSB N:1 DVK Technical Reference Manual Page 33 of 86

4.2 Binding Methods
Before a network has been established, the Sensors are considered to be
unbound. The process of creating a network connection is called binding.
During bind, a Sensor requests to join a network. In response, the Hub
assigns the Sensor a Device ID and sends the Device ID along with the
critical network parameters to the Sensor. The Hub stores this information
in non-volatile memory and notifies the Host that a Sensor has been
bound. The Sensor also stores the Device ID and network parameters in
non-volatile memory. The Sensor can now communicate with Hub.

The N:1 system provides two binding methods: Automatic Bind and
Seeded Bind. The method you select is dependant on the user
experience and level of security required by your application.

After the network has been established, the Host and Sensor firmware
read the bind parameters at startup and determines that it has been
bound.

4.2.1 Automatic Bind

For Automatic Bind, the Sensor has no knowledge of the network it is to
join and sends a Bind Request to the Hub on the universal Bind Channel
Subset (Channel Subset 0). In order for Automatic Bind to work, the Hub
must be in Bind Mode. The user can press the S1 button on the Hub to
activate Bind Mode, or the Host can send a command to the Hub to enter
Bind Mode. The N:1 Software Application provides a Bind toolbar button
to initiate this command. In Bind Mode the Hub time-shares the
bandwidth on the Bind Channel Subset and Network Channel Subset.
This reduces the available connected network bandwidth to 50%;
therefore, Bind Mode should be turned off when not needed.

The Sensor will only attempt an Automatic Bind if there are no bind
parameters present in FLASH. Therefore, a Sensor will attempt an
Automatic Bind after a Factory Reset.

4.2.2 Seeded Bind

For Seeded Bind, the Sensor knows only two of the basic network
parameters: Channel Subset and PN Code Index. The Sensor will
attempt to bind to the Hub via a Bind Request on the current Channel and
PN Code Index to obtain the remaining network parameters: Device ID
and Host MID (which is used to derive the CRC and XOR seed values).
The Sensor obtains the Seeded Bind information from FLASH or from the
DIP switches during startup. The N:1 Quick Start demonstrates use of
Seeded Bind from FLASH mode for simple operation.

WirelessUSB N:1 DVK Technical Reference Manual Page 34 of 86

For demonstration purposes, the Sensor/Hub can be forced to perform a
Seeded Bind on a subset of the pre-configured networks using the DIP
switch settings as shown in Table 3. Your application is not required to
use a DIP switch for Seeded Bind.

To perform a Seeded Bind, set the first three DIP switches to the desired
setting based on the table below. S1 needs to be depressed when the
PSoC comes out of reset in order for the firmware to perform a Seeded
Bind based on the DIP switch setting. Hold down the Reset button and
the S1 button together. Release the Reset button first, and then release
the S1 button.

DIP [1..3] Channel Index PN Code Index
000 1 1
001 2 2
010 3 3
011 4 4
100 5 5
101 1 7
110 2 6
111 5 5

Table 3: Channel and PN Code Index Selection

4.2.3 Automatic vs. Seeded Bind Selection

Which binding method your application uses depends on how you feel
about the following issues. The N:1 Kit uses Seeded Bind because of its
simplicity and security is of lesser concern.

Automatic Bind is more secure than Seeded Bind because Sensors can
join the network only when a user has access to the Hub. Because Hub
intervention is required it is not as easy to establish a network as Seeded
Bind.

Hub support for Seeded Bind is turned on by default in the protocol. This
makes Seeded Bind easy to setup but less secure over time.

Manufacturing considerations for Seeded Bind are: Will the same FLASH
based Seeded Bind parameters work for all your kits? Will manufacturing
need to cycle through a set of Seeded Bind parameters? Automatic Bind
doesn't have these issues because it relies on the FLASH being the
same/invalid for all the Sensors.

Since Sensors in Seeded Bind use the Network Channel Subset to
communicate, you don't have to dedicate 50% of your bandwidth to the
task of servicing Bind.

WirelessUSB N:1 DVK Technical Reference Manual Page 35 of 86

The Host Application can disable Seeded Bind. Your application can get
the benefits of Seeded Bind and the lock down of Automatic Bind by
turning off Seeded Bind when the user has completed setup of the
network.

5. RADIO OVERVIEW

5.1 Radio timing

Figure 15: Normal Host to Hub transmission

Figure 16: Packet Retry timing
5.2 Maximizing Range

Several factors can influence the range of the network. The N:1 network
will operate reliably up to 50M in most environments. In some
environments, the useful range can be over 100M.

Environmental conditions and antena orientation are the two primary
factors that can degrade the system range.

WirelessUSB N:1 DVK Technical Reference Manual Page 36 of 86

The Dynamic Network Quality test is useful for understanding the link
quality of a sensor at a given range. Refer to the N:1 DVK Users Guide,
for information about this sensor feature.

For applications that require greater range, an external power amplifier
can be used.

6. FIRMWARE ARCHITECTURE

6.1 Theory of Operation
This diagram gives you a rough idea of how the files are logically
structured. The files outside the Sensor and Hub are shared between the
two projects. Exact copies reside in each project directory for easy
intergration into PSoC Designer.

The N:1 DVK Kit demonstrates the N:1 Protocol’s connection
establishement and distribution of a packet, with user payload, between a
Sensor and Hub. Using the N:1 Software Application you can also
demonstrate back channel data from the Hub to a Sensor.

The Checksum and CRC have been placed at the end to allow the option
of computing them during transmit time. The code in the Kit was written to
compute them ahead of time.

To keep things simple and elegant, the N:1 v1.0 protocol uses 2-byte
Device IDs exclusively. Given the low update rate of the devices an
additional byte is insignificant.

The radio pins are on PSoC’s Port 2 instead of Port 1 because Port 2’s
pins are sufficient to drive the radio. It is more important to leave Port 1
available because of its flexibility.

spi.c

radio.c

protocol.c

Hub Sensor

hub.c

host.c

main.c

sensor.c

Util: Debug, NvRam,
Hardware, Timer

WirelessUSB N:1 DVK Technical Reference Manual Page 37 of 86

All of the time-critical radio and serial communication tasks are interrupt
driven.

The following chart shows how much time you can starve the Radio’s TX
empty IRQ before disrupting the packet transfer. The number is derived
by subtracting one bit-time unit from a byte. In Double Data Rate (DDR)
each bit transmitted represents two bits. 32µs of preamble will be
transmitted if the transmit buffer is empty at the moment it needs to start
transmit.

64 Chips Per Bit: 7 bits x 64 µs = 448µs
32 Chips Per Bit - Double Data Rate: 3 x 32 DDR µs = 96µs

This means that servicing the radio cannot take longer than 96µs plus the
time to initiate the TX ISR to the point where it writes the next byte in the
buffer in DDR mode.

The receive buffer is either protocol or radio owned. Ownership is
determined by the state of the Radio ISR. If the Radio ISR is enabled then
the RX buffer is radio owned. When it is off, it is protocol owned. This also
means that when transmitting, the receiver buffer is not available to the
protocol.

On the Sensor the Green LED is on while the sensor is awake.

6.2 Interference Avoidance
Please refer to the Application Note "WirelessUSB LS Theory of
Operation" that was included in the Kit CD-ROM for background.

There are many sources of interference including WiFi, Bluetooth, and
other N:1 co-located networks. The N:1 protocol uses coding gain and
interference avoidance to coexistence with these interference sources.

Three interference avoidance algorithms have been implemented in the
N:1 DVK Kit: Ping, RSSI, and Bad Packet Count.

Ping: Before the Hub uses a channel it first broadcasts ping packets on
the channel. If another Hub is already on the channel it will respond to the
ping packet, the Hub that originated the ping will move to the next
channel.

RSSI: During periods of N:1 network inactivity a reading of the ambiant
noise is read. If the rolling average exceeds a threshold then the Hub will
change channels.

WirelessUSB N:1 DVK Technical Reference Manual Page 38 of 86

Bad Packet Count: A count is kept for every bad packet. If a threshold is
reached the Hub will change channels. When a good packet is received
Bad Packet Count is decremented.

6.3 Interface Between Hub and Sensor
This explains the packet structure for the over the air interface between
the Hub and Sensor. Note: Unshaded bytes refer to the user payload.

Forward channel, Sensor to Hub,

Fixed length packet [10 Bytes], Packet type 4

Byte 1 2 3 4 5 6
Device ID Header

MSB LSB
Battery Potenio-

meter
Temp

Byte 7 8 9 10
CRC Dip Switch

MSB LSB
XOR

Checksum

Vairable length packet [11-17 Bytes], Packet type 5

Byte 1 2 3 4 5 6
Device ID Header

MSB LSB
Battery Potenio-

meter
Temp

Byte 7 8 .. (n <= 14) Length - 2 Length - 1 Length
CRC Dip Switch Data

MSB LSB
XOR

Checksum

Bat = unsigned 8 bit value of scaled battery voltage
Pot = unsigned 8 bit value of Pot voltage
Temp = unsigned 8 bit value of thermistor voltage divider.
Switches [Red LED state, Yellow LED state, Reed Switch, Switch S1,Dip[3:0]]
Data = Variable length user data 7 bytes max

Back channel, Hub to Sensor,

Fixed length packet [10 Bytes], Packet type 4

Byte 1 2 3 4 5 6
Device ID Interval Header

MSB LSB MSB LSB
LED

Byte 7 8 9 10
Reserved CRC XOR

WirelessUSB N:1 DVK Technical Reference Manual Page 39 of 86

 MSB LSB Checksum

Vairable length packet [11-15 Bytes], Packet type 5

Byte 1 2 3 4 5 6
Device ID Interval Header

MSB LSB MSB LSB
LED

Byte 7 8 .. (n <= 12) Length - 2 Length - 1 Length
CRC Dip Switch Data

MSB LSB
XOR

Checksum

IntMsb = 8 Upper bits of 16 bit interval.
IntLsb = 8 Lower bits of 16 bit interval.
Reserved/LED = bits 7-3, Reserved, bits 2-0, LED data for LED3/2/1,respectively, 1=

On
Reserved
Data = Variable length user data 5 bytes max

Variable length packets are used by the serial user data applications.
Refer to the users guide.

Note: Interval is defined in terms of .125 seconds and defines the time
between reports from the sensor. 16 bits support a rage of .125 seconds
to 136 minutes (2.27 Hours).

6.4 Interface Between Host and Hub
The protocol between the Host and Hub for the N:1 Product is defined as
firmware that runs on an MCU and optionally communicates to a Host via
UART or RS-232. The Host is any device with a UART or RS-232
interface that might provide further functionality based on this protocol.
Using this interface is not a requirement – the Hub will function without
communications with a Host.

All the commands from the Host are synchronous. The Host issues a
command and then waits for a response from the Hub. Unless otherwise
noted, the Host should complete a command before another command is
started. Responses from the Hub do not require a response from the
Host.

The Host-to-Hub serial communication will use the Consistent Overhed
Byte Stuffing (COBS) algorithms for packet framing. The maximum
command length will be determined at compile time. The COBS protocol
does not transfer a length byte. The COBS framing byte of 0x00
determines length.

Set all undocumented bits or reserved bits to zero unless otherwise noted.

WirelessUSB N:1 DVK Technical Reference Manual Page 40 of 86

Host-To-Hub Command Summary

Command ID # Bytes
Get Hub Information 0x01 1
Bind 0x02 2
Delete Node 0x04 3
Send Message 0x05 5 <= n <= 14
Enumerate Devices 0x07 1
Network Configuration 0x08 3 or 7
Network Status 0x09 1
Reset 0x0A 1
Change Channel 0x0B 2

Hub-To-Host Response Summary

Command ID # Bytes
Hub Info Response 0x81 11
Bind Response 0x82 2
Bind Information Response 0x83 7
Delete Node Response 0x84 4
Send Message Response 0x85 4
Incoming Message 0x86 4 <= n <= 12
Enumerate Devices Response 0x87 4
Network Configure Response 0x88 2
Network Status Response 0x89 5
Reset 0x8A 2
Change Channel Response 0x8B 3
Unknown Command Response 0xFF 2

6.4.1 Host Commands to the Hub

6.4.1.1 Get Hub Information

Byte 1
Command

0x01
The Hub returns information about itself when the Host sends this
command.

WirelessUSB N:1 DVK Technical Reference Manual Page 41 of 86

6.4.1.2 Bind

Byte 1 2
Command

0x02 Options

The Host turns on Bind to allow devices to join the network.

Byte: Options
Bit 0: Reserved
Bit 1: 0 = Bind Off

 1 = Bind On
Bit 2: 0 = Seeded Bind Mode

 1 = Disable Seeded Bind Mode
Bits 3-7: Reserved

When enabled Seeded Bind allows devices that have been pre-
programmed with the PN Code Index and Channel to join the network
from the Hub’s connect state. The Hub does not need to be in bind mode.

6.4.1.3 Delete Node

Byte 1 2 3
Device ID Command

0x04 MSB LSB
The Delete Node command instructs the Hub to disconnect the specified
Device ID (and ignore any subsequent packets). If 0xFFFF is passed in
for Device ID then the Hub will delete all devices from the device table.

6.4.1.4 Send Message

Byte 1 2 3 4 5… <= 14
Device ID Options Payload Command

0x05 MSB LSB
The Hub uses this command to send data to a device.

Byte 4: Options

Bits 0-4: Number of transmit attempts before giving up. Value of 0 indicates
infinite retries. (Not implemented in v1.0)

Bit 6: Reserved: Used by the Hub to know when there is back channel data.
Bit 7: 0 = Notify when Message Sent

 1 = Inhibit Notify when Message Sent

Bytes 5 to <= 14: Payload to send to the Device ID. The 9-byte limitation
is based on the amount of space available in a 16-byte page of the FRAM
minus overhead.

This command will result in two responses from the Hub. The first
response is immediate to acknowledge receipt of the command, and the
second response will be sent after the payload is sent to the sensor.

WirelessUSB N:1 DVK Technical Reference Manual Page 42 of 86

6.4.1.5 Enumerate Devices

Byte 1
Command

0x07
When this command is issued the Hub will parse through its device table
and return individual Bind Information Responses for each device in the
table. When the Hub is finished it will return an Enumerate Device
Response. This command is unique in the amount of traffic it will
generate from the Hub is dependant on how many devices are connected.
While the Hub is processing this command all wireless traffic will be
NAKed.

6.4.1.6 Network Configuration

Byte 1 2 3 4 5 6 7
Hub MID (Optional) Command

0x08
PN Code

Index
Channel

MSB LSB
The Host issues this command when it wants to specify the network
parameters. This command will result in the Hub erasing all devices from
memory. If the Hub MID is not supplied then the existing value is used.

PN Code Index and Channel cannot use the Bind PN Code Index (0x00)
or the starting Bind Channel (0x00). If these values are passed in the new
value will be 0x01. The upper bounds of PN Code Index and Channel are
limited to the Hubs current configuration. Values passed in greater than
the max value will be set to the max value. Remember: PN Code Index
and PN Code ID are not one and the same – see source code in radio.c
for translation.

6.4.1.7 Network Status

Byte 1
Command

0x09
The Hub will return its status when this command is issued.

6.4.1.8 Reset

Byte 1
Command

0x0A
When this command is issued the Hub will perform a firmware reset. Non-
volatile memory will not be cleared.

WirelessUSB N:1 DVK Technical Reference Manual Page 43 of 86

6.4.1.9 Change Channel

Byte 1 2
Command

0x0B
Channel

Passing in 0xFF with this command will cause the Hub to move to the next
available channel based on the channel sequence. If another Hub is on
the next channel the Hub will move again to the next channel.

Advanced Debug: This command is capable of setting the radio to a
specific channel. To do this correctly requires the Host have specific
knowledge about the channel sequence algorithm. Therefore, it is not
recommend this command be used in this way. The Hub does not verify
the new channel is in the channel sequence and will set the radio to the
specified channel.

6.4.1.10 Miscellaneous

The Host does not have the ability to add a sensor (via its MID) to the
Hub. This would preclude customers from entering a Sensor’s MID on the
Host GUI. The reason is the Hub would need to scan through all its
issued Device IDs to look for a MID when a sensor is bound – the amount
of time required would become increasingly prohibitive in a large network.
Implications: Because the Hub does not check for a preexisting MID then
a sensor that is reset and rebound will be taking up two Device IDs on the
Hub. Software could be written detect this condition and delete the non-
used duplicate Device ID.

6.4.2 Hub Responses to Host Commands

6.4.2.1 Hub Info Response

Byte 1 2 3 4
Response

0x81
Firmware

Major Ver #
Firmware

Minor Ver #
Firmware

Build #

Byte 5 6 7 8 9 10 11

Hub MID Max Device IDs
MSB LSB MSB LSB

Radio
Version #

The firmware version is a binary-encoded decimal number.

6.4.2.2 Bind Response

Byte 1 2
Response

0x82
Status

Byte Status: Success

WirelessUSB N:1 DVK Technical Reference Manual Page 44 of 86

6.4.2.3 Bind Information Response

Byte 1 2 3 4 5 6 7
Device ID Sensor MID Response

0x83 MSB LSB MSB LSB
The Hub will return one Bind Information Response per node. If Device ID
is 0xFFFF the Hub has run out of assignable Device IDs and the Sensor
was not bound.

6.4.2.4 Delete Node Response

Byte 1 2 3 4
Device ID Response

0x84 MSB LSB
Status

Byte Device ID: Device ID of deleted node

Byte Status: Success, Unknown Device ID

6.4.2.5 Send Message Response

Byte 1 2 3 4
Device ID Response

0x85 MSB LSB
Status

The Hub will send two Send Message Responses. One when the wireless
packet has been queued and once when the wireless packet has been
sent.

Byte Status: Success (Packet Transmitted), Unknown Device ID, Send
Buffer Too Large, Message Queued, Prior Send Payload Lost (Message
Queued is implied)

6.4.2.6 Incoming Message

Byte 1 2 3 4 … <= 12
Device ID Response

0x86 MSB LSB
Payload

This is the received payload from Device ID specified. It is sent
asynchronously (not in response to a command from the Host).

6.4.2.7 Enumerate Devices Response

Byte 1 2 3 4
of Devices Enumerated Response

0x87
Status

MSB LSB
After all the devices have been passed up as Bind Information Responses
the Hub will send this response to indicate it is done enumerating all of the
connected devices.

Byte Status: Success

WirelessUSB N:1 DVK Technical Reference Manual Page 45 of 86

6.4.2.8 Network Configure Response

Byte 1 2
Response

0x88
Status

Byte Status: Success, PN Code Index Invalid, Channel Invalid

Because the status cannot be combined, it is possible to have both a PN
Code Index Invalid and Channel Invalid but only receive a Channel Invalid.
When an error occurs, issue the Network Status Command to find out the
actual network configuration.

6.4.2.9 Network Status Response

Byte 1 2 3 4 5
Response

0x89
Current
Channel

Current
PN Code

Index

Data Rate Bind Mode

Byte Current Channel: The current channel the Hub is communicating on.

Byte Current PN Code Index: The current PN Code Index the Hub is
communicating on. Refer to radio.c to convert from a PN Code Index to a
PN Code ID that can be used by the user, Listener, etc.

Byte Data Rate: The wireless data rate used by the Hub (16 = 16kbps,
64 = 62.5kbps)

Byte Bind Status:
Bit 0: Reserved
Bit 1: 0 = Bind Off

 1 = Bind On
Bit 2-7: Reserved

This response will be sent asynchronously if the channel changes due to
interference. This Response is expected to grow as more diagnostic
information is determined would be useful at the Host level.

6.4.2.10 Reset

Byte 1 2
Response

0x8A
Status

Byte Status: Success

WirelessUSB N:1 DVK Technical Reference Manual Page 46 of 86

6.4.2.11 Change Channel Response

Byte 1 2 3
Response

0x8B
Status New

Channel
Byte Status: Success, Invalid Channel

Byte New Channel: The channel the radio was set to.

6.4.2.12 Unknown Command Response

Byte 1 2
Response

0xFF
Command

The command code was not recognized as a valid code

Byte Command: The command the Hub couldn’t interpret.

6.4.2.13 STATUS

Status Codes

Code Status Description
0x00 Success The command was executed successfully
0x01 Undefined
0x02 Unknown Device ID The specified Device ID was not valid for

any open connections.
0x03 Send Buffer Too

Large
The specified send data buffer was too
large

0x04 Prior Send Payload
Lost

The specified send data buffer has been
received before the prior buffer was sent.
The new data has been overwritten the
old.

0x05 PN Code Index
Invalid

The specified PN Code Index was
outside the acceptable range

0x06 Channel Invalid The specified Channel was outside the
acceptable range

0x07 Message Queued The back channel data has been queued
for transmit

0x08 Invalid Channel The channel parameter passed in was
out of range

0x09-
0xFF

Undefined

WirelessUSB N:1 DVK Technical Reference Manual Page 47 of 86

6.5 Serial Output on the Host

By default serial ouput is disable on the Host. When DEBUG is defined, a
secondary Serial TX block on the PSoC is utilized to send debug output to
a communications program. Connect a wire to the Hub Node Board's J2
pin 3 to the Serial Board's J1 pin 8. The same communication port
parameters that apply to J1/UART apply here:

o 115.2kbaud
o No parity
o 8 data bits
o 1 stop bit
o No flow control

Serial output on the Hub is concise at 1 character per event. This is due
to the latency introduced by writing a sequence of bytes out the serial port.
For the Hub a character can be written to the serial port and then
execution continues (the code is written to wait for the buffer to be empty
before writing the next character). The following reference table
documents each character's meaning. (Note: Some characters related to
receiving a command overlap with other meanings for the character. This
shouldn't be confusing because the printing of the character associated
with a command occurs after the received command is dumped to the
serial output.)

Char Meaning
A HOST_CMD_GET_HUB_INFO received. It can also mean an ACK

was received in response to a Bind Response Packet for the just
issued Device ID

B Bad bit detected when processing packet received over the air.
b The back channel data was sent to the Sensor. The Hub is about

to send a HUB_RSP_SEND_MSG to the Host
C HOST_CMD_DELETE_NODE received
D HUB_RSP_SEND_MSG received
F HOST_CMD_NETWORK_CONFIG received
G HOST_CMD_NETWORK_STATUS received
H HUB_RSP_RESET received
I HOST_CMD_CHANGE_CHANNEL received
L No Device IDs are available. Happens in response to a Bind.
M Radio Receive Buffer overflow
P A protocol packet was received by the Hub.
R Sent response to Bind Request Packet
s Sensor found – occurs while enumerating all the Sensors
X When CORRUPT_DATA is defined will print out this character each

time a packet is intentionally corrupted.

WirelessUSB N:1 DVK Technical Reference Manual Page 48 of 86

Char Meaning
Z Received a data packet with a 0 length payload (when a 0 length

data payload is received the Hub resets its SEQN bits)
? Unknown command from the Host. It can also mean we were in

the process of receiving a packet when we were going to take an
RSSI reading.

% Command from Host had unexepected length
> A command was received from the host; length of command;

colon; command printed out. A set of two Greater Than
characters, each followed by a byte, indicate the status of Sensor
SEQN bits and Host SEQN bits respectively.

^ When PRINT_HOST_TX_PACKET is defined, the transmitted
packet is printed out as each byte is written to the radio. This
process is bracketed with a caret.

_ A packet was received (underscore character)
+ Instead of ACKing the Sensor we need to send a back channel

packet.
: When finding an available channel a colon is printed each time a

ping packet is sent
¡ Bad packet was received – checksum and CRC failed
* Bit inversion detected
$ The radio's receive buffer wasn't serviced fast enough and a byte

was lost in the radio.

7. FIRMWARE CUSTOMIZATION

7.1 Development Environment
The firmware was development was done on Microsoft Windows PCs
using Cypress’s PSoC Designer version 4.1 with Service Pack 1 installed.
The system requirements for this revision of PSoC Designer are Windows
98, NT4.0 (SP6), 2000, ME, and XP. At the time of this writing, PSoC
Designer version 4.2 is available but does not work with the N:1 DVK Kit.
Developers must uninstall 4.2 and install 4.1 to use the N:1 DVK Kit.

The firmware was written in C with the included ImageCraft C Compiler
version 1.28. An ImageCraft compiler license needs to be purchased in
order to compile the code.

The normal development cycle is to compile the code and download it to
the PSoC on the N:1 Node Board via the ISP. For more interactive
development, replace the PSoC on the N:1 Node Board with a 28-pin
SSOP Foot Kit (CY3203-080) and attached a 8C27002 PSoC Pod on the
28-pin SSOP Foot. Code can then be emulated using a PSoC ICE-4000.

WirelessUSB N:1 DVK Technical Reference Manual Page 49 of 86

7.1.1 PSoC Designer 4.1 Patch Files

There are two additional files that need to be updated at this time and they
can be found on the CD-ROM \Software\PSoC Designer\PSoC
Designer Patch\. Copy the two updated files in this directory to the
following locations (the default path for the PSoC program files is
C:\Program Files\Cypress MicroSystems\PSoC Designer).

\PSoC Designer\Data\Stdum\I2CHW\I2CHWCommon.inc

\PSoC Designer\Data\Stdum\I2CHW\CY8C27\Master\MasterMstr.asm
7.2 Data Rates

The N:1 Kit defines two different data rates. 62.5 kbps (sometimes
referred to as 64kbps in documentation for simplicity) and 15.625 kbps
(referred to as 16kbps). The trade-off is the slower data rate is less
susceptible to interference and has slightly greater range while the faster
data rate has bandwidth and battery life advantages. The N:1 kit is built
with 16kpbs to demonstrate maximum range and robustness.

7.3 Host Baud Rate
The N:1 kit was built with a Baud Rate of 115,200 for serial
communication between the Host and the Hub. This can be changed by
editing the PSoC Designer Project. Change the clock used by the serial
communication blocks. Flow control pins can also be implemented but
were not done so in order to reduce pin count on the part.

7.4 Protocol API
All API functions are contained in the files protocol.c and radio.c The
intent of these functions is to provide the user with a consistent and easy
to use interface for sending and receiving data as well as managing the
radio.

WirelessUSB N:1 DVK Technical Reference Manual Page 50 of 86

7.4.1 TX data flow

ProtocolSendDataPacket(Length)

Packet modifications
Type, Snyc, Seqn, DID

TxProcess()

Packet modifications
Payload

ProtocolSendPacket(Length)

Packet modifications
CRC, CS

RadioTransmit

TxProcess() is where the application generates the data to be
transmitted to the host. The N:1 kit samples all of the analog and switch
inputs. This function is responsible for updating the payload portion of the
gsTxPacket structure.

ProtocolSendDataPacket() is designed to transmit both fixed and
variable packets. The Length parameter will be used to determine which
type to use. This function will update the packet header byte and the DID
fields. The packet is complete except for the CRC and CS.

ProtocolSendPacket() will then compute the CRC and CS for the now
complete packet, and call RadioTransmit to actually transmit the packet .

WirelessUSB N:1 DVK Technical Reference Manual Page 51 of 86

7.4.2 Receive data flow:

ProtocolCheckForReceivedPacket()

ProtocolWaitForPacket()

RadioRxIsr

ProtocolWaitForPacket() starts the receive process. This function
will turn the receiver on and wait for a packet to be received or time out if
no packet is received in the specified time.

ProtocolCheckForReceivedPacket() is called by
ProtocolWaitForPacket() and is resposible for detecting a packet
end of frame condition and verifying that the packet is error free.
ProtocolCheckForReceivedPacket() will return
PACKET_RECEIVED when complete and if a valid packet has been
received.

RadioRxIsr() is resposible for process the the receive interrupts from
the radio. Each interrupt will trigger this function to extract one byte of
data and one byte of valid bits for the received byte. The valid byte is
used in the bit correction XOR checksum.

7.4.3 Sensor Binding process

The N:1 sensor binding process consists of an application level and a
protocol level. The application level provides the application specific user
interface to the bind process. The protocol level is responsible for
communicating with the hub to determie the bind parameters.

SensorSetBindState() is responsible for determining the bind state
based on the FLASH bind parameters and/or dip switch state.
SensorSetBindState() updates the gu8ProtocolStatus state
flages SEEDED_BIND and NODE_BOUND and loads the variables
ChannelIndex (CNI) and PnCodeIndex (PNI) with the correct values. For
the non-bound state, CNI and PNI are set to the default bind values
defined by BIND_PN_CODE_INDEX and BIND_CHAN_INDEX. These
values should be set to 0/0 which are the PIN and CNI reserved for
binding. ProtocolBind() is then called to perform the bind process.

WirelessUSB N:1 DVK Technical Reference Manual Page 52 of 86

If only the PNI/CNI FLASH parameters are valid, then only the PNI/CNI
variables are updated from FLASH and the flag SEEDED_BIND is set.
ProtocolBind() will then bind on the network PNI/CNI rather than
PNI/CNI = 0 which is reserved for Automatic binding.

If the sensor was previously bound and the bind parameters in FLASH are
valid, then the CNI/PNI will be loaded with the values in FLASH and the
state flag NODE_BOUND will be set.

ProtocolBind() will attempt to bind on the channel and PN index
defined by the variables ChannelIndex and PnCodeIndex. The following
timing is used in the Automatic bind case when the sensor is attempting to
establish a connection with the hub and exchange bind parameters. The
Hub must have Bind enabled.

When the bind process is successful all of the bind parameters are stored
in FLASH.

7.5 Firmware Configuration

These configuration options can be found in config.h. For some
options, it is recommend that they be specified on the command line.
Those options are noted with an asterisk (*) here and with “Note A” in the
.h file. This allows the same unmodified source files be compiled for the
Hub or Sensor.

WirelessUSB N:1 DVK Technical Reference Manual Page 53 of 86

7.5.1 Config.h

HUB & SENSOR* – These implicitly get tested for each build.
DATA_RATE - 16kbps or 64kbps
CHANNEL_CONFIG - Range 1-8. See Channel usage section in the users guide.
DEBUG* – Turns on and off debug
PRINT_TX_PACKET* - Prints Transmitted Packet
PRINT_RX_PACKET* - Prints Received Packet
PRINT_PACKET_CORRECTION_RESULTS* – Did I get a bad bit, etc.
PRINT_HOST_TX_PACKET* – (Hub) Prints serial packet sent to Host
SCOPE_PIN* - (Hub) Port 0 Pin 5 can be used as a debug pin
DEFAULT_XTL – 0x00 – 0x3F
PA_BIAS – 0x00 – 0x07
DEFAULT_INTERVAL [40]– (Sensor) Initial interval of sensor when connected and has

not received an interval from the Hub is 5 seconds. Interval is in units of .125
seconds.

DEFAULT_NON_BOUND_INTERVAL [480]– (Sensor) Interval of sensor when
communication with the Hub has been lost. This interval is currently set at 60
seconds .

ENABLE_SYSTEM_TEST* -(Sensor) Will compile in the ability to run 100 packet latency
test as well as printing the latency of each packet to the debug port. NOTE:
Enabling this define will also enable ENABLE_FAST_SWITCH_EVENTS.

ENABLE_ICE_SUPPORT * - (Sensor) Uses while loops in place of CPU sleep in order
to work with the PSoC ICE.

7.5.2 Main.c/h (Hub and Sensor)

ENABLE_FAST_SWITCH_EVENTS. - When enabled, switch events (S1 and reed) will
bypass the A/D process prior to transmitting in order to reduce the event latency.
Analog data from the previous normal sample will be transmitted for these events.

RETURN_CHAR – Character appended to the end of the user serial data for packets
less than the maximum size.

7.5.2.1 Protocol.h

ACK_TIMEOUT [10] – Number of mS that the Hub or sensor will wait for an ack packet
before giving up.

BIND_RESPONSE_TIMEOUT [6] – Number of mS that the sensor will wait before giving
up

BIND_CHECKSUM_SEED [0] – Seed value used for bind packets
BIND_CRC_SEED [0] – Seed value used for bind packets
BIND_PN_CODE_INDEX [0] – PN index used for binding
BIND_CHAN_INDEX [0] – Channel index used for binding
MAX_PACKET_SIZE [16] – Sets the limit for the total size of the data packets, Payload

+ protocol bytes
NUM_OF_CHANNEL_SEARCH_PINGS [10] – Number of pins the Hub will transmit while

looking for a new, clear, channel.
NACK_RETRY_ATTEMPTS [7] – Number of times that the sensor will transmit a packet

in the event that it doesn’t receive a valid ACK from the Hub.
SEARCH_PACKET_REPEATS [3] – (Sensor) Number of times the sensor will transmit

on the same channel while searching for the Hub.
SEARCH_PACKET_DELAY [20] – (Sensor) Delay in ms between transmitted packets.

WirelessUSB N:1 DVK Technical Reference Manual Page 54 of 86

NUMBER_BIND_CYCYLES [2] – (Sensor) Number of times the sensor will go through
the entire channel sequence.

BIND_TX_PER_CH [2] - (Sensor) Number of bind packets transmitted on each
channel.

SEEDED_BIND_CHI [1] – Channel index burned into FLASH during device
programming causing the device to be factory seeded bound

SEEDED_BIND_PNI [9] - PN index burned into FLASH during device programming
causing the device to be factory seeded bound

SEEDED_BIND_CRC [0X84] CRC burned into FLASH for the prior two values. The
CRC must be recomputed if the seeded_bind_chi/pni are changed.

7.6 Porting considerations

Porting the N:1 FW to another processor is complicated by the use of
PSoC analog and digital blocks and the uique interrupt structure of the
PSoC.

7.6.1 Interrupts

Both the Sensor and Hub use C and assembly interrupt service routines.
ISRs written in C use the #pragma calling format. Sensor interrupts used
for purposes of awaking the processor from the sleep state don’t actually
provide code to service the interrupt. These interrupts are allowed to fire
at the hardware level but are blocked by disabling global interrupts and not
allowed to execute any code. The following table outlines all of the
interrupts in use excluding any interrupts used by any PSoC user
modules.

Source C/Asm Function Location Description

SerialRxIsr SensorC Processes serial data
after first serial byte
has awaken the CPU
via DBB11 below

DCB12 C

HostSerialRxIsr Host.c Accepts serial data
from the Host PC

DCB13 C HostSerialTxIsr Host.C Sends serial data to
the Host PC.

DCB02 C MsTimerTick Timer.C Generates background
1ms timer ticks for
timing events

GPIO
pin

C/Asm IsrGpio Radio.C,
PSoCGPIOINT.asm

Processes radio
interrupts when
awake. When asleep
allows S1 and the reed
switch to awake the
CPU (no ISR code is
executed)

DBB01 NA NA NA 16-bit Sleep timer
terminal count

WirelessUSB N:1 DVK Technical Reference Manual Page 55 of 86

Source C/Asm Function Location Description
DBB11 NA NA NA Detects serial RX

activity and generates
an interrupt to awake
the CPU.

7.6.2 PSoC Analog and Digital Block Usage

Sensor

In addition to the standard PSoC API blocks, the sensor configures
DBB00/01/11 directly by writing to the underlying block configuration
registers. DBB00/01 are reconfigured as a 16-bit sleep timer while the
device is sleeping in order to improve the interval accuracy. When exiting
from sleep, DBB01 is reconfigured as a DELSIG11 as indicated in the
PSoC Designer Device Editor. DBB11 is initially configured as a PRS8
module. This block is then modified to generate interrupts when the cpu is
sleeping based on serial RX activity on the global row input RI1[3].

DBB00 LSB of 16-bit sleep timer
DBB01 MSB of 16-bit sleep timer when sleeping, DELSIG11 timer
DCB02 Used to generate a 1ms interrupt for timing functions
DCB03 SPI master user module to communicate with the radio
DBB10 Generates pseudo random numbers
DBB11 Modified PRS block. Generates serial RX interrupts while

sleeping
DCB12 Serial RX function, used for user serial data and debug
DCB13 Serial TX funciton, used for user serial data and debug
ACB00 Reference mux to enable RefH to be driven out
ACB01 Reference mux, Connects Port0 pins to A/D
ACB03 Referenc mux, enables RefLow to be driven out
ASC21 Used for the A/D

Hub

The analog blocks in the hub are configured exactly like the Sensor

DBB01 Used to generate a 1ms interrupt for timing functions
DCB02 Serial transmitter for debug only output
DCB03 SPI master user module to communicate with the radio
DBB11 Used for the A/D
DCB12 Serial reciever for the host interface
DCB13 Serial transmitter for the host interface

WirelessUSB N:1 DVK Technical Reference Manual Page 56 of 86

7.7 Files/ Functions
7.7.1 Common files

7.7.1.1 config.h

Contains the build configuration options you’re most likely to modify.

7.7.1.2 cydefine.h

Contains Cypress’s defines for various data types.

7.7.1.3 cywusb693_.h

Contains all the #defines for the LS Radio an is based on the datasheet.
Because it only contains #defines, it is strongly recommended that you
use this file if nothing else.

7.7.1.4 debug.c & .h

Routines for serial output via HyperTerm.

U8 GetChar()
void OutChar(U8 data)
void OutDec(U16 Value)
void OutHex(U8 Data)
void OutHex16(U16 Data)
void OutNibble(U8 Nibble)
void OutRamStr(U8 *pStr)
void OutStr(const U8 *pStr)
void PrintBanner()
void PrintLine()
void SerialDebugInit()

7.7.1.5 hardware.c & .h

Routines to manipulate the PSoC and N:1 Node Board.

U8 ConvertDipSwitch(U8 DipVoltage)
void FramDump()
void FramInit(U8 Value)
U8 FramReadByte(U16 Addr)
void FramReadBytes(U16 Addr, U8* pData, U8 Count)
void FramWriteByte(U16 Addr, U8 Value)
void FramWriteBytes(U16 Addr, U8* pData, U8 Count)
void LedHeartBeat()
void HwClearFlash()
void HwInit()
void HwOnIdle()
U8 HwReadSwitchS1(void)
U8 ReadA2DInput(A2DINPUT Input)

WirelessUSB N:1 DVK Technical Reference Manual Page 57 of 86

7.7.1.6 nvram.c & .h

Routines to write the PSoC’s flash.

NVR_STATUS NvramWrite(U16 NvrBlock, void *Data, U16 Length)
NVR_STATUS NvramRead(U16 NvrBlock, void *Data, U16 Length)

7.7.1.7 protocol.c & .h

Contains the routines that implement the N:1 protocol.

void ProtocolBind()
RX_STATUS ProtocolChannelSearch(U8 PacketSize)
U8 ProtocolComputeChecksum(U8 *pData, U8 Length, U8 Seed)
U8 ProtocolComputeCrc(U8 *Buffer, U8 Length, U8 Seed)
void ProtocolFindAnAvailableChannel()
void ProtocolInit()
void ProtocolOnIdle()
BOOL ProtocolProcessProtocolPacket()
RX_STATUS ProtocolProcessSeqn(void)
void ProtocolReleaseRxPacketToRadio()
RX_STATUS ProtocolCheckForPacketFromSensor()
void ProtocolSendAckPacket(U16 DeviceId)
void ProtocolSendDataPacket(U8 PacketLength)
void ProtocolSendPacket(U8 PacketLength)
void ProtocolServiceBind()
void ProtocolStartBind()
void ProtocolStopBind()
RX_STATUS ProtocolWaitForPacket()

7.7.1.8 radio.c & .h

All the routines to drive the radio.

void IsrGpio()
void IsrInit()
void RadioDumpRegisters()
void RadioGetMid(U32* Addr)
BOOL RadioGetRssi(U8* RssiReading)
void RadioInit()
BOOL RadioIrqAsserted()
void RadioOn(U8 RxOrTx)
void RadioRxIsr()
void RadioSetChannel(U8 Channel)
void RadioSetPnCode(U8 PnCodeIndex)
void RadioSleep()
void RadioTransmit(U8 Length, U8 *pData)
void RadioTxIsr()
void RadioWakeup()

7.7.1.9 spi.c & .h

Routines used to access the LR Radio via the SPI interface.

WirelessUSB N:1 DVK Technical Reference Manual Page 58 of 86

U8 SpiRadioAccess(U8 Address, U8 Data)
void SpiRadioBurstAccess(U8 Address, U8 *pData, U8 Length)
void SpiRadioOn()

7.7.1.10 timer.c & .h

Contains the ISR to increment the 1 millisecond variables. Also contains
blocking delay routines.

void MsTimerTick()
void TimerDelayIterations(U16 NumIterations)
void TimerDelayMsec(U16 NumMilliseconds)

7.7.1.11 version.h

File that contains the Build and Release number

7.7.2 Hub Specific files

7.7.2.1 host.c & .h (Hub Only)

Routines to implement the COBS interface between the Host and the Hub

void DecodeCobsArray(U8 *pSource, U8 Length, U8 *pDestination)
void EncodeCobsArray(U8 *pSource, U8 Length, U8 *pDestination)
U16 EnumerateAllSensors()
void HostProcessPacketFromSensor(PACKET_TYPES PacketType)
void HostProcessSerialDataFromHost()
void HostSendNetworkStatusResponse()
void HostSerialRxIsr()
void HostSerialTxIsr()
void HostTransmittedBackChannelData()
void StartTxToHost()
U8 StoreOutboundMessage()

7.7.2.2 Hub.c & .h (Hub Only)

The code that drives the rest of the system.

U8 HubDeleteSensor(U16 DeviceId)
void HubFindNextFreeDeviceId()
void HubInit()
void HubProcessPacketFromSensor()
void ResetDeviceIdTable()
BOOL SendAckOrBackChannelData()

7.7.2.3 main.c (Hub Version)

Simple main loop that calls out to the hardware, protocol, Hub, and host.

WirelessUSB N:1 DVK Technical Reference Manual Page 59 of 86

7.7.3 Sensor specific files

7.7.3.1 main.c & h

7.7.3.2 sensor.c & h

7.7.3.3 multisim.c & .h

8. SOFTWARE ARCITECTURE

8.1 Overview
This document describes the software source code modules used to
communicate with the N:1 Hub board in order to send and receive data
and commands. It will not cover the details of the Microsoft Foundation
Class (MFC) Library. Please refer to the Microsoft Visual C++
documentation for more on MFC.

8.2 Development Environment
The following tools are required to build and develop the N:1 Software
application.

Software/Firmware:

Microsoft Visual Studio.NET 2003

N:1 Firmware V01.00.01

Hardware:

Node Board 121-17800, Revision *B or *C

Serial Board 121-18200**

WirelessUSB N:1 DVK Technical Reference Manual Page 60 of 86

9. SOFTWARE CODE CLASSES

The Nto1 SW consists of the following classes:

9.1 CNto1App Class
The CNto1App class performs provides member functions for initializing
the application (and each instance of it) and for running the application.

Table 1: CNto1App Methods
Method Type Description
CNto1App() Public Performs the construction
InitInstance() Public Performs the basic initialization
OnAppAbout() Public Provides the information about software

version and others

9.2 CMainFrame Class
The CMainFrame class is the Visual C++ generated file that is a derived
frame-window class for the application’s main frame window. Other
methods have been added to send, receive and process the command or
data from/to the Hub.

Table 2: CMainFrame Methods
Method Type Description
CMainFrame() protected Performs the construction
OnCreate() protected Creates the mainframe, toolbar, status

bar, …
OnClose() protected Handles the application closing
OnFileCaptureLog() protected Starts to capture the log message to file
OnFileStopLogCapture() protected Stops the log message capture
OnUpdateHubInfoIndicator() protected Updates the Hub information in the status

bar
OnUpdateConnectIndicator() protected Updates the connection state between

Hub and PC in the status bar
OnSerialEvent() protected Handles the serial event
OnCobsPacketsEvent() protected Handles the cobs packets event
SetMenuItem() protected Enables/disables the menu item
EnableMenuItem() protected Enables/disables the menu item and

toolbar item
CheckToolBarButton() protected Check/uncheck the toolbar item
CheckMenuItem() protected Check/uncheck the menu item
WindowProc() protected Provides a Windows procedure for a

CWnd object
DoHubInit() protected Initializes the Hub It includes Hub Reset,

Get Hub Info, Get Network Info and
Enumerate Devices.

WirelessUSB N:1 DVK Technical Reference Manual Page 61 of 86

Method Type Description
LogStatusMessage() protected Displays the status message in message

pane.
SetCommandField() protected Update the command files in the Sensor

Status Table with command response.
GetHubInfoCommand() protected Sends Get Hub Info command to the Hub
DeleteNodeCommand() protected Sends Delete Node command to the Hub
EnumDevicesCommand() protected Sends Enumerate Devices command to

the Hub
NetworkConfigCommand() protected Sends Network Configuration command to

the Hub
NetworkInfoCommand() protected Sends Network Status command to the

Hub
ResetCommand() protected Sends Reset command to the Hub
ChangeChannelCommand() protected Sends Change Channel command to Hub
HubInfoResponse() protected Handel the Hub to host Hub Info

Response
BindResponse() protected Handles the Hub to host Bind Response
BindInfoResponse() protected Handles the Hub to host Bind Information

Response
DeleteNodeResponse() protected Handles the Hub to host Delete Node

Response
SendMsgResponse() protected Handles the Hub to host Send Message

Response
IncomingMsgResponse() protected Handles the Hub to host Incoming

Message
EnumDevicesResponse() protected Handles the Hub to host Enumerate

Devices Response
NetworkConfigureResponse() protected Handles the Hub to host Network

Configure Response
NetworkInfoResponse() protected Handles the Hub to Network Status

Response
ChangeChannelResponse() protected Handles the Hub to host Change Channel

Response
ResetResponse() protected Handles the Hub to host Reset Response
StartTimer() protected Starts the timer
StopTimer() protected Stops the timer
GetSensorName() protected Gets sensor name from the sensor ID
GetSensorIDName() protected Gets Sensor ID & Sensor Name from the

sensor ID
ClearGraphs() protected Clears all the graphs in graph pane
NodeIsChecked() protected Checks if this node is checked
ChangeTemp() protected Changes the temperature scale between

Fahrenheit and Celsius.
CheckDuplicatedSensor() protected Checks and removes the duplicated and

inactive sensors in the sensor table
SetSummaryFileTimer() public Sets the timer for the summary file
ConvertToFahrenheit() public Converts temperature from Celsius to

Fahrenheit
GetCelsius() public Gets the temperature degree in Celsius

from the read number
RecordToCsvFile() public Captures the sensor data to CSV file

WirelessUSB N:1 DVK Technical Reference Manual Page 62 of 86

Method Type Description
UpdateNetworkEfficiency() public Calculates the network efficiency and

updatess the network efficiency indicator
in the status bar

CountIncomingMessage() public Counts the incoming message number to
calculate the network efficiency

DeleteNodeFromGraph() public Deletes the node from the graph
GetBatteryRealVolt() public Gets battery real voltage from the read

number
GetPotRealVolt() public Gets poten real voltage from the read

number
LogMessage() public Displays the raw data in the message

area
ReceivedHubPacket() public Processes the received Hub packets
SendHubPacket() public Sends the packets to Hub
SendMsgCommand() public Formats all the sensor control to a

message and sends to the Hub
GetTemperature() public Get the real temperature degree from the

read number
UpdateAvailablePort() public Updates the available serial port to the

serial port array
TranslatePNCodeFromIndexToID() public Translates the PN Code Index to PN Code

ID
TranslatePNCodeFromIDToIndex() public Translates the PN Code ID to PN Code

Index
ValidatePNCodeID() public Validates the PN Code ID. (Some ID don’t

exist in the N:1 protocol)
UpdateDuplicatedSensorFor-
Increment()

public Updates the duplicated sensor array and
defers the process for deleting the node
when doing the enumeration

UpdateDuplicatedSensorFor-
Decrement()

public Updates the duplicated sensor array when
deleting the node

OnLButtonDownRowList() public Handler for mouse click in the sensor
status table

OnBnClickedSendMessage() public Handler for clicking the Send Message
button. It will organize the message of
LED, sensor interval and payload and
send to Hub

OnBnClickedRename() public Handler for clicking the Rename button. It
will change the sensor name to the one in
the edit box

OnTimer() public The framework calls this member function
after each interval specified in the
SetTimer member function used to install
a timer

OnSummaryDialog() public Handler for clicking the Control Dialog
command in the View menu. It invokes the
Control dialog

OnTempGui() public Handler for clicking the Fahrenheit/Celsius
button in the toolbar. It toggles data
capture units between Fahrenheit and
Celsius

WirelessUSB N:1 DVK Technical Reference Manual Page 63 of 86

Method Type Description
OnFileCaptureSensorData() public Handler for clicking record sensor data

command in File menu. It captures the
sensor data to CSV file

OnFileStopSensorDataCapture() public Handler for clicking stop recording
command in File menu. It stops the sensor
data capture

OnPreferencesSerialPort() public Handler for clicking Preferences->Serial
Port command in File menu. It sets the
serial port number and baud rate

OnPreferencesDefault-
SensorInterval()

public Handler for clicking Preferences->Default
Sensor Interval command in File menu. It
sets the Default Sensor Interval

OnPreferencesClearSensor-
ContentsInRegistry()

public Handler for clicking Preferences->Clear
Sensor Contents in Registry command in
File menu. It clears the Sensor contents
such as sensor name and sensor interval
in the registry

OnEditClearmessages() public Handler for clicking the Clear Messages
command in Edit menu. It clears the
message pane

OnEditCleargraph() public Handler for clicking the Clear Graphs
command in Edit menu. It clears the
temperature graph and potentiometer
graph in the graph pane

OnEditClearSensorTableData() public Handler for clicking the Clear Sensor
Table Data command in Edit menu. It
clears the Sensor Table data.

OnHubConnectToHub() public Handler for clicking Connect to Hub
command in Hub menu. It connects the
host to the Hub

OnHubDisconnectFromHub() public Handler for clicking Disconnect from Hub
command in Hub menu. It disconnects
host from Hub

OnHubGetInfo() public Handler for clicking Get Hub Info
command in Hub menu. It sends Get Hub
Info command to the Hub

OnHubNetworkInfo() public Handler for clicking Get Network Info
command in Hub menu. It sends Network
Status command to the Hub

OnHubConfigurenetwork() public Handler for clicking Configure Network
command in Hub menu. It sends Network
Configuration command to the Hub

OnHubEnumerateDevices() public Handler for clicking Enumerate Device
command in Hub menu. It sends
Enumerate Devices command to the Hub

OnHubDeleteSelectedSensors() public Handler for clicking Delete Selected
Sensor command in Hub menu. It sends
Deletes Node command to the Hub

OnHubDeleteAllSensors() public Handler for clicking Delete All Sensors
command in Hub menu. It deletes all the
sensors

OnHubBind() public Handler for clicking Bind command in Hub
menu. It toggles the bind state

WirelessUSB N:1 DVK Technical Reference Manual Page 64 of 86

Method Type Description
OnHubSeededbind() public Handler for clicking Seeded Bind

command in Hub menu. It toggles the
seeded bind state

OnHubChangechannel() public Handler for clicking Change Channel
command in Hub menu. It sends Change
Channel command to the Hub

OnHubReset() public Handler for clicking Reset Hub command
in Hub menu. It sends hub Reset
command to the Hub

OnGraphsTempature() public Handler for clicking Temperature
command in the Graphs menu. It displays
the temperature graph in the graph pane

OnGraphsPotentiometer() public Handler for clicking Potentiometer
command in the Graphs menu. It displays
the potentiometer graph in the graph pane

OnGraphsTemperaturesetting() public Handler for clicking Temperature Graph
Setting command in the Graphs menu. It
changes the temperature setting in the
temperature graph

OnGraphsXaxisSetting() public Handler for clicking X Axis Setting
command in the Graphs menu. It changes
the X-Axis setting in the graph

OnViewHubinfo() public Handler for clicking Hub Info command in
the View menu. It displays the Hub
Information

OnViewNetworkinfo() public Handler for clicking Network Info
command in the View menu. It displays
the Network information

9.3 CDetailView Class
The CDetailView class is used to display the sensor properties and create
message.

Table 3: CDetailView Methods
Method Type Description
CDetailView() protected Performs the construction
DoDataExchange() protected Exchanges and validates data
OnInitialUpdate() public Called by the framework after the view is

first attached to the document, but before
the view is initially displayed

OnCreate() public The framework calls this member function
when an application requests that the
Windows window be created

OnEnChangePayloadDataLength() public Handler for changing Payload Data
Length

OnBnClickedInputAscii() public Handler for checking Input ASCII
OnBnClickedSendMessage() public Handler for clicking the Send Message

button

WirelessUSB N:1 DVK Technical Reference Manual Page 65 of 86

Method Type Description
OnBnClickedRename() public Handler for clicking Rename button

9.4 CRowListView Class
The CRowListView class is used to generate and manage a table to
containing low-level sensor status information for each sensor bound to
the Hub.

Table 4: CRowListView Methods
Method Type Description
CRowListView() protected Performs the construction
PreCreateWindow() public It is called by the framework before the

creation of the window
OnInitialUpdate() public Called by the framework after the view is

first attached to the document, but before
the view is initially displayed

OnLButtonDown() protected The framework calls this member function
when the user presses the left mouse
button

OnRButtonDown() protected The framework calls this member function
when the user presses the right mouse
button

OnLButtonDblClk() protected The framework calls this member function
when the user double-clicks the left
mouse button

OnKeyDown() protected The framework calls this member function
when the user presses the keyboard

GetNodeIDByItemIndex() protected Gets the sensor ID from the item index
GetNodeItemAsText() protected Gets the node item value as text
GetNodeItemAsInt() protected Gets the node item value as integer
SetNodeItemAsText() protected Sets the node item value as text
SetNodeItemAsInt() protected Sets the node item value as integer
GetItemIndexByNode() public Gets the Item index from the node ID
AddNodeID() public Adds a node to the sensor status table
DeleteNodeID() public Deletes the node from the sensor status

table
GetNumberOfNodeIDs() public Gets total number of nodes
GetFirstNodeID() public Gets the first node ID in the sensor status

table
GetNextNodeID() public Gets the next node ID in the sensor status

table
GetNumberOfSelectedNodeIDs() public Gets the total number of selected node
GetCurrentSelectedNodeID() public Gets the node ID of the currently selected

node
GetFirstSelectedNodeID() public Gets the node ID of the first selected

node
GetNextSelectedNodeID() public Gets the node ID of the next selected

node
GetSensorName() public Gets the sensor name from the node ID
GetMID() public Gets the MID of the node
GetBattery() public Gets the battery voltage of the node

WirelessUSB N:1 DVK Technical Reference Manual Page 66 of 86

Method Type Description
GetPot() public Gets the potentiometer voltage of the

node
GetTemp() public Gets the temperature of the node
GetYellowLED() public Gets the yellow LED state of the node
GetRedLED() public Gets the red LED state of the node
GetButton1() public Gets the button1 state of the node
GetButton2() public Gets the button2 state of the node
GetDIP1() public Gets the DIP1 state of the node
GetDIP2() public Gets the DIP2 state of the node
GetDIP3() public Gets the DIP3 state of the node
GetDIP4() public Gets the DIP4 state of the node
GetReceivedMessage() public Gets the received message of the node
GetTimeStamp() public Gets the time stamp of the node
SetSensorName() public Sets the sensor name of the node ID
SetMID() public Sets the MID of the node
SetBattery() public Sets the battery voltage of the node
SetPot() public Sets the potentiometer voltage of the node
SetTemp() public Sets the temperature of the node
SetYellowLED() public Sets the yellow LED status of the node
SetRedLED() public Sets the red LED status of the node
SetButton1() public Sets the button1 status of the node
SetButton2() public Sets the button2 status of the node
SetDIP1() public Sets the DIP1 status of the node
SetDIP2() public Sets the DIP2 status of the node
SetDIP3() public Sets the DIP3 status of the node
SetDIP4() public Sets the DIP4 status of the node
SetReceivedMessage() public Sets the received message of the node
SetTimeStamp() public Sets the time stamp of the node
SetCommand() public Sets the command status of the node
NodeIsChecked() public Verifies if the node is checked
SetLowBattery() public Changes to red color if the battery voltage

is lower than 3.1v
CheckItem() public Handles the check/uncheck item to

enable/disable the graph for the selected
sensor

9.5 CMessageView Class
The CMessageView class is used to display the raw packet data
received/sent from/to Sensors.

Table 5: CMessageView Methods
Method Type Description
CMessageView() protected Performs the construction
OnDraw() public It is called by the framework to render an

image of the document.
UpdateVScroll() public Updates the vertical scroll bar
UpdateHScroll() public Update the horizontal scroll bar
Paint() public Paints message
CountLines() public Gets number of lines

WirelessUSB N:1 DVK Technical Reference Manual Page 67 of 86

Method Type Description
AddLine() public Adds line of message
ClearBuffer() public Clear all the message
OnPaint() public It is called by framework when Windows

or an application makes a request to
repaint a portion of an application’s
window.

OnCreate() public The framework calls this member function
when an application requests that the
window be created

OnVScroll() public The framework calls this member function
when the user clicks the window’s vertical
scroll bar

OnHScroll() public The framework calls this member function
when the user clicks the window’s
horizontal scroll bar

OnMouseWheel() public The framework calls this member function
as a user rotates the mouse wheel and
encounters the wheel’s next notch

RenderText() protected Prints the text
OnUpdate() protected It is called by the framework after the

view’s document has been modified

9.6 CGraphView Class
The CGraphView class is used to graphically display the temperature and
potentiometer data received from each of the sensors over time.

Table 6: CGraphView Methods
Method Type Description
CGraphView() protected Performs the construction
OnDraw() public It is called by the framework to render an

image of the document.
UpdateGraphTimer() protected Updates on the graph timer
AddGraphData() protected Draws the graph
AddTempData() public Draws the temperature data
AddPotData() public Draws the potentiometer data
OnCreate() public The framework calls this member function

when an application requests that the
Windows window be created

OnLButtonDblClk() public The framework calls this member function
when the user double-clicks the left
mouse button

OnTimer() public The framework calls this member function
after each interval specified in the
SetTimer member function used to install
a timer

OnDestroy() public The framework calls this member function
to inform the CWnd object that it is being
destroyed

WirelessUSB N:1 DVK Technical Reference Manual Page 68 of 86

9.7 CGraphSeries Class
The CGraphSeries is used to manage the graph data for one moment but
different sensors.

Table 7: CGraphSeries Methods
Method Type Description
CGraphSeries() public Performs the construction
SetLabel() public Set the time label
GetLabel() public Get the time label
SetData() public Set the graph data
GetData() public Get the graph data
DeleteData() public Delete the graph data
GetMaxDataValue() protected Gets the largest data value in this series
GetNonZeroElementCount() protected Gets the number of data points that are

not zero
GetDataTotal() protected Gets the sum of the data points for this

series

9.8 CGraph Class
The CGraph class is used to draw the graph, X-Axis, Y-Axis, label and
legend.

Table 8: CGraph Methods
Method Type Description
CGraph() public Performs the construction
SetXAxisLabel() public Sets the label for X-Axis
SetYAxisLabel() public Sets the label for Y-Axis
AppendGroup() public Appends a new sensor to the array
AddLegend() public Adds the value to the legend and assign a

color and a name to this legend
RenameLegend() public Rename a legend
SetGraphType() public Sets graph type. This application only

uses the line graph
SetGraphTitle() public Sets the title of the graph
LookupLabel() public Gets the group index for the given label
DrawGraph() public Draw the graph
GetGroup() public Get the group index based on the sensor

name
RemoveGroup() public Remove the group (device)
AddSeries() public Add a graph series for a moment
GetSeries() public Get series based on the time label
GetSeriesSize() public Get the graph series size
RemoveSeries() public Remove this series
RemoveAllSeries() public Remove all the series
RemoveAllLegend() public Remove all legend
ShiftYAxis() public Shifts the Y-Axis
SetMaxDataValueAllowed() public Set the maximum allowable data value
SetMinDataValueAllowed() public Set the minimum allowable data value

WirelessUSB N:1 DVK Technical Reference Manual Page 69 of 86

Method Type Description
DrawTitle() protected Draws graph title; size is proportionate to

width
SetupAxes() protected Sets the axes and origin values
DrawAxes() protected Draws the axis
DrawLegend() protected Draws the legend
DrawSeriesBar() protected Draws the bar graph
DrawSeriesLine() protected Draws the line graph
DrawSeriesPie() protected Draws the pie graph
GetMaxLegendLabelLength() protected Calculates the current max legend label

length in pixels
GetMaxSeriesSize() protected Gets the largest number of data points in

any series
GetMaxNonZeroSeriesSize() protected Gets the largest number of non-zero data

points in any series
GetMaxDataValue() protected Gets the largest data value in all series
GetNonZeroSeriesCount() protected Gets the number about how many series

are populated
WedgeEndFromDegrees() protected Converts degrees to x and y coords
SpinTheMessageLoop() protected Spins The Message Loop
RGBtoHLS() protected Converts color space from RGB to HLS
HLStoRGB() protected Converts color space from HLS to RGB
HueToRGB() protected Utility routine for HLS to RGB

9.9 CCobsPackets Class
The CCobsPackets class is used to encode the sending data to Cobs
packet and decode the receiving data from Cobs packet. Detail
information about the COBS please see “Consistent Overhead Byte
Stuffing (COBS)” in IEEE April 1999 Transactions onf Networking Paper.

Table 9: CCobsPackets Methods
Method Type Description
CCobsPackets() public Performs the construction
Init() public Initialization
SendEvent() public Post the event
DataReceived() public Processes the received data
SendPacket() public Sends the packet for encoding to Cobs

packet and put to the queue
GetPacket() public Gets the packet for both sending and

receiving packet
StuffData() protected Encode the data to Cobs packet
UnStuffData() protected Decode the data from Cobs packet
NewPacket() protected Creates new packet

9.10 CSerial Class
The CSerial class is used for serial communications.

WirelessUSB N:1 DVK Technical Reference Manual Page 70 of 86

Table 10: CSerial Methods
Method Type Description
CSerial() public Performs the construction
CheckPort() public Check if particular COM-port is available
Open() public Open the serial communications for a

particular COM port. You need to use the
full devicename (i.e. "COM1") to open the
port. It's possible to specify the size of the
input/output queues

Close() public Close the serial port
Setup() public Setup the communication settings such as

baud rate, data bits, and parity and stop
bits. The default settings are applied when
the device has been opened. Call this
function if these settings do not apply for
your application. If you prefer to use
integers instead of the enumerated types
then just cast the integer to the required
type

SetEventChar() public Set/clear the event character. When this
byte is being received on the serial port
then the EEventRcvEv event is signaled,
when the mask has been set
appropriately. If the fAdjustMask flag has
been set, then the event mask is
automatically adjusted.

SetMask() public Set the event mask, which indicates what
events should be monitored. The
WaitEvent method can only monitor
events that have been enabled. The
default setting only monitors the
error events and data events. An
application may choose to monitor CTS.
DSR, RLSD, etc as well.

WaitEvent() public The WaitEvent method waits for one of
the events that are enabled (see
SetMask).

WirelessUSB N:1 DVK Technical Reference Manual Page 71 of 86

Method Type Description
SetupHandshaking() public Setup the handshaking protocol. There

are three forms of handshaking:

1) No handshaking, so data is always
send even if the receiver cannot handle
the data anymore. This can lead to data
loss, when the sender is able to transmit
data faster then the receiver can handle.
2) Hardware handshaking, where the
RTS/CTS lines are used to indicate if data
can be sent. This mode requires that both
ports and the cable support hardware
handshaking. Hardware handshaking is
the most reliable and efficient form of
handshaking available, but is hardware
dependant.
3) Software handshaking, where the
XON/XOFF characters are used to throttle
the data. A major drawback of this method
is that these characters cannot be used
for data anymore.

SetupReadTimeouts() public Read operations can be blocking or non-
blocking. You can use this method to
setup whether to use blocking or non-
blocking reads. Non-blocking reads is the
default, which is required for most
applications.

1) Blocking reads. It will cause the 'Read'
method to block until the requested
number of bytes has been read. This is
useful if you know how many data you will
receive
2) Non-blocking reads. It will read as
many bytes into your buffer and returns
almost immediately. This is often the
Preferred setting.

Write() public Write data to the serial port. Note that we
are only able to send ANSI strings,
because it probably doesn't make sense
to transmit Unicode strings to an
application.

Read() public Read data from the serial port. Refer to
the description of the
'SetupReadTimeouts' for an explanation
about (non) blocking reads and how to
use this.

Break() public Send a break
GetEventType() public Determine what caused the event to

trigger

WirelessUSB N:1 DVK Technical Reference Manual Page 72 of 86

Method Type Description
GetError() public Obtain the COMM and event handle
IsOpen() public Check if com-port is opened
GetLastError() public Obtain last error status
GetCTS() public Obtain CTS settings
GetDSR() public Obtain DSR settings
GetRing() public Obtain RING settings
GetRLSD() public Obtain RLSD settings
Purge() public Purge all buffers
CheckRequirements() protected Check the requirements
CancelCommIo() protected Cancel IO wrapper

9.11 CSerialEx Class
The CSerialEx class is derived from the CSerial class.

Table 11: CSerialEx Methods

Method Type Description
CSerialEx() public Performs the construction
Open() public Open the serial communications for a

particular COM port. You need to use the
full device name (i.e. “COM1”) to open the
port

Close() public Close the serial port
StartListener() public Start the listener thread
StopListener() public Stop the listener thread. Because the

other thread might be busy processing
data it might take a while, so you can
specify a time-out

ThreadProc() protected Each opened COM-port uses its own
specific thread, which will wait for one of
the events to happen. When an event
happens, then the client window is send a
message informing about the event

OnEvent() protected Event handler

9.12 CSerialWnd Class

The CSerialWnd class is derived from the CSerialEx class.

Table 12: CSerialWnd Methods
Method Type Description
CSerialWnd() public Performs the construction

WirelessUSB N:1 DVK Technical Reference Manual Page 73 of 86

Method Type Description
Open() public Open the serial communications for a

particular COM port. You need to use the
full device name (i.e. “COM1”) to open the
port

Close() public Close the serial port
OnEvent() protected Event handler

9.13 CAboutDlg Class
CAboutDlg class is used to provide the version information.

9.14 CActuatorOjbect Class
CActuatorOjbect class is used to save the Actuator parameters into the
registry.

9.15 CAppSetting Class
CAppSetting class is used to save the temperature scale (Fahrenheit or
Celsius) into the registry.

9.16 CAvgFuncRegistry Class
CAvgFuncRegistry class is used to save the average function parameters
into the registry.

9.17 CCalibrationDlg Class
CCalibrationDlg class is used to select the sensors to be calibrated.

9.18 CChangeDefaultSensorIntervalDlg Class
CChangeDefaultSensorIntervalDlg class is used to input the new Default
Sensor Interval value.

9.19 CDefaultSensorIntervalSetting Class
CDefaultSensorIntervalSetting class is used to save the Default Sensor
Interval into the registry.

9.20 CDeltaDlg Class
CDeltaDlg class is used to select the delta calculation parameters.

9.21 CGraphSetting Class
CGraphSetting class is used to save the graph setting into the registry.

9.22 CHexEditBase Class
CHexEditBase is a Hex-Edit-Control based on the CWnd class. It
implements basic behavior to edit/view data in hexadecimal view (binary).

WirelessUSB N:1 DVK Technical Reference Manual Page 74 of 86

9.23 CHubConfigDlg Class
CHubConfigDlg class is used to configure the network parameters such as
channel number, PN code and Hub MID.

9.24 CHubInfoDlg Class
CHubInfoDlg class is used to display the Hub information such as
firmware version, radio version, MID and maximum device ID.

9.25 CListViewEx Class
CListViewEx class is used to manage the list view table. In this application
it is used to manage the sensor status table.

9.26 CMainWndPlacement Class
CMainWndPlacement class is used to retain prior window position and
size.

9.27 CNetworkEfficiency Class
CNetworkEfficiency class is used to calculate the network efficiency. It is
also used to keep the sensor interval.

9.28 CNetworkInfoDlg Class
CNetworkInfoDlg class is used to display the Network information such as
channel, PN Code ID, data rate and bind state.

9.29 CProgressBar Class
CProgressBar class is used to display a progress bar in the status bar. In
this application it is used to display the Network Efficiency.

9.30 CRegistry Class
CRegistry class is used to create or delete the subkey in the registry. It
also can be used to manage the value in the registry.

9.31 CRegSettings Class
CRegSettings class is used to save the application parameter into the
registry.

9.32 CSelectDlg Class
CSelectDlg class is used to select the sensor for average and modify the
average name.

WirelessUSB N:1 DVK Technical Reference Manual Page 75 of 86

9.33 CSensorName Class
CSensorName class is used to save the sensor name and sensor interval
into the registry.

9.34 CSerPortDlg Class
CSerPortDlg class is used to input the serial port number and baud rate.

9.35 CSerPortSetting Class
CSerPortSetting class is used to save the serial port setting into the
registry.

9.36 CSubclassWnd Class
CSubclassWnd class is Generic class to hook messages on behalf of a
CWnd.

Once hooked, all messages go to CSubclassWnd::WindowProc before
going to the window. Specific subclasses can trap messages and do
something.

9.37 CSubclassWndMap Class
The message hook map is derived from CMapPtrToPtr, which associates
a pointer with another pointer. It maps an HWND to a CSubclassWnd, like
the way MFC’s internal maps map HWND’s to CWnd’s. The first
CSubclassWnd attached to a window is stored in the map; all other
CSubclassWnd’s for that window are then chained via
CSubclassWnd::m_pNext.

9.38 CSummeryl Class
CSummeryl class is used to calculate the average and delta.

9.39 CSummarySettings Class
CSummarySettings class is used to save the summary application
parameter into the registry.

9.40 CTemperatureGraphSettingDlg Class
CTemperatureGraphSettingDlg class is used to input the temperature
graph bound.

9.41 CXAxisSettingDlg Class
CXAxisSettingDlg class is used to input the X-Axis scale.

WirelessUSB N:1 DVK Technical Reference Manual Page 76 of 86

10. APPENDIX

10.1 Hub State Machine

Data Mode

Packet
Received?

Packet Valid?

Bind Flag Set?

Update Corrupt
Counter

Device ID
Valid?

Data
Received?

Ping Request
Received?

Send ACKCommand to
Send?

Send Data

YES

YES

NO

YES

YES NO

YES

ACK
Received?

Device ID
Valid?

Send Data to Host

Send Ping
Response

YES YES

NO

YES

NO

NO

Update Corrupt
Counter

NO

Corrupt
Threshold
Reached?

NO

NO

Check RSSI

RSSI Counter
Threshold
Reached?

YES

Channel
Selection
Process

Quiet Channel
Found?

Set Channel
Clear Find Quiet

Channel Flag

Set Find Quiet Channel Flag
Increment Target Data Channel
Reset Quiet Channel Counter

Set Find Quiet Channel Flag
Increment Target Data Channel
Reset Quiet Channel Counter

Bind
Process

Find Quiet
Channel Flag Set?

Stop Bind
Process?

Clear Bind
Flag

Power On

Set Data PN Code
Set Data Channel

Set Find Quiet
Channel Flag

Command
Received from

Host?

Store
Command

Start Bind
Process?

Set Bind Flag

NO NO NO NO

YES

YES

YES

YES

YES
YES

NO

YES

NO

NONO

Bind Request
Received?

Bind Ping
ResponseYES

NO

WirelessUSB N:1 DVK Technical Reference Manual Page 77 of 86

10.2 Channel selection and Bind process

Channel Selection Process

Ping Response
Received?

Send Ping
Request

Check RSSI

RSSI Counter
Threshold
Reached?

NO

NO

YES

YES

Increment Target
Data Channel
Reset Quiet

Channel Counter
Increment Quiet
Channel Counter

Quiet Channel
Threshold
Reached?

Set Quiet Channel
Found

YES

Increment Bind
Channel

Set Bind Channel
and PN Code

Bind Request
Received?

Send Bind
Response

Send Device Info
to Host

Bind Timeout
Reached?

YES

NO

NO

YES

Set Data Channel
and PN Code

Bind Process
Set Channel to

Target Data
Channel

Set Data Channel

WirelessUSB N:1 DVK Technical Reference Manual Page 78 of 86

Sensor State Machine
Power On

Enter Bind
Mode?

Data Mode

Data to Send?

Build Data Packet

Poll for Data?

Build Empty Data
Packet

Receive ACK
or Data?

Data
Received?

ACK Timeout?

Retransmit
Timeout?

Process Data

YES

NO

YES

NO

YES

YES

YES

NO

NO

Sleep

YES

NO

Mark Data Sent

NO

NO

Set Channel
Search

Set Disconnected

Bound?

Clear Channel
Search

Send Data Packet

Bind Mode

Send Bind
Request*

Bind Response
Received?

Set Channel

Channel
Timeout

Reached?

Store Bind
Parameters

Bind Timeout
Reached?

Sleep

Set PN Code

YES

NO

YESYES
NO

NO

YES

Sleep
YES

NO

Channel
Search? NO

NO

Channel
Search?

NO

Set Channel

YES

Set Channel

If Accelerated Bind Mode is used
the Network Channel Subset and
Network PN Code are used.
Otherwise the Bind Channel
Subset and Bind PN Code are
used.

Synchronous
Data?

NO

YES

Use Network
Ping?

YES

YES
Send Network

Ping

Receive
Network Ping
Response?

Set ChannelClear Channel
Search

NO

Channel
Search

Timeout?

NO

Sleep

Channel
Search

Timeout? NO

Invalid Device
ID?

NO

YESClear Bound

WirelessUSB N:1 DVK Technical Reference Manual Page 79 of 86

10.3 Channel Subset Table
Shaded values are reserved for binding.

The equation for deriving the next channel in the sequence is:

(Current channel + NUM_OF_SUBSETS) mod NUM_OF_CH_USED

Reserved for binding

Subset Index

Channel
Configuration 1 2
Total Channels
Used 78 77
Channels/subset 13 11
Channel spacing 6 7
 0 1 2 3 4 5 0 1 2 3 4 5 6
 6 7 8 9 10 11 7 8 9 10 11 12 13
 12 13 14 15 16 17 14 15 16 17 18 19 20
 18 19 20 21 22 23 21 22 23 24 25 26 27
 24 25 26 27 28 29 28 29 30 31 32 33 34
 30 31 32 33 34 35 35 36 37 38 39 40 41
 36 37 38 39 40 41 42 43 44 45 46 47 48
 42 43 44 45 46 47 49 50 51 52 53 54 55
 48 49 50 51 52 53 56 57 58 59 60 61 62
 54 55 56 57 58 59 63 64 65 66 67 68 69
 60 61 62 63 64 65 70 71 72 73 74 75 76
 66 67 68 69 70 71 0 1 2 3 4 5 6
 72 73 74 75 76 77
 0 1 2 3 4 5

Channel Configuration 3 Channel Configuration 4
Total Channels Used 72 Total Channels Used 72
Channels/subset 9 Channels/subset 8
Channel spacing 8 Channel spacing 9

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8
8 9 10 11 12 13 14 15 9 10 11 12 13 14 15 16 17

16 17 18 19 20 21 22 23 18 19 20 21 22 23 24 25 26
24 25 26 27 28 29 30 31 27 28 29 30 31 32 33 34 35
32 33 34 35 36 37 38 39 36 37 38 39 40 41 42 43 44
40 41 42 43 44 45 46 47 45 46 47 48 49 50 51 52 53
48 49 50 51 52 53 54 55 54 55 56 57 58 59 60 61 62
56 57 58 59 60 61 62 63 63 64 65 66 67 68 69 70 71
64 65 66 67 68 69 70 71 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7

WirelessUSB N:1 DVK Technical Reference Manual Page 80 of 86

Channel Configuration 5 Channel Configuration 6
Total Channels Used 70 Total Channels Used 77
Channels/subset 7 Channels/subset 7
Channel spacing 10 Channel spacing 11

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10
10 11 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 18 19 20 21
20 21 22 23 24 25 26 27 28 29 22 23 24 25 26 27 28 29 30 31 32
30 31 32 33 34 35 36 37 38 39 33 34 35 36 37 38 39 40 41 42 43
40 41 42 43 44 45 46 47 48 49 44 45 46 47 48 49 50 51 52 53 54
50 51 52 53 54 55 56 57 58 59 55 56 57 58 59 60 61 62 63 64 65
60 61 62 63 64 65 66 67 68 69 66 67 68 69 70 71 72 73 74 75 76

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10

Channel Configuration 7
Total Channels Used 72
Channels/subset 6
Channel spacing 12

0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71

0 1 2 3 4 5 6 7 8 9 10 11

Channel Configuration 8
Total Channels Used 78
Channels/subset 6
Channel spacing 13

0 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38
39 40 41 42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77

0 1 2 3 4 5 6 7 8 9 10 11 12

WirelessUSB N:1 DVK Technical Reference Manual Page 81 of 86

10.4 16kbps PN Codes
 0x83, 0xF7, 0xA8, 0x2D, 0x7A, 0x44, 0x64, 0xD3, // PN Code ID 0 - Index 0
 0x3F, 0x2C, 0x4E, 0xAA, 0x71, 0x48, 0x7A, 0xC9, // PN Code ID 1 - Index 1
 0x17, 0xFF, 0x9E, 0x21, 0x36, 0x90, 0xC7, 0x82, // PN Code ID 2 - Index 2
// 0xA6, 0x46, 0xB5, 0x9A, 0x3A, 0x30, 0xB6, 0xAD, // PN Code ID 3 - Not Used
 0xBC, 0x5D, 0x9A, 0x5B, 0xEE, 0x7F, 0x42, 0xEB, // PN Code ID 4 - Index 3
 0x24, 0xF5, 0xDD, 0xF8, 0x7A, 0x77, 0x74, 0xE7, // PN Code ID 5 - Index 4
 0x3D, 0x70, 0x7C, 0x94, 0xDC, 0x84, 0xAD, 0x95, // PN Code ID 6 - Index 5
 0x1E, 0x6A, 0xF0, 0x37, 0x52, 0x7B, 0x11, 0xD4, // PN Code ID 7 - Index 6
 0x62, 0xF5, 0x2B, 0xAA, 0xFC, 0x33, 0xBF, 0xAF, // PN Code ID 8 - Index 7
 0x40, 0x56, 0x32, 0xD9, 0x0F, 0xD9, 0x5D, 0x97, // PN Code ID 9 - Index 8
 0x8E, 0x4A, 0xD0, 0xA9, 0xA7, 0xFF, 0x20, 0xCA, // PN Code ID 10 - Index 9
// 0x38, 0xB3, 0x31, 0xAB, 0x24, 0x78, 0xA6, 0xBD, // PN Code ID 11 – Not Used
 0x4C, 0x97, 0x9D, 0xBF, 0xB8, 0x3D, 0xB5, 0xBE, // PN Code ID 12 - Index 10
 0x0C, 0x5D, 0x24, 0x30, 0x9F, 0xCA, 0x6D, 0xBD, // PN Code ID 13 - Index 11
// 0x29, 0x29, 0x7B, 0xB5, 0xC8, 0xF4, 0x4D, 0x8A, // PN Code ID 14 – Not Used
 0x50, 0x14, 0x33, 0xDE, 0xF1, 0x78, 0x95, 0xAD, // PN Code ID 15 - Index 12
// 0xD6, 0xA6, 0xAA, 0x10, 0x96, 0xB3, 0xA6, 0xA7, // PN Code ID 16 – Not Used
// 0xF6, 0xCE, 0x0D, 0x12, 0xE3, 0x66, 0xA6, 0x94, // PN Code ID 17 – Not Used
 0x0C, 0x3C, 0xFA, 0xF9, 0xF0, 0xF2, 0x10, 0xC9, // PN Code ID 18 - Index 13
 0xF4, 0xDA, 0x06, 0xDB, 0xBF, 0x4E, 0x6F, 0xB3, // PN Code ID 19 - Index 14
// 0x93, 0x9C, 0x4E, 0x14, 0x1A, 0x39, 0xCF, 0xE6, // PN Code ID 20 – Not Used
// 0xC9, 0x2C, 0x06, 0x93, 0x86, 0xB9, 0x9E, 0xD7, // PN Code ID 21 – Not Used
 0x9E, 0x08, 0xD1, 0xAE, 0x59, 0x5E, 0xE8, 0xF0, // PN Code ID 22 - Index 15
 0xC0, 0x90, 0x8F, 0xBB, 0x7C, 0x8E, 0x2B, 0x8E, // PN Code ID 23 - Index 16
 0x80, 0x69, 0x26, 0x80, 0x08, 0xF8, 0x49, 0xE7, // PN Code ID 24 - Index 17
 0x7d, 0x2d, 0x49, 0x54, 0xd0, 0x80, 0x40, 0xC1, // PN Code ID 25 - Index 18
 0xB6, 0xF2, 0xE6, 0x1B, 0x80, 0x5A, 0x36, 0xB4, // PN Code ID 26 - Index 19
 0x42, 0xAE, 0x9C, 0x1C, 0xDA, 0x67, 0x05, 0xF6, // PN Code ID 27 - Index 20
 0x9B, 0x75, 0xF7, 0xE0, 0x14, 0x8D, 0xB5, 0x80, // PN Code ID 28 - Index 21
 0xBF, 0x54, 0x98, 0xB9, 0xB7, 0x30, 0x5A, 0x88, // PN Code ID 29 - Index 22
 0x35, 0xD1, 0xFC, 0x97, 0x23, 0xD4, 0xC9, 0x88, // PN Code ID 30 - Index 23
 0xE1, 0xD6, 0x31, 0x26, 0x5F, 0xBD, 0x40, 0x93, // PN Code ID 31 - Index 24
 0xDC, 0x68, 0x08, 0x99, 0x97, 0xAE, 0xAF, 0x8C, // PN Code ID 32 - Index 25
 0xC3, 0x0E, 0x01, 0x16, 0x0E, 0x32, 0x06, 0xBA, // PN Code ID 33 - Index 26
 0xE0, 0x83, 0x01, 0xFA, 0xAB, 0x3E, 0x8F, 0xAC, // PN Code ID 34 - Index 27
 0x5C, 0xD5, 0x9C, 0xB8, 0x46, 0x9C, 0x7D, 0x84, // PN Code ID 35 - Index 28
 0xF1, 0xC6, 0xFE, 0x5C, 0x9D, 0xA5, 0x4F, 0xB7, // PN Code ID 36 - Index 29
 0x58, 0xB5, 0xB3, 0xDD, 0x0E, 0x28, 0xF1, 0xB0, // PN Code ID 37 - Index 30
// 0x9A, 0xD6, 0x95, 0xBA, 0xA4, 0xC5, 0x32, 0x9C, // PN Code ID 38 – Not Used
 0x5F, 0x30, 0x3B, 0x56, 0x96, 0x45, 0xF4, 0xA1, // PN Code ID 39 - Index 31
 0x03, 0xBC, 0x6E, 0x8A, 0xEF, 0xBD, 0xFE, 0xF8, // PN Code ID 40 - Index 32
 0x88, 0x17, 0x13, 0x3B, 0x2D, 0xBF, 0x06, 0xD6, // PN Code ID 41 - Index 33
 0xF1, 0x94, 0x30, 0x21, 0xA1, 0x1C, 0x88, 0xA9, // PN Code ID 42 - Index 34
 0xD0, 0xD2, 0x8E, 0xBC, 0x82, 0x2F, 0xE3, 0xB4, // PN Code ID 43 - Index 35
 0x8C, 0xFA, 0x47, 0x9B, 0x83, 0xA5, 0x66, 0xD0, // PN Code ID 44 - Index 36
 0x07, 0xBD, 0x9F, 0x26, 0xC8, 0x31, 0x0F, 0xB8, // PN Code ID 45 - Index 37
// 0xD7, 0xA1, 0x54, 0xB1, 0x5E, 0x89, 0xAE, 0x86, // PN Code ID 46 – Not Used
 0xEF, 0x03, 0x95, 0x89, 0xB4, 0x71, 0x61, 0x9D, // PN Code ID 47 - Index 38
 0x40, 0xBA, 0x97, 0xD5, 0x86, 0x4F, 0xCC, 0xD1, // PN Code ID 48 - Index 39

10.5 64kbps PN Codes
 0x6A, 0xE7, 0x01, 0xEA, 0x03, 0xFD, 0x13, 0xD2, // PN Code ID 1
 0xDC, 0xC0, 0x6B, 0xB8, 0x2B, 0x09, 0xBB, 0xB2, // PN Code ID 2
 0xA3, 0x1E, 0xF2, 0xA4, 0x31, 0x32, 0x7A, 0xB3, // PN Code ID 3

WirelessUSB N:1 DVK Technical Reference Manual Page 82 of 86

 0x44, 0x83, 0x3B, 0xDD, 0x14, 0xCF, 0x8E, 0xC9, // PN Code ID 4
 0x35, 0x35, 0x4E, 0xC5, 0xF3, 0x52, 0x47, 0xB0, // PN Code ID 5
 0x7C, 0x23, 0x8A, 0xCE, 0x45, 0x5C, 0x54, 0xD7, // PN Code ID 6
 0x81, 0xAC, 0xFB, 0x83, 0x7A, 0x9A, 0x61, 0xAC, // PN Code ID 7
 0x3C, 0x12, 0x5F, 0x9C, 0x39, 0x98, 0xF6, 0x8A, // PN Code ID 8

11. REFERENCES

Consistent Overhead Byte Stuffing (COBS) (IEEE April 1999 Transactions
on Networking Paper)

WirelessUSB LR 2.4-GHz DSSS Radio SoC (Document 38-16008)

WirelessUSB N:1 DVK Technical Reference Manual Page 83 of 86

12. INDEX

A
ACK9, 11, 12, 13, 15, 16, 22, 23, 24, 25, 26,

27, 47, 53
ACK Packet.................................. 15, 16, 22
ACK Toggle.. 15, 27
Actuator.. 6, 7, 73
Analog.................... 7, 28, 29, 50, 53, 54, 55
Average.. 73, 74, 75

B
Back Channel....................................... 6, 26
Battery...............8, 28, 29, 38, 49, 62, 65, 66
Baud................................. 30, 49, 63, 70, 75
Bind....12, 13, 14, 15, 16, 17, 18, 19, 20, 24,

27, 32, 33, 34, 35, 40, 41, 42, 43, 44, 45,
47, 51, 52, 53, 54, 61, 63, 64, 74, 77, 79
Bind Mode..12, 13, 17, 18, 19, 20, 24, 27,

33, 41, 45
Seeded Bind .. 64

Bind Information Response.... 40, 42, 44, 61
Bind Request .12, 13, 14, 17, 18, 19, 20, 33,

47
Bind Response.....12, 13, 14, 15, 17, 18, 19,

40, 43, 47, 61
Broadcast............................... 12, 13, 15, 20
Build ... 43, 58

C
Channel

Change Channel 40, 43, 46, 61, 64
Configuration...................... 31, 32, 79, 80
Search................................ 17, 19, 22, 23
Selection 17, 20, 21, 24
Subset....9, 19, 20, 21, 22, 27, 31, 32, 33,

34, 79
Checksum Seed...10, 12, 13, 15, 16, 17, 31,

32
COBS................................. 6, 39, 58, 69, 82
COM... 70, 72, 73
Compile.. 39, 48, 53
Configuration.............. 31, 32, 40, 42, 61, 63
Connect.. 47, 63
Control Dialog .. 62

CRC.....9, 10, 11, 12, 13, 14, 15, 16, 17, 31,
32, 33, 36, 38, 39, 48, 50, 53, 54

CRC Seed12, 13, 31, 32
Cyclic Redundancy Check....................9, 11

D
Data Mode12, 14, 17, 20, 21, 22, 23, 24, 25,

26, 27
Data Packet 7, 11, 16, 17, 22, 24, 26, 48, 53
DDR..37
Debug43, 47, 53, 55, 56
Delete Node............................40, 41, 44, 61
Development6, 13, 22, 48, 59
Development Environment48, 59
Device ID .12, 13, 14, 15, 16, 17, 19, 22, 30,

32, 33, 36, 38, 39, 41, 43, 44, 46, 47
DIP Switch ..29
Direct Sequence Spread Spectrum6
Download..48
DSSS..6, 9, 82

E
Enumerate40, 42, 44, 60, 61, 63
Enumerate Devices40, 42, 44, 60, 61, 63
Error..................9, 10, 11, 29, 45, 51, 70, 72
Error Correction9, 10, 11
Expansion Header29

F
Firmware 6, 8, 12, 30, 31, 32, 33, 34, 36, 39,

42, 43, 48, 52, 59, 74
Firmware Configuration52
FRAM ...30, 41
Function...28, 39, 50, 51, 54, 55, 62, 64, 65,

67, 70, 73

G
Graph..61, 62, 63, 64, 66, 67, 68, 69, 73, 75
GUI ...43

H
Hardware6, 28, 54, 56, 58, 59, 71

WirelessUSB N:1 DVK Technical Reference Manual Page 84 of 86

Header .6, 10, 11, 12, 24, 26, 28, 29, 32, 38,
39, 50

Host..6, 8, 30, 31, 33, 35, 39, 40, 41, 42, 43,
44, 45, 47, 48, 49, 53, 54, 58

Host Commands 40, 43
 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20,

22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34,
35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 52, 53, 54, 58, 59, 60, 61, 62,
63, 64, 65, 74, 76

Hub Info 40, 43, 60, 61, 63, 64
Hub Responses 43

I
Interface7, 28, 30, 31, 38, 39, 49, 51, 55,

57, 58
Interference.............. 8, 9, 10, 18, 23, 45, 49
Interrupt.............................. 7, 37, 51, 54, 55
Interrupts...................................... 51, 54, 55
Invalid Device ID 27
ISP ... 7, 48
ISSP... 7, 28

L
LED.................................. 37, 38, 39, 62, 66

M
Manufacturing ID..12, 13, 14, 15, 17, 18, 19,

31
MID 7, 12, 13, 14, 15, 30, 31, 32, 33, 42, 43,

44, 65, 66, 74

N
Network Configure 40, 45, 61
Network Status................. 40, 42, 45, 61, 63

P
Packet ..7, 10, 11, 13, 14, 15, 16, 17, 18, 20,

23, 24, 25, 26, 27, 32, 35, 36, 37, 38, 39,
44, 47, 48, 50, 51, 53, 66, 69

Packet Header 13, 14, 15, 16
Packet Retransmission 9, 11
Packet Type 13, 16
Pane... 61, 63, 64
Parity.. 47, 70
Payload ..6, 7, 11, 12, 13, 16, 17, 27, 36, 38,

41, 44, 46, 48, 50, 53, 62, 64
Ping Packet.. 15

PN Code9, 10, 12, 13, 14, 17, 18, 19, 20,
27, 31, 32, 33, 34, 41, 42, 45, 46, 62, 74,
81, 82

Porting ..54
Potentiometer28, 29, 63, 64, 66, 67
Power8, 28, 29, 30
Preferences ..63
Programming7, 19, 28, 47, 49, 54
Proto Board ..6, 29
Protocol .7, 8, 11, 13, 17, 31, 32, 34, 36, 37,

39, 47, 49, 51, 53, 57, 58, 62, 71
Protocol API..49
PSoC Microcontroller.....6, 7, 28, 29, 30, 34,

36, 47, 48, 49, 53, 54, 55, 56, 57

R
Radio7, 8, 12, 14, 15, 20, 28, 30, 31, 32, 35,

36, 37, 42, 43, 45, 46, 47, 48, 49, 51, 54,
55, 56, 57, 74, 82

Record ..63
Registry63, 73, 74, 75
Reset .16, 27, 33, 34, 40, 42, 43, 45, 60, 61,

64
Response 15, 17, 19, 20, 22, 40, 42, 43, 44,

45, 46, 61
Retry ..35
Rseponse 11, 21, 23, 24, 33, 39, 41, 44, 45,

47, 61
RSSI ...7, 20, 24, 48

S
Seed12, 13, 31, 53, 57
Seeded Bind17, 19, 20, 27, 41
Send Message............40, 41, 44, 61, 62, 64
 7, 8, 12, 14, 15, 16, 17, 18, 19, 22, 23,

24, 25, 26, 27, 29, 30, 33, 34, 36, 37, 38,
43, 44, 47, 48, 51, 52, 53, 54, 59, 61, 63,
73, 78

Sequence Numbering..6, 12, 15, 16, 17, 19,
24, 26, 27, 31, 43, 47, 54, 79

Serial6, 7, 30, 37, 39, 47, 49, 53, 54, 55, 56,
59, 60, 62, 63, 69, 70, 71, 72, 73, 75

Serial Port...63
Serial RAM ...30
Sleep18, 20, 53, 54, 55
Software6, 32, 33, 36, 43, 49, 59, 60, 71
SPI..30, 55, 57
Spread Spectrum..6
Star ...8

WirelessUSB N:1 DVK Technical Reference Manual Page 85 of 86

Star Network .. 8
Status.30, 42, 43, 44, 45, 46, 48, 60, 61, 62,

65, 66, 72, 74
Synchronous 16, 26, 27, 39

T
Temperature ..26, 61, 62, 63, 64, 66, 67, 73,

75
Timeout .. 18

U
Unknown Command40, 46

X
XOR..........11, 14, 15, 16, 17, 33, 38, 39, 51

WirelessUSB N:1 DVK Technical Reference Manual Page 86 of 86

Revision Date Changes

1.0 10/12/04 Initial Release

WirelessUSB is a trademark of Cypress Semiconductor
PSoC is a trademark of Cypress Microsystems

	INTRODUCTION
	Audience
	Overview
	Design Goals
	Definitions

	WIRELESSUSB™ N:1 PROTOCOL
	Introduction
	WirelessUSB N:1 Hub
	WirelessUSB N:1 Sensor (Remote Device)

	WirelessUSB Radio
	Channel Management
	Pseudo-Noise Codes

	Error Correction
	Chip Error Correction
	Bit Error Correction
	Cyclic Redundancy Check (CRC)
	Packet Retransmission

	Network Parameters
	Radio Manufacturing ID
	Network Channel
	Network PN Code
	Device ID
	Network Checksum Seed
	Network CRC Seed

	Bind Parameters
	Packet Structures
	Bind Request Packet (Sensor)
	Bind Response Packet (Hub)
	Ping Packet (Hub)
	ACK Packet (Hub and Sensor)
	Data Packet (Hub and Sensor)

	Protocol Modes
	Automatic Bind Mode
	Sensor (Remote Device)
	Hub

	Seeded Bind Mode
	Sensor (Remote Device)
	Hub

	Channel Selection Mode (Hub Only)
	Channel Search Mode (Sensor Only)
	Data Mode
	Sensor
	Hub

	Data Toggle
	Synchronous Data
	Invalid Device ID
	Sequence Bit Reset

	HARDWARE OVERVIEW
	I/O pin assignments
	Analog interface
	Potentiometer
	DIP Switches

	Sensor Battery Life
	Prototype Expansion Header
	Serial RAM (FRAM)
	Hub Power Considerations

	PROTOCOL/NETWORK MANAGEMENT
	Network Parameters
	Channel Subsets
	PN Code ID
	Device ID
	Checksum Seed and CRC Seed

	Binding Methods
	Automatic Bind
	Seeded Bind
	Automatic vs. Seeded Bind Selection

	RADIO OVERVIEW
	Radio timing
	Maximizing Range

	FIRMWARE ARCHITECTURE
	Theory of Operation
	Interference Avoidance
	Interface Between Hub and Sensor
	Interface Between Host and Hub
	Host Commands to the Hub
	Get Hub Information
	Bind
	Delete Node
	Send Message
	Enumerate Devices
	Network Configuration
	Network Status
	Reset
	Change Channel
	Miscellaneous

	Hub Responses to Host Commands
	Hub Info Response
	Bind Response
	Bind Information Response
	Delete Node Response
	Send Message Response
	Incoming Message
	Enumerate Devices Response
	Network Configure Response
	Network Status Response
	Reset
	Change Channel Response
	Unknown Command Response
	STATUS

	Serial Output on the Host

	FIRMWARE CUSTOMIZATION
	Development Environment
	PSoC Designer 4.1 Patch Files

	Data Rates
	Host Baud Rate
	Protocol API
	TX data flow
	Receive data flow:
	Sensor Binding process

	Firmware Configuration
	Config.h
	Main.c/h (Hub and Sensor)
	Protocol.h

	Porting considerations
	Interrupts
	PSoC Analog and Digital Block Usage

	Files/ Functions
	Common files
	config.h
	cydefine.h
	cywusb693_.h
	debug.c & .h
	hardware.c & .h
	nvram.c & .h
	protocol.c & .h
	radio.c & .h
	spi.c & .h
	timer.c & .h
	version.h

	Hub Specific files
	host.c & .h (Hub Only)
	Hub.c & .h (Hub Only)
	main.c (Hub Version)

	Sensor specific files
	main.c & h
	sensor.c & h
	multisim.c & .h

	SOFTWARE ARCITECTURE
	Overview
	Development Environment

	SOFTWARE CODE CLASSES
	CNto1App Class
	CMainFrame Class
	CDetailView Class
	CRowListView Class
	CMessageView Class
	CGraphView Class
	CGraphSeries Class
	CGraph Class
	CCobsPackets Class
	CSerial Class
	CSerialEx Class
	CSerialWnd Class
	CAboutDlg Class
	CActuatorOjbect Class
	CAppSetting Class
	CAvgFuncRegistry Class
	CCalibrationDlg Class
	CChangeDefaultSensorIntervalDlg Class
	CDefaultSensorIntervalSetting Class
	CDeltaDlg Class
	CGraphSetting Class
	CHexEditBase Class
	CHubConfigDlg Class
	CHubInfoDlg Class
	CListViewEx Class
	CMainWndPlacement Class
	CNetworkEfficiency Class
	CNetworkInfoDlg Class
	CProgressBar Class
	CRegistry Class
	CRegSettings Class
	CSelectDlg Class
	CSensorName Class
	CSerPortDlg Class
	CSerPortSetting Class
	CSubclassWnd Class
	CSubclassWndMap Class
	CSummeryl Class
	CSummarySettings Class
	CTemperatureGraphSettingDlg Class
	CXAxisSettingDlg Class

	APPENDIX
	Hub State Machine
	Channel selection and Bind process
	Channel Subset Table
	16kbps PN Codes
	64kbps PN Codes

	REFERENCES
	INDEX

