

CY4632 Bridge Firmware
 User’s Guide

Cypress Semiconductor
3901 North First Street
San Jose, CA 95134

 408-943-2600

October 1, 2004

Cypress Semiconductor Corporation Page 1/20

CY4632 Keyboard Firmware User’s Guide
Table of Contents

1. Introduction..4
1.1 Background Information ...4

2. Definitions...5
3. LS HID Bridge..6

3.1 Bridge Photographs ...6
3.2 File Descriptions..7
3.3 Compiling the Bridge Firmware..8
3.4 Bridge Radio Firmware Details...8

3.4.1 reset ..8
3.4.2 radio_init...8
3.4.3 load_pn_code..8
3.4.4 setup_rx ..8
3.4.5 setup_tx...8
3.4.6 endpoint0 ..8
3.4.7 endpoint1 ..8
3.4.8 endpoint2 ..9
3.4.9 power_on_mode (auto bind only)...9
3.4.10 ping_mode (auto bind only)...9
3.4.11 idle_mode (auto bind only) ..9
3.4.12 bind_mode (auto bind only)...9
3.4.13 connected_mode ..9
3.4.14 process_data...9
3.4.15 process_rx_int..10
3.4.16 verify_packet ...10
3.4.17 transmit_sys ...10
3.4.18 transmit_app...10

3.5 Bridge Application Firmware Details..10
3.5.1 Keyboard Application Specific Code ...11
3.5.2 Mouse Application Specific Code ..13
3.5.3 UpKey Application Specific Code ...14
3.5.4 EEPROM Related Functionality...15

3.6 Other Bridge Functionality..16
3.6.1 Remote Wakeup ...16
3.6.2 The RadioParams Report..17
3.6.3 Manufacturing Test Mode ..19

4. References...20

Cypress Semiconductor Corporation Page 2/20

Table Listings

Table 1: Source File Descriptions.. 7

Figure Listings
Figure 1: RDK Bridge Top ... 6
Figure 2: RDK Bridge Bottom.. 7

Cypress Semiconductor Corporation Page 3/20

1. INTRODUCTION

WirelessUSB™ LS is the ideal solution for a low-cost, low-power
wireless device. The purpose of the WirelessUSB LS RDK is to
provide a reference design wireless keyboard and mouse
implementation. This document gives an overview of the firmware
for the enCoRe™-based USB bridge and describes the steps
needed to compile the firmware.

The WirelessUSB LS RDK supports the following features:

 Supports a Wireless USB LS keyboard and mouse

 Supports USB certification with the USBCV test application

 64 kbps data rate

 2-way communication

 Automatic bind procedure

Cypress Semiconductor Corporation Page 4/20

1.1 Background Information

This document assumes the reader to be familiar with the general
operation of WirelessUSB LS and USB HID devices. For more
information on WirelessUSB LS please refer to WirelessUSB
Theory of Operation and WirelessUSB LS 2-Way HID Systems
application notes.

Cypress Semiconductor Corporation Page 5/20

2. DEFINITIONS

Following are some definitions of acronyms and words found in this
document. There may be other meanings to these definitions
outside of this document.

Bridge – The Bridge is the receiving radio and USB hardware that
connects to the PC and enumerates as a Human Interface Device.

Device – The reference to device in this document means the
keyboard or mouse device that is sending radio packets to the
bridge.

DVK – A development kit produced by Cypress Semiconductor for
showcasing Cypress products with a working development
environment.

Encore – The CY7C63743-PC chip that serves as the CPU for the
bridge.

HID – Stands for Human Interface Device and is a product that
allows an individual to interface with a computer. A keyboard and
mouse are HID devices.

RDK – A reference design kit produced by Cypress Semiconductor
and used by 3rd parties to produce off-the-shelf products.
Everything required to take a product to production is included in
the kit. This document is part of the CY4632 Mouse/Keyboard
RDK.

USB – The acronym for Universal Serial Bus, a well-known serial
standard used in the computing world.

WirelessUSB™ – a trademark name for Cypress 2.4 GHz radio
products.

3. LS HID BRIDGE

The WirelessUSB LS HID Bridge is provided with the RDK. This
bridge may be plugged into the USB port on a PC to provide the
Wireless USB bridge functionality. The bridge firmware runs on an
enCoRe™ CY7C63743-PC chip, is written in assembly, and runs
on the PDC-9168 USB HID Bridge. The rest of this section gives a
functional overview of the bridge firmware.

The bridge connects the remote WirelessUSB LS peripheral to a
low-speed USB host. This firmware supports 2-way communication
with bridge and HID devices configured as transceivers.

The RDK also includes a WirelessUSB LS keyboard and
WirelessUSB LS mouse hardware. Standard USB HID packets are
encapsulated inside WirelessUSB LS packets, which also contain a
packet header and checksum to help the bridge correctly process
the USB HID data packets. Valid packets are then sent via USB to
the USB host.

3.1 Bridge Photographs

Figure 1 shows the topside of the RDK Bridge board. The button
on the lower left of the board is the “bind” button.

Figure 1: RDK Bridge Top

Cypress Semiconductor Corporation Page 6/20

Figure 2 shows the bottom side of RDK Bridge board.

Figure 2: RDK Bridge Bottom

3.2 File Descriptions

The USB HID Bridge firmware is contained in the
“Firmware\Source Code\RDK Bridge” directory on the CD. The
purpose(s) of each file are shown in the following table:

Table 1: Source File Descriptions

Bridge Firmware
Filename Purpose
config.inc Include file containing all user-configurable options
wusb-ls-headers.inc Include file containing application specific items
637xx.inc Include file containing chip specific items
usb.inc Include file containing USB specific items
USBcode.asm Assembly file containing source code for USB functionality
rdk_kbm desc.inc Include file containing descriptor tables for USB HID

keyboard/mouse combo
rdk_keyboard.asm Assembly file containing source code for keyboard
rdk_mouse.asm Assembly file containing source code for mouse
radio.inc Include file containing radio specific items
radio.asm Assembly file containing source code for controlling the WirelessUSB

LS radio
wusb-ls-main.asm Assembly file containing protocol source code
bind-auto.asm Assembly file containing the auto bind procedure
dvk_hardware.asm Assembly file containing bind button checking and LED routines.
E2.asm Assembly file containing functions for accessing non-volatile

memory.
utilities.asm Assembly file containing helper functions for receiving data, verifying

packets, transmitting packets, etc. (2-way only)
mfgtest.asm Assembly file containing the manufacturing test source code
encrypt.asm Assembly file containing encryption functions not included on the

CD. Contact Cypress Application support for source code.
encrypt_support.asm Assembly file containing encryption helper functions not included on

the CD. Contact Cypress Application support for source code.

Cypress Semiconductor Corporation Page 7/20

3.3 Compiling the Bridge Firmware

CYASM.EXE version 1.96 or higher is required to compile the
bridge firmware. To compile type the following at a command
prompt:

cyasm wusb-ls-main.asm

The CY7C63000 device programmer can be used to program
enCoRe chips. The CY3083-07 adapter board is required. The
CY3654 Developer Kit and CY3654-PO5 Personality Board are
required to emulate the enCoRe (CY7C63743-PC). Technical and
ordering information can be found at: http://www.cypress.com.

3.4 Bridge Radio Firmware Details

3.4.1 reset

On reset, the firmware initializes the radio and then waits until the
USB host enumerates the device.

3.4.2 radio_init

This routine brings the radio out of reset and waits for the radio to
be ready.

3.4.3 load_pn_code

This routine loads the PN Code from ROM into the radio registers.

3.4.4 setup_rx

Puts the radio into receive mode.

3.4.5 setup_tx

Puts the radio into transmit mode.

3.4.6 endpoint0

USB control endpoint handler. This interrupt handler formulates
responses to USB SETUP and CONTROL transactions.

Cypress Semiconductor Corporation Page 8/20

3.4.7 endpoint1

http://www.cypress.com/

This interrupt routine handles the reserved data endpoint 1 (for a
mouse). This interrupt happens every time a host sends an IN on
endpoint 1. The data to send (NAK or data packet) is already
loaded, so this routine just prepares the DMA buffers for the next
packet.

3.4.8 endpoint2

3.4.9 power_on_mode (auto bind only)

power_on_mode initializes the channel and PN Code(s) and
jumps to ping_mode.

3.4.10 ping_mode (auto bind only)

ping_mode implements ping mode as described in WirelessUSB
LS 2-Way HID Systems application note. Upon finding an available
channel the bridge will jump to idle_mode. If the bind button is
pressed while in ping mode the bridge will jump to bind_mode.

3.4.11 idle_mode (auto bind only)

idle_mode implements idle mode as described in WirelessUSB
LS 2-Way HID Systems application note. After establishing a
connection the bridge will jump to connected_mode. If the bind
button is pressed while in idle mode the bridge will jump to
bind_mode.

3.4.12 bind_mode (auto bind only)

bind_mode implements bind mode as described in WirelessUSB
LS 2-Way HID Systems application note. After binding with a HID
(or timing out) the bridge will jump to ping_mode.

3.4.13 connected_mode

connected_mode implements connected mode as described in
WirelessUSB LS 2-Way HID Systems application note.

When a data packet is received from a WirelessUSB device, the
packet is processed and the appropriate HID report is submitted to
the USB by process _data routine.

Cypress Semiconductor Corporation Page 9/20

3.4.14 process_data

This routine checks for retransmitted packets (and discards the
packet if it is a retransmission). If the packet contains new data it is
loaded into the USB DMA buffer (app_data_received_a/b
routines send the data to the USB host when it is polled for data).
Receipt of the data from the device is then acknowledged via an
ACK or an ACK/DATA packet.

3.4.15 process_rx_int

This routine is called when an interrupt occurs while the radio is in
receive mode. The values of the valid and data registers are read
and stored. If the end of frame (EOF) is reached a flag is set.

3.4.16 verify_packet

The parity is computed and compared to the received parity. If the
parity is correct the valid field is then used to fix up to eight bit
errors (one bit per bit position) using the valid bytes, received data
and the checksum field. If more than one bit per bit position is
invalid the packet is marked corrupt. After the packet has been
fixed (if necessary) the checksum is calculated and compared to
the received checksum. If the checksum is correct the packet is
marked as valid.

3.4.17 transmit_sys

transmit_sys handles the transmission of all non-application
packets such as BIND RESPONSE, CONNECT RESPONSE,
PING and ACK packets.

3.4.18 transmit_app

transmit_app handles the transmission of all application packets
such as DATA and ACK/DATA packets.

Cypress Semiconductor Corporation Page 10/20

3.5 Bridge Application Firmware Details

The bridge includes application related functionality to operate with
the wireless keyboard and mouse. This includes code to service
keyboard and mouse reports, code to implement UpKey
functionality, and EEPROM related functionality.

Keyboard and mouse reports are generated by the HID devices,
and sent over the air to the radio. In order to minimize the amount
of data to be sent over the air, the HID devices use variable length

packets so that only the necessary bytes are sent. The enCoRe
then process these reports by expanding them to the packet size
defined in the HID report descriptors and sends them to the host
PC.

The UpKey functionality provides an UpKey (break, or null key) to
the host PC in the event that the HID device looses its connection
or power and fails to provide the required upkey. When a device
has transmitted a downkey (make key), the host PC will normally
repeat outputting that key until it receives the UpKey (break key).
With wireless devices, this can cause a problem if the wireless
device fails to provide the UpKey. The bridge firmware provides this
functionality in the event that the wireless device looses the current
connection.

The EEPROM related code provides non-volatile storage to the
bridge.

3.5.1 Keyboard Application Specific Code

Cypress Semiconductor Corporation Page 11/20

3.5.1.1 app_data_received_a

Input:
X Reg = ByteLenRept = Byte length of input report (-2 for hdr,
chksum)
A Reg = NullPktDataBits = additional info
 0x00 => UpKey (UpKeyStandardKeys only)
 0x02 => KeepAlive
Keyboard Report bytes in byte_buffer[], app_buffer[]

Background:
byte_buffer[] contains the input bytes from the radio including the
header.
app_buffer[] points to the first data byte.
app_buffer is currently 1 byte offset from byte_buffer to skip the 1
byte header, but app_buffer[] should be used to allow changes in
the length of the header (i.e. to allow it to use a two byte header).

Note: hdr=HeaderByte sc=ScanCode mod=modifier
chk=checksum res=reserved
 ReptType = report type, ConsumerKeys = Multimedia Keys

Input Examples: (character "a" = "0x04", see Hid Usage Tables)
byte_buffer[]= 40 04 ; "a"
 app_buffer[]= 04 ; "a"

Cypress Semiconductor Corporation Page 12/20

More app_buffer examples:
 ReptType/sc1 ; Scan Code 1 or RptType ConsumerKeys=0xFF PowerKeys=0xFE
 | mod ; Modifier keys (in StandardKeys reports only)
 | | sc2 ; Scan Code 2 ...
 | | |
04 ; "a"
04 20 ; "<RightShift>a"
04 00 20 ; "a" and "3"
04 20 20 ; "<RightShift>" and "A" and "3"
FF 00 E2 ; ConsumerKeys "<mute>"
FE 82 ; PowerKeys "<sleep>"
04 20 05 06 07 08 ; "A" "B" "C" "D" "E"

Note that the second byte, if present is the modifier keys, and it
always gets sent when there is more than a single key in the packet
(even if there are no modifier keys pressed and the value is zero).
This is based on the assumption that the most common report will
contain a single key press and no modifiers. Also note that not
more than 5 data bytes + modifier should be sent over the air since
the 6th will not make it to the PC (1 byte is displaced by Report ID)

Processing:
Forms the USB report (swap modifier, add res byte, ReportID)
and sends data to USB.

UpKey detection - certain values identify Upkeys (don't use header
byte)
if (ByteLenRept == 0) and (NullPktDataBits == 0) then
UpKeyStandardKeys
if (ByteLenRept == 1) and (RptType == 0xFF) then
UpKeyConsumerKeys
if (ByteLenRept == 1) and (RptType == 0xFE) then
UpKeyPowerKeys

ReportTypeBatteryVoltage -
if (ByteLenRept == 2) and (RptType == 0xFD) then
ReportTypeBatteryVoltage

So a sequence would be:
ByteLenRept NullPktDataBits app_buffer:
 1 0 04 ; "a"
 0 0 ; UpKeyStandardKeys
 3 0 FF 00 E2 ; ConsumerKeys "<mute>"
 1 0 FF ; UpKeyConsumerKeys
 3 0 FE 82 ; PowerKeys "<sleep>"
 1 0 FE ; UpKeyPowerKeys

A KeepAlive sequence would be:
 1 0 04 ; "a"
 0 2 ; KeepAlive
 0 2 ; KeepAlive ...
 0 0 ; UpKeyStandardKeys

Output:
Sends USB packet out EP1.
ep1_dmabuff = data to USB

Output Examples:
RptId mod res key
 01 00 00 04 00 00 00 00 ; "a"
 01 00 00 00 00 00 00 00 ; UpKeyStandardKeys
 01 00 00 59 00 00 00 00 ; "1" (keypad 1)
 01 00 00 00 00 00 00 00 ; UpKeyStandardKeys
 01 00 00 16 5B 00 00 00 ; "s" and "3"
 01 00 00 00 00 00 00 00 ; UpKeyStandardKeys
 01 20 00 04 05 06 07 08 ; "<RightShift>" and "A" "B" "C" "D" "E"
 01 00 00 00 00 00 00 00 ; UpKeyStandardKeys
 02 E2 00 ; ConsumerKeys "<mute>"
 02 00 00 ; UpKeyConsumerKeys
 03 82 ; PowerKeys "<sleep>"
 03 00 ; UpKeyPowerKeys

3.5.2 Mouse Application Specific Code

Cypress Semiconductor Corporation Page 13/20

3.5.2.1 app_data_received_b

Input:
X Reg = ByteLenRept = Byte length of input report (-2 for hdr,
chksum)
A Reg = NullPktDataBits = additional info
 0x02 => KeepAlive
Mouse Report bytes in byte_buffer[], app_buffer[]

Background:
byte_buffer[] contains the input bytes from the radio including the
header.
app_buffer[] points to the first data byte.
app_buffer is currently 1 byte offset from byte_buffer to skip the 1
byte header, but app_buffer[] should be used to allow changes in
the length of the header (i.e. to allow it to use a two byte header).

Note: hdr=HeaderByte sc=ScanCode mod=modifier
chk=checksum res=reserved
 ReptType = report type, ConsumerKeys = Multimedia Keys

Input Examples:
byte_buffer[]= 45 01 01 ; Move X=1, Y=1
 app_buffer[]= 01 01 ; Move X=1, Y=1
 app_buffer[]= 01 01 20 ; Move X=1, Y=1, LButton

Processing:
Forms the USB report (translate button bits) and sends data to
USB.

UpKey detection -
The mouse does not use a special condition (as the keyboard
does) to identify mouse UpKeys. Instead, a mouse UpKey is a
normal mouse report with the button values set to 0. This report is
normally sent when a mouse button is released. This routine will
still handle a null report as an UpKey because the UpKey timeout
results in a null report being generated.

KeepAlive detection -
The mouse uses a special condition to represent a KeepAlive
message when a mouse button is held down. For the mouse, the
KeepAlive message is a Null Packet header byte with the
KeepAlive bit set. The calling routine puts this information into
the A register - NullPktDataBits.

ReportTypeBatteryVoltage -
if (ByteLenRept == 4) then ReportTypeBatteryVoltage

So a sequence would be:
ByteLenRept NullPktDataBits app_buffer:
 2 0 01 01 ; Move X=1, Y=1
 3 0 01 01 20 ; Move X=1, Y=1, LButton
 3 0 00 00 00 ; UpKeyMouse

A KeepAlive sequence would be:
 3 0 00 00 20 ; LButton
 0 2 ; KeepAlive
 0 2 ; KeepAlive ...
 3 0 00 00 00 ; UpKeyMouse

Output:
Sends USB packet out EP2.
ep2_dmabuff = data to USB

Output Examples:
Button mod res key
 00 01 01 00 ; Move X=1, Y=1
 01 00 00 00 ; LButton
 00 00 00 00 ; UpKeyMouse

3.5.3 UpKey Application Specific Code

Cypress Semiconductor Corporation Page 14/20

3.5.3.1 app_idle

Input:
upkey_timer_a = Count down timer for sending UpKeyKeyboard
upkey_timer_b = Count down timer for sending UpKeyMouse

Processing:
upkey_timer_a counts down from UP_KEY_TIMEOUT to 1
if(upkey_timer_a == 0) timer is idle
if(upkey_timer_a == 1) timer triggers Upkey to be sent
if(upkey_timer_a > 1) timer is active (decrement it)

Background:
app_idle gets called ~= 50ms
UP_KEY_TIMEOUT == 0x07 per design
upkey_timer_a set to UP_KEY_TIMEOUT ~= 300ms Upkey timeout
period
upkey_timer_a set to UP_KEY_TIMEOUT when a DownKey is
received
upkey_timer_a set to UP_KEY_TIMEOUT when a KeepAlive
received
upkey_timer_a cleared when an UpKey is received

Output:
Sends USB packet out EP1.
ep1_dmabuff = Keyboard data to USB
ep2_dmabuff = Mouse data to USB

Output Example:
RptId mod res key
 01 00 00 00 00 00 00 00 ; UpKeyStandardKeys
Button mod res key
 00 00 00 00 ; UpKeyMouse

3.5.4 EEPROM Related Functionality

Cypress Semiconductor Corporation Page 15/20

3.5.4.1 E2_ReadByte

Input: X Reg = Address of an E2 byte to be read

Processing: AT25010 data byte is read over SPI bus

Output: spi_data reg = data byte for calling app

Usage: Calling app should assign spi_data to destination after return
Example:

for(i=0; i<MAX_E2_BYTES; i++)
{
 X = i; ; Input var E2 address
 E2_ReadByte();

 E2ByteInBuff[i] = spi_data ; Output E2 Data Byte
}

3.5.4.2 E2_WriteByte

Input:
X Reg = Write address of an E2 byte
A Reg = Data Byte value to write

Processing:
AT25010 data byte write over SPI bus

Output: None

Example:

for(i=0; i<MAX_E2_BYTES; i++)
{
 X = i; ; Input var E2 address
 A = E2ByteOutBuff[i]; ; Input var write byte
 E2_WriteByte();
}

3.5.4.3 E2_GetBindParms

Input:
NVParms = Channel, PN Code, etc.

Processing:
NVParms are retrieved from the Serial EEPROM

Output:
A reg == 0 ==> Valid NVParms

3.5.4.4 E2_PutBindParms

Processing:
NVParms are stored on the Serial EEPROM
An E2 Signature byte is written at E2 address 0

3.6 Other Bridge Functionality

Cypress Semiconductor Corporation Page 16/20

3.6.1 Remote Wakeup

When the USB is suspended by the host, the bridge must reduce
it’s current draw to less than 2.5 mA. This requires that the radio

circuitry be off most of the time. However, in order to sense activity
from the WirelessUSB mouse or keyboard (and thereby know to
wake the host) the radio must be on.

When suspended, the bridge supports remote wakeup by
intermittently turning the radio on, checking for data from the HIDs,
and, then, turning the radio off again if no HID traffic was detected.

By adjusting the duration that the radio is on, a balance can be
achieved between suspend current and traffic detection reliability.
The rwu_timer_1 variable (in the rwu_poll_radio routine of wusb-
ls-main.asm) controls this radio on-time.
The integral value of rwu_timer_1 corresponds, approximately, to
1.06 ms of radio on-time Radio off-time, then, is approximately:

offTime = (255 – rwu_timer_1) * 1.06

3.6.2 The RadioParams Report

The WirelessUSB LS Bridge implements a mechanism to report the
radio parameters of attached HID devices via the USB control
endpoint.

The RadioParams HID report is a vendor-defined HID report for
communicating several radio parameters of the WirelessUSB LS
HID devices.

The HID Report Page is defined as:

Cypress WirelessUSB HID RadioParams Report Page (0xFF01
– Vendor Defined)

Usage ID Usage Name
0x00 Undefined
0x01 WirelessUSB Keyboard
0x 02 WirelessUSB Mouse
0x03-0x1F RESERVED
0x 20 Battery Level
0x 21 WirelessUSB Channel
0x 22 WirelessUSB PN Code
0x 23 Corrupt Packets
0x 24 Packets Transferred

Cypress Semiconductor Corporation Page 17/20

The RadioParams Report is 8 bytes long and has the following 6
data fields:

Byte Use Range
0 Report ID # 0x04
1 Battery Level 0 – 0x0A
2 Channel # 0 – 0x4D
3 PN Code 0 – 0x30

4-5 Corrupt Packets 0 – 0xFFFF
6-7 Packets Transferred 0 – 0xFFFF

3.6.2.1 Requesting A New Battery Reading

When the Bridge receives, from the host, a control endpoint request
with the following parameters, it requests a battery level reading
from the specified HID device on the next radio transaction with that
device.

Control endpoint request for new battery reading:

 Value
bmRequestType 0x21 (To Device, Type = Class, Recipient = Interface)
Request Code 0x09 (Set Report)
wValue 0x0304 (Feature Report, ReportID = 4)
wIndex 0x0000 = Kbd, 0x0001 = Mouse

3.6.2.2 Obtaining the RadioParams Report

When the Bridge receives, from the host, a control endpoint request
with the following parameters, it returns an 8-byte RadioParams
report over the control endpoint.

Control endpoint request for RadioParams report:

 Value
bmRequestType 0xA1 (From Device, Type = Class, Recipient = Interface)
Request Code 0x01 (Get Report)
wValue 0x0304 (Feature Report, ReportID = 4)
wIndex 0x0000 = Kbd, 0x0001 = Mouse

Cypress Semiconductor Corporation Page 18/20

When the Bridge receives the Get Report control request code, it
returns a RadioParams report and then resets the Packets
Transferred parameter for the specified device to zero.

The Link Quality value is updated whenever the bridge receives a
radio packet from the wireless device.

Battery Level is only updated when requested by the Set Report
control request described above.

At startup, the Battery Level, Corrupt Packets and Packets
Transferred are initialized to zero. The Bridge is then configured as
if it had received a Set Report control request for each device,
requesting its battery level. If the device is present, it will report the
new battery level shortly after the first radio packet is received by
the Bridge.

Cypress Semiconductor Corporation Page 19/20

3.6.3 Manufacturing Test Mode

This module may be conditionally compiled in to provide
manufacturing test support. The module configures the radio for
reception and then enters a loop waiting for packets to be sent from
the tester. It computes the total number of bits received and the
number of invalid bits received. It then sends packets to the tester
followed by the previously computed results. After which it re-
enters the reception loop waiting for another test cycle. The red
and green LEDs will alternate on/off in this test mode for bridge
devices with LEDs. The manufacturing test code can only be
exited by cycling power.

The manufacturing test mode can be entered by two different
methods depending on the compile-time configuration.

Method 1: Forcing an SE1 condition (D+ and D- are both high) on
the USB bus and applying power to the bridge.

Method 2: Holding the bind button during insertion into a USB Host
will enter the test mode after a successful USB enumeration.

4. REFERENCES

WirelessUSB Theory of Operation

WirelessUSB LS 2-Way HID Systems

WirelessUSB LS Getting Started Guide

CY4632 Protocol Library

Device Class Definition for Human Interface Devices (HID)
(http://www.usb.org/developers/hidpage)

CYWUSB6934 WirelessUSB LS Datasheet (38-16007)

WirelessUSB and enCoRe are trademarks of Cypress Semiconductor.

Cypress Semiconductor Corporation Page 20/20

http://www.usb.org/developers/hidpage

	INTRODUCTION
	Background Information

	DEFINITIONS
	LS HID BRIDGE
	Bridge Photographs
	File Descriptions
	Compiling the Bridge Firmware
	Bridge Radio Firmware Details
	reset
	radio_init
	load_pn_code
	setup_rx
	setup_tx
	endpoint0
	endpoint1
	endpoint2
	power_on_mode (auto bind only)
	ping_mode (auto bind only)
	idle_mode (auto bind only)
	bind_mode (auto bind only)
	connected_mode
	process_data
	process_rx_int
	verify_packet
	transmit_sys
	transmit_app

	Bridge Application Firmware Details
	Keyboard Application Specific Code
	app_data_received_a

	Mouse Application Specific Code
	app_data_received_b

	UpKey Application Specific Code
	app_idle

	EEPROM Related Functionality
	E2_ReadByte
	E2_WriteByte
	E2_GetBindParms
	E2_PutBindParms

	Other Bridge Functionality
	Remote Wakeup
	The RadioParams Report
	Requesting A New Battery Reading
	Obtaining the RadioParams Report

	Manufacturing Test Mode

	REFERENCES

