

CY4632 Keyboard Firmware
 User’s Guide

Cypress Semiconductor
3901 North First Street
San Jose, CA 95134

 408-943-2600

Cypress Semiconductor Corporation Page 1/36

October 1, 2004

CY4632 Keyboard Firmware User’s Guide
Table of Contents

1. Introduction..5
1.1 Scope ...5
1.2 Overview ...5
1.3 Design Goals ...5

2. Definitions...6
3. Hardware overview..7

3.1 Schematic of PDC-9174 Board ...7
3.2 RDK Keyboard Photographs...7
3.3 Keyboard Matrix ...10

4. Development Environment ...11
4.1 Tools..11
4.2 PSoC Configuration ..11

5. Firmware Architecture..12
5.1 Model ..12
5.2 Normal Keyboard Operation ...13

5.2.1 Ghost Key Detection ..13
5.3 Platform & Architecture Portability ..14
5.4 Initialization ..14
5.5 Configuration Options...14

5.5.1 KEYBOARD_KEEP_ALIVE_TIMEOUT ..14
5.5.2 KEY_DOWN_DELAY_SAMPLE_PERIOD ..14
5.5.3 KEYBOARD_DEBOUNCE_COUNT...15
5.5.4 KEYBOARD_MULTIMEDIA_SUPPORT...15
5.5.5 MFG_TEST_CODE ...15
5.5.6 MFG_ENTER_BY_KEY_NOT_PIN ..15
5.5.7 KEYBOARD_TEST_MODES...16
5.5.8 KEYBOARD_TEST_MODE_PERIOD...16
5.5.9 PANGRAM_TEST_MODE...16
5.5.10 KEYBOARD_BATTERY_VOLTAGE_SUPPORT...16
5.5.11 CBK_500_KEYBOARD_MATRIX ...16
5.5.12 KEYBOARD_FAST_SCAN...16
5.5.13 KEYBOARD_TX_TIMEOUT ..16
5.5.14 TIMER_CAL...17
5.5.15 ENCRYPT_DATA ..17
5.5.16 MOUSE_EMULATION_MODE ..17
5.5.17 KEYBOARD_POWER_ON_BIND..17
5.5.18 PLATFORM_H ...17

5.6 Radio Subsystem ...17
5.7 Keyboard Wireless Protocol..18

5.7.1 Keyboard Application Report Formats...18
5.8 Test Modes ..24
5.9 Manufacturing Test Mode ...24
5.10 Flash Security ..25
5.11 Battery Monitor ...25

6. Keyboard Code Modules...26
6.1 KEYBOARD...26

6.1.1 Defines & Types...26
6.1.2 Variable Definitions ...26

Cypress Semiconductor Corporation Page 2/36

6.1.3 Functions ..27

6.2 BATTERY ..28
6.2.1 Functions ..29

6.3 MFGTEST...29
6.3.1 Defines & Types...29
6.3.2 Functions ..31

6.4 PDC9174 ...32
6.5 PSOCGPIOINT...32
6.6 ISR...32

6.6.1 Functions ..33
6.7 TIMER ..33

6.7.1 Defines & Types...34
6.7.2 Variable Definitions ...34
6.7.3 Functions ..34

6.8 TICKINT...35
7. References...36

Cypress Semiconductor Corporation Page 3/36

Table Listings

Table 1: RDK Keyboard Matrix.. 10
Table 2: LS Generic Report... 19
Table 3: Standard 101 Keys Report Format.. 19
Table 4: Example "a" down key Standard 101 Keys Report ... 20
Table 5: Example USB report for the "a" down key... 20
Table 6: Standard 101 Key Null Packet Report (Null Packet Support enabled) 20
Table 7: Example up key Standard 101 Keys Report (Null Packet Support disabled) 20
Table 8: Example USB report for a Standard 101 Key Null Packet Report 20
Table 9: Multimedia Keys Report Format.. 21
Table 10: Example "Volume Increase" down key Multimedia Keys Report 21
Table 11: Example up key Multimedia Keys Report.. 21
Table 12: Power Keys Report Format ... 22
Table 13: Example "Suspend/Sleep" down key Power Keys Report .. 22
Table 14: Example up key Power Keys Report... 22
Table 15: Keep Alive Report (Null Packet Support enabled) .. 22
Table 16: Example Keep Alive Report (Null Packet Support disabled)... 23
Table 17: Battery Voltage Level Report Format .. 23
Table 18: Example "full" Battery Voltage Level Report ... 23
Table 19: Example "low" Battery Voltage Level Report .. 24
Table 20: Keyboard Module Defines & Types... 26
Table 21: HID_APP Structure Definitions.. 26
Table 22: Keyboard Module Variable Definitions .. 26
Table 23: Keyboard Module Functions.. 27
Table 24: Battery Module Functions.. 29
Table 25: MFGTest Module Defines & Types ... 29
Table 26: MFGTest Module Functions .. 31
Table 27: ISR Module Functions ... 33
Table 30: Timer Module Defines & Types ... 34
Table 31: Timer Module Variable Definitions .. 34
Table 32: Timer Module Functions.. 34

Figure Listings
Figure 1: Keyboard Plastic .. 7
Figure 2: Exploded Keyboard .. 8
Figure 3: Radio & PSoC Board (PDC-9174) ... 8
Figure 4: Keyboard Battery Compartment... 9
Figure 5: Bind Button... 9
Figure 6: RDK Keyboard Architecture ... 12
Figure 7: Ghost Key Example.. 13

Cypress Semiconductor Corporation Page 4/36

1. INTRODUCTION

1.1 Scope

The audience for this document is intended to be firmware
developers that desire to understand and modify the firmware on
the WirelessUSB LS Keyboard.

1.2 Overview

This document will cover the design goals, architecture, firmware
source code modules and configuration options for the
WirelessUSB LS Keyboard. It will not cover the details of the radio
subsystem or the configuration options that go with it. Please refer
to the WirelessUSB Theory of Operation and CY4632 Protocol
Library documents for theory of operation and details related to the
radio subsystem.

Cypress Semiconductor Corporation Page 5/36

1.3 Design Goals

There are several design goals that drove the requirements for the
firmware development for the keyboard. Some of these are
architecture related, while others are feature related.

The CY4632 Reference Design Kit utilizes a PSoC controller for the
RDK Keyboard (Cypress part #: CY8C27643-24PVXI). All
references to PSoC in this document refer to the CY8C27643-
24PVXI PSoC. Please contact your local sales representative for
more information on this PSoC controller.

The architecture was designed to be modular for extendibility and
maintainability. It was also designed so that it could easily be
ported from one hardware platform to another assuming the use of
a PSoC microprocessor. While porting to another microprocessor
will require more work, the hardware design was done to minimize
usage of advanced PSoC features to expedite this effort.

Design efforts have been made to reduce the on time of the
microprocessor and radio to conserve battery life. This includes
protocol optimizations along with using sleep features of the radio
and PSoC microprocessor.

Cypress Semiconductor Corporation Page 6/36

2. DEFINITIONS

Following are some definitions of acronyms and words found in this
document. There may be other meanings to these definitions
outside of this document.

Bridge – The Bridge is the receiving radio and USB hardware that
connects to the PC and enumerates as a Human Interface Device.

Device – The reference to device in this document means the
keyboard device that is sending packets via radio to the bridge.

DVK – A development kit produced by Cypress Semiconductor for
showcasing Cypress products with a working development
environment.

HID – Stands for Human Interface Device and is a product that
allows an individual to interface with a computer. A keyboard and
mouse are HID devices.

PSoC – A programmable mixed-signal array with an on-board
processor.

RDK – A reference design kit produced by Cypress Semiconductor
and used by 3rd parties to produce off-the-shelf products.
Everything required to take a product to production is included in
the kit. This document is part of the CY4632 Mouse/Keyboard
RDK.

USB – The acronym for Universal Serial Bus, a well-known serial
standard used in the computing world.

WirelessUSB – Trademark name for Cypress 2.4 GHz radio
products.

3. HARDWARE OVERVIEW

3.1 Schematic of PDC-9174 Board

The schematic of the RDK Keyboard (PDC-9174) can be found on the
CY4632_RDK release CD at:

\Hardware\RDK Keyboard\LS RDK Keyboard Sch.pdf.

3.2 RDK Keyboard Photographs

Figure 1: Keyboard Plastic

Figure 1 shows the RDK keyboard plastic.

Cypress Semiconductor Corporation Page 7/36

Figure 2: Exploded Keyboard

Figure 2 shows the keyboard with the top removed. The radio/PSoC board
(PDC-9174) is shown in the upper right hand corner.

Figure 3: Radio & PSoC Board (PDC-9174)

Cypress Semiconductor Corporation Page 8/36

Figure 3 shows the main controller board with the PSoC and WirelessUSB LS
Radio. The “F” trace is the antenna. All of the components are on the top side of
the board with the exception of the bind button.

Figure 4: Keyboard Battery Compartment

Figure 4 shows the integrated battery compartment located on the bottom side of
the keyboard. The battery compartment cover is also shown.

Figure 5: Bind Button

Figure 5 shows the bind button. The button access is located beneath the right
adjustable foot on the bottom side of the keyboard.

Cypress Semiconductor Corporation Page 9/36

3.3 Keyboard Matrix

The RDK keyboard matrix has 18 columns and 8 rows. Key
presses generate a PSoC GPIO interrupt when a column is
connected (shorted) to a row. The keyboard then scans the matrix
to determine which keys have been pressed.

The RDK keyboard matrix with the USB scan codes are shown in
Table 1.

Table 1: RDK Keyboard Matrix

 Row
1

Row
2

Row
3

Row
4

Row
5

Row
6

Row
7

Row
8

Column 1 0x14 0x17 0x1A 0x1C 0x08 0x18 0x15 0x0C
Column 2 0x5A 0x58 0x5B 0x44 0x62 0x45 0x63 0x46
Column 3 0x24 0x2D 0x25 0x2E 0x26 0x2A 0x27 0x2B
Column 4 0x60 0x5D 0x61 0x5E 0x56 0x57 0x5C 0x59
Column 5 NA 0x20 0x29 0x21 0x1E 0x22 0x1F 0x23
Column 6 0x3F 0x43 0x40 0x53 0x41 0x47 0x42 0x5F
Column 7 NA 0x00CD NA NA 0x0225 0x0226 NA 0x0227
Column 8 0x39 0x3B 0x2C 0x3C 0x4E 0x3D 0x3A 0x3E
Column 9 0x05 0x37 0x11 0x38 0x10 0x4C 0x36 0x55
Column 10 0x02 0x20 NA 0x00E2 0x0194 NA 0x00E9 0x65
Column 11 0x34 0x1D 0x35 0x1B 0x4D 0x06 NA 0x19
Column 12 NA 0x00B6 0x08 0x82 NA NA NA NA
Column 13 0x07 0x0D 0x09 0x0E 0x0A 0x0F 0x0B 0x33
Column 14 NA NA 0x83 NA 0x01 NA 0x10 0x54
Column 15 0x12 0x28 0x13 0x51 0x2F 0x04 0x30 0x16
Column 16 0x31 0x48 0x4A 0x50 0x52 0x4F 0x4B 0x49
Column 17 0x0223 0x0183 0x0224 0x00B7 NA 0x80 0x00B5 0x022A
Column 18 0x0192 0x0221 NA 0x04 0x00EA 0x40 0x18A NA

Notes:

- Yellow indicates Multimedia Key (16-bit value)

- Red indicates Power Key

- Blue indicates Modifier Key

Cypress Semiconductor Corporation Page 10/36

- No color indicates a Standard 101 Key

4. DEVELOPMENT ENVIRONMENT

4.1 Tools

The following tools are used to develop the RDK keyboard firmware
and can be purchased from Cypress Semiconductor.

 PSoC Development Tools Solution

o PSoC Designer Software version 4.1 SP1

o PSoC ICE-4000

 ICCM8C C Compiler version 1.28

 Relevant PSoC POD Kit

A Microsoft Windows based PC is used for tool execution.

Cypress Semiconductor Corporation Page 11/36

4.2 PSoC Configuration

The PSoC is configured with one 8-bit timer module as a clock and
an SPI module for radio communication. An optional UART module
may be configured and used as a debug port. All other PSoC
features were not utilized to maintain compatibility with other
microprocessor implementations.

5. FIRMWARE ARCHITECTURE

5.1 Model

Radio

isr
isr_gpio()
isr_init()
ISR_ENABLE()
ISR_DISABLE()
gpio_isr_redirector()

timer
tick

MS_TO_TICK()
TICK_TO_MS()
timer_init()
timer_timer_on()
timer_timer_off()
timer_delay_10_usec()
timer_delay_50_usec()
timer_delay_100_usec()
timer_delay_msec()
timer_get_timer_stamp()
timer_delay_incremental()
timer_time_elapsed()
timer_calibrate_timer()
tick_isr()
delay_usec_loop()

battery
battery_status()

Keyboard
main()
bind_button_isr()
keyboard_isr()
keyboard_init()
test_modes()
scan_keyboard()
process_column()
generate_reports()
generate_standard_report()
generate_batt_report()
generate_hot_report()
generate_pwr_report()
generate_alive_packet()
ghost()
debounce()
age_debounce_queue()
debounce_init()
remove_key_from_queue()
add_or_update_key_queue()
key_queue_init()
send_keyboard_report()

Figure 6: RDK Keyboard Architecture

Cypress Semiconductor Corporation Page 12/36

5.2 Normal Keyboard Operation

Normal operation of the keyboard is initiated by plugging the
WirelessUSB Bridge into a PC and waiting for it to enumerate.
Once this is complete, insert three fresh AA batteries into the
internal keyboard battery compartment (see Figure 4). In order for
the keyboard to communicate with the bridge, they need to execute
a “binding” process. Press the “bind” button on the WirelessUSB
Bridge and the “bind” button on the keyboard, within approximately
5 seconds of each other, to initialize the “binding” process. The
“bind” process can be repeated multiple times until successful. The
keyboard will communicate with the Bridge and establish a
connection. The keyboard is now ready for normal operation.

5.2.1 Ghost Key Detection

Ghost keys are possible on the RDK keyboard because it does not
utilize diodes with the keyboard switches. Ghost keys are caused
when three keys are pressed at the same time and two of the keys
are on the same column and two of the keys are on the same row.
When scanning the keyboard, it appears that four keys have been
pressed and it is impossible to tell which three of the four keys are
actually valid. The keyboard code detects this condition and does
not send a report until one of the three keys is released.

For example, assume the keys (RowX,ColumnA),
(RowX,ColumnB), and (RowY,ColumnB) have been pressed as
shown in Figure 7. It appears that the key (RowY,ColumnB) has
been pressed as well when it has not since the other keys
electrically connect RowY to ColumnB.

 ColumnA ColumnB

RowX

RowY

Figure 7: Ghost Key Example

Cypress Semiconductor Corporation Page 13/36

5.3 Platform & Architecture Portability

The keyboard firmware was designed to be easily ported from one
hardware platform to another platform with a simple re-mapping of
pins on the PSoC. The file pdc9174.h maintains the pin mapping
definitions that are used throughout the code and is included in
about every file by using the macro PLATFORM_H that is defined
in appconfig.h.

The keyboard scan matrix is defined in kdefs.h and may need to be
changed for different keyboards.

Porting the code to another microprocessor architecture requires
modification or leverage of the existing code for processor specific
features, along with pin definitions.

5.4 Initialization

Initialization of the PSoC chip is done by code that is generated in
boot.asm by the PSoC designer software. The module boot.asm
calls main once the PSoC has been configured and initialized.

Main initializes the components of the keyboard along with timer, isr
and radio modules. The main routine then goes into an infinite loop
monitoring keyboard activity and sleeping between keystrokes.

5.5 Configuration Options

All configuration options for the application can be found in the
appconfig.h file. There are other configuration options, pertaining
to the radio subsystem, which can be found in the ls_config.h file.
A description of these options can be found in the CY4632 Protocol
Library document.

5.5.1 KEYBOARD_KEEP_ALIVE_TIMEOUT

This configuration value sets the period at which the firmware will
generate a “KEEP_ALIVE” packet since the last keyboard report
when a key is held down. The default is 100 milliseconds.

Cypress Semiconductor Corporation Page 14/36

5.5.2 KEY_DOWN_DELAY_SAMPLE_PERIOD

This configuration value sets the period at which the firmware polls
the hardware for keyboard events to transmit over the radio. This

poll period is only active when the keyboard has not entered sleep
because key(s) are currently being pressed. The default value is
10 milliseconds.

5.5.3 KEYBOARD_DEBOUNCE_COUNT

The button debounce logic detects changes in button state and
immediately indicates a change causing a report to be sent to the
radio. The debounce logic then blocks out any further button state
changes for the specified debounce time. This operation is
somewhat different from the usual method of waiting for a button to
stabilize, during a debounce time, and then reporting the change in
button state. It is implemented this way to improve button-reporting
latency.

This configuration value sets the debounce time for buttons that are
pressed. It is measured in units of the poll rate. For example, if
KEYBOARD_DEBOUNCE_COUNT is defined as 2 and
KEY_DOWN_DELAY_SAMPLE_PERIOD is defined as 10, then
the button debounce time will be 20 milliseconds. The default
setting is 2.

5.5.4 KEYBOARD_MULTIMEDIA_SUPPORT

This configuration definition is used to selectively compile support
for multimedia (hot) keys. If this value is defined, then multimedia
key support is compiled into the executable image. If it is not
defined, then the multimedia support code is omitted.

5.5.5 MFG_TEST_CODE

This configuration definition is used to selectively compile in the
manufacturing test code.

Cypress Semiconductor Corporation Page 15/36

5.5.6 MFG_ENTER_BY_KEY_NOT_PIN

This configuration definition is used to select whether the
manufacturing test code is executed by pulling a PSoC pin to
ground or by the test mode module. When this value is defined,
then the manufacturing test code may be executed by holding the
system sleep key and the bind button when the batteries are
inserted into the keyboard. If it is not defined, then the
manufacturing test code may be executed by pulling a defined port
pin to ground within 100 milliseconds of power on. See section
6.3.1 for the port pin definition.

5.5.7 KEYBOARD_TEST_MODES

This configuration definition is used to selectively compile code for
keyboard test modes. If this value is defined, then test modes are
compiled into the executable image. If it is not defined, then the
test mode code is omitted. The test modes are described in section
5.8.

5.5.8 KEYBOARD_TEST_MODE_PERIOD

This configuration value sets the period that the keyboard
generates the test key presses. A key press consists of a scan
code as the down key and a NULL as the up key. The default
value is 100 ms.

5.5.9 PANGRAM_TEST_MODE

This configuration definition is used to selectively compile in the
pangram test mode. A pangram is a sentence that contains all of
the letters of the alphabet at least once.

5.5.10 KEYBOARD_BATTERY_VOLTAGE_SUPPORT

This configuration definition is used to selectively compile support
for battery voltage level reporting. If this value is defined, then
battery voltage level reporting is compiled into the executable
image. If it is not defined, then the battery voltage level reporting
code is omitted.

5.5.11 CBK_500_KEYBOARD_MATRIX

This configuration definition is used to selectively compile in the
keyboard matrix for the beta and final RDK keyboard hardware.

5.5.12 KEYBOARD_FAST_SCAN

This configuration definition is used to selectively compile in the
Cypress Semiconductor fast scan algorithm.

Cypress Semiconductor Corporation Page 16/36

5.5.13 KEYBOARD_TX_TIMEOUT

This configuration value sets the maximum time that the keyboard
will try to send a report to the bridge.

5.5.14 TIMER_CAL

This configuration definition is used to selectively compile in the
one-millisecond timer calibration routine. The routine is called on
power on and during protocol reconnect.

5.5.15 ENCRYPT_DATA

This configuration definition is used to selectively compile in data
encryption for the keyboard. Please contact Cypress Applications
support for the encryption source code.

5.5.16 MOUSE_EMULATION_MODE

This configuration definition is used to selectively compile in the
Mouse Emulation Mode. The Scroll Lock key is used to toggle this
mode on/off. Once in this mode the arrow keys are used to move
the mouse. The Delete key is the left mouse button, the End key is
the right mouse button, and Page Up and Page Down emulate the
scroll wheel.

5.5.17 KEYBOARD_POWER_ON_BIND

This configuration definition is used to selectively compile in the
option to enter bind mode on power-up when the device has not
been previously bound to a bridge.

5.5.18 PLATFORM_H

This configuration value identifies the header file that has the
platform configuration information. The default value is pdc9174.h,
which is identifier for the keyboard board that is shipped with the
RDK. It is anticipated that this macro will change when the code is
ported to another platform.

5.6 Radio Subsystem

The radio subsystem is composed of the following modules and
provides an API to the application for sending data over the radio.

 bind
 protocol
 radio
 spi

Cypress Semiconductor Corporation Page 17/36

 nvram

Please refer to the WirelessUSB Theory of Operation and CY4632
Protocol Library documentation for theory of operation along with a
detailed description of the API and configuration options. The spi
module is coupled to the platform in order to communicate with the
radio.

5.7 Keyboard Wireless Protocol

The keyboard protocol has been optimized to reduce the “on-time”
of the radio and power consumption.

The radio library offers the ability to send variable length packets,
allowing the opportunity to minimize the number of bytes
transmitted over the air, in order to extend battery life.

The following transmission packet formats are implemented in this
RDK. The report formats show the application payload and the
radio protocol overhead with example packet headers and CRC
bytes.

5.7.1 Keyboard Application Report Formats

There are five possible keyboard application reports. The reports
are:

 Standard 101 Keys Report
 Multimedia Keys Report
 Power Keys Report
 Keep Alive Report
 Battery Voltage Level Report

Cypress Semiconductor Corporation Page 18/36

The reports are distinguished by the first application report byte to
reduce the number of bytes required in the most common report
(Standard 101 Keys Report). The first application report byte is
Scan Code 1 if the byte is less than 0xFC. Otherwise, the first
application report byte is the Report Type (Multimedia, Power,
Battery, or Keep Alive). This also assumes that multimedia and
power keys do not utilize modifier keys and that 0xFF, 0xFE, 0xFD
and 0xFC are not valid Standard 101 key scan codes.

Packet Headers starting with 0x7X require special handling when
Null Packet Support is enabled. A Packet Header of 0x70 is a
“NULL” packet and indicates that all the data bytes are zero for the

Standard 101 Keys Report. A Packet Header of 0x79 is a Keep
Alive packet.

Trailing zeros in the reports are also removed to further minimize
the number of bytes sent by the radio.

 The LS radio sends the reports with the format shown in Table 2.

Table 2: LS Generic Report

Packet Header Application Report Checksum

Note: The Packet Headers and Checksums utilized in this
document are for example purposes only and may change as
required by the protocol.

5.7.1.1 Standard 101 Keys Report

A “Scan Code 1” byte not equal to 0xFF, 0xFE, 0xFD and 0xFC
indicates that this report is a Standard 101 Keys Report. The
Standard 101 Keys report is formatted to optimize the assumption
that the most common report will have only one non-zero scan
code without a modifier. The full Standard 101 Keys report format
is shown in Table 3.

Table 3: Standard 101 Keys Report Format

Byte Name
1 Scan Code 1

 (< 0xFC)
2 Modifier Keys
3 Scan Code 2
4 Scan Code 3
5 Scan Code 4
6 Scan Code 5
7 Scan Code 6

Cypress Semiconductor Corporation Page 19/36

Example: The following reports would be sent if a user presses an
“a” on the keyboard. The down key packet sent from the keyboard
to the bridge is shown in Table 4.

Table 4: Example "a" down key Standard 101 Keys Report

Packet Header Application
Report

Checksum

Scan Code 1 0x40
0x04

0x44

The bridge would add the trailing zeros, insert the reserved byte,
rearrange the modifier and scan code 1 bytes and remove the
packet header and checksum to produce the USB report shown in
Table 5.

Table 5: Example USB report for the "a" down key

Modifier
keys

Reserved Scan
Code 1

Scan
Code 2

Scan
Code 3

Scan
Code 4

Scan
Code 5

Scan
Code 6

0x00 0x00 0x04 0x00 0x00 0x00 0x00 0x00

The up key packet sent from the keyboard to the bridge (all data
bytes are zero) is shown in Table 6 with Null Packet Support
enabled and in Table 7 with Null Packet Support disabled.

Table 6: Standard 101 Key Null Packet Report (Null Packet Support enabled)

Packet Header
0x70

Table 7: Example up key Standard 101 Keys Report (Null Packet Support disabled)

Packet Header Application
Report

Checksum

Scan Code 1 0x40
0x00

0x40

The bridge would add the trailing zeros, insert the reserved byte,
and remove the packet header to produce the USB report shown in
Table 8.

Table 8: Example USB report for a Standard 101 Key Null Packet Report

Modifier
keys

Reserved Scan
Code 1

Scan
Code 2

Scan
Code 3

Scan
Code 4

Scan
Code 5

Scan
Code 6

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Cypress Semiconductor Corporation Page 20/36

5.7.1.2 Multimedia Keys (Hot keys) Report

A “Report Type” byte of 0xFF indicates that this report is a
Multimedia Keys Report. The Multimedia Keys report format is
shown in Table 9.

Table 9: Multimedia Keys Report Format

Byte Name
1 Report Type

(0xFF)
2 Hot Key Scan Code

(upper 8 bits)
3 Hot Key Scan Code

(lower 8 bits)

Example: The following reports would be sent if a user presses
“Volume Increase” (Hot Key 8) key on the keyboard.

The “Volume Increase” down key packet sent from the keyboard to
the bridge is shown in Table 10.

Table 10: Example "Volume Increase" down key Multimedia Keys Report

Packet Header Application Report Checksum
Report Type Hot Key Scan

Code
(upper 8 bits)

Hot Key Scan
Code

(lower 8 bits)

0x41

0xFF 0x00 0xE9

0x29

The up key packet sent from the keyboard to the bridge is shown in
Table 11.

Table 11: Example up key Multimedia Keys Report

Packet Header Application
Report

Checksum

Report Type 0x45
0xFF

0x44

Cypress Semiconductor Corporation Page 21/36

5.7.1.3 Power Keys (Suspend/Sleep) Report

A “Report Type” byte of 0xFE indicates that this report is a Power
Keys Report. The Power Keys report format is shown in Table 12.

Table 12: Power Keys Report Format

Byte Name
1 Report Type

(0xFE)
2 Power Key Scan Code

Example: The following reports would be sent if a user presses the
“Suspend/Sleep” (Power Key 0) key on the keyboard.

The “Suspend/Sleep” down key packet sent from the keyboard to
the bridge is shown in Table 13.

Table 13: Example "Suspend/Sleep" down key Power Keys Report

Packet
Header

Application Report Checksum

Report Type Power Key Scan 0x41
0xFE 0x82

0xC1

The up key packet sent from the keyboard to the bridge is shown in
Table 14.

Table 14: Example up key Power Keys Report

Packet Header Application
Report

Checksum

Report Type 0x45
0xFE

0x43

5.7.1.4 Keep Alive Report

A “Report Type” byte of 0xFC indicates that this report is a Keep
Alive Report. When Null Packet Support is enabled, a “Packet
Header” byte of 0x79 also indicates that this report is a Keep Alive
Report.

Example of a Keep Alive reports sent from the keyboard to the
bridge are shown in Table 15 with Null Packet Support enabled and
Table 16 with Null Packet Support disabled.

Table 15: Keep Alive Report (Null Packet Support enabled)

Cypress Semiconductor Corporation Page 22/36

Packet Header
0x79

Table 16: Example Keep Alive Report (Null Packet Support disabled)

Packet Header Application
Report

Checksum

Report Type 0x45
0xFC

0x41

If the bridge does not receive a Keep Alive packet or an up key
within a specified interval (KEYBOARD_KEEP_ALIVE_TIMEOUT)
while a down key is present, the bridge will generate an up key to
the computer.

5.7.1.5 Battery Voltage Level Report

A “Report Type” byte of 0xFD indicates that this report is a Battery
Voltage Level Report. The Battery Voltage Level report format is
shown in Table 17.

Table 17: Battery Voltage Level Report Format

Byte Name
1 Report Type

(0xFD)
2 Battery Voltage Level

The Battery Voltage Level ranges from 1 (low) to 10 (full).

The Battery Voltage Level Report can be sent at any time.
However, it is anticipated that the report will be sent approximately
every 10K - 16K reports.

Example of a Battery Voltage Level Report with fully charged
batteries is shown in Table 18.

Table 18: Example "full" Battery Voltage Level Report

Packet
Header

Application Report Checksum

Report Type Battery
Voltage
Level

0x41

0xFD 0x0A

0x48

Cypress Semiconductor Corporation Page 23/36

Example of a Battery Voltage Level Report with low batteries is
shown in Table 19.

Table 19: Example "low" Battery Voltage Level Report

Packet
Header

Application Report Checksum

Report Type Battery
Voltage
Level

0x41

0xFD 0x01

0x3F

5.8 Test Modes

This RDK provides a compile-time option of adding test modes to
the keyboard; see Section 5.5.7 for enabling this option. The test
mode module is implemented in a way that it can be easily
extended to add other test modes. Currently there are only two test
modes supported in the module. When this option is not enabled
then all test mode code is removed from the compilation.

The first test mode is initiated by holding down the left ctrl, left alt,
right alt, right ctrl, and F1 keys at the same time. If
PANGRAM_TEST_MODE is defined, the test sends the key
up/down scan codes for the test pangram: ”a quick brown fox jumps
over the lazy dog.<carriage return>” . Otherwise the up/down scan
codes are repeatedly sent for the test sequence “wirelessusb ”
followed by the same number of backspaces. The test repeats the
appropriate sequence until the escape key is pressed. Once the
test has finished execution, the keyboard will return to normal
operation.

The repeating “x” test selection is initiated by holding down the left
ctrl, left alt, right alt, right ctrl, and F3 keys at the same time. The
test continuously sends the “x” key up/down scan codes. The test
continues until the escape key is pressed. Once the test has
finished execution, the keyboard will return to normal operation.

Cypress Semiconductor Corporation Page 24/36

5.9 Manufacturing Test Mode

The RDK provides a compile-time option of adding a manufacturing
test mode to the keyboard; see Section 5.5.5 for enabling this
option.

If MFG_TEST_CODE and ENTER_BY_KEY_NOT_PIN are
defined, holding down the system sleep key and the bind button
while inserting the batteries into the keyboard will enter the
manufacturing test mode. The only way to exit this test mode is to
cycle power.

5.10 Flash Security

The keyboard project within PSoC Designer has a file called
FlashSecurity.txt. This file specifies access rules to blocks of the
Flash ROM. Please see the documentation at the top of the file for
definitions. This file is shipped with its default configuration in the
RDK with the exception of one change. The block starting at
address 3E80 hex has been changed from W: Full (Write protected)
to U: Unprotected. This location of Flash has been dedicated to
saving non-volatile configuration values for the radio subsystem.

Cypress Semiconductor Corporation Page 25/36

5.11 Battery Monitor

The battery monitor circuit is implemented using an RC circuit
connected to two PSoC pins. The firmware has been tuned to
provide a ten level measurement of the battery voltage. This is a
process that is time intensive. Following is an explanation of the
process to measure the battery voltage.

The process starts by first setting the PSoC pins BATT_LEV1 and
BATT_LEV2 to high impedance inputs and allowing the RC circuit
to reach a steady state. This allows BATT_LEV1 to reach the
same potential as the battery with the capacitor. BATT_LEV2 is
then driven to ground and the RC time constant is measured to the
point at which the BATT_LEV1 detects a logic 0 state. This time
measurement is the battery voltage measurement. Next, both
BATT_LEV1 and BATT_LEV2 are driven to a logic 1 state
initializing the RC circuit for a VCC measurement. BATT_LEV1 is
set to a high impedance input and BATT_LEV2 is driven to ground.
Once again the RC time constant is measured to the point at which
the BATT_LEV1 detects a logic 0 state. This time becomes a VCC
reference measurement.

The firmware then uses the battery measurement and VCC
measurement to compute a battery level between 1 and 10
inclusive. Battery status reports should have a minimum of one
second between requests to allow the RC circuit to reach a steady
state.

6. KEYBOARD CODE MODULES

Following are descriptions of the module contents. For concept of
operation, see section 5.

6.1 KEYBOARD

The keyboard module contains the main entry point, test modes, a
routine for scanning the keyboard as well as management of report
frequency to the Bridge.

6.1.1 Defines & Types

Table 20: Keyboard Module Defines & Types

Define/Type Description
APP_TX_PACKET This union structure defines the data payload

portion of the radio transmit packet.
HID_APP This structure defines all of the HID related

variables.

Table 21: HID_APP Structure Definitions

Element Description
key_queue A KEY structure array of KEY_QUEUE_LEN

elements. Used to store pressed key index
values.

status A STATUS_STATE structure used to maintain
the current status of the keyboard.

debounce A DEBOUNCE_ENTRY structure array of
DEBOUNCE_QUEUE_LENGTH elements.
Used to debounce pressed key index values.

prior_key_state An UINT8 array of COLUMNS elements. Used
to store the previous state of keyboard matrix.

6.1.2 Variable Definitions

Table 22: Keyboard Module Variable Definitions

Cypress Semiconductor Corporation Page 26/36

Variable Description
hid A HID_APP structure containing the HID related

variables.
report_packet This is a pointer to an APP_TX_PACKET

structure.
ts A TIME_STAMP structure used for timing.

last_transfer_ts A TIME_STAMP structure used for timing to
generate KEEP_ALIVE packets.

test_mode A variable used to store the current test mode
state if KEYBOARD_TEST_MODES is
defined.

sentence_table_index A variable used to store the current position in
the test sequence if
KEYBOARD_TEST_MODES is defined.

mouse_emulation A variable used to store the current state of the
MOUSE_EMULATION_MODE.

6.1.3 Functions

Table 23: Keyboard Module Functions

Cypress Semiconductor Corporation Page 27/36

Function Linkage Description
main external This function is the main entry

point for the application. It
initializes all keyboard application
components and radio
components and executes the poll
loop. Radio transmission takes
place when there are keyboard
events to send.

bind_button_isr external This function is called from
interrupt context when the bind
button is pressed.

keyboard_isr external This function is called from
interrupt context when a key is
pressed.

keyboard_init static This function initializes all
components of the keyboard
application.

test_modes static This function adds the appropriate
test key index to the key queue if
a test mode is active.

scan_keyboard static This function scans the keyboard
matrix and stores the results in the
array hid.key_state[].

process_column static This function compares the arrays
hid.key_state[] to
hid.prior_key_state[] for the
specified column.

generate_reports static This function calls the other
generate functions if the
GENERATE_REPORT status bit
is set.

generate_standard_report static This function generates the
Standard 101 Keys report.

generate_batt_report static This function generates the
Battery Voltage Level report.

generate_hot_report static This function generates the
Multimedia (Hot) Keys report.

generate_pwr_report static This function generates the Power
Keys report.

generate_alive_packet static This function generates the Alive
Packet report.

ghost static This function determines if a
ghost key condition exists.

debounce static This function starts the debounce
clock when a button is pressed
and blocks out further button
changes until the debounce time
has expired.

age_debounce_queue static This function decrements
debounce values for all keys every
time the keyboard buttons are
polled. This provides a debounce
period for when a button is
pressed

debounce_init static This function initializes the
debounce logic for the buttons.

remove_key_from_queue static This function removes the
specified key index from the
hid.key_queue[] array.

add_or_update_key_queue static This function adds the specified
key index to the hid.key_queue[]
array.

key_queue_init static This function initializes the
hid.key_queue[] array.

send_keyboard_report static This function attempt to send the
keyboard report to the bridge.

Cypress Semiconductor Corporation Page 28/36

6.2 BATTERY

This module measures the battery voltage level and computes a
level from 1 to 10. Time for the RC circuit to stabilize with the
battery voltage needs to be given before calling this module. An
application should guarantee that a minimum time of one second
between successive battery status requests.

6.2.1 Functions

Table 24: Battery Module Functions

Function Linkage Description
battery_status external This function reads a time constant

related to the battery voltage and
VCC (for reference) and computes
a battery level from 1 to 10. See
section 5.11 for details of
operation.

6.3 MFGTEST

This module may be conditionally compiled in to provide
manufacturing test support. The module configures the radio for
reception and then enters a loop waiting for packets to be sent from
the tester. It computes the total number of bits received and the
number of invalid bits received. It then sends packets to the tester
followed by the previously computed results. After which it re-
enters the reception loop waiting for another test cycle. The
manufacturing test code may be entered by grounding a
microprocessor port pin or by the test mode mechanism defined in
section 5.8. The method of entry is a compile time option described
in section 5.5.6. The manufacturing test code can only be exited by
cycling power.

6.3.1 Defines & Types

Table 25: MFGTest Module Defines & Types

Cypress Semiconductor Corporation Page 29/36

Define/Type Description
MFG_PN_CODE This macro defines the PN code

used for the manufacturing test.
See radio documentation.

MFG_CHANNEL This macro defines the channel
used for the manufacturing test.
See radio documentation.

Cypress Semiconductor Corporation Page 30/36

MFG_THRESHOLD_L This macro defines the threshold
when correlating a ‘0’ data bit. See
the radio documentation.

MFG_THRESHOLD_H This macro defines the threshold
when correlating a ‘1’ data bit. See
the radio documentation.

MFG_PA_BIAS This macro defines the power
amplifier bias used for the test. See
radio documentation.

MFG_EOF_TIMEOUT This macro defines the number of
bits that need to be seen before end-
of-frame is detected. See radio
documentation.

MFG_RX_TIMEOUT The number of milliseconds
between two packets, once packet
sending has started, before the
receiving loop will timeout.

MFG_NUM_PACKETS The number of packet expected to
receive and send.

MFG_PACKET_PAYLOAD_SIZE The data size of the packets being
received and sent. Does not
include header and checksum
overhead.

MFG_PRE_TX_DELAY The time in milliseconds to wait
after receiving and before sending
out data packets.

MFG_INTER_TX_DELAY The time in milliseconds to wait in
between data packets being sent
out.

MFG_NUM_RESULTS_PACKETS The number of times to send each
result packet.

MFG_PRE_RESULTS_DELAY The time in milliseconds to wait
before sending out the results
packets.

MFG_INTER_RESULTS_DELAY The time in milliseconds in
between each repetition of result
packet sent.

MFG_TEST_PORT The port owning the pin used to
enter manufacturing test mode.

MFG_TEST_PIN The pin used to enter
manufacturing test mode. This is
used in conjunction with
MFG_TEST_PORT.

MFG_TEST_DM0 Drive mode register 0 for the port
used in MFG_TEST_PORT. This
is used to change drive
characteristics during power-up.

MFG_TEST_DM1 Drive mode register 1 for the port
used in MFG_TEST_PORT. This
is used to change drive
characteristics during power-up.

MFG_HDR_TEST Header byte for test data packets
sent to the tester from the device.

MFG_HDR_RES1 Header byte for results packet
number one.

MFG_HDR_RES2 Header byte for results packet
number two.

MFG_HDR_RES3 Header byte for results packet
number three.

MFG_TEST_PKT_SIZE Total packet size defined as
MFG_PACKET_PAYLOAD_SIZE
+ header byte + checksum byte.

MFG_RES_PKT_SIZE Packet size for results packets.
This is hard coded to 10 bytes and
includes header byte and checksum
byte.

6.3.2 Functions

Table 26: MFGTest Module Functions

Cypress Semiconductor Corporation Page 31/36

Function Linkage Description
mfg_pin_check external This function checks the state of

the defined manufacturing port pin.
If the port pin is low, then the
manufacturing test is executed.

mfg_test external This is the top-level function for
the manufacturing test.

mfg_setup_radio static This function initializes the radio
to a manufacturing test state.

mfg_receive_test_packets static This function receives test packets
sent from the tester to the device.

mfg_send_test_packets static This function sends test packets
from the device to the tester.

mfg_send_results static This function sends statistics of
data that was received by the
device.

mfg_send_result_packet static This function performs the actual
sending of the results packet with
appropriate delays.

6.4 PDC9174

This module is used to implement platform specific code. Currently
the pdc9174.c file is empty. The pdc9174.h file contains the entire
platform specific defines for pin and port assignments for a specific
feature. Porting from one platform to another should only require
modifications to these two files assuming no other features are
added or removed.

6.5 PSOCGPIOINT

This module is an assembly file and is generated automatically by
the PSoC Designer in the lib directory. It is mentioned here
because it needs to be modified after PSoC Designer has
generated the code. PSoC Designer generates code such that
when a GPIO interrupt occurs the vector jumps to this module.
This module in turn needs to jump to the isr_gpio interrupt service
routine provided in the ISR module, see section 6.6. If GPIO
interrupts stop working, then this is a good place to check since this
is a generated file.

Cypress Semiconductor Corporation Page 32/36

6.6 ISR

The purpose of this module is to handle GPIO interrupt handling. It
provides a single entry point for all GPIO interrupts and calls
functions based upon which interrupt is enabled. The PSoC does
not provide the ability to determine which GPIO generated the
interrupt.

6.6.1 Functions

Table 27: ISR Module Functions

Function Linkage Description
isr_gpio external This is the main GPIO interrupt

service routine. It calls interrupt
handlers if the interrupt is enabled
using the gpio_isr_redirector()
function. The interrupt handlers
need to be callable even if they are
not the source of the interrupt.

isr_init external This function initializes the
interrupt enable registers and turns
on interrupts for the
microprocessor.

ISR_ENABLE external This macro function enables an
interrupt handler at its associated
port pin.

ISR_DISABLE external This macro function disables an
interrupt handler at its associated
port pin.

gpio_isr_redirector external This function is used as a
mechanism to bypass the
compiler’s inefficient ISR
mechanism of pushing all registers
when an ISR makes another
function call

Cypress Semiconductor Corporation Page 33/36

6.7 TIMER

The timer module provides a one-millisecond tick for the system.
The tick resolution can be changed, but is set for one millisecond
for the keyboard. This module requires the use of a timer block on
the PSoC. The delay function used for millisecond timing will
provide at least the delay requested with no more than one
additional millisecond of delay. The microsecond delay functions
have been tuned as best as possible for a 12 MHz clock setting for
the microprocessor. The millisecond delay function will sleep the
PSoC for the duration of the requested delay. The microprocessor
wakes just long enough to update the tick every millisecond and
check if the delay has been met and then returns to sleep mode if it

has not. See documentation in the module for requirements on
configuring the PSoC block.

6.7.1 Defines & Types

Table 28: Timer Module Defines & Types

Define/Type Description
TIME_STAMP This defines the type of the time stamp.
MS_TO_TICK This macro is used to convert milliseconds to ticks.
TICK_TO_MS This macro is used to convert ticks to milliseconds.
timer_delay_1_usec This macro is used to delay for 1 microsecond with

a microprocessor clock of 12MHz.

6.7.2 Variable Definitions

Table 29: Timer Module Variable Definitions

Variable Description
tick This variable keeps track of the number of ticks

since the timer was turned on.

6.7.3 Functions

Table 30: Timer Module Functions

Cypress Semiconductor Corporation Page 34/36

Function Linkage Description
tick_isr external This function is the interrupt

service routine for the timer
expired interrupt. It increments the
tick counter.

timer_init external This function initializes the tick
counter and starts the timer.

timer_timer_on external This function turns the timer and
system tick on.

timer_timer_off external This function turns the timer and
system tick off.

timer_delay_10_usec external This function delays for 10
microseconds.

timer_delay_50_usec external This function delays for 50
microseconds.

timer_delay_100_usec external This function delays for 100
microseconds.

timer_delay_msec external This function delays for the number
of requested milliseconds plus up
to one additional millisecond.

timer_get_time_stamp external This function returns the current
tick counter value.

timer_delay_incremental external This function takes a time stamp
and delays for the incremental time
between the time stamp and the
requested period. This function is
used for meeting poll rate
requirements.

timer_time_elapsed external This function returns true if the
specified amount of time has
elapsed since a given time stamp.

timer_calibrate_timer external This function calibrates the one-
millisecond timer by using the
System Clock as a reference.

Cypress Semiconductor Corporation Page 35/36

6.8 TICKINT

This module is an assembly file and is generated automatically by
the PSoC Designer in the lib directory. It is mentioned here
because it needs to be modified after PSoC Designer has
generated the code. PSoC Designer generates code such that
when a Timer interrupt occurs the vector jumps to this module.
This module in turn needs to jump to the tick_isr interrupt service
routine discussed in section 6.7.

7. REFERENCES

CY3632 Wireless USB Development Kit documents

WirelessUSB Theory of Operation

CY4632 Protocol Library

PSoC Designer version 4.1 documentation

CY4632 RDK Kit schematics

WirelessUSB is a trademark of Cypress Semiconductor.
PSoC is a trademark of Cypress MicroSystems, a subsidiary of Cypress Semiconductor.

Cypress Semiconductor Corporation Page 36/36

	INTRODUCTION
	Scope
	Overview
	Design Goals

	DEFINITIONS
	HARDWARE OVERVIEW
	Schematic of PDC-9174 Board
	RDK Keyboard Photographs
	Keyboard Matrix

	DEVELOPMENT ENVIRONMENT
	Tools
	PSoC Configuration

	FIRMWARE ARCHITECTURE
	Model
	Normal Keyboard Operation
	Ghost Key Detection

	Platform & Architecture Portability
	Initialization
	Configuration Options
	KEYBOARD_KEEP_ALIVE_TIMEOUT
	KEY_DOWN_DELAY_SAMPLE_PERIOD
	KEYBOARD_DEBOUNCE_COUNT
	KEYBOARD_MULTIMEDIA_SUPPORT
	MFG_TEST_CODE
	MFG_ENTER_BY_KEY_NOT_PIN
	KEYBOARD_TEST_MODES
	KEYBOARD_TEST_MODE_PERIOD
	PANGRAM_TEST_MODE
	KEYBOARD_BATTERY_VOLTAGE_SUPPORT
	CBK_500_KEYBOARD_MATRIX
	KEYBOARD_FAST_SCAN
	KEYBOARD_TX_TIMEOUT
	TIMER_CAL
	ENCRYPT_DATA
	MOUSE_EMULATION_MODE
	KEYBOARD_POWER_ON_BIND
	PLATFORM_H

	Radio Subsystem
	Keyboard Wireless Protocol
	Keyboard Application Report Formats
	Standard 101 Keys Report
	Multimedia Keys (Hot keys) Report
	Power Keys (Suspend/Sleep) Report
	Keep Alive Report
	Battery Voltage Level Report

	Test Modes
	Manufacturing Test Mode
	Flash Security
	Battery Monitor

	KEYBOARD CODE MODULES
	KEYBOARD
	Defines & Types
	Variable Definitions
	Functions

	BATTERY
	Functions

	MFGTEST
	Defines & Types
	Functions

	PDC9174
	PSOCGPIOINT
	ISR
	Functions

	TIMER
	Defines & Types
	Variable Definitions
	Functions

	TICKINT

	REFERENCES

