
 PSoC Creator Component datasheet

Rev. *A Revised September 17, 2017

ui

 Features

 Implements quadrature decoder for rotary shaft encoders.
 Returns position and direction of rotation.
 8-bit, 16-bit, 32-bit, single or double position range.
 Optional button switch with debouncing.

 Optional increment step size.

 Optional range limits.
 Uses interrupt or polling technique.

General description

The QuadDec_SW component(*) represents quadrature decoder with optional button switch

detection implemented entirely in software code (no UDB resources used). It can detect

position of the rotary encoder and direction of rotation of mechanical shaft encoders using

established algorithm [1]. Range selection (8,16,32-bit, single, double) and limit bounds option

allow for simple interfacing with other PSoC components (VDAC8, PWM, etc.). Multiple

instances of component can run simultaneously in the project interfacing several encoders.

When to use Decoder component

Component was developed for interfacing hand-operated rotary shaft encoders

with PSoC projects with limited UDB resources. It is particularly useful when

developing custom Verilog/Datapath code as it does not hide UDB resources

consumption. Component was tested on PSoC4 and PSoC5 prototyping kits with

encoders having 15-24 detents/revolution. Typical applications are HMI interface (such as LCD

menu) or parameter input (servo position, volume control etc.). Component is not intended for

critical applications, such as motor feedback control. Demo projects are provided.

*
 Hereafter referenced as ‘Decoder’

QuadDec_SW: Quadrature Decoder with Switch Button
0.0

QuadDec_SW: Quadrature Decoder with Switch Button PSoC Component datasheet

Page 2 of 19 Rev. *A

Input-output connections

A(B) – encoder line A(B)

External terminal for connecting A(B) line from the encoder annotation component (off-chip).

The pin is always visible. Pin does not have to be connected, it is merely an external terminal to

the annotation component. Actual assignment of the input pin is performed using Pins dialog

on the Design Wide Resources (DWR) page. See Functional Description section for details.

Btn – button switch

External terminal for connecting to a switch button on the encoder annotation component (off-

chip). Visibility of this pin is controlled by the btn_enable option in the Advanced dialog. The

pin does not have to be connected, it is merely an external terminal to the annotation

component. Actual assignment of the button pin is performed in the Pins dialog. See Functional

Description section for details.

gnd – virtual ground

External terminal for connecting to a ground terminal on the encoder annotation component

(off-chip). Visibility of this pin is controlled by the gnd_enable option in the Advanced dialog.

The pin does not have to be connected, it is merely an external terminal to the annotation

component. Actual assignment of the input pin is performed in the Pins dialog. See Functional

Description section for details.

clk – clock input

In polling mode the encoder pins are sampled on rising edge of this signal. In interrupt mode

the clock is used only for debouncing of the switch button(*). In the polling mode the pin is

visible when internal interrupt option is selected; in the interrupt mode this pin is visible when

button is enabled. When visible, the pin must be connected to a clock. Recommended

frequency of the clock source must be about 1-2 kHz. Increasing sampling rate improves

encoder position accuracy (in polling mode), but shortens debouncing time. In PSoC4 this pin

can’t be directly driven by a clock and has to be bypassed using either UDB component or a pin.

Such bypass consumes one macrocell.

*
 Default debouncing interval is 50 clocks as defined by the SW_DEBOUNCE_TIME in the API header file.

PSoC Creator Component datasheet QuadDec_SW: Quadrature Decoder with Switch Button

Rev. *A Page 3 of 19

Figure 1. Clock connection: (A) PSoC5 - direct, (B, C) PSoC4 - bypassed.

Parameters and Settings

Basic dialog provides following parameters(*):

check_bounds (bool)

Enables lower and upper bounds for encoder position. Default value is false. If enabled,

encoder position will be restricted to interval from lower_bound to upper_bound, saturating at

bound limits. If disabled, position change is unrestricted, and will flip over range type limits. For

example, for encoder range type int8, next position up from 127 is -128, etc.).

*
 Decoder component is intentionally compiled using Creator 4.0 for compatibility with v.4.1 and older versions

QuadDec_SW: Quadrature Decoder with Switch Button PSoC Component datasheet

Page 4 of 19 Rev. *A

encoder_range (int8 / int16 / int32 / uint8 / uint16 / uint32 / single / double)

Encoder position range type er_t (int8, int16, int32, uint8, uint16, uint32, single or double). For

example, valid range for position values using er_t = int8 is from -128 to 127.

increment (er_t)

Encoder step increment. Must be of positive non-zero value. Default value is 1. When

check_bounds option is selected, the position will not change if incrementing it causes bound

overflow. For example, if start_position=0, increment=10 and upper_bound=255, encoder

position can reach maximum value of 250 (can’t step over 255).

lower_bound (er_t)

Encoder lowest position. To have effect, the check_bounds option must be enabled.

start_position (er_t)

Encoder position upon initialization. If check_bounds option is enabled, the value of the

start_position must reside between lower_bound and upper_bound.

upper_bound (er_t)

Encoder highest position. To have effect, the check_bounds option must be enabled.

PSoC Creator Component datasheet QuadDec_SW: Quadrature Decoder with Switch Button

Rev. *A Page 5 of 19

Advanced dialog provides following parameters:

btn_enable (bool)

Enables button pressed event. Default value is True. In interrupt mode this feature will

consume extra interrupt for switch debouncing. See Resources section for details.

gnd_enable (bool)

Enables virtual ground though extra pin (open drain drives low). Default value is true. This

feature is convenient when working with PSoC prototyping kits where ground terminals are

limited. This feature consumes extra pin on PSoC. If enabled, the gnd external terminal appears

on the symbol.

input_mode (resistive pull up / high impedance)

Sets input pins either to resistive pull up or high impedance digital drive mode. Default value is

resistive pull up. Select high impedance option when encoder has external pullup resistors;

select resistive pull up option when encoder is a bare switch. See Functional Description

section for details.

invert_direction (bool)

Allows revering direction of the encoder in code. Default value is false. This feature has same

effect as switching up encoder terminals A and B. It appears that various shaft encoders may

have either line A or line B as leading edge source, resulting either in increment or decrement

while rotating clockwise. This option allows correcting that issue.

QuadDec_SW: Quadrature Decoder with Switch Button PSoC Component datasheet

Page 6 of 19 Rev. *A

state_check (polling / interrupt)

Method of detection of the encoder state change: repeatedly polling pins state or waiting for

pin interrupt. Using interrupts consumes less CPU resources but is limited by only one encoder

per port, and pins assignment has to be contiguous. The polling method poses no restrictions

on number of encoders per port and on pins assignment, but consumes extra CPU resources.

This may become significant when large numbers of encoders are used or when CPU is heavily

loaded by other processes. See Functional Description and Performance sections for details.

Figure 2. Component appearance in polling and interrupt modes: (a)-polling mode, timer clock

appears on the symbol; (b)-interrupt mode, interrupt symbol appears on the symbol.

timer_isr (internal / external)

Select internal or external timer interrupt for polling of encoder pins. This option available only

for polling mode. Internal option requires less code, but consumes extra interrupt for each

Decoder component, which but can be prohibitive when large number of encoders used.

External option allows for a single interrupt polling all encoders in the project, but requires

extra custom code(*). When selected, the clock input becomes hidden. Default option is

internal.

*
 See Multiple Encoders example in the Application Note

PSoC Creator Component datasheet QuadDec_SW: Quadrature Decoder with Switch Button

Rev. *A Page 7 of 19

Application Programming Interface

Function Description
Decoder_Start() Initialize and start component
Decoder_Stop() Stop component
Decoder_SetPosition() Sets encoder position
Decoder_SetIncrement() Sets position increment step
Decoder_SetBounds() Sets lower and upper bounds
Decoder_SetCheckBounds() Sets check_bounds property
Decoder_Setup() Sets position, increment and bounds
Decoder_CheckStatus() Step through the state machine

Variable Description
Decoder_Position Encoder position
Decoder_Direction Encoder last direction of rotation
Decoder_PositionChanged Position changed flag
Decoder_BtnPressed Button pressed flag
Decoder_Initialized Component initialized status
Decoder_Enabled Decoder enabled status
Decoder_Increment Position increment step
Decoder_LowerBound Position lower bound
Decoder_UpperBound Position upper bound
Decoder_CheckBounds Decoder check_bounds state

void Decoder_Start()

Description: Initializes and starts component. Sets input pins drive mode (resistive pull up /

high impedance) according to input_mode selection.

Parameters: none

Return Value: none

void Decoder_Stop()

Description: Stops and disables component. Stops internal interrupts and sets input pins drive

mode to high impedance state.

Parameters: none

Return Value: none

QuadDec_SW: Quadrature Decoder with Switch Button PSoC Component datasheet

Page 8 of 19 Rev. *A

uint8 Decoder_SetPosition(er_t value)

Description: Sets encoder position.

Parameters: new encoder position, must be of defined encoder range type er_t(*). If

check_bounds option is enabled, the value must be in range from lower_bound

to upper_bound.

Return Value: 1- if set value is within the range, otherwise return is 0.

uint8 Decoder_SetIncrement (er_t value)

Description: Sets position increment step.

Parameters: non-zero, positive value, must be of selected encoder range type er_t.

Return Value: 1- if value > 0, otherwise return is 0.

uint8 Decoder_SetBounds (er_t lower_bound, er_t upper_bound)

Description: Sets encoder lower_bound and upper_bound.

Parameters: lower_bound and upper_bound must be of selected encoder range type er_t,

satisfying condition lower_bound <= upper_bound. Note that changing the

bounds will not update encoder position automatically, and may result in

position falling outside of the bound limits. Use API SetPosition() to update the

position right after SetBounds() call.

Return Value: 1 – if lower_bound < upper_bound, otherwise return value is 0.

*
 er_t is of type int8, int16, int32, uint8, uint16, uint32, single or double, as selected by the encoder_range option.

PSoC Creator Component datasheet QuadDec_SW: Quadrature Decoder with Switch Button

Rev. *A Page 9 of 19

uint8 Decoder_SetCheckBounds(uint8 value)

Description: Sets bounds check option.

Parameters: 1 – enable bounds check, 0 – disable bounds check.

Return Value: 1 – (i) bounds check enabled and current position lies between lower and upper

bounds, or (ii) bounds check is disabled. Otherwise return value is 0.

uint8 Decoder_Setup (er_t position, er_t increment, er_t lower_bound, er_t

upper_bound, uint8 check_bounds)

Description: Sets encoder position, increment and bounds properties in a single call.

Parameters: Position, lower_bound and upper_bound must be of selected encoder range

type, check_bounds – boolean (1- enable, 0- disable). The increment should be

greater than 0. If bounds option is activated, the input values must satisfy the

conditions: lower_bound <= position <= upper_bound.

Return Value: 1– if all conditions are satisfied, otherwise return is 0.

int8 Decoder_CheckStatus ()

Description: Reads encoder pins state and passes it to the state machine. In the polling mode

this function is called automatically when timer_isr option set to internal. When

timer_isr option set to external, this function has to be called repeatedly to

capture state change. Function has no effect in interrupt mode.

Parameters: None.

Return Value: 1 – encoder rotated clockwise; -1 – encoder rotated counterclockwise; 0 –

position changed by API call (no physical rotation).

er_t Decoder_Position

Description: Returns encoder current position. Read-only.

Return Value: encoder position.

QuadDec_SW: Quadrature Decoder with Switch Button PSoC Component datasheet

Page 10 of 19 Rev. *A

int8 Decoder_Direction

Description: Returns encoder last direction of rotation. Read-only.

Return Value: 1 – encoder rotated clockwise; -1 – encoder rotated counterclockwise; 0 –

position changed by API call (no physical rotation). Note that return value

reflects direction of rotation, and not encoder position change. For example,

while rotating clockwise, the encoder position may flip over the range boundary

(e.g. from +127 to -128), or saturate at the upper_bound, yet the Direction value

will stay 1.

unt8 Decoder_PositionChanged

Description: Flag indicating change of encoder position. Read-only. Check this flag in the

main() loop to detect encoder position change event. Once checked, the flag

automatically resets to 0.

Return Value: 1 – position changed, otherwise return value is 0.

unt8 Decoder_BtnPressed

Description: Flag indicating button pressed event. Read-only. Check this flag in the main()

loop to detect button pressed event. The flag will rise after debouncing time has

elapsed, which adds delay of 50 clock cycles (50 ms at 1 kHz) after the button

was actually pressed. Once checked, the flag automatically resets to 0.

Return Value: 1 – button pressed, otherwise return value is 0.

uint8 Decoder_Initialized

Description: Returns Decoder initialized state. Read-only.

Return Value: 1 – decoder started, 0 – decoder stopped.

PSoC Creator Component datasheet QuadDec_SW: Quadrature Decoder with Switch Button

Rev. *A Page 11 of 19

uint8 Decoder_Enabled

Description: Reads/writes parameter controlling decoder state machine operation. Assign 1-

to enable, 0 - to disable decoder state machine. When disabled, the flag

PositionChanged shall not raise. Unlike the Stop() procedure, disabling the state

machine won’t free interrupts nor alter the pins drive mode. This parameter

doesn’t affect button switch detection, and the ButtonPressed flag shall rise

normally. This can be used, for example, to enable/disable encoder by pressing

the button.

Return Value: 1 – decoder enabled, 0 – decoder disabled.

er_t Decoder_Increment

Description: Returns position increment step. Read-only.

Return Value: increment step value.

er_t Decoder_LowerBound

Description: Returns position lower limit. Read-only.

Return Value: lower bound value.

er_t Decoder_UpperBound

Description: Returns position upper limit. Read-only.

Return Value: upper bound value.

uint8 Decoder_CheckBounds

Description: Returns check_bounds parameter. Read-only.

Return Value: 1 – bounds check enabled, 0 – bounds check disabled.

QuadDec_SW: Quadrature Decoder with Switch Button PSoC Component datasheet

Page 12 of 19 Rev. *A

Functional Description

Basic rotary encoder switch is a mechanical device utilizing a pair of contacts operating in

quadratures when shaft is rotated [2]. Encoders come from variety of manufactures and

available with or without breakout board (Figure 3); the Decoder component can be configured

to operate with both types. Having breakout board has benefits for prototyping purposes as it

can be directly plugged into a protoboard or a ribbon cable, needs only four wires for

connection, and optional decoupling capacitors could be directly soldered to the board.

Figure 3. Rotary encoder examples: (a) without breakout board,

(b)- with KY-040 breakout board
(*)

.

Encoder connection to PSoC is shown on Figure 4. Traditional approach requires a pair of

external pullup resistors to interface encoder to microcontroller pins configured to operate in

the high impedance digital input mode (Figure 4a). By enabling pins internal pullup resistors the

encoder hook-up simplifies, so that no external parts are necessary (Figure 4b). In this case the

Decoder input mode must be configured as resistive pull up. Encoder rotation will produce

quadrature signals on PSoC digital input pins, which can be captured and processed by the state

machine. Examples of encoder interfacing to the PSoC are described in the Appendix 1.

Figure 4. Encoder connection schematic using: (a) external pullup resistors, (b) internal pullup resistors.

*
 Keyes KY-040 rotary encoder with breakout board [3]

PSoC Creator Component datasheet QuadDec_SW: Quadrature Decoder with Switch Button

Rev. *A Page 13 of 19

Input pins configuration

To parse encoder state, the Decoder component utilizes buried pins. Component configures

pins automatically according to options selected; only job left to user is to assign inputs in the

Pin Configuration window, which looks differently in polling and interrupt mode.

Decoder pins configuration in the polling mode is shown on Figure 5. In polling mode the pin

assignment is arbitrary, and any available pins can be selected for lines A, B, btn and gnd.

External clock (Clock_1) is required here both for encoder polling and button operation. The

off-chip encoder component (enc_1) is provided merely for annotation purpose; its presence

on the schematic does not affect operation of the Decoder component.

Figure 5. Pins configuration in polling mode: (a)- component appearance on schematic, (b)-
pins configuration (individual pin assignment is arbitrary).

When Decoder is set to operate in interrupt mode, the pins assignment looks different and has

some constrains (Figure 6). It requires pins A, B and btn to be contiguous (belong to same port

and be consecutive), as they share same port interrupt. Optional pin gnd can be assigned to any

available pin as it needs no interrupt. In this mode external clock (Clock_1) is required for

button switch debouncing only, no clock required if button disabled.

Figure 6. Pins configuration in interrupt mode: (a)- component appearance on schematic, (b)-

pins configuration (pins A, B and gnd assignment is contiguous).

QuadDec_SW: Quadrature Decoder with Switch Button PSoC Component datasheet

Page 14 of 19 Rev. *A

Implementation

Component implements a state machine using established algorithm [1]. It utilizes buried pins

which state is being parsed by CPU either on timer or pin interrupt. The component consumes

neither UDB Datapath nor PLD resources, performing all operation entirely by CPU. CPU clock

consumption is given in Performance section, typically taking about 50 CPU clocks to process

single interrupt or polling event. During that time CPU is unavailable to other task.

The state machine has 4 sequential pin states (11), (01), (00), (10), therefore

Decoder must correctly identify all 4 consecutive transitions (micro-steps) in

order to detect encoder single step(*). In interrupt mode, any state change on

digital lines A and B is captured and processed using port interrupt. It will take

at least 4 interrupt events to detect encoder rotation. The drawback of using

port interrupt is that in current implementation only a single encoder can be

connected to PSoC port(†); having several encoders in the project will occupy several ports.

In the polling mode, pin state is being checked on each clock rising edge. To catch the

transition, polling must occur faster than encoder lines A and B are switching states. Typically,

polling rate of 1 kHz to 2 kHz is sufficient for normal hand operation of shaft encoder with 20

detents per revolution. Faster polling rate reduces error rate, but increases CPU load, which

may become essential if many encoders are attached to PSoC.

In the main loop the PositionChanged flag is evaluated based on encoder rotation direction and

boundary limits (if set) and new encoder position is calculated. Having encoder position

incremented in the main loop instead of inside interrupt routine reduces amount of CPU clocks

spent in the interrupt, but may not fit application with heavy CPU load. The Decoder

component is best suited for non-critical task (such as update of the audio volume, etc.).

Button press detection implemented using either polling or interrupt (according to state check

option selected), followed by a debouncing time interval. On button pressed event a counter is

set, starting a countdown for debouncing time delay. Elapsed time is counted on each input

clock. Default debouncing time is set to 50 clocks (50 ms using 1 kHz clock), defined by the

SW_DEBOUNCE_TIME in the API header file. When countdown expires, the state of the Btn line

is checked again, and, depending on the outcome, the ButtonPressed flag is raised for further

processed in the main loop.

Comparison of polling vs. interrupt modes is provided in the Performance section.

*
 The algorithm used does not detect half-steps.

†
 There are no formal restrictions to have several encoders per port operating in interrupt mode, being only a

matter of customizer implementation to cover various pins arrangements.

PSoC Creator Component datasheet QuadDec_SW: Quadrature Decoder with Switch Button

Rev. *A Page 15 of 19

Performance

Component was tested using PSoC5LP (CY8KIT-059) and PSoC4 (CY8CKIT-042 Pioneer Kit). The

component consumes neither UDB Datapath nor PLD resources, performing all operation

entirely by CPU. The state machine takes about 50 CPU clocks to process a single interrupt

event. Typical results for PSoC5LP are shown. Results for PSoC4 are about 20% slower.

Table 1. PSoC5LP typical CPU clocks consumption by state machine processing a single transition (micro-step).

Option
Polling Interrupt

w/o button w/ button w/o button w/ button

debug(*) 51 68 55-57 58-60

release(†) 43 57 44-46 49
(*) data collected in debug mode with compiler optimization turned off
(†) data collected in release mode with compiler optimization set to speed

Table 2. Comparison of polling vs. interrupt mode.

Polling mode Interrupt mode

Number of encoders in the project is limited by
amount of available pins and interrupts

Number of encoders in the project is limited by
amount of available ports

Up to 4 encoders per physical port Only 1 encoder per physical port

Pins assignment is arbitrary Pins assignment is contiguous

Continuous polling drains CPU resources CPU engages when encoder activity detected

Needs external clock External clock needed only when button enabled

Debouncing time linked to polling rate Debouncing time defined by input clock

Low differential error rate Low integral error rate

Error rate depends on clock frequency Error rate does not depend on clock frequency

Resources

Component resources consumption is provided below. The component does not consume UDB

resources. Component does not have built-in DMA capabilities.

Table 3. Resources consumption.

Resource
Polling(*) Interrupt

w/o button w/ button w/o button w/ button

interrupts 1 1 1 2

clocks 1 1 - 1
(*) using internal interrupt

QuadDec_SW: Quadrature Decoder with Switch Button PSoC Component datasheet

Page 16 of 19 Rev. *A

Sample Firmware Source Code

Basic application example shows Decoder operation in interrupt mode (Figure 7). Several demo

projects are provided showing various use of the component.

Figure 7. Basic application example showing Decoder operating in interrupt mode.

Component Changes

Version Description of changes Reason for changes/impact

0.0 Version 0.0 is the first beta release of the
QuadDec_SW component

References

1. M. Kellett, Interfacing Micro-controllers with Incremental Shaft Encoders.

http://www.mkesc.co.uk/ise.pdf

2. Wikipedia. https://en.wikipedia.org/wiki/Rotary_encoder

3. Keyes rotary encoder user manual

http://www.mkesc.co.uk/ise.pdf
https://en.wikipedia.org/wiki/Rotary_encoder
http://henrysbench.capnfatz.com/henrys-bench/arduino-sensors-and-input/keyes-ky-040-arduino-rotary-encoder-user-manual/

PSoC Creator Component datasheet QuadDec_SW: Quadrature Decoder with Switch Button

Rev. *A Page 17 of 19

Appendix 1

Breakout board connection

The Keyece KY-040 breakout board schematic is shown on Figure 8. Original board provides

external pull-up resistors which require pull-up voltage (Vdd). Using PSoC built-in pull-up

resistors, the encoder hook-up simplifies, no longer requiring external pull-up voltage. Pull-up

resistors on the breakout board can be left in place (Fig. 8a) or removed (Fig. 8b). Leaving

resistors in-place causes some crosstalk between encoder channels, which does not affect

performance. Partial hardware debouncing can be achieved by replacing onboard resistors with

0.1 uF capacitors (Fig 8c). Such modification debounces low-to-high transition only.

Figure 8. KY-040 breakout board schematic, connector pinout and scope traces for the channels A

and B: (a) original, (b) pullup resistors removed, (c) resistors are replaced with capacitors. Connector

wire pinout: A (red), B (orange), Btn (yellow), Gnd (green). Unused pin on breakout board (b, c) is

removed.

QuadDec_SW: Quadrature Decoder with Switch Button PSoC Component datasheet

Page 18 of 19 Rev. *A

Traditional encoder connection

Traditional encoder connection to controller with hardware debouncing is shown on Figure 9. It

uses external pullup resistors with additional RC-circuit for debouncing. Such connection

requires Decoder component operation in high impedance input mode. Hardware debouncing

is achieved by using RC-circuits, which debouncing both low- and high- transitions. Its drawback

is larger external parts count, but resulting input signals are nicely clean.

Figure 9. Encoder connection using external pullup resistors with hardware debouncing. Right:
oscilloscope traces at points A and B.

Sub-standard quality encoders

Some batches of the KY-040 appear of inferior quality (Figure 10). Intermittent contact of the

slider electrode with the ground is likely culprit. Decoder component state machine filters out

most of the noise, yet about 1% position error rate feeds through. Always check new encoder

for output signal integrity and discard the faulty units.

Figure 10. Examples of signal traces from faulty encoders (same batch).

PSoC Creator Component datasheet QuadDec_SW: Quadrature Decoder with Switch Button

Rev. *A Page 19 of 19

Appendix 2

Encoder off-chip annotation components

The Decoder component is accompanied with few off-chip Encoder components (Figure 11).

They are optional annotation components, designed to improve visibility of the Decoder

component settings. Dialog options can set visibility of the name, labels and button switch.

Figure 11. Encoder off-chip annotation components: (a) standard; (b) upside down
configuration; (c) compact; (d)-with external pullup resistors.

Figure 12. Examples of schematic using CY8KIT-059 off-chip annotation library
(*)

 and the
Encoder component.

*
 CY8KIT-059 annotation library community component:

 http://www.cypress.com/forum/psoc-community-components/annotation-library-cy8ckit-059-prototyping-kit

http://www.cypress.com/forum/psoc-community-components/annotation-library-cy8ckit-059-prototyping-kit

