Difficulties with Psoc6 and keras model.

Tip / Sign in to post questions, reply, level up, and achieve exciting badges. Know more

cross mob
Anonymous
Not applicable

Hello.I am using an CY8CKIT-062S2-43012 Pson6 board and the lastest version of Modus Toolbox.

I am having trouble loading a keras model with a custom layer into our application. The ML Configurator returns us an error: "Error returned: Unknown layer: FFT_Image. Please ensure this object is passed to the custom_objects argument." Even when we don't use a custom layer, we still get the error: "Deploy script returned with error 'list' object has no attribute 'name'"

And finally in the project itself , in the library file "mtb_ml_common.h", we get a linker error: " #error Unsupported data type" We've been looking everywhere in the exemple projects and cannot figure out where COMPONENT_ML_FLOAT32 is defined and how can we define it properly in our project as well. We would really appreciate some help.

0 Likes
1 Solution
PandaS
Moderator
Moderator
Moderator
100 solutions authored 5 likes given 250 sign-ins

Hi @Anonymous ,

At the moment, we don't support this type of layer: "FFT_image". 

This is a list of layers we support:

                               'Add',
                                'AveragePooling1D',
                                'AveragePooling2D',
                                'BatchNormalization',
                                'Concatenate',
                                'Conv1D',
                                'Conv2D',
                                'Dense',
                                'DepthwiseConv2D',
                                'Dropout',
                                'Flatten',
                                'GlobalAveragePooling1D',
                                'GlobalAveragePooling2D',
                                'GlobalMaxPooling1D',
                                'GlobalMaxPooling2D',
                                'GRU',
                                'InputLayer',
                                'LeakyReLU',
                                'LSTM',
                                'MaxPooling1D',
                                'MaxPooling2D',
                                'ReLU',
                                'Reshape',
                                'SeparableConv2D',
                                'Softmax']

If you refer the mtb-example-profiler code example Makefile, we add the COMPONENT_ML_FLOAT32 in here:

ifeq (float, $(NN_TYPE))
COMPONENTS+=ML_FLOAT32
endif

View solution in original post

0 Likes
1 Reply
PandaS
Moderator
Moderator
Moderator
100 solutions authored 5 likes given 250 sign-ins

Hi @Anonymous ,

At the moment, we don't support this type of layer: "FFT_image". 

This is a list of layers we support:

                               'Add',
                                'AveragePooling1D',
                                'AveragePooling2D',
                                'BatchNormalization',
                                'Concatenate',
                                'Conv1D',
                                'Conv2D',
                                'Dense',
                                'DepthwiseConv2D',
                                'Dropout',
                                'Flatten',
                                'GlobalAveragePooling1D',
                                'GlobalAveragePooling2D',
                                'GlobalMaxPooling1D',
                                'GlobalMaxPooling2D',
                                'GRU',
                                'InputLayer',
                                'LeakyReLU',
                                'LSTM',
                                'MaxPooling1D',
                                'MaxPooling2D',
                                'ReLU',
                                'Reshape',
                                'SeparableConv2D',
                                'Softmax']

If you refer the mtb-example-profiler code example Makefile, we add the COMPONENT_ML_FLOAT32 in here:

ifeq (float, $(NN_TYPE))
COMPONENTS+=ML_FLOAT32
endif
0 Likes