
EZ-USB Suite User Guide, Version 1.3.4 1

Cypress EZ-USB® FX3™ SDK

EZ-USB Suite User Guide

Version 1.3.4

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone (USA): 800.858.1810

Phone (Intl): 408.943.2600
http://www.cypress.com

EZ-USB Suite User Guide, Version 1.3.4 2

Copyrights

Copyright © 2017-18 Cypress Semiconductor Corporation. All rights reserved.

EZ-USB, FX3, FX3S, CX3, FX2G2 and GPIF are trademarks of Cypress Semiconductor. All other trademarks or registered
trademarks referenced herein are the property of their respective owners.

The information in this document is subject to change without notice and should not be construed as a commitment by
Cypress. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that may
appear in this document. No part of this document may be copied or reproduced in any form or by any means without the
prior written consent of Cypress. Made in the U.S.A.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described
herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein.
Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or
failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

License Agreement

Please read the license agreement during installation.

EZ-USB Suite User Guide, Version 1.3.4 3

Contents

1 EZ-USB Suite ... 4
1.1 Introduction .. 4
1.2 IDE Features .. 4

2 Creating an FX3 Firmware Project .. 5
2.1 Starting the EZ-USB Suite IDE .. 5
2.2 Creating the Project ... 6
2.3 Creating a New Project Based on Templates ... 11
2.4 Using the FX2LP Firmware Templates .. 13

3 JTAG Debugging of Firmware Projects .. 15
3.1 Debugging using Segger J-Link ... 15
3.2 Debugging with OpenOCD .. 22

4 CX3 Configuration Utility ... 27
4.1 Introduction to the CX3 device ... 27
4.2 CX3 MIPI CSI-2 interface ... 28
4.3 Configuring the CX3 Device ... 31
4.4 Using the CSI Configuration Utility ... 33
4.5 GPIF-II interface on the CX3 .. 45

EZ-USB Suite User Guide, Version 1.3.4 4

1 EZ-USB Suite

1.1 Introduction

EZ-USB Suite is the integrated development environment provided by Cypress for
firmware development and debugging using the EZ-USB FX3 and associated
parts.

EZ-USB Suite is based on the standard Eclipse Kepler IDE for C/C++ Developers,
and provides a few customizations that are FX3 device family specific.

1.2 IDE Features

The EZ-USB Suite IDE provides firmware development and debugging support for
FX3 applications. It also provides a mechanism to create new FX3 firmware
projects, and plug-ins for through which other FX3 applications such as Control
Center and GPIF-II Designer can be accessed.

The IDE is integrated with the GNU ARM tool-chain for firmware compilation,
linking and debugging. The ARM GNU Eclipse plug-in is used for managed builds
and debugging.

The following chapters provide more detailed description on the IDE features.

EZ-USB Suite User Guide, Version 1.3.4 5

2 Creating an FX3 Firmware Project

This chapter outlines the steps involved in creating a FX3 firmware application,
using the GpifToUsb project from the SDK as a reference.

2.1 Starting the EZ-USB Suite IDE

Launch the EZ-USB Suite IDE by following the “All Programs -> Cypress -> Eclipse
-> EZ USB Suite” path from the Start Menu.

Figure 2-1: Workspace Selection Dialog

The IDE will prompt for a Workspace to be opened. If you have already created a
workspace, select it from the dropdown box. Otherwise, provide the path where the
new workspace has to be created and Click OK.

EZ-USB Suite User Guide, Version 1.3.4 6

2.2 Creating the Project

The easiest way to create a new FX3 firmware project under the Eclipse IDE, is to
import an existing project and make changes to it.

1. Choose the Import option under the File menu to bring up the Import options
window. Choose “Existing Projects into Workspace” from the “General”
group.

Figure 2-2: Project Import Dialog

2. In the “Browse for Folder” window that pops up, navigate into the
firmware/basic_examples/cyfxgpiftousb folder in the FX3 SDK installation.

EZ-USB Suite User Guide, Version 1.3.4 7

Figure 2-3: Folder Browse Dialog

3. Select the “Copy projects into workspace” option in the Import window, so
that we get a new copy of the source files that can be modified.

EZ-USB Suite User Guide, Version 1.3.4 8

Figure 2-4: Import Projects Dialog

4. If desired, right-click the project name and use the “Rename” option to
rename the project. The respective source files in the project can also be
renamed as desired. If the header files are renamed, references to the
header file in the source files will need to be updated.

EZ-USB Suite User Guide, Version 1.3.4 9

Figure 2-5: EZ USB Suite Eclipse Based IDE

5. Add additional source files as required. This can be done in one of two
ways:

a. Right-click the project name and select the “New -> Header File” or
“New -> Source File” option as appropriate.

EZ-USB Suite User Guide, Version 1.3.4 10

Figure 2-6: Adding new source files to a project

b. Copy the file into the project folder inside the workspace and use the
Refresh (F5 key) option to make it visible in the project.

6. The build settings for the project will already be functional. Right-Click on the
project name and use the “Properties” menu item to view and modify the
build settings.

7. Build the project to verify that the project import and renaming is successful.

EZ-USB Suite User Guide, Version 1.3.4 11

2.3 Creating a New Project Based on Templates

Another way to create a new FX3 firmware project is to use the Create Project
based on Templates option provided by EZ-USB Suite.

1. Select the New -> Project option from the File menu.

Figure 2-7: Selecting the New Project Menu Item

2. Choose the “Cypress -> FX3 Project” option from the resulting popup
window and click on “Next”.

EZ-USB Suite User Guide, Version 1.3.4 12

Figure 2-8: Choosing project type to be created

3. Three project templates are provided. The cyfx3bootappgcc template
creates a project based on the FX3 boot library. The cyfxbulksrcsink
template creates a project that does not include a GPIF-II configuration. The
slfifoasync template creates a project that includes a GPIF-II configuration.
Select the “Create the Project using one of the Templates” checkbox, select
the desired template, provide a name for the project; and click “Finish” to
create the project.

EZ-USB Suite User Guide, Version 1.3.4 13

Figure 2-9: Creating the template based project

2.4 Using the FX2LP Firmware Templates

The ezUsbSuite also integrates SDCC compiler suite based plug-ins for build of firmware targeting

the FX2LP device which has an 8051 MCU core.

To use the ezUsbSuite to develop firmware for FX2LP, you will first need to download and install the

SDCC compiler suite. The latest release version (3.6.0) for Windows platforms can be found at:

https://sourceforge.net/projects/sdcc/files/sdcc-win64/3.6.0/ (for Windows 64-bit)

https://sourceforge.net/projects/sdcc/files/sdcc-win32/3.6.0/ (for Windows 32-bit)

2.4.1 Importing the FX2LP Firmware Template

The SDK includes only one FX2LP template project which is a bulkloop (data loopback using Bulk

endpoints) application. Use the File  New  Project menu option and select the FX2LP Project

option in the dialog.

Select the Create the project using one of the Templates check-box, select the Bulkloop_SDCC

project, name the project as desired in the text box and select Finish to create a copy of the

template project.

https://sourceforge.net/projects/sdcc/files/sdcc-win64/3.6.0/
https://sourceforge.net/projects/sdcc/files/sdcc-win32/3.6.0/

EZ-USB Suite User Guide, Version 1.3.4 14

You can use the Project  Build Project menu option to compile the code and generate the HEX

file.

Note: The SDCC compiler and assembler syntax is different from the syntax used by the ARM (Keil)

uVision IDE. You cannot directly compile uVision based FX2LP projects using this tool-chain and will

have to port the code to SDCC.

EZ-USB Suite User Guide, Version 1.3.4 15

3 JTAG Debugging of Firmware Projects

The ARM9 core on the FX3 and related devices support the standard ARM JTAG
TAP block and all of the JTAG pins are made available on the device package. This
means that any standard JTAG debugger and tools can be used to debug FX3
firmware projects.

The following sub-sections provide instructions on how the Segger J-Link Debug
Probe and the Cypress CY7C65215 USB serial device can be used for debugging
firmware projects. Similar sequences can be followed when using other debug
probes.

3.1 Debugging using Segger J-Link

The following procedure can be used to debug FX3 projects from the Eclipse IDE
on all supported platforms (Windows, MacOS and Linux).

Download and install the latest J-Link GDB Server software from the Segger web
page: https://www.segger.com/jlink-gdb-server.html

The command line version of the GDB server program is used for the following
steps.

https://www.segger.com/jlink-gdb-server.html

EZ-USB Suite User Guide, Version 1.3.4 16

1. Select and right-click on the project to be debugged, and select the “Debug
As -> Debug Configurations…” option.

Figure 3-1: Creating debug configuration: Start

EZ-USB Suite User Guide, Version 1.3.4 17

2. In the Debug Configurations popup window, right-click the “GDB Segger J-
Link debugging” option and select “New”.

Figure 3-2: Creating debug configuration: Segger J-Link

3. A “<ProjName> Debug” configuration will be created. The settings for the
configuration need to be entered as below.

EZ-USB Suite User Guide, Version 1.3.4 18

4. No changes are required under the “Main” tab.

Figure 3-3: Creating debug configuration: Main tab

EZ-USB Suite User Guide, Version 1.3.4 19

5. On the “Debugger” tab, browse and select the path to the J-Link GDB Server
executable, specify “ARM9” as the Device Name and select JTAG as the
debug interface. Please note that the {cross_prefix} variable must be set to
arm-none-eabi- in some cases if the default settings don’t work.

Figure 3-4: Creating debug configuration: Debugger tab

EZ-USB Suite User Guide, Version 1.3.4 20

6. On the “Startup” tab, disable the “Enable flash breakpoints”, “Enable
semihosting” and “Pre-run reset and halt” options using the corresponding
checkboxes.

Figure 3-5: Creating debug configuration: Startup Tab

7. Click on “Apply” to save settings, and then click on “Debug” to start
debugging.

EZ-USB Suite User Guide, Version 1.3.4 21

8. If a “Confirm Perspective Switch” popup window (as shown below) appears,
select “Yes” to switch to the Debug perspective. The “Remember my
decision” checkbox can be ticked to prevent this popup from appearing in
subsequent debug sessions.

Figure 3-6: Creating debug configuration: Perspective switch

9. Execution stops at the “main ()” function. Additional breakpoints can be
placed at this stage, and the Resume, Step Into or Step Over actions can be
used to run through the code.

Figure 3-7: Debug session stopped at breakpoint

EZ-USB Suite User Guide, Version 1.3.4 22

10. Click on “Terminate” to stop the debug session.

3.2 Debugging with OpenOCD

Open On-Chip Debugger (OpenOCD) is an open source debugger implementation
that supports a variety of debugger probes. The CY7C65215 Cypress USB Serial
part on the CYUSB3KIT-003 development kit provides a debugger interface that
works with OpenOCD.

A version of OpenOCD binary that supports debugging using the CY7C65215 part
is provided with the FX3 SDK, under the OpenOCD folder. This binary is based on
the OpenOCD 0.8.0 release and only supports the CY7C65215 part as a debug
interface.

If any other OpenOCD compliant debug probe (such as the Olimex ARM JTAG
debug probe) is being used, replace the OpenOCD binary provided with a version
that supports the target debug probe. The rest of the instructions are interface
independent, and apply to any OpenOCD compliant debug probe.

The latest version of OpenOCD sources can be downloaded from:
http://sourceforge.net/projects/openocd/files/openocd/. Pre-compiled binaries for
Windows can be obtained from:
http://www.freddiechopin.info/en/download/category/4-openocd.

Note: When using OpenOCD on Linux or Mac platforms, the libraries that the
OpenOCD binary depends on; need to be copied to the system folders. Please
change to the <FX3_INSTALL_PATH>/OpenOCD/<platform> folder and run the
script.sh script to do this. No specific installation steps are required on Windows
platforms.

The procedure for setting up OpenOCD based JTAG debugging is shown below:

1. Select and right-click on the project to be debugged, and select the “Debug
As -> Debug Configurations…” option. See Figure 3-1.

http://sourceforge.net/projects/openocd/files/openocd/
http://www.freddiechopin.info/en/download/category/4-openocd

EZ-USB Suite User Guide, Version 1.3.4 23

2. In the Debug Configurations popup window, right-click the “GDB OpenOCD
debugging” option and select “New”.

Figure 3-8: Creating debug configuration: OpenOCD

3. A “<ProjName> Debug” configuration will be created. The settings for the
configuration need to be entered as described in the next steps.

EZ-USB Suite User Guide, Version 1.3.4 24

4. No changes are required under the “Main” tab.

Figure 3-9: Creating OpenOCD debug configuration: Main tab

EZ-USB Suite User Guide, Version 1.3.4 25

5. On the “Debugger” tab, browse and select the path to the OpenOCD
executable, and selecting the OpenOCD configuration file provided with the
SDK under “Config options”. Please note that the full path to the config file
needs to be provided here, and may need to be enclosed in quotes if it
includes spaces. Please note that the {cross_prefix} variable must be set to
arm-none-eabi- in some cases if the default settings don’t work.

Figure 3-10: Creating OpenOCD debug configuration: Debugger tab

EZ-USB Suite User Guide, Version 1.3.4 26

6. On the “Startup” tab, disable the “Enable ARM semihosting” and “Pre-run
reset” options using the corresponding checkboxes.

Figure 3-11: Creating OpenOCD debug configuration: Startup Tab

7. Click on “Apply” to save settings, and then click on “Debug” to start
debugging.

8. If a “Confirm Perspective Switch” popup window (as shown below) appears,
select “Yes” to switch to the Debug perspective. The “Remember my
decision” checkbox can be ticked to prevent this popup from appearing in
subsequent debug sessions. See Figure 3-6.

9. Please note that firmware download using the CY7C65215 debug probe is a
slow process and can take about 30 to 40 seconds. Wait for the firmware
download to be completed before the session is ready for debugging.

10. Execution stops at the “main ()” function. Additional breakpoints can be
placed at this stage, and the Resume, Step Into or Step Over actions can be
used to run through the code. See Figure 3-7.

11. Click on “Terminate” to stop the debug session.

EZ-USB Suite User Guide, Version 1.3.4 27

4 CX3 Configuration Utility

This section provides an introduction to MIPI CSI-2 interface on the CX3 device
and provides a usage guide for the CX3 Configuration tool available as part of the
Cypress EZ USB Suite Eclipse based IDE. More details on the CX3 part are
available on the Cypress website at http://www.cypress.com/cx3/

4.1 Introduction to the CX3 device

The CX3 is a variant of the FX3 device that features an integrated MIPI CSI-2
receiver mated to the GPIF as shown in the CX3 Logic block diagram. This device

provides the ability to add USB 3.0 connectivity to Image Sensors implementing the
MIPI CSI-2 interface.

UART SPI I2S
I2C

Fixed

Function

GPIF™ II

32

EPs

SS
Peripheral

HS/FS
Peripheral U

S
B

 I
n

te
rf

a
c
e

ARM926EJ-S

JTAG

System

RAM

D+

D-

SSTX+

SSTX-

SSRX+

SSRX-

LOGIC BLOCK DIAGRAM

Memory

Controller

MIPI
CSI-2

Interface

I
2
C_SDA

I
2
C_SCL

MIPI

CSI2

Input

Figure 4-1: CX3 Device Block Diagram

The MIPI CSI-2 interface on the CX3 supports 1 to 4 CSI-2 data lanes and
RAW8/10/12/14, YUV422, and RGB888/666/565 image formats. It reads image

http://www.cypress.com/cx3/

EZ-USB Suite User Guide, Version 1.3.4 28

data from the sensor, de-packetizes it and sends it in to the parallel interface of the
fixed-function GPIF-II interface on the CX3.

As the GPIF-II signals on CX3 are connected internally to the MIPI CSI-2 Interface
block, it is not possible make use of the GPIF-II to talk to any external devices. The
control signals on the interface are also fixed, and only the width of the data bus
can be selected from the values of 8-bit, 16-bit and 24-bits. CX3 firmware
applications typically make use of a pre-defined GPIF-II configuration with changes
being made only to the data bus width and the counter limits used.

Support for the MIPI CSI-2 interface is provided through a new firmware library
added to the SDK (cyu3mipicsi.a). The APIs provided by the library and the data
structures and enumerations used by this interface are provided through the
cyu3mipicsi.h header file.

4.2 CX3 MIPI CSI-2 interface

4.2.1 Data Lanes

The MIPI CSI-2 interface on the CX3 supports 1 to 4 CSI-2 data lanes each
capable of transfers of up to 1 Gbps. The number of data lanes to be selected for a
CX3 application will depend upon the number of data lanes provided by the Image
Sensor and the total required data transfer rate.

4.2.2 MIPI CSI-2 stream formats supported by the CX3

The MIPI CSI-2 interface on the CX3 supports the following stream formats and
output modes:

Table 4-1: Stream formats supported by CX3

Format

and

Mode

CX3 Enumeration Type Description

CSI-2

Data

Type

Output Stream

RAW8 CY_U3P_CSI_DF_RAW8
Bayer format 8-bits per

pixel data stream.
0x2A 8-Bit Output: RAW[7:0]

RAW10 CY_U3P_CSI_DF_RAW10
Bayer format 10-bits per

pixel data stream.
0x2B 16-Bit Output: 6’b0, RAW[9:0]

RAW12 CY_U3P_CSI_DF_RAW12
Bayer format 12-bits per

pixel data stream.
0x2C 16-Bit Output: 4’b0,RAW[11:0]

RAW14 CY_U3P_CSI_DF_RAW14
Bayer format 14-bits per

pixel data stream.
0x2D 16-Bit Output: 2'b0,RAW[13:0]

RGB888 CY_U3P_CSI_DF_RGB888
RGB 888 format 24- bits

per pixel data stream.
0x24 24-Bit Output: R[7:0],G[7:0],B[7:0]

RGB666

Mode 0
CY_U3P_CSI_DF_RGB666_0

RGB 666 format 24- bits

per pixel data stream.
0x23

24-Bit Output:

2’b0,R[5:0],2’b0,G[5:0], 2’b0,B[5:0]

EZ-USB Suite User Guide, Version 1.3.4 29

Format

and

Mode

CX3 Enumeration Type Description

CSI-2

Data

Type

Output Stream

RGB666

Mode 1
CY_U3P_CSI_DF_RGB666_1

RGB 666 format 24- bits

per pixel data stream.
0x23

24 Bit Output: 6’b0,R[5:0],G[5:0],

B[5:0]

RGB565

Mode 0
CY_U3P_CSI_DF_RGB565_0

RGB 565 format 24- bits

per pixel data stream.
0x22

24 Bit Output:

2’b0,R[4:0],3’b0,G[5:0],

2’b0,B[4:0],1’b0

RGB565

Mode 1
CY_U3P_CSI_DF_RGB565_1

RGB 565 format 24- bits

per pixel data stream.
0x22

24 Bit Output:

3’b0,R[4:0],2’b0,G[5:0], 3’b0,B[4:0]

RGB565

Mode 2
CY_U3P_CSI_DF_RGB565_2

RGB 565 format 16-bits

per pixel data stream.
0x22 16 Bit Output: R[4:0],G[5:0], B[4:0]

YUV422 8-

Bit Mode 0
CY_U3P_CSI_DF_YUV422_8_0

YUV422 format 8-bits per

pixel data stream.
0x1E

8 Bit Output: P[7:0]

Data Order: U1,Y1,V1,Y2,U3,Y3,....

YUV422 8-

Bit Mode 1
CY_U3P_CSI_DF_YUV422_8_1

YUV422 format 8-bits per

pixel data stream.
0x1E

16 Bit Output: P[15:0]

Data Order:

{U1,Y1},{V1,Y2},{U3,Y3},{V3,Y4}...

YUV422 8-

Bit Mode 2
CY_U3P_CSI_DF_YUV422_8_2

YUV422 format 8-bits per

pixel data stream.
0x1E

16 Bit Output: P[15:0]

Data Order:

{Y1,U1},{Y2,V1},{Y3,U3},{Y4,V3}....

YUV422

10-Bit
CY_U3P_CSI_DF_YUV422_10

YUV422 format 10-bits

per pixel data stream.
0x1F

16 Bit Output: 6'b0,P[9:0]

Data Order:

U1,Y1,V1,Y2,U3,Y3,V3,Y4.

If the GPIF interface used is larger than the width of the output stream (e.g. if a 24-
bit GPIF II interface is used for the CY_U3P_CSI_DF_YUV422_8_1 type) the
upper bits on the GPIF II interface will be padded with 0s.

4.2.3 MIPI CSI-2 interface clocks

The primary clocks on the MIPI CSI-2 interface of the CX3 are shown in Figure 4-2
below.

The interface takes a reference clock as its input and generates the required
clocking using a PLL and multiple clock dividers on the PLL generated clock. Clock
configuration parameters are a part of the CyU3PMipicsiCfg_t structure which
passed to the CyU3PMipicsiSetIntfParams() API to configure the CSI-2 interface.

EZ-USB Suite User Guide, Version 1.3.4 30

CSI RX LP <-> HS CLK DIVIDER

(2 / 4 / 8)

PARALLEL OUTPUT CLOCK

(PCLK) DIVIDER

(2 / 4 / 8)

PLLREFCLK PLL_CLK

CSI_RX_CLK

PCLK

Figure 4-2: CX3 MIPI CSI-2 Interface Clocks

A brief description of each of the clocks is provided below:

1. Reference Clock (REFCLK)

This is the input reference clock provide to the MIPI-CSI interface. This input clock
should be between 6 and 40 MHz.

2. PLL Clock (PLL_CLK)

The PLL_CLK is the primary clock on the MIPI CSI-2 interface. The minimum legal
value for PLL clock is 62.5 MHz and maximum legal value for the PLL is 1 GHz.

All other internal/output clocks are derived from this clock.

The PLL clock frequency is generated from the Input Reference Clock using the
following equation:

PLL_CLK = REFCLK * [(pllFbd + 1)/(pllPrd + 1)] /(2^pllFRS)

where

pllPrd is the input divider whose range is between 0 and 0x0F.

pllFbd is the feedback divider whose range is between 0 and 0x1FF.

pllFRS is the frequency range selection parameter which takes the following
values:

0 if PLL Clock is between 500MHz- 1GHz.

1 if PLL Clock is between 250MHz- 500MHz.

2 if PLL Clock is between 125MHz- 250MHz.

3 if PLL Clock is between 62.5MHz- 125MHz.

EZ-USB Suite User Guide, Version 1.3.4 31

E.g.:

If RefClk is 19.2 MHz, pllFbd is 69, pllPrd is 1, and PLL Clock range is in the
500MHz-1GHz range (i.e. pllFrs = 0),

PLL_Clock (MHz) = 19.2 * [(69+1)/(1+1)]/(2^0)

 = 19.2 * [70/2]/1

 = 672 MHz

For the same values, changing PLL frequency range to 125-250MHz (pllFrs = 2)
will change the PLL Clock value to

PLL_Clock (MHz) = 19.2 * [(69+1)/(1+1)]/(2^2)

 = 19.2 * [70/2]/4

 = 168 MHz

3. CSI RX LPHS Transition Clock

This clock is used for detecting the CSI link LP<->HS transition. It is generated by
dividing the PLL_Clock by a value of 2, 4 or 8.

The minimum value for this clock is 10Mhz and maximum value for this clock is
125MHz.

4. Output Parallel Clock (PCLK)

This clock is the PCLK output which drives the fixed-function GPIF interface on the
CX3. It is generated by dividing the PLL_Clock by a value of 2, 4 or 8.

The maximum value for this clock is 100MHz.

4.3 Configuring the CX3 Device

The typical CX3 application is a USB Video Class (UVC) compliant Camera
application that streams video or still image data captured by an Image Sensor to a
host PC. Most parts of a CX3 system design are common, with the only variations
being in the Image Sensor and data formats chosen.

The typical steps involved in UVC implementations using the CX3 device are:

1. Configuring the image sensor as required.

2. Configuring the MIPI CSI-2 interface on the CX3 device based on the image
sensor settings.

3. Defining the USB descriptors for the application based on the image formats
to be supported.

4. Implementing the actual image streaming logic using CX3/FX3 APIs.

5. Implementing the sensor control operations required to handle requests on
the Video Control interface (e.g. brightness, pan – tilt – zoom etc.)

EZ-USB Suite User Guide, Version 1.3.4 32

The EZ-USB Suite application provides a CX3 Configuration utility that helps in
steps 2, 3 and 4. The actual image sensor control (step 1) and the control interface
handling (step 5) are sensor dependent, and not handled by the tool.

4.3.1 MIPI CSI-2 Configuration

The MIPI CSI-2 interface on CX3 is configured using the
CyU3PMipicsiSetIntfParams() API. This API takes an input parameter of type
CyU3PMipicsiCfg_t which contains various configurations like output data format,
clock dividers and configuration parameters, number of CSI data lanes to use,
horizontal resolution etc.

The CSI Configuration Utility generates the data required to configure the interface
in the form of C code which can be embedded into the firmware application.

4.3.2 Defining the USB Descriptors

The UVC specification defines the format for the USB configuration descriptors for
all UVC compliant devices. The size of the configuration descriptor can stretch to
200 bytes or more depending on the number and types of video formats and
resolutions supported. Putting together the descriptors in a fully spec compliant
manner across all three USB connection speeds (SuperSpeed, Hi-Speed and Full
Speed) is a cumbersome process.

The CSI Configuration Utility generates the USB descriptors based on the settings
provided. The descriptor data is generated in the form of C code which can be
embedded into the firmware application.

4.3.3 Video Streaming Logic

The firmware design and implementation to handle video streaming includes
elements such as:

1. Defining the buffering requirements for the video stream.

2. Setting up the DMA connection from the GPIF-II interface to the USB
endpoint

3. Handling Video Streaming control requests to negotiate the video format and
resolution.

4. Managing the actual video data transfer with UVC header addition.

The CSI configuration tool generates C header and source files that implement this
logic. These files can be used along with the CSI-2 configuration file and the USB
descriptor file to create the UVC firmware project.

The next section describes the usage of the MIPI CSI-2 Configuration tool provided
as part of the EZ-USB Suite IDE.

EZ-USB Suite User Guide, Version 1.3.4 33

4.4 Using the CSI Configuration Utility

4.4.1 Creating a new CX3 Configuration Project

From the File menu of the EZ USB Suite IDE, select the New  Other option.

Figure 4-3: CX3 Configuration File Creation Menu

Figure 4-4: CX3 Configuration Project Creator

4.4.2 Image Sensor Selection and Configuration

The first step in configuring the CX3 UVC project is to define the properties of the
image sensor being used in the system. This includes properties like the type of
sensor, still image and video capture support, the format and resolution of the
images etc.

Configurations for the Aptina AS0260 and OmniVision OV5640 sensors are
provided as part of the tool, and you can use these directly if these sensors are
being used. If other sensors are being used, the wizard can be used to input the
sensor properties for conversion into the required format.

EZ-USB Suite User Guide, Version 1.3.4 34

4.4.2.1 CX3 Configuration Project Creation

The CX3 Configuration Project Creation Wizard provides three possible
alternatives for configuring the newly created project:

1. Create a Configuration with Basic Settings

2. Select a Pre-Defined Configuration

3. Select an User defined Configuration

The steps for configuring the MIPI CSI-2 interface and image sensor using each of
the three possible options are described in the following sub-sections.

4.4.2.1.1 Configuration with Basic Settings

1. Click on Create a Configuration with Basic Settings Radio Button and
provide a new name to the project. Click on Finish button to start generating
relevant configuration data.

Figure 4-5: CX3 Configuration Project Selector

EZ-USB Suite User Guide, Version 1.3.4 35

2. An empty Image Sensor Configuration window with no pre-defined sensor
and frame opens up. A new CX3 Project is created under the Eclipse workspace
as well.

Figure 4-6: Image Sensor Configuration Stage

3. Input the desired sensor configuration and select the appropriate video format
from the dropdown list provided in the configuration window.

a. A name string can be provided for the sensor.

b. The THS-Prepare value represents the duration for which the sensor
drives the CSI data lane LP-00 line state before starting the HS
transmission. This value can be determined from the image sensor
datasheet.

c. The THS-Zero value represents the duration for which the sensor
drives the HS-0 state before transmitting the sync sequence. This
value can also be determined from the image sensor datasheet.

d. The Input Video Format represents the video picture encoding format
supported by the sensor. This has to be selected from the drop-down
list.

e. The Output Video Format represents the data size of each pixel in the
image stream. This has to be selected from the drop-down list.

Figure 4-7: Image Sensor Configuration

EZ-USB Suite User Guide, Version 1.3.4 36

4. Each Image Sensor may be capable of supporting multiple video resolutions
and frame rates. The Frame Configuration area of the Image Sensor
configuration wizard can be used to input the supported (desired) frame
resolutions and frame rates. The properties to be specified for each frame
configuration includes:

a. A name string to identify the configuration.

b. The number of CSI-2 data lanes used.

c. The CSI-2 clock frequency used.

d. The H-Active value represents the frame width in number of pixels.

e. The H-Blanking value represents the horizontal blanking period after
each line of image data is transferred.

f. The V-Active value represents the frame height in number of pixels.

g. The V-Blanking value represents the vertical blanking period after
each frame is transferred, and is represented in terms of number of
lines.

h. The streaming rate in terms of number of frames per second.

i. Support for video and/or still image capture.

Figure 4-8: Frame Configuration

Multiple user defined frame configurations can be added by pressing (+) button
for every configuration required. Frame configurations can also be deleted from
the current project by pressing (X) button. Deleted configurations can be
reinstated by pressing using the undo key (Ctrl+Z). Still Image and Video
support in CX3 project can be enabled or disabled using the buttons below
remove (X) button.

Entering any invalid configuration parameters will trigger warnings at the next
stage, i.e., CX3 receiver configuration.

The configuration parameters can be stored as a custom configuration by
pressing the Save button located at upper right corner of the window. Once

EZ-USB Suite User Guide, Version 1.3.4 37

saved, these configurations will be available for selection as User defined
configurations in other projects.

4.4.2.1.2 Using Pre-Defined Configurations

1. Click on the Select a Pre-Defined Configuration Radio Button and select
any of the pre-defined configurations from the dropdown list. Configurations for
the Aptina AS0260 and OmniVision 5640 sensors are provided in this version of
the configuration utility. Provide a name for the newly created project and click
on Finish button to start generating project configuration data.

Figure 4-9: CX3 Configuration Project Selector

2. The Image Sensor Configuration window with pre-loaded sensor and
frame configurations pops up. A new firmware project is created under the
Eclipse workspace as well.

Figure 4-10: Using pre-defined Image Sensor Configurations

EZ-USB Suite User Guide, Version 1.3.4 38

The Image Sensor Configuration window lists the pre-defined sensor and frame
configurations for the selected Image Sensor. Listed frame configurations can
be deleted from the current project but cannot be altered with new values.
Deleted configurations can be reinstated using the undo key (Ctrl+Z).

Configuration parameters cannot be modified in pre-defined configuration
option, but can be stored as a custom configuration by pressing Save button
located at upper right corner of window.

4.4.2.1.3 User Defined Configuration

A sensor configuration created and saved using the steps in Section 4.4.2.1.1, can
be re-used to create new CX3 projects. To do this, click on Select an User-
Defined Configuration Radio Button and select the desired configuration from the
dropdown box. Name the newly created project and click on Finish button to start
generating project configuration data.

Figure 4-11: Selecting a user defined image sensor configuration

Refer to Section 4.4.2.1.2 for the steps to modify the image sensor configuration.

EZ-USB Suite User Guide, Version 1.3.4 39

4.4.3 CX3 MIPI Receiver Configuration

Once the Image Sensor Configuration is complete, select the CX3 MIPI Receiver
Configuration tab positioned at the bottom of currently opened window.

Figure 4-12: CX3 MIPI Receiver Configuration Stage

The CX3 MIPI Receiver Configuration Window is split into the following sub-
sections:

4.4.3.1 CX3 Configuration Summary

The CX3 Configuration Summary section allows you to choose from among the
frame configurations entered in the Image Sensor Configuration phase. When a
frame configuration is selected from the drop-down list, the CSI-2 interface
properties for the corresponding frame configuration will be displayed in the other
sections of the window. The description text box allows you to provide a description
for the configuration which will be added to the generated firmware source in the
form of comments. Therefore, the description text should not contain ‘/*’ or ‘*/’
character combinations.

Figure 4-13: CX3 Configuration Summary

EZ-USB Suite User Guide, Version 1.3.4 40

4.4.3.2 MIPI CSI-2 Inputs

The MIPI CSI-2 inputs section will display values passed from Image Sensor
Configuration Stage for matching the Image Sensor’s output parameters. These
values are provided for information, and cannot be modified in this tab. You have to
go back to the Image Sensor Configuration tab in order to change any of these
settings.

Figure 4-14: MIPI CSI-2 Inputs

The CSI Clock frequency and the Data Lane entries along with the frame properties
are used to compute the total input data throughput on the GPIF-II interface from
the MIPI CSI-2 block.

4.4.3.3 CX3 MIPI Interface Configuration

The MIPI Interface Configuration section lists the CX3 MIPI CSI-2 configuration that
has been computed based on the Image Sensor and frame properties. These value
typically do not need to be modified, though the tool allows the user to make
modifications.

EZ-USB Suite User Guide, Version 1.3.4 41

Figure 4-15: CX3 MIPI Interface Configurations

The first field in this section is the REFCLK frequency being provided to the block.
This value along with the Pre Divider Value, PLL Out Range and Multiplier of Unit
Clock is used to generate the pllPRD, pllFbd and pllFrs parameters which provide
the PLL_CLK frequency using the equation listed in Section 4.2.3.

Once the PLL clock frequency has been set, the Output Pixel Clock (PCLK) and
CSI RX clock frequency can be obtained by selecting the appropriate divider value
as shown in the image below.

Figure 4-16: Selecting Clock Dividers

4.4.3.4 MIPI CSI2 Inputs / CX3 MIPI Interface Configuration

These values are calculated by the utility and are fixed for each frame
configurations. These values serve as input and output parameters for the MIPI
interface part on CX3, and are provided here for information.

Figure 4-17: MIPI Inputs

The CX3 MIPI Receiver Configuration window will throw warnings if any invalid
parameters had been provided while configuring the sensor or by modifying the
values in the CX3 MIPI Interface Configuration section. These warnings can be
seen by hovering the mouse cursor over the warning symbols painted in color red.
These warnings can be rectified by providing acceptable values in the sensor
configuration tab.

EZ-USB Suite User Guide, Version 1.3.4 42

Figure 4-18: Warnings shown in CX3 MIPI Receiver Configuration tab

Please note that the warnings do not block the tool from generating the interface
configuration source code. These only indicate errors detected during sanity
checks performed by the tool, and can be over-ridden if the user is sure that the
changes are valid.

4.4.4 Adding the Configuration to the Firmware Project

As mentioned above, the CX3 configuration utility generates the following pieces of
C source code, which can be added to the application firmware project.

1. MIPI CSI-2 Configuration data for each frame configuration

2. USB descriptors for the UVC application

3. Header file defining the USB pipe and DMA buffer properties.

4. Source file implementing the actual video streaming logic.

The following sub-sections describe the procedure to add each of these to the
firmware project.

4.4.4.1 Adding the CX3 CSI-2 Configurations

Move to the “cyu3mipicsi.c” tab once all CX3 MIPI CSI-2 Interface related
configuration parameters are finalized. This tab contains the generated data
structures that provide the CSI-2 configuration parameters corresponding to each
frame configuration in the project.

This code can be saved to the related CX3 project, by pressing the Save button
located at the upper right corner of window.

EZ-USB Suite User Guide, Version 1.3.4 43

Figure 4-19: Utility generated CX3 Configuration Source file

4.4.4.2 Adding the USB Descriptors

Move to the “cycx3_uvcdscr.c” to view the USB descriptors that are generated
based on the configuration provided. The USB configuration descriptors will contain
frame descriptors corresponding to each of the frame configurations in the project.
This file can be added to the related CX3 project by pressing the Save button
located at the upper right corner of window.

Figure 4-20: Utility generated CX3 Descriptor Source file

4.4.4.3 Adding CX3 UVC Definitions

Move to the “cycx3_uvc.h” tab to view the application definitions generated based
on the streaming parameters. These definitions can be added to the related CX3
project by pressing the Save button located at the upper right corner of window.

EZ-USB Suite User Guide, Version 1.3.4 44

Figure 4-21: Utility generated CX3 Header file

4.4.4.4 Adding CX3 UVC application logic

Move to the “cycx3_uvc.c” tab to view the generated UVC application source code.
This file can be added to the related CX3 project by pressing the Save button
located at the upper right corner of window.

After saving to the project, the contents of this file can then be edited to add custom
handling for any UVC Video Control requests.

Figure 4-22: Utility generated CX3 UVC Source file

4.4.5 Locking the CX3 Project Configuration

Click the Close (X) Button to exit from the configuration utility once the project
configuration is completed successfully and the code has been saved. The utility
will prompt for saving any changes.

EZ-USB Suite User Guide, Version 1.3.4 45

Figure 4-23: CX3 Project Configuration Lock Window

Code for the USB descriptors, sensor and CSI-2 interface configuration structures
and streaming application logic would have been generated by the tool and added
to the project. The project can now be compiled and used like any standard
FX3/CX3 firmware project.

4.5 GPIF-II interface on the CX3

The CX3 device makes use of the GPIF-II interface to connect the DMA and USB
blocks to the MIPI CSI-2 interface. Since the GPIF-II Interface connectivity is fixed,
a custom GPIF-II configuration is not useful. A fixed-function GPIF-II Configuration
is used by the CX3 firmware to move the data from the CSI-2 interface block to the
DMA block.

4.5.1 GPIF-II Waveform

The GPIF II state machine on the CX3 implements the state machine shown in
Figure 4-24. The state machine makes the parallel data provided by the MIPI CSI-2
available for transfer over two GPIF-II sockets which can be connected to a Many
to One DMA channel.

The functionality of this state machine is similar to the GPIF II state machine
described in Application Note AN75779 - How to Implement an Image Sensor
Interface with EZ-USB® FX3™ in a USB Video Class (UVC) Framework.

Detailed description of this state machine along with instructions on creating CX3
based application projects is provided in the Application Note AN90369 - How to
interface a MIPI CSI-2 Image Sensor with EZ-USB® CX3.

http://www.cypress.com/?rID=62824
http://www.cypress.com/?rID=62824
http://www.cypress.com/?docID=48612
http://www.cypress.com/?docID=48612

EZ-USB Suite User Guide, Version 1.3.4 46

Start
Wait for

Frame Done

Wait for

Frame valid,

Load DATA

Transfer

thread 0 data

DATA++

ADDR=0

Transfer

thread 1 data,

ADDR++

DATA=0

Wait for LV

with thread 0

active

Wait for LV

with thread 1

active

Wait for LV

with thread 0

full

Wait for LV

with thread 1

full

Frame end

full buffer in

thread 0

Intr CPU

Frame end

full buffer in

thread 1

Intr CPU

Frame end

partial buffer

in thread 0

Intr CPU

Frame end

partial buffer

in thread 1

Intr CPU

!FV

FV & LV

LV & DATA Limit

LV & ADDR Limit

!LV & !DATA Limit !LV& !ADDR Limit

LV LV

LVLV

!LV & DATA Limit !LV &ADDR Limit

!FV !FV !FV !FV

State 0 State 1 State 2

State 3 State 4State 5 State 6

State 7 State 8

State 9 State 12State 11 State 10

Start
Wait for

Frame Done

Wait for

Frame valid,

Load DATA

State 13State 14State 15

FV & LV

Frame end

Wait for

Firmware

Trigger

Frame end

Wait for

Firmware

Trigger

FW_TRIG
FW_TRIG

FW_TRIG

!FW_TRIG & DATA on thread 1

FW_TRIG

!FW_TRIG & DATA on thread 0

!FV

Figure 4-24: CX3 GPIFII State Machine

