

WICED™ Development System

5300 California Avenue • Irvine, California, 92677 • Phone: 949-926-5000 • Fax: 949-926-5203

WICED-AN800-R
November 05, 2013

Factory Programming Application Note

WICED™

WICED™ AN800-R Revision History

Broadcom®, the pulse logo, Connecting everything®, and the Connecting everything logo are among the trademarks of
Broadcom Corporation and/or its affiliates in the United States, certain other countries and/ or the EU. Any other

trademarks or trade names mentioned are the property of their respective owners.

Revision History

Broadcom Limited
5300 California Avenue

Irvine, CA 92617

© 2013, 2017 by Broadcom Limited
All rights reserved

Printed in the U.S.A.

Revision Date Change Description

WICED-AN800-R 0.2 February 17, 2017 Bring up to date with latest SDK 4.0

WICED-AN800-R November 05, 2013 Initial Doc.

WICED™ AN800-R Table of Contents

BROADCOM® WICED™ Development System
November 05, 2013 • WICED-AN800-R Page 3

Table of Contents
1.1 Audience ... 4

2 General Overview ... 4

3 Creating a Unique DCT .. 5

3.1 Overview .. 5

3.2 Generating DCT Images .. 6

4 Writing an Image to Microprocessor Flash ... 7

4.1 OCD configuration for Command-line Flash programming ... 7

4.2 OCD Command-line Flash programming .. 8

4.3 OCD Programming for Filesystem and Apps LUT files ... 10

5 Assigning a MAC Address to your Device ... 12

WICED™ AN800-R

1 About this Document

1.1 Purpose and Scope
This document describes the process to program device specific information into a Broadcom® Wireless
Internet Connectivity for Embedded Devices (WICED™; pronounced “wicked”) device. The process is
typically used at the time of device manufacture.

Note: This document applies to WICED SDK 4.2 or higher.

1.1 Audience

This document is for software developers who are using the WICED Development System to create a
manufacturing process for WICED-based embedded wireless networked devices.

2 General Overview

During the manufacturing process, individual WICED devices require a limited set of unique parameters
to be programmed into onboard flash. The WICED SDK provides the necessary tools to aid the
customization and programming process.

By default, the WICED build system generates three separate firmware elements for each WICED device
when an application is built: the Bootloader, the Application and the Device Configuration Table (DCT).
The bootloader and application are common to all devices, however the DCT may contain device specific
information including, but not limited to, a unique device serial number, WLAN MAC address and
security certificate.

This document describes how to generate a unique per-device DCT image, and how to program the DCT
image together with the bootloader and application images, into a WICED device during manufacture.
For the example in this document, the WICED SDK is used from a command line (rather than the WICED
IDE) since a typical manufacturing environment is run with a script. The WICED IDE may alternately be
used to issue build commands.

Examples are provided for the Windows® operating system, the same procedure using equivalent
commands may also be used on OS X and Linux since the WICED SDK runs on all major operating
systems.

WICED™ AN800-R

3 Creating a Unique DCT

3.1 Overview

The process to create a unique DCT image is described here by way of an example. Developers are free
to customize the process to suit individual manufacturing requirements. The WICED SDK
temp_control demonstration application provides two unique DCT parameter files. The text in this
section shows how to use these parameter files to create two unique DCT images suitable for
programming into two individual WICED devices.

Using the WICED IDE (or a command shell), navigate to the WICED SDK temp control directory located in
the SDK at <WICED-SDK>/apps/demo/temp_control. In addition to the usual application files, the
directory includes a file called factory_reset_dct.c and a sub-directory called mfg which contains
two files 0001.txt and 0002.txt.

The factory_reset_dct.c file contains a factory_reset_dct_t structure similar to that shown
in Figure 1. The structure contains static information that is populated into the DCT for all devices, as
well as placeholders for dynamic information that is populated on a per-device basis by the WICED build
system. Dynamic information is prepended with the keyword _DYNAMIC_, for example
_DYNAMIC_WLAN_MAC_ADDRESS.

 IMPORTANT NOTE: ALL variables defined in the generic WICED SDK platform_dct.h header file
(located in the <WICED-SDK>/Platform/include directory) but not listed in the
factory_reset_dct_t structure will be initialized to 0 by the WICED SDK build system when a
unique DCT is generated! For the default reference see <WICED-SDK>/internal/dct.c.

Figure 1. Example Factory Reset DCT Structure

The 0001.txt and 0002.txt files are unique per-device DCT parameter files. Each file includes
unique parameters that are programmed into an individual device. Notice there is a unique parameter in
each file called WLAN_MAC_ADDRESS. The assigned value of this unique parameter replaces the
corresponding _DYNAMIC_WLAN_MAC_ADDRESS placeholder in the factory_reset_dct_t structure
when individual DCT images are generated by the WICED SDK build system. Similarly, each parameter in

static const factory_reset_dct_t initial_dct =

{

...

 /* Manufacturing Section ___*/

 .platform.mfg_info = _DYNAMIC_MFG_INFO,

 /* Security Credentials for Config Section _______________________________________*/

 .platform.security_credentials.certificate = _DYNAMIC_CERTIFICATE_STORE,

 .platform.security_credentials.cooee_key = COOEE_KEY_STRING,

...

 .platform.wifi_config.stored_ap_list[0] = _DYNAMIC_STORED_AP_INFO,

 .platform.wifi_config.soft_ap_settings.SSID = _DYNAMIC_SOFT_AP_SSID,

 .platform.wifi_config.soft_ap_settings.security_key = _DYNAMIC_SOFT_AP_PASSPHRASE,

 .platform.wifi_config.config_ap_settings.SSID = _DYNAMIC_CONFIG_AP_SSID,

 .platform.wifi_config.config_ap_settings.security_key = _DYNAMIC_CONFIG_AP_PASSPHRASE,

...

 .platform.wifi_config.mac_address = _DYNAMIC_WLAN_MAC_ADDRESS,

...

};

WICED™ AN800-R

the unique DCT parameter file is used to replace the matching dynamic placeholder in the
factory_reset_dct structure. The unique DCT parameter file 0001.txt is reproduced in Figure 2
for reference.

Figure 2. Example of a unique DCT parameter file : 0001.txt

3.2 Generating DCT Images

The following description provides an example of how to use the WICED SDK to generate two unique
DCT images suitable for use with the temp_control application. A command prompt is used for this
example since most manufacturing processes are run using a script (rather than a GUI).
Open a command prompt and cd to the top level WICED SDK directory.

Enter the following command to build the temp_control application and bootloader for the
BCM943362WCD4 platform using the platform default RTOS, Network Stack and WLAN-MCU bus.

SOFT_AP_SSID = {sizeof("WICED_SOFT_AP-0001")-1,"WICED_SOFT_AP-0001"}

SOFT_AP_PASSPHRASE = "abcd1234"

CONFIG_AP_SSID = {sizeof("WICED-0001")-1,"WICED-0001"}

CONFIG_AP_PASSPHRASE = "12345678"

WLAN_MAC_ADDRESS = {"\x02\x0A\xF7\x00\x00\x01"}

STORED_AP_INFO =

 {

 .details.SSID = {sizeof("YOUR_AP_SSID")-1,"YOUR_AP_SSID"},

 .security_key = "YOUR_AP_PASSPHRASE",

 .security_key_length = sizeof("YOUR_AP_PASSPHRASE")-1,

 .details.security = WICED_SECURITY_WPA2_MIXED_PSK,

 }

MFG_INFO=

 {

 .manufacturer = "Cypress",

 .product_name = "Wiced Device",

 .BOM_name = "100-123793-0000",

 .BOM_rev = "P100",

 .serial_number = "0001",

 .manufacture_date_time = "2013/10/30 12:30:15",

 .manufacture_location = "USA",

 .bootloader_version = "1.0",

 }

CERTIFICATE_STORE="-----BEGIN CERTIFICATE-----\r\n"

 "MIIDdTCCAl2gAwIBAgILBAAAAAABFUtaw5QwDQYJKoZIhvcNAQEFBQAwVzELMAkG\r\n"

 "A1UEBhMCQkUxGTAXBgNVBAoTEEdsb2JhbFNpZ24gbnYtc2ExEDAOBgNVBAsTB1Jv\r\n"

 "b3QgQ0ExGzAZBgNVBAMTEkdsb2JhbFNpZ24gUm9vdCBDQTAeFw05ODA5MDExMjAw\r\n"

 "MDBaFw0yODAxMjgxMjAwMDBaMFcxCzAJBgNVBAYTAkJFMRkwFwYDVQQKExBHbG9i\r\n"

 "YWxTaWduIG52LXNhMRAwDgYDVQQLEwdSb290IENBMRswGQYDVQQDExJHbG9iYWxT\r\n"

 "aWduIFJvb3QgQ0EwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDaDuaZ\r\n"

 "jc6j40+Kfvvxi4Mla+pIH/EqsLmVEQS98GPR4mdmzxzdzxtIK+6NiY6arymAZavp\r\n"

 "xy0Sy6scTHAHoT0KMM0VjU/43dSMUBUc71DuxC73/OlS8pF94G3VNTCOXkNz8kHp\r\n"

 "1Wrjsok6Vjk4bwY8iGlbKk3Fp1S4bInMm/k8yuX9ifUSPJJ4ltbcdG6TRGHRjcdG\r\n"

 "snUOhugZitVtbNV4FpWi6cgKOOvyJBNPc1STE4U6G7weNLWLBYy5d4ux2x8gkasJ\r\n"

 "U26Qzns3dLlwR5EiUWMWea6xrkEmCMgZK9FGqkjWZCrXgzT/LCrBbBlDSgeF59N8\r\n"

 "9iFo7+ryUp9/k5DPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNVHRMBAf8E\r\n"

 "BTADAQH/MB0GA1UdDgQWBBRge2YaRQ2XyolQL30EzTSo//z9SzANBgkqhkiG9w0B\r\n"

 "AQUFAAOCAQEA1nPnfE920I2/7LqivjTFKDK1fPxsnCwrvQmeU79rXqoRSLblCKOz\r\n"

 "yj1hTdNGCbM+w6DjY1Ub8rrvrTnhQ7k4o+YviiY776BQVvnGCv04zcQLcFGUl5gE\r\n"

 "38NflNUVyRRBnMRddWQVDf9VMOyGj/8N7yy5Y0b2qvzfvGn9LhJIZJrglfCm7ymP\r\n"

 "AbEVtQwdpf5pLGkkeB6zpxxxYu7KyJesF12KwvhHhm4qxFYxldBniYUr+WymXUad\r\n"

 "DKqC5JlR3XC321Y9YeRq4VzW9v493kHMB65jUr9TU/Qr6cf9tveCX4XSQRjbgbME\r\n"

 "HMUfpIBvFSDJ3gyICh3WZlXi/EjJKSZp4A==\r\n"

 "-----END CERTIFICATE-----\r\n"

 "\0"

 "\0"

WICED™ AN800-R

Figure 3. Windows cmd shell command to build temp_control application

Figure 4. Bash shell command to build temp_control application

After the build completes, use the following commands to generate two unique DCT. Note that the only
difference between these commands is the appended unique DCT parameter file 0001.txt vs.
0002.txt. Each command must be entered on a single line.

NOTE: Windows uses ‘\’ separators between sub-directories in the path. However, the filename is
handed to the OpenOCD driver, which always uses ‘/’ separators.

Figure 5. Windows cmd shell command to build separate unique factory reset DCT files

Figure 6. Bash shell command to build separate unique factory reset DCT files

The WICED build system writes each of the generated factory_reset_dct_000X images to the build
directory <Wiced-SDK>/build/demo.temp_control-BCM943362WCD4/factory_reset: The *.elf
files are used in the next step to program the files into FLASH, as they contain the correct offset to
program the data.

As previously discussed, each generated unique DCT image contains common, as well as device specific,
information.

4 Writing an Image to Microprocessor Flash

The WICED SDK build system uses the OpenOCD utility to download images via USB JTAG to the
microprocessor flash on the WICED device. By default, the SDK hides these commands, full output is
otherwise available by adding “VERBOSE=1” to an application build string. For factory programming, a
review of just the commands required to write images to the flash is provided in this section.

4.1 OCD configuration for Command-line Internal Flash programming
In addition to the image to be written, OpenOCD requires configuration information about the platform
to assist with flash programming. This includes the USBIO device type used to emulate JTAG, the
microcontroller type and information about how to access the flash. This information is provided by the
SDK in various OpenOCD configuration files.

> .\make demo.temp_control-BCM943362WCD4

> ./make demo.temp_control-BCM943362WCD4

> .\make demo.temp_control-BCM943362WCD4 factory_reset_dct apps/demo/temp_control/mfg/0001.txt

> .\make demo.temp_control-BCM943362WCD4 factory_reset_dct apps/demo/temp_control/mfg/0002.txt

> ./make demo.temp_control-BCM943362WCD4 factory_reset_dct apps/demo/temp_control/mfg/0001.txt

> ./make demo.temp_control-BCM943362WCD4 factory_reset_dct apps/demo/temp_control/mfg/0002.txt

WICED™ AN800-R

For convenience, we suggest setting up environment variables to identify each configuration file using
the Windows set command as shown in Figure 3 (use an equivalent command for your operating system
if you are not using Windows). It is also possible to provide each of these files as direct arguments to
OpenOCD if you choose not to setup environment variables. If your WICED platform does not use an
BCM943362WCD4 microprocessor, locate and use the correct OpenOCD configuration files to suit your
microprocessor family. Run the commands in Figure 3 now to setup the necessary OpenOCD
configuration environment variables.

Figure 7. Set Windows Environment variables to identify OpenOCD configuration files

Figure 8. Set bash Environment variables to identify OpenOCD configuration files

4.2 OCD Command-line Flash programming

This section describes the method for platforms that use an internal FLASH to store program and data.
For platforms with external SFLASH, read this section, then read the next section which describes the
differences.

Images are loaded into the flash using the ‘elf’ format since elf files natively include the physical address
in flash to locate the image. If a binary file is otherwise used, OpenOCD also requires the physical
address in flash to write the image.

The commands shown in Figure 4 provide examples showing how to use OpenOCD to program the
Bootloader, Application and DCT images to flash. To program a unique DCT image into a device, the
factory programming script invokes OpenOCD using a unique DCT elf file for each new device.
The final command, which is used to download the unique DCT image, includes logging and error
reporting that may also be used with the other commands to download the bootloader and application
if desired.

Run the commands in Figure 4 now to program the Bootloader, Application and unique DCT images to
the microprocessor flash memory. The ‘echo’ commands may be safely ignored, they are provided for
illustrative purposes.

NOTE: Windows uses ‘\’ separators between sub-directories in the path. However, the filename is
handed to the OpenOCD driver, which always uses ‘/’ separators.

> set JTAG_CFG=.\tools\OpenOCD\BCM9WCD1EVAL1.cfg

> set MCU_CFG=.\tools\OpenOCD\stm32f2x.cfg

> set FLASH_CFG=.\tools\OpenOCD\stm32f2x-flash-app.cfg

> export JTAG_CFG=./tools/OpenOCD/BCM9WCD1EVAL1.cfg

> export MCU_CFG=./tools/OpenOCD/stm32f2x.cfg

> export FLASH_CFG=./tools/OpenOCD/stm32f2x-flash-app.cfg

WICED™ AN800-R

Figure 9. Windows cmd shell command sequences to write Bootloader, Application and DCT images to flash

Figure 10. Bash shell command sequences to write Bootloader, Application and DCT images to flash

NOTE: The commands in Figure 9 (or 10) may be run at any time, in any order and more than once on a
particular device that is using internal FLASH after the corresponding elf file is available.

NOTE: Each command must be provided on a single line. Using copy-paste to grab the command line
text may insert additional unwanted carriage returns that should be removed.

> echo “Downloading Bootloader ...”

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f %JTAG_CFG%
-f %MCU_CFG% -f %FLASH_CFG% -c "flash write_image erase build/waf.bootloader-NoOS-

BCM943362WCD4/binary/waf.bootloader-NoOS-BCM943362WCD4.stripped.elf" -c shutdown

> echo “Downloading Application ...”

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f %JTAG_CFG%

-f %MCU_CFG% -f %FLASH_CFG% -c "flash write_image erase build/demo.temp_control-

BCM943362WCD4/binary/demo.temp_control-BCM943362WCD4.stripped.elf" -c shutdown

> echo “Downloading DCT ...”

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f %JTAG_CFG%

-f %MCU_CFG% -f %FLASH_CFG% -c "flash write_image erase build/demo.temp_control-

BCM943362WCD4/factory_reset/factory_reset_dct_0001.stripped.elf" -c shutdown

> echo “Downloading Bootloader ...”

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG
-f $MCU_CFG -f $FLASH_CFG -c "flash write_image erase build/waf.bootloader-NoOS-

BCM943362WCD4/binary/waf.bootloader-NoOS-BCM943362WCD4.stripped.elf" -c shutdown

> echo “Downloading Application ...”

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_CFG -c "flash write_image erase build/demo.temp_control-

BCM943362WCD4/binary/demo.temp_control-BCM943362WCD4.stripped.elf" -c shutdown

> echo “Downloading DCT ...”

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_CFG -c "flash write_image erase build/demo.temp_control-

BCM943362WCD4/factory_reset/factory_reset_dct_0001.stripped.elf" -c shutdown

WICED™ AN800-R

4.3 OCD Programming for external SFLASH

For some platform builds where the program and data is stored in an external SFLASH, the WICED
Filesystem and the Application Look Up Table (LUT) are needed as well. As discussed in the beginning of
this section, when using the WICED IDE , add “VERBOSE=1” to the build command to show which files
are downloaded to the Flash during your build and their destination addresses.

These examples show the download sequence for the snip.scan application built for the
BCM943907WAE_1. To provide different unique DCTs, copy the method shown above, and replace the
“DCT.bin” file in the following examples with your factory_reset_dct files.

NOTE: It is important to note that external FLASH writing script requires the destination address. Most
addresses are fixed due to the nature of the FLASH Layout: Bootloader, DCT, Apps LUT and Filesystem.
The location for the Application is dependent on the size of the Resource Filesystem. If the Resource
Filesystem size changes, the destination address for the Application will change.

NOTE: These download examples use the script file =.\apps\waf\sflash_write\sflash_write.tcl and the
first download (bootloader) specifies that the FLASH be erased (note the “1” in the string passed to the
script). This should only be done once. You can also only write each element once (different than writing
to an internal FLASH).

NOTE: These download examples use the script file =.\apps\waf\sflash_write\sflash_write.tcl and
define the destination address.

WICED™ AN800-R

Figure 11. Windows cmd shell command sequences

Figure 12. Bash shell command sequences

> .\make snip.scan-BCM943907WAE_1

> set JTAG_CFG=.\tools\OpenOCD\BCM9WCD1EVAL1.cfg

> set MCU_CFG=.\tools\OpenOCD\BCM4390x.cfg

> set FLASH_TCL=.\apps\waf\sflash_write\sflash_write.tcl

> echo Downloading Bootloader ...

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/waf.bootloader-NoOS-NoNS-

BCM943907WAE_1-P103-SoC.43909/binary/waf.bootloader-NoOS-NoNS-BCM943907WAE_1-P103-

SoC.43909.trx.bin 0x00000000 BCM943907WAE_1-P103-SoC.43909 1 43909" -c shutdown

> echo Downloading resources filesystem ...

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-

BCM943907WAE_1/filesystem.bin 69632 BCM943907WAE_1-P103-SoC.43909 0 43909" -c shutdown

> echo Downloading APP0 ...

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-

BCM943907WAE_1/binary/snip.scan-BCM943907WAE_1.stripped.elf 589824 BCM943907WAE_1-P103-

SoC.43909 0 43909" -c shutdown

> echo Downloading apps lookup table ...

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-BCM943907WAE_1/APPS.bin

0x10000 BCM943907WAE_1-P103-SoC.43909 0 43909" -c shutdown

> echo Downloading DCT ...

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-BCM943907WAE_1/DCT.bin

0x00008000 BCM943907WAE_1-P103-SoC.43909 0 43909" -c shutdown

> ./make snip.scan-BCM943907WAE_1

> export JTAG_CFG=./tools/OpenOCD/BCM9WCD1EVAL1.cfg

> export MCU_CFG=./tools/OpenOCD/BCM4390x.cfg

> export FLASH_TCL=./apps/waf/sflash_write/sflash_write.tcl

> echo Downloading Bootloader ...

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/waf.bootloader-NoOS-NoNS-

BCM943907WAE_1-P103-SoC.43909/binary/waf.bootloader-NoOS-NoNS-BCM943907WAE_1-P103-

SoC.43909.trx.bin 0x00000000 BCM943907WAE_1-P103-SoC.43909 1 43909" -c shutdown

> echo Downloading resources filesystem ...

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-

BCM943907WAE_1/filesystem.bin 69632 BCM943907WAE_1-P103-SoC.43909 0 43909" -c shutdown

> echo Downloading APP0 ...

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-

BCM943907WAE_1/binary/snip.scan-BCM943907WAE_1.stripped.elf 589824 BCM943907WAE_1-P103-

SoC.43909 0 43909" -c shutdown

> echo Downloading apps lookup table ...

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-BCM943907WAE_1/APPS.bin

0x10000 BCM943907WAE_1-P103-SoC.43909 0 43909" -c shutdown

> echo Downloading DCT ...

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-BCM943907WAE_1/DCT.bin

0x00008000 BCM943907WAE_1-P103-SoC.43909 0 43909" -c shutdown

WICED™ AN800-R

5 Assigning a MAC Address to your Device

A Medium Access Control (MAC) address is used to uniquely identify a Wi-Fi device on the wireless
network. Each Wi-Fi device must be assigned a unique Wi-Fi MAC address. The WICED SDK provides
various options to set the Wi-Fi MAC address of a WICED device.

5.1 WLAN OTP Memory

Each WLAN chip includes a small amount of One-Time Programmable (OTP) memory. Many Wi-Fi
module manufacturers program a MAC address into the OTP during the module manufacturing process.
In most cases, it is best to leave WICED to use the MAC address in OTP. If your devices each require a
MAC address other than that assigned by the module manufacturer, you may use one of the methods
described in Sections 5.2 or 5.3 to set the MAC address (and override the MAC address in OTP).

5.2 DCT

A unique per-device MAC address may be specified in the DCT as described in Section 3.1. To direct
WICED and the WLAN chip to use the MAC addressed located in the DCT, it is necessary to define a
global variable in the application makefile. Using the temp_control app as an example, add a
MAC_ADDRESS_SET_BY_HOST global define to the temp_control application makefile located in the
WICED SDK at <WICED-SDK>/App/demo/temp_control/temp_control.mk as follows:

GLOBAL_DEFINES := MAC_ADDRESS_SET_BY_HOST

5.3 Custom

If you do not want to use the MAC address in the WLAN OTP or in the DCT, you may redefine the WICED
API function host_platform_get_mac_address()to provide a MAC address when the WICED Wi-Fi
driver initializes the WLAN chip. The host_platform_get_mac_address() function, which is
implemented for each platform architecture, is located in the file:
<WICED-SDK>/Wiced/Platform/common/<MCU_ARCH>/<MCUxxx>/<MCUxxx>_platform.c

The global variable MAC_ADDRESS_SET_BY_HOST must also be configured as described in Section 5.2.

5.4 NVRAM (Development ONLY)

A text file known as NVRAM is provided for each WICED platform. The NVRAM provides platform
specific information related to the Wi-Fi chip including, but not limited to, the frequency of the crystal
used, transmit power limits and a MAC address. In general, changing NVRAM variables is not
recommended since it is possible to adversely impact the performance of the Wi-Fi chip.

The MAC address specified in the NVRAM is used by the Wi-Fi chip if the OTP does not contain a MAC
address. Setting the MAC address in NVRAM is only useful during development since the NVRAM is
compiled into the final application, and the final application is common to all devices.

WICED™ AN800-R

Broadcom® Corporation reserves the right to make changes without further notice to any products or data herein to improve
reliability, function, or design. Information furnished by Broadcom Corporation is believed to be accurate and reliable.
However, Broadcom Corporation does not assume any liability arising out of the application or use of this information, nor
the application or use of any product or circuit described herein, neither does it convey any license under its patent rights
nor the rights of others.

BROADCOM CORPORATION

5300 California Avenue
Irvine, California, 92677
© 2015 by BROADCOM CORPORATION. All rights reserved.

WICED-AN800-R November 05, 2013

 Phone : +1-949-926-5000
 Fax: +1-949-926-5203
 E-mail: info@broadcom.com
 Web: www.broadcom.com

