

 PSoC® Creator™ Example Project

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Features

 Health Thermometer Profile in GATT Server role

 Die temperature measurement

 Battery service

 Battery level measurement

 Low Power mode

 LED status indication

General Description
This example demonstrates the Health Thermometer Profile operation of the BLE PSoC Creator
component. The device simulates thermometer readings and sends it over the BLE Health
Thermometer Service. It also measures a battery level value and sends it over the BLE Battery
Service.

Development Kit Configuration

1. Default CY8CKIT-042 BLE Pioneer Kit configuration.

2. Connect J2 pin P3[0] to J3 pin VREF.

Project Configuration
The example project consists of the following components: ADC_SAR_Seq, DieTemp, BLE,
UART, digital output pin, digital input pin, and analog input pin. The ADC_SAR_Seq and
DieTemp are used to measure the battery voltage and die temperature. The output pins are used
to reflect the line signal output on the LED. The input pin is configured to the resistive pull up
mode and is used to wake device from low power hibernate mode. The top design schematic is
shown in Figure 1.

BLE Temperature Measurement
1.0

BLE Temperature Measurement PSoC® Creator™ Example Project

Page 2 of 8

Figure 1. Top design schematic

The Vref analog input pin is locked to P3[0]. The ADC is configured for a single ended
measurement with a sample rate of 3125 SPS.

The BLE component is configured as Health Thermometer Profile in the Peripheral role. Battery
Service is used to send a measured battery level.

PSoC® Creator™ Example Project BLE Temperature Measurement

 Page 3 of 8

Figure 2. GATT settings

Figure 3. GAP settings

BLE Temperature Measurement PSoC® Creator™ Example Project

Page 4 of 8

Figure 4. GAP settings -> Advertisement packet

Figure 5. Security settings

PSoC® Creator™ Example Project BLE Temperature Measurement

 Page 5 of 8

Project Description

The project demonstrates the core functionality of BLE component configured as a Health
Thermometer GATT Server.

The reference to the ADC in PSoC 4 can be either internal 1.024V or VDD. A simple method to
measure VDD in PSoC 4 would be to use a resistive divider and scale the VDD to 1.024V and
set the ADC reference to internal 1.024V. This project measures the battery voltage which is
equal to the VDD voltage without an external resistive divider.

When VREF is selected as reference to the ADC, and if the reference bypass is enabled, this will
bring out VREF, through an internal series resistance, to the external dedicated pin VREF (J16).
An external 1uF bypass capacitor is connected to this pin on CY8CKIT-042 BLE Pioneer Kit.

Following is the procedure to measure VDD that exploits this feature.

 Make sure that J2 pin P3[0] is connected to J3 pin VREF.

 Set the reference of ADC to VREF and enable a bypass. Keep the bypass enabled for a
short time (25 ms in this test) and the external capacitor is charged to VREF.

 Change the reference of the ADC to VDD and measure the voltage on P3[0].

 Calculate the VDD voltage using the formula:

VDD = (1.024 * Full Scale Counts) / ADC Counts P3[0]

where Full Scale Counts = 2047. With the ADC configured for a single ended
measurement, the effective resolution is 11 bits and the full scale count is 2047.

One callback function (AppCallBack()) is required to receive generic events from BLE Stack.
CyBle_GappStartAdvertisement() API is called after CYBLE_EVT_STACK_ON event to start
advertising with the packet shown in Figure 4. HtsCallBack() callback function receives events
from the Health Thermometer Service.

The other callback function (BasCallBack()) is required for receiving events from the BAS
Services.

On advertisement timeout, the system remains in the sleep mode. Press the mechanical button
on CY8CKIT-042 BLE (SW2) to wake up the system and start re-advertising.

The project measures the die temperature and sets it as an initial value at the system startup.

The current temperature is increased and overlapped between 15 and 40 degree. The
temperature unit flag is toggled on each temperature update. A fixed temperature type flag value
of "Body (general)" has been used.

The initial measurement interval value is set to 10 seconds. If a central device writes a new value
to the measurement interval, then a peripheral device updates the timer period and sends a
notification on every measurement interval.

To indicate that the device is advertising, the green LED is blinking. The red LED is turned on
after disconnection to indicate that no Client is connected to the device. When a Client is

BLE Temperature Measurement PSoC® Creator™ Example Project

Page 6 of 8

connected successfully, both red and green LEDs are turned off. When the measured battery
voltage drops below 10% limit, the blue LED will be on.

Expected Results

After pairing with CySmart mobile app (Android / iOS), the BLE device will measure and send the
die temperature. You can notice that temperature unit is changing every 10 seconds between °C
(Celsius) and ºF (Fahrenheit).

Figure 6. CySmart app on
Android

Figure 7. CySmart app on iOS.
Measurement unit is Celsius

degrees

Figure 8. CySmart app on iOS.
Measurement unit is Fahrenheit

degrees

Also, the Thermometer project can be used together with CySmart app for Windows. It is
required to match the security settings between Thermometer and CySmart Client and perform
pairing (bonding) before any writing (enabling notifications etc.) into Server’s GATT database.
For further instructions on how to use CySmart application, see CySmart User Guide.

https://play.google.com/store/apps/details?id=com.cypress.cysmart
https://itunes.apple.com/us/app/cysmart/id928939093
http://www.cypress.com/go/cysmart
http://www.cypress.com/?docID=51339

PSoC® Creator™ Example Project BLE Temperature Measurement

 Page 7 of 8

The simple example how to use CySmart Windows application as Health Thermometer Service
client is the next:

 Connect the CySmart BLE dongle to a USB port on the PC.

 Launch CySmart app and select connected dongle in the dialog window.

 Reset the development kit to start advertising by pressing SW1 button.

 Click Start Scan button to discover available devices.

 Select Thermometer in the list of available devices and connect to it.

 Click Pair, then Discover All Attributes, and Enable All Notifications in CySmart app.

 Observe the Temperature Measurement characteristic indications with measured (first
time) and simulated (to show changes) data:

The details about the Health Thermometer Service characteristic data structures are in the HTS
Specification.

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=238688
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=238688

BLE Temperature Measurement PSoC® Creator™ Example Project

Page 8 of 8

© Cypress Semiconductor Corporation, 2009-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to
be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	Development Kit Configuration
	Project Configuration
	Project Description
	Expected Results

