

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 002-09794 Rev. *B Revised November 28, 2017

Features

▪ Separate Bootloader and Bootloadable components

▪ Configurable set of supported commands

▪ Flexible component configuration

General Description

The bootloader system manages the process of updating the device flash memory with new
application code and/or data. To make the process work, PSoC Creator uses the following:

▪ Bootloader project – Project with a Bootloader component and communication
component.

▪ Bootloadable project – Project with a Bootloadable component, which creates the code.

Related Material

PSoC Creator provides example code; see Sample Firmware Source Code in this datasheet for
more information. In addition, Cypress provides application notes located on the Cypress
website or within the Cypress Document Manager. The following are a few application notes
available:

▪ AN73854 – PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

▪ AN60317 – PSoC® 3 and PSoC 5LP I2C Bootloader

▪ AN68272 – PSoC® 3, PSoC 4 and PSoC 5LP UART Bootloader

▪ AN73503 – USB HID Bootloader for PSoC® 3 and PSoC 5LP

▪ AN86526 – PSoC® 4 I2C Bootloader

▪ AN84401 – PSoC® 3 and PSoC 5LP SPI Bootloader

Export a Design to a 3rd Party Integrated Development Environment (IDE)

See the "Exporting a Design to a 3rd Party IDE" topic in the PSoC Creator Help for details on
exporting a bootloader and bootloadable application to a 3rd party IDE.

Bootloader and Bootloadable
1.50

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 2 of 65 Document Number: 002-09794 Rev. *B

Definitions

▪ Bootloading, bootload operation, or just bootload for short – The act of transferring a
bootloadable from the host to the target flash.

▪ Host – The system that provides data to update the flash.

▪ Target – The device being updated.

▪ Bootloader Component – A PSoC Creator component that is placed onto the schematic
of a project. It defines the project type as bootloader, dual-application bootloader, or
launcher; and adds bootloader functionality support.

▪ Bootloader Project – A PSoC Creator project type that is defined through incorporation
of a Bootloader component and a communication component. This definition may
collectively include a dual-application bootloader project.

▪ Bootloader – General term for bootloader project, dual-application bootloader project, or
launcher project.

▪ Bootloadable Component – A PSoC Creator component that is placed onto the
schematic of a project. It defines the project type as bootloadable or combination, and
adds bootloadable functionality support.

▪ Bootloadable Project – A PSoC Creator project type that implements a user application.
It is defined through incorporation of a Bootloadable component. It is loaded into target
flash by a bootloader or another application.

▪ Communication Component – Any PSoC Creator component that:

□ Advertises itself as a communication component.

□ Implements a standard set of bootloader interface functions.

▪ Dual-Application Bootloader Project – A bootloader project that supports two
applications in the flash.

▪ In-Application Bootloader – A dual-application bootloader project that also perform
other application-specific tasks.

▪ Launcher Project – A bootloader project that is defined through incorporation of a
Bootloader component without a communication component.

▪ Classic Bootloader – Bootloader functionality of the 1.30 version. This bootloader does
not support launcher/combination project types.

▪ Application – General term for bootloadable project or combination project.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 3 of 65

▪ Combination Project – A PSoC Creator project type that implements a user application
that can bootload another application. It is defined through incorporation of a Bootloader
component, a Bootloadable component, and a communication component. It is loaded
into target flash by another combination project.

▪ Internal Memory – Flash memory that is in the target device. With PSoC, it can be further
defined as:

□ Main flash, used to store code.

□ ECC flash, which is used to check errors and correct main flash accesses, or to
store additional data. PSoC 3 and PSoC 5LP have ECC flash, PSoC 4 does not.

▪ Row – A portion of internal memory accessed in a single operation. It includes main flash
and ECC flash for PSoC 3/PSoC 5LP devices. PSoC 3/PSoC 5LP devices have 256 main
flash bytes + 32 ECC flash bytes = 288 total bytes per row. PSoC 4100/PSoC 4200
devices have 128 bytes in a flash row. PSoC 4000 devices have 64 bytes in a flash row.

Use Cases

Normal

application

Bootloadable

application

Single-app

Bootloader

Bootloadable

application #2

Bootloadable

application #1

Dual-app

Bootloader

Combination

application #2

Combination

application #1

Launcher

Combination
application #2

Combination

application #1

Dual-app

Bootloader

User

Application

Stack

Application

Launcher + Copier

metadata metadata #1

metadata #2

metadata #1

metadata #2

metadata #1

metadata #2

metadata #1

metadata #2

Application
 Single-application

Bootloader

Dual-application

Bootloader
Launcher – Combination Upgradable Stack

Dual-application Bootloader

with Combination projects

0x00000000

The diagram above represents existing bootloader and use cases. Each blue box in the
diagram is a separate PSoC Creator project. See project type section to understand what
components contain in each project type.

□ Application – Bootloading is not supported. The application is updated through the
JTAG or SWD pins, for example by using the PSoC Programmer tool.

□ Single-application Bootloader – The application is updated by the Bootloader
through the communication channel.

□ Dual-application Bootloader – There are two applications. Either one is updated by
the Bootloader. The Bootloader passes control to, or launches, an application
according to the switching logic or by receiving a corresponding set of commands.
The applications are allocated an equal amount of flash space.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 4 of 65 Document Number: 002-09794 Rev. *B

□ Launcher-Combination – The Bootloader only performs the switching function. The
applications can update each other (see Definitions section). The applications are
allocated an equal amount of flash space.

□ Upgradable stack – This use case is intended for communication components like
Bluetooth Low Energy (BLE). One application (stack) contains the communication
component and “shares” it with the other application (user application). See the
description of a sharing mechanism in a corresponding example project’s
datasheet. The Copier function makes it possible for the stack to be updated. The
applications are not allocated an equal amount of flash space; the user application
is located just after the stack application.

□ Dual-application Bootloader with Combination projects – This use case is a more
secure version of the Launcher-Combination case. The Bootloader has a
communication component, so if both applications are corrupted, new applications
can be bootloaded. The applications are allocated an equal amount of flash space.

Bootloader Component

The Bootloader component allows you to update the device flash memory with new code. The
bootloader accepts and executes commands, then passes command responses back to the
communication component. The bootloader collects and arranges the received data and
manages the actual writing of flash through a simple command/status register interface.

The bootloader manages the communication protocol to receive commands from an external
system and pass those commands to the bootloader. It also passes command responses from
the bootloader back to the off-chip system.

Architecture

Supported Interfaces

Custom Interface USB UART I2C SPI Bluetooth

PSoC 3 / PSoC 5LP      -

PSOC 4000  PSoC devices
with USB only

Software Transmit
UART only

 - -

PSOC 4100 and
PSoC 4200

 PSoC devices
with USB only

   -

PSOC4100 BLE and
PSoC4200 BLE

 PSoC devices
with USB only

   

PRoC BLE  -    

PSoC 4200M      -

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 5 of 65

Notes:

▪ The I2C interface on PSoC 4 is implemented with the SCB component.

▪ The Custom Interface option allows adding bootloader support to any existing
communication component. Refer to the appropriate communication component
datasheet for more details about the appropriate communication method.

▪ For PSoC 4000 devices, each update to a flash row will automatically modify the device
clock settings. Writing to flash requires changing the IMO and HFCLK settings. The
configuration is restored after each row is written.

□ The HFCLK’s frequency changes several times during each write to a flash row
between the minimum frequency of the current IMO frequency divided by 8 and the
maximum frequency of 12 MHz.

□ These clock changes impact the operation of the communication component and
any other hardware in the bootloader project.

□ The I2C slave component is tolerant of clock changes, but the clock changes can
result in a NAK response when transactions occur during a row write. The
bootloader host should be designed to retry in this case.

Bootloadable Component

When you use the Bootloadable component, you can specify additional parameters for the
bootloadable project.

Project Types

Five different project types and two Components are available. The project type is defined at
build time, according to the Components in the project schematic.

Components Present in Project Resultant Project Type

None Normal.

This project type is not used for bootloading and is
not a bootloadable application.

Bootloader and communication Bootloader

Dual-application bootloader

Bootloader Launcher

Bootloadable Bootloadable

Bootloader, communication, and Bootloadable Combination

Note Launcher and Combination project types are supported for PSoC 4 and PSoC 5LP device
families and are not supported for the PSoC 3 device family.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 6 of 65 Document Number: 002-09794 Rev. *B

Bootloader Component Parameters

Drag a Bootloader component onto your design and double-click it to open the Configure dialog.

The details of the Bootloader component’s parameters are described next.

Communication component

This is the communication component that the bootloader uses to receive commands and send
responses. Select one, and only one, communication component. This property is a list of the
available communication protocols on the schematic that have bootloader support.

In all cases, independent of what is on the schematic, there is also a method for implementing
the bootloader functions directly. For information and instructions on how to do this, see the
Component Author Guide.

If available, selecting the None, Launcher only option specifies a Launcher project. This kind of
bootloader project supports a limited set of functionality, which is needed for verification and
launching of the bootloadable application. This kind of bootloader doesn’t need a communication
component.

Note This type of bootloader project can be linked only to a combination bootloadable
application.

If there is no communication component on the schematic, then the Custom interface option is
selected. This allows for implementing the communication in any way. See the corresponding
component datasheet for more details about the appropriate communication method.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 7 of 65

Dual-application bootloader

This option allows two bootloadable applications to reside in flash. It is useful for designs that
require a guarantee that there is always a valid application that can be run. This guarantee
comes with the limitation that each application has one half of the flash available from what
would have been available for a "standard" bootloader project.

Note For a Bootload-only Bootloader in a Combination project, this option should be unchecked.

Golden image support

This option prohibits overwriting of application #1. This option is valid for a Classic Bootloader only
if the Dual-application bootloader option is enabled; otherwise, it is ignored and grayed out.

Auto application switching

This option enables switching to the valid, but non-active application, in case the active
application is not valid. This option is available for a Classic Bootloader only if the Dual-
application bootloader is enabled; otherwise, it is ignored and grayed out.

Copier

This option is specific for Launcher-Combination architecture only and to the case when there is
a large communication component like BLE. To save flash space for the user application, such a
large communication component is present only in the first application (Stack application) and is
"shared" with the second application (the user's application actually) by "Code sharing feature"
(See code sharing and BLE Upgradable Stack example project).

If this option is enabled and the "need-to-copy" flag is set in the second application's metadata,
Copier performs copying of a previously saved Stack application image from a "temporary
location" to the application#1 flash space (over the current application#1).

Before performing the copying operation the new Stack application image should be received
and stored at the temporary location by the current Stack application. The "need-to-copy" flag
should be set in application#2 metadata indicating that copying operation is required.

The temporary location is half of the flash space that left after Launcher and 2 metadata rows.
This implies that Stack application should fit in that half of the flash space.

The destination for the copy operation is obtained as the first row after Launcher (from
application#1 metadata).

The source of copy operation is the first row of temporary location that is calculated by the
following formula:

srcRow = ((((CY_FLASH_NUMBER_ROWS - dstRow - metaRows) + 1) / 2) + dstRow);

where:

▪ dstRow - the destination's first row (mentioned above);

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 8 of 65 Document Number: 002-09794 Rev. *B

▪ CY_FLASH_NUMBER_ROWS - number of all flash rows;

▪ metaRows - 2 metadata rows. 1 is added in order to align the result with the alike
calculation in a linker script, where the calculation is performed in bytes and rounding-up
is performed.

Copying itself means row-by-row copying of the stored application's image. If it fails to copy
some row, there is a defined number of attempts (Bootloader_MAX_ATTEMPTS) to try again. In
case of no success, a user callback function Bootloader_CopierCallback() is called. If it is not
defined, then the device is going to be halted.

After performing the application image copying, in case of success the application#2 metadata is
copied in the stead of application#1 metadata and then application#2 metadata is cleared.

A "need-to-copy" flag is cleared just after performing the application#1 image copying from the
temporary location to avoid another consecutive copying operation.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 9 of 65

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 10 of 65 Document Number: 002-09794 Rev. *B

Wait for command

On device reset, the bootloader can wait for a command from the bootloader host or jump to the
application code immediately. If this option is enabled, the bootloader waits for a command from
the host until the timeout period specified by the Wait for command time parameter occurs. If
the bootloader does not receive this command within the specified timeout interval, the active
bootloadable project in the flash is executed after the timeout.

Wait for command time

If the bootloader waits for the command to start loading a new bootloadable application after a
reset, this is the amount of time it waits before starting the existing bootloadable application. This
option is valid only if Wait for command is enabled, otherwise it is ignored and grayed out. The
zero value is interpreted as wait forever. The default value is a 2 second time out.

Bootloader application version

This parameter provides a 2 byte number to represent the version of the Bootloader application.
The default value is 0x0000.

Packet checksum type

This parameter has a couple of options for the type of checksum to use when transferring
packets of data between the host and the bootloader. The default value is Basic summation.

The basic summation checksum is computed by adding all the bytes (excluding the checksum)
and then taking the 2’s complement. The other option is CRC-16CCITT ‒ the 16 bit CRC using
the CCITT algorithm.

The checksum is computed for the entire packet with the exception of the Checksum and End of
Packet fields.

Fast bootloadable application validation

This option controls how the bootloader verifies the application data. If it is disabled, the
bootloader computes the bootloadable application checksum every time before starting it. If
enabled, the bootloader only computes the checksum the first time and assumes that it remains
valid in each future startup.

Bootloader application validation

If this option is enabled, the bootloader validates itself by calculating the checksum and
comparing it with the saved one that resides in the internal variable. PSoC Creator generates
and puts the exact value into this variable during the post-build step. If validation does not pass,
the device halts. If this option is disabled, the bootloader is executed even if it is corrupted. This
can lead to unpredictable results.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 11 of 65

Note This is true for all types of projects with the exception of the Combination project type. For
a Combination project type, Bootload-only Bootloader is validated as part of the whole
application with a checksum stored in metadata.

Security key

This option enables the usage of a security key in the "Enter Bootloader" command for additional
safety. If this option is enabled, the Bootloader checks whether the security key in the command
matches the key entered in the Bootloader Configure dialog. If they do not match, then "Error
Data" is returned.

The Bootloader also returns an error if the "Enter Bootloader" command contains a security key,
but the Security key option is disabled in the Bootloader Configure dialog.

Optional Commands

This group of options determines whether or not a corresponding command is supported by the
bootloader. If enabled, then the corresponding command is supported. By default all optional
commands are supported.

The Get flash size, Send data, and Get row checksum commands are required by the
Cypress Bootloader Host tool. These commands might not be used by custom bootloader host
tools.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 12 of 65 Document Number: 002-09794 Rev. *B

Bootloadable Component Parameters

Drag a Bootloadable component onto your design and double-click it to open the Configure
dialog.

General Tab

The General tab of the Bootloadable component contains the following parameters:

Application version

This parameter provides a 2 byte number to represent the version of the bootloadable
application. The default value is 0x0000.

Application ID

This parameter provides a 2 byte number to represent the ID of the bootloadable application.
The default value is 0x0000.

Application custom ID

This parameter provides a 4 byte custom ID number to represent anything in the bootloadable
application. The default value is 0x00000000.

Manual application image placement

If this option is enabled, PSoC Creator places the bootloadable application image(s) at the
location specified by the Placement address option. It is also placed according to the rules
outlined in the Bootloadable section.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 13 of 65

Use this option independently for each of the two bootloadable applications if both of them are
referenced in the Dual-application bootloader application.

Placement Address

This option allows you to specify the address where the bootloadable application is placed in
memory. This option is only valid if you enable the Manual application image placement
option; otherwise, it is grayed out. You need to specify the address above the bootloader image
and below the metadata area.

You calculate the placement address by multiplying the number of the flash row (starting from
which the image is placed) by the flash row size and adding the result to the flash base address.
Align the placement address to the flash row size. See the Flash and EEPROM chapter of the
System Reference Guide for details about flash memory organization.

You get the first available row for the bootloadable application from the associated
<project>.cyacd file when the Manual application image placement option is disabled or can
be reported by the Get Flash Size command.

Checksum exclude section size

This option allows you to specify the size of flash section that is intended for user needs and
does not take part in Bootloadable Application checksum calculation. Other components could
use this section for storing data (for instance, BLE could store its pairing data). Default value is
0x00000000.

Note Do not use Bootloader commands “Send Data” and “Program Row” to update this section.

Bootloader

app

Checksum exclude section

(user data)

metadata

Bootloader

metadata#0

metadata#1

Checksum exclude section
(user data)

app#1

app#2

Checksum exclude section
(user data)

0x000000000x00000000
Classic Single-app

Bootloader case

Classic Dual-app

Bootloader case

ap
p

#1
 f

la
sh

 s
p

ac
e

ap
p

#2
 f

la
sh

 s
p

ac
e

Th
e

ar
ea

 u
n

d
er

 c
h

ec
ks

u
m

p

ro
te

ct
io

n
Th

e
ar

ea
 u

n
d

er
 c

h
ec

ks
u

m

p
ro

te
ct

io
n

Th
e

ar
ea

 u
n

d
er

 c
h

ec
ks

u
m

 p
ro

te
ct

io
n

ap
p

lic
at

io
n

 f
la

sh
 s

p
ac

e

Launcher + Copier

Stack

Checksum exclude section
(user data)

User application

Checksum exclude section
(user data)

metadata #1

metadata #2

Upgradable Stack case

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 14 of 65 Document Number: 002-09794 Rev. *B

Dependencies Tab

The Dependencies tab of the Bootloadable component contains the following parameters:

Bootloader HEX file

This option allows you to associate a bootloadable project with the bootloader project HEX file.
This is necessary so that the build of the bootloadable project gets the information about the
bootloader project (for example, properly calculate where it belongs in memory).

Bootloader ELF file

This option allows you to associate a bootloadable project with the bootloader project ELF file.
The ELF file extension depends on IDE. For example, PSoC Creator generates ELF files with
*.elf extension, while other IDEs produce *.elf, *.out, or *.axf files.

This option is automatically populated with the path to the *.elf file, if it is located in the same
folder with the specified HEX file. You can always update this option and specify the path to the
ELF file manually.

Note Make sure that HEX and ELF files are generated by the same build process to ensure that
they are coherent.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 15 of 65

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the component using
software. By default, PSoC Creator assigns the instance name "Bootloader_1" to the first
instance of a Bootloader component and "Bootloadable_1" to the first instance of a Bootloadable
component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance names used in the following
tables are "Bootloader" and "Bootloadable."

Note Launcher and Combination project types are supported for PSoC 4 and PSoC 5LP device
families and are not supported for PSoC 3 device family.

Functions

Classic Bootloader use case specific functions

Function Description

Bootloader_Start This function is called to execute the following algorithm.

Bootloader_GetMetadata Returns the value of the specified field of the metadata section.

Bootloader_ValidateBootloadable Verifies validation of the specified application.

Bootloader_Exit Schedules the specified application and performs software reset to launch it.

Bootloader_Calc8BitSum Computes the 8 bit sum for the specified data.

Bootloader_InitCallback Initializes the callback functionality.

Bootloadable_Load Updates the metadata area for the Bootloader to be started on device reset
and resets the device.

Launcher-Combination use case specific functions

Function Description

Bootloader_Initialize Called for in-application bootloading, to initialize bootloading.

Bootloader_HostLink Called for in-application bootloading, to process bootloader command from
the host.

Bootloader_GetRunningAppStatus Returns the application number of the currently running application.

Bootloader_GetActiveAppStatus Returns the application number of the currently active application.

Bootloadable_GetActiveApplication Gets the application which will be loaded after a next reset event.

Bootloadable_SetActiveApplication Sets the application which will be loaded after a next reset event.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 16 of 65 Document Number: 002-09794 Rev. *B

Communication Interface functions

The following table lists functions used by the Bootloader component but not implemented in its
code. Instead they are implemented in the Communication component chosen to be used for
bootloader communication, or your code when a Custom Interface is used.

Function Description

CyBtldrCommStart Starts communication interface and enables its interrupts and callbacks (if necessary).

CyBtldrCommStop Stops communication interface and disables its interrupts and callbacks (if necessary)

CyBtldrCommReset Resets the proper communication interface to the default initial state that allows to
restart a communication when a communication has been out of synchronization

CyBtldrCommRead Reads data from the bootloader host

CyBtldrCommWrite Writes data to the bootloader host

Note Functions in the Communication component have an appropriate prefix, for example
SCBX_CyBtldrCommStart for an SCB component with the name “SCBX.” Names without the
prefix are provided as macros that point to the functions, for example:

#define CyBtldrCommStart SCBX_CyBtldrCommStart

Function Documentation

void Bootloadable_Load (void)

Schedules the Bootloader/Launcher to be launched and then performs a software reset to
launch it.

Returns:

This method will never return. It will load a new application and reset the device.

uint8 Bootloadable_GetActiveApplication (void)

Gets the application which will be loaded after a next reset event. NOTE Intended for the
combination project type ONLY!

Returns:

A number of the current active application set in the metadata section.

 0 - app#0 is set as active.

 1 - app#1 is set as active.

Note:

If neither of the applications is set active, then the API returns 0x02.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 17 of 65

cystatus Bootloadable_SetActiveApplication (uint8 appId)

Sets the application which will be loaded after a next reset event.

Theory: This API sets in the Flash (metadata section) the given active application number.

NOTE The active application number is not set directly, but the boolean mark instead
means that the application is active or not for the relative metadata. Both metadata
sections are updated. For example, if the second application is to be set active, then in
the metadata section for the first application there will be a "0" written, which means that it
is not active, and for the second metadata section there will be a "1" written, which means
that it is active.

NOTE Intended for the combination project type ONLY!

Parameters:

appId The active application number to be written to flash
(metadata section) NOTE Possible values are: 0 - for the
first application 1 - for the second application. Any other
number is considered invalid.

Returns:

A status of writing to flash operation.

 CYRET_SUCCESS - Returned if appId was successfully changed.

 CYRET_BAD_PARAM - Returned if the parameter appID passed to the function has the
same value as the active application ID

Note:

- The other non-zero value is considered as a failure during writing to flash.

- This API does not update Bootloader_activeApp variable

void Bootloader_Initialize (void)

Used for in-app bootloading. This function updates the global variable
Bootloader_runningApp with a running application number.

If the running application number is valid (0 or 1), this function also sets the global
variable Bootloader_initVar that is used to determine if the component can process
bootloader commands or not. This function should be called once in the application
project after a startup.

Returns:

Global variables:

□ Bootloader_runningApp

□ Bootloader_activeApp

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 18 of 65 Document Number: 002-09794 Rev. *B

□ Bootloader_initVar

This API should be called first to be able to capture the active application number that is
actually the running application number.

uint8 Bootloader_GetRunningAppStatus (void)

Used for dual-app or in-app bootloader. Returns the value of the global variable
Bootloader_runningApp. This function should be called only after the
Bootloader_Initialize() has been called once.

Returns:

The application number that is currently being executed. Values are 0 or 1; other values
indicate "not defined".

uint8 Bootloader_GetActiveAppStatus (void)

Used for dual-app or in-app bootloader. Returns the value of the global variable
Bootloader_activeApp. This function should be called only after the Bootloader_Initialize()
has been called once.

Returns:

The desired application to be executed. Values are 0 or 1; other values indicate "not
defined".

uint8 Bootloader_Calc8BitSum (uint32 baseAddr, uint32 start, uint32 size)

This computes an 8-bit sum for the provided number of bytes contained in flash (if
baseAddr equals CY_FLASH_BASE) or EEPROM (if baseAddr equals
CY_EEPROM_BASE).

Parameters:

baseAddr CY_FLASH_BASE CY_EEPROM_BASE - applicable only
for PSoC 3 / PSoC 5LP devices.

start The starting address to start summing data.

size The number of bytes to read and compute the sum.

Returns:

An 8-bit sum for the provided data.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 19 of 65

void Bootloader_Start (void)

This function is called to execute the following algorithm:

□ Validate the Bootloadable application for the Classic Single-app Bootloader or both
Bootloadable/Combination applications for the Classic Dual-app Bootloader/
Launch-only Bootloader (Launcher for short) respectively.

□ For the Classic Single-app Bootloader: if the Bootloadable application is valid, then
the flow switches to it after a software reset. Otherwise it stays in the Bootloader,
waiting for a command(s) from the host.

□ For the Classic Dual-app Bootloader: the flow acts according to the switching table
(see in the code below) and enabled/disabled options (for instance, auto-
switching). NOTE If the valid Bootloadable application is identified, then the control
is passed to it after a software reset. Otherwise it stays in the Classic Dual-app
Bootloader waiting for a command(s) from the host.

□ For the Launcher: the flow acts according to the switching table (see below) and
enabled/disabled options. NOTE If the valid Combination application is identified,
then the control is passed to it after a software reset. Otherwise it stays in the
Launcher forever.

□ Validate the Bootloader/Launcher application(s) (design-time configurable,
Bootloader application validation option of the component customizer).

□ Run a communication subroutine (design-time configurable, the Wait for command
option of the component customizer). NOTE This is NOT applicable for the
Launcher.

□ Schedule the Bootloadable and reset the device.

See Switching logic table for details.

Returns:

This method will never return. It will either load a new application and reset the device or
jump directly to the existing application. The CPU is halted, if the validation fails when the
"Bootloader application validation" option is enabled. PSoC 3/PSoC 5: The CPU is halted
if flash initialization fails.

If the "Bootloader application validation" option is enabled and this method determines
that the Bootloader application itself is corrupt, this method will not return, instead it will
simply hang the application.

void Bootloader_Exit (uint8 appId)

Schedules the specified application and performs a software reset to launch a specified
application.

If the specified application is not valid, the Bootloader (the result of the
ValidateBootloadable() function execution returns other than CYRET_SUCCESS, the
Bootloader application is launched.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 20 of 65 Document Number: 002-09794 Rev. *B

Parameters:

appId The application to be started:

□ Bootloader_EXIT_TO_BTLDR - The Bootloader application will be started on a
software reset.

□ Bootloader_EXIT_TO_BTLDB;

□ Bootloader_EXIT_TO_BTLDB_1 - Bootloadable application # 1 will be started on a
software reset.

□ Bootloader_EXIT_TO_BTLDB_2 - Bootloadable application # 2 will be started on a
software reset. Available only if the "Dual-application" option is enabled in the
component customizer.

Returns:

This function never returns.

cystatus Bootloader_ValidateBootloadable (uint8 appId)

Performs the Bootloadable application validation by calculating the application image
checksum and comparing it with the checksum value stored in the Bootloadable
Application Checksum field of the metadata section.

If the "Fast bootloadable application validation" option is enabled in the component
customizer and Bootloadable application successfully passes validation, the Bootloadable
Application Verification Status field of the metadata section is updated. Refer to the
"Metadata Layout" section for the details.

If the "Fast bootloadable application validation" option is enabled and the Bootloadable
Application Verification Status field of the metadata section claims that the Bootloadable
application is valid, the function returns CYRET_SUCCESS without further checksum
calculation.

Parameters:

appId The number of the Bootloadable application should be 0 for
the normal bootloader and 0 or 1 for the dual-application
bootloader.

Returns:

CYRET_SUCCESS - If the specified the Bootloadable application is valid.
CYRET_BAD_DATA is returned if the input parameter is out of the specified range or the
calculated checksum does not match the stored checksum.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 21 of 65

void Bootloader_SetFlashByte (uint32 address, uint8 runType)

Writes a byte to the specified flash memory location.

Parameters:

address The address in flash memory where data will be written

runType The byte to be written.

uint32 Bootloader_GetMetadata (uint8 field, uint8 appId)

Returns the value of the specified field of the metadata section.

Parameters:

field The field to get data from:

 Bootloader_GET_BTLDB_CHECKSUM - Bootloadable
Application Checksum

 Bootloader_GET_BTLDB_ADDR - Bootloadable
Application Start Routine Address

 Bootloader_GET_BTLDR_LAST_ROW - Bootloader Last
Flash Row

 Bootloader_GET_BTLDB_LENGTH - Bootloadable
Application Length

 Bootloader_GET_BTLDB_ACTIVE - Active Bootloadable
Application

 Bootloader_GET_BTLDB_STATUS - Bootloadable
Application Verification Status

 Bootloader_GET_BTLDR_APP_VERSION - Bootloader
Application Version

 Bootloader_GET_BTLDB_APP_VERSION - Bootloadable
Application Version

 Bootloader_GET_BTLDB_APP_ID - Bootloadable
Application ID

 Bootloader_GET_BTLDB_APP_CUST_ID - Bootloadable
Application Custom ID

appId The number of the Bootlodable application. Should be 0 for
the normal bootloader and 0 or 1 for the Dual-application
bootloader.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 22 of 65 Document Number: 002-09794 Rev. *B

Returns:

The value of the specified field of the specified application.

void Bootloader_InitCallback(Bootloader_callback_type userCallback)

This function initializes the callback functionality.

Parameter:

The user's callback function.

Returns:

None.

void Bootloader_HostLink(uint8 timeOut)

Causes the Bootloader to attempt to read data being transmitted by the host application. If
data is sent from the host, this establishes the communication interface to process all
requests.

This function is public only for Launcher-Combination architecture. For Classic Bootloader
it is static, meaning private.

Parameter:

timeOut - The amount of time to listen for data before giving up. The timeout is measured
in 10s of ms. Use 0 for an infinite wait.

Returns:

None

void CyBtldrCommStart(void)

Starts the communication interface and enables its interrupts and callbacks (if necessary).

All data being received or transmitted by the bootloader component is being passed
through this communication interface.

Parameters:

None

Returts:

None

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 23 of 65

void CyBtldrCommStop(void)

Disables the communication interface and its interrupts and callbacks (if necessary).

No bootloader communication is supposed to be made after a call to this function.

Parameters:

None

Returns:

None

void CyBtldrCommReset(void)

Resets the proper communication interface to the default initial state that allows to restart
a communication when a communication has been out of synchronization.

Parameters:

None

Returns:

None

cystatus CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)

Reads data from a bootloader host. The function handles polling to allow a block of data
to be completely received from the host device.

Parameters:

pData Pointer to a buffer where to read the data received from bootloader
host

size Maximal allowed number of bytes to be received

count Pointer to a variable to write the number of bytes actually received
from the bootloader host

timeOut Number of 10ms units to wait before returning because of a timeout

Returns:

cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the value
that best describes the problem. For more information, refer to the “Return Codes” section
of the System Reference Guide.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 24 of 65 Document Number: 002-09794 Rev. *B

cystatus CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)

Writes data to a bootloader host. This function may handle polling to allow a block of data
to be completely transmitted to a host device.

Parameters:

pData Pointer to a buffer with the data to be written to a bootloader host

size Number of bytes to write to a bootloader host

count Pointer to a variable to write the number of bytes actually written to a
bootloader host

timeOut Number of 10ms units to wait before returning because of a timeout.
This parameter may be unused in some communication interfaces.

Returns:

cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the value
that best describes the problem. For more information, refer to the “Return Codes” section
of the System Reference Guide.

Variables

▪ uint8 Bootloader_initVar = (0u)

▪ uint8 Bootloader_runningApp = (2u)

▪ uint8 Bootloader_isBootloading = (0u)

▪ uint8 Bootloader_activeApp = Bootloader_MD_BTLDB_ACTIVE_NONE

Variable Documentation

uint8 Bootloader_initVar = (0u)

This variable is intended to indicate that in-application bootloading initialization is done.
The initialization itself is performed in the Bootloader_Initialize() function. Once the
initialization is done, the variable is set and this prevents the functionality from
reinitialization.

uint8 Bootloader_runningApp = (2u)

This variable is intended to keep the current application number. It applies only to in-
application bootloading.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 25 of 65

uint8 Bootloader_isBootloading = (0u)

This variable is intended to indicate that 'Enter bootloader' command has been received. It
applies only to in-application bootloading.

uint8 Bootloader_activeApp = Bootloader_MD_BTLDB_ACTIVE_NONE

This variable is intended to keep the active application number. It applies only to in-
application bootloading.

Constants

▪ Error Codes

▪ Commands

▪ Metadata fields

Bootloader's deprecated code

This component contains deprecated code that is not recommended for use but is kept to
preserve backward compatibility with the existing designs. The deprecated code should no
longer be used in new projects.

The following macro and definitions are NOT recommended for usage:

▪ Bootloader_BOOTLOADABLE_APP_VALID

▪ CyBtldr_Start

▪ Bootloader_NUM_OF_FLASH_ARRAYS

▪ Bootloader_META_BASE(x)

▪ Bootloader_META_ARRAY

▪ Bootloader_META_APP_ENTRY_POINT_ADDR(x)

▪ Bootloader_META_APP_BYTE_LEN(x)

▪ Bootloader_META_APP_RUN_ADDR(x)

▪ Bootloader_META_APP_ACTIVE_ADDR(x)

▪ Bootloader_META_APP_VERIFIED_ADDR(x)

▪ Bootloader_META_APP_BLDBL_VER_ADDR(x)

▪ Bootloader_META_APP_VER_ADDR(x)

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 26 of 65 Document Number: 002-09794 Rev. *B

▪ Bootloader_META_APP_ID_ADDR(x)

▪ Bootloader_META_APP_CUST_ID_ADDR(x)

▪ Bootloader_META_LAST_BLDR_ROW_ADDR(x)

▪ Bootloader_META_CHECKSUM_ADDR(x)

▪ Bootloader_MD_BASE

▪ Bootloader_MD_ROW

▪ Bootloader_MD_CHECKSUM_ADDR

▪ Bootloader_MD_LAST_BLDR_ROW_ADDR

▪ Bootloader_MD_APP_BYTE_LEN

▪ Bootloader_MD_APP_VERIFIED_ADDR

▪ Bootloader_MD_APP_ENTRY_POINT_ADDR

▪ Bootloader_MD_APP_RUN_ADDR

▪ Bootloader_MD_CHECKSUM_ADDR

▪ Bootloader_MD_LAST_BLDR_ROW_ADDR

▪ Bootloader_MD_APP_BYTE_LEN

▪ Bootloader_MD_APP_VERIFIED_ADDR

▪ Bootloader_MD_APP_ENTRY_POINT_ADDR

▪ Bootloader_MD_APP_RUN_ADDR

▪ Bootloader_P_APP_ACTIVE(x)

▪ Bootloader_MD_PTR_CHECKSUM

▪ Bootloader_MD_PTR_APP_ENTRY_POINT

▪ Bootloader_MD_PTR_LAST_BLDR_ROW

▪ Bootloader_MD_PTR_APP_BYTE_LEN

▪ Bootloader_MD_PTR_APP_RUN_ADDR

▪ Bootloader_MD_PTR_APP_VERIFIED

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 27 of 65

▪ Bootloader_MD_PTR_APP_BLD_BL_VER

▪ Bootloader_MD_PTR_APP_VER

▪ Bootloader_MD_PTR_APP_ID

▪ Bootloader_MD_PTR_APP_CUST_ID

▪ Bootloader_APP_ADDRESS

▪ Bootloader_GET_CODE_DATA(idx)

▪ Bootloader_GET_CODE_WORD(idx)

▪ Bootloader_META_APP_ADDR_OFFSET

▪ Bootloader_META_APP_BL_LAST_ROW_OFFSET

▪ Bootloader_META_APP_BYTE_LEN_OFFSET

▪ Bootloader_META_APP_RUN_TYPE_OFFSET

▪ Bootloader_META_APP_ACTIVE_OFFSET

▪ Bootloader_META_APP_VERIFIED_OFFSET

▪ Bootloader_META_APP_BL_BUILD_VER_OFFSET

▪ Bootloader_META_APP_ID_OFFSET

▪ Bootloader_META_APP_VER_OFFSET

▪ Bootloader_META_APP_CUST_ID_OFFSET

▪ Bootloader_GET_REG16(x)

▪ Bootloader_GET_REG32(x)

▪ Bootloader_META_APP_CHECKSUM_OFFSET

▪ Bootloader_META_DATA_SIZE

▪ appRunType;

▪ Bootloader_SOFTWARE_RESET

▪ Bootloader_SetFlashRunType(runType)

▪ Bootloader_START_APP

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 28 of 65 Document Number: 002-09794 Rev. *B

▪ Bootloader_START_BTLDR

▪ CYDEV_FLASH_BASE

Bootloadable's deprecated code

This component contains deprecated code that is not recommended for use but is kept to
preserve backward compatibility with the existing designs. The deprecated code should no
longer be used in new projects.

The following macro and definitions are NOT recommended for usage:

▪ CYBTDLR_SET_RUN_TYPE(x)

▪ Bootloadable_START_APP

▪ Bootloadable_START_BTLDR

▪ Bootloadable_META_DATA_SIZE

▪ Bootloadable_META_APP_CHECKSUM_OFFSET

▪ Bootloadable_APP_ADDRESS

▪ Bootloadable_GET_CODE_WORD(idx)

▪ Bootloadable_META_APP_ADDR_OFFSET

▪ Bootloadable_META_APP_BL_LAST_ROW_OFFSET

▪ Bootloadable_META_APP_BYTE_LEN_OFFSET

▪ Bootloadable_META_APP_RUN_TYPE_OFFSET

▪ Bootloadable_META_APP_ACTIVE_OFFSET

▪ Bootloadable_META_APP_VERIFIED_OFFSET

▪ Bootloadable_META_APP_BL_BUILD_VER_OFFSET

▪ Bootloadable_META_APP_ID_OFFSET

▪ Bootloadable_META_APP_VER_OFFSET

▪ Bootloadable_META_APP_CUST_ID_OFFSET

▪ Bootloadable_SetFlashRunType(runType)

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 29 of 65

▪ Bootloadable_SetFlashByte(uint32 address, uint8 runType)

Error Codes

Description

Error codes that are returned while communicating with Host

▪ #define Bootloader_ERR_KEY(0x01u)/** The provided key does not match the expected
value */

▪ #define Bootloader_ERR_VERIFY(0x02u)/** The verification of flash failed */

▪ #define Bootloader_ERR_LENGTH(0x03u)/** The amount of data available is outside
the expected range*/

▪ #define Bootloader_ERR_DATA(0x04u)/** The data is not of the proper form*/

▪ #define Bootloader_ERR_CMD(0x05u)/** The command is not recognized */

▪ #define Bootloader_ERR_DEVICE(0x06u)/** The expected device does not match the
detected device*/

▪ #define Bootloader_ERR_VERSION(0x07u)/** The bootloader version detected is not
supported*/

▪ #define Bootloader_ERR_CHECKSUM(0x08u)/** The checksum does not match the
expected value*/

▪ #define Bootloader_ERR_ARRAY(0x09u)/** The flash array is not valid*/

▪ #define Bootloader_ERR_ROW(0x0Au)/** The flash row is not valid */

▪ #define Bootloader_ERR_PROTECT(0x0Bu)/** The flash row is protected and can not
be programmed*/

▪ #define Bootloader_ERR_APP(0x0Cu)/** The application is not valid and cannot be set
as active */

▪ #define Bootloader_ERR_ACTIVE(0x0Du)/** The application is currently marked as
active*/

▪ #define Bootloader_ERR_CALLBACK(0x0Eu)/** The callback function returns invalid
data*/

▪ #define Bootloader_ERR_UNK(0x0Fu)/** An unknown error occurred*/

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 30 of 65 Document Number: 002-09794 Rev. *B

Commands

Description

Commands for communication with Host

▪ #define Bootloader_COMMAND_CHECKSUM(0x31u) /* Verify the checksum for the
bootloadable project*/

▪ #define Bootloader_COMMAND_REPORT_SIZE(0x32u) /* Report the programmable
portions of flash */

▪ #define Bootloader_COMMAND_APP_STATUS(0x33u) /* Gets status info about the
provided app status*/

▪ #define Bootloader_COMMAND_ERASE(0x34u) /* Erase the specified flash row */

▪ #define Bootloader_COMMAND_SYNC(0x35u) /* Sync the bootloader and host
application*/

▪ #define Bootloader_COMMAND_APP_ACTIVE(0x36u) /* Sets the active application*/

▪ #define Bootloader_COMMAND_DATA(0x37u) /* Queue up a block of data for
programming*/

▪ #define Bootloader_COMMAND_ENTER(0x38u) /* Enter the bootloader */

▪ #define Bootloader_COMMAND_PROGRAM(0x39u) /* Program the specified row*/

▪ #define Bootloader_COMMAND_GET_ROW_CHKSUM(0x3Au) /* Compute flash row
checksum for verification*/

▪ #define Bootloader_COMMAND_EXIT(0x3Bu) /* Exits the bootloader & resets the chip */

▪ #define Bootloader_COMMAND_GET_METADATA(0x3Cu) /* Reports the metadata for
a selected application */

▪ #define Bootloader_COMMAND_VERIFY_FLS_ROW(0x45u) /* Verifies data in buffer
with specified row in flash*/

Metadata fields

Description

Error codes that are returned while communicating with Host

▪ #define Bootloader_GET_BTLDB_CHECKSUM (1u) /* Bootloadable Application
Checksum */

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 31 of 65

▪ #define Bootloader_GET_BTLDB_ADDR (2u) /* Bootloadable Application Start Routine
Address */

▪ #define Bootloader_GET_BTLDB_LAST_ROW (3u) /* Bootloader Last Flash Row */

▪ #define Bootloader_GET_BTLDB_LENGTH (4u) /* Bootloadable Application Length */

▪ #define Bootloader_GET_BTLDB_ACTIVE (5u) /* Active Bootloadable Application */

▪ #define Bootloader_GET_BTLDB_STATUS (6u) /* Bootloadable Application Verification
Status */

▪ #define Bootloader_GET_BTLDR_APP_VERSION (7u) /* Bootloader Application
Version */

▪ #define Bootloader_GET_BTLDB_APP_VERSION (8u) /* Bootloadable Application
Version */

▪ #define Bootloader_GET_BTLDB_APP_ID (9u) /* Bootloadable Application ID */

▪ #define Bootloader_GET_BTLDB_APP_CUST_ID (10u) /* Bootloadable Application
Custom ID */

▪ #define Bootloader_GET_BTLDB_COPY_FLAG (11u) /* "need-to-copy” flag */

▪ #define Bootloader_GET_BTLDB_USER_DATA (12u) /* User data */

Data Structure Documentation

Bootloader_ENTER Struct Reference

Data Fields

▪ uint32 SiliconId

▪ uint8 Revision

▪ uint8 BootLoaderVersion [3u]

Sample Firmware Source Code

PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

See the "Find Example Project" topic in the PSoC Creator Help for more information.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 32 of 65 Document Number: 002-09794 Rev. *B

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

▪ project deviations – deviations that are applicable for all PSoC Creator components

▪ specific deviations – deviations that are applicable only for this component

This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

Bootloader Component Specific Deviations:

Rule Rule
Class

Rule Description Description of Deviation(s)

13.7 R Boolean operations whose results are
invariant shall not be permitted.

For some parts, which have only one flash
array, there is a specific if statement that is
always false. The generalized implementation
approach is used, so there is no differentiation
for those parts.

14.3 R Before preprocessing, a null statement shall
only occur on a line by itself; it may be
followed by a comment provided that the
first character following the null statement is
a white-space character.

The null statement is located close to other
code: the CyGlobalIntEnable macro is
followed by a semi-colon, while its
implementation includes a semi-colon.
Applicable for PSoC 3/PSoC 5 devices.

14.5 R The continue statement shall not be used. A 'continue' statement has been used in 2
places to simplify packet processing.

14.7 R A function shall have a single point of exit at
the end of the function.

Multiple points of exit are used in the function
that verifies validity of the bootloadable
applications.

19.7 A A function should be used in preference to
a function-like macro.

Deviated since function-like macros are used
to allow more efficient code.

Bootloadable Component Specific Deviations:

Rule
Rule
Class Rule Description Description of Deviation(s)

19.7 A A function should be used in preference to
a function-like macro.

Deviated since function-like macros are used
to allow more efficient code.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 33 of 65

API Memory Usage

The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.

The measurements were done with the associated compiler configured in Release mode with
optimization set for Size. For a specific design, the map file generated by the compiler can be
analyzed to determine the memory usage.

PSoC 3 (Keil_PK51)

Configuration Flash Bytes SRAM Bytes

Bootloader 3024 4

Full Bootloader Application[1] 7936 998

Full Bootloadable Application[2] 1792 96

Launch-only Bootloader[3] - -

Launcher project[4] - -

Bootload-only Bootloader[5] - -

Launcher + Combination + Metadata[6] - -

1 The measurements for this configuration were done for the entire bootloader project, with the fixed-function
based I2C used as communication component and Bootloader component configured for the minimal flash
consumption.

2 The measurements for this configuration were done for entire bootloadable project.

3 Launch-only Bootloader means Bootloader component that is configured as Launcher.

4 The whole Launcher project means the whole project size for Launch-only Bootloader and cy_boot component.

5 Bootload-only Bootloader means Bootloader component in Combination project that does bootload operation, it
does not include Communication Component.

6 The measurements for this configuration are done for entire combination project (Bootload-only Bootloader,
Bootloadable, fixed-function I2C) with the whole Launcher project (Launch-only Bootloader and cy_boot).

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 34 of 65 Document Number: 002-09794 Rev. *B

PSoC 4 (GCC)

Configuration

PSoC 4000

PSoC 4100

PSoC 4200

PSoC 4100 BLE

PSoC 4200 BLE

PSoC 4100M

PSoC 4200M

Flash
Bytes

SRAM
Bytes

Flash
Bytes

Flash
Bytes

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Bootloader 1096 12 940 12 948 12 948 12

Full Bootloader Application[1] 4544 364 4352 448 4352 464 4224 440

Full Bootloadable Application[2] 5568 148 5632 256 5760 256 5760 256

Launch-only Bootloader[3] 620 12 620 12 620 12 620 12

Launcher project[4] 2304 164 2304 264 2304 280 2176 264

Bootload-only Bootloader[5] 1508 14 1508 14 1500 14 1500 14

Launcher + Combination + Metadata[6] 8064 364 8192 448 8192 464 7936 440

PSoC 5LP (GCC)

Configuration
Flash
Bytes

SRAM
Bytes

Bootloader 1256 12

Full Bootloader Application[1] 4608 613[7]

Full Bootloadable Application[2] 5888 301[7]

Launcher project[4] 2304 333[7]

Bootload-only Bootloader[5] 1910 14

Launcher + Combination + Metadata[6] 8192 613[7]

Callback Functions

Callback functions allow users to execute code from API files that are automatically generated by
PSoC Creator. Refer to the PSoC Creator Component Author Guide for the more details.

In order to add code to the callback function present in the component’s generated sources,
perform the following:

▪ Define a macro to signal the presence of a callback (in cyapicallbacks.h). This will make
"uncomment" the function call from the component’s source code.

▪ Write the function declaration (in cyapicallbacks.h). This will make this function visible by
all the project files.

7 The SRAM usage is shown without space reserved for heap and stack.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 35 of 65

▪ Write the function implementation (in any user file).

Callback Function Associated Macro Description

void
Bootloader_CopierCallback(void)

LAUNCHER_COPIER_CALLBACK This function lets the user to define the device's
behavior the when the copy operation failed and
the device is going to be halted. That callback
function could somehow indicate the reasons of
the device being halted. See Copier for details.

void Bootloader_Callback
(&Bootloader_inPacket,
&Bootloader_outPacket)

- This function lets the user to define his/her own
command for communication with the Host. The
existing commands are described here: Bootloader
Commands

Bootloader_CopierCallback

This feature is intended for the situation when the Copier is available and in case a copy
operation fails after some numbers of attempts, then Bootloader_CopierCallback() is called. If it
is not defined, then the device is halted.

The following define should be present in cyapicallbacks.h:

#define LAUNCHER_COPIER_CALLBACK (1u)

#if (0u != LAUNCHER_COPIER_CALLBACK)

 void Bootloader_CopierCallback(void);

#endif /*(0u != LAUNCHER_COPIER_CALLBACK)*/

The following is an example of Bootloader_CopierCallback():

#if (0u != LAUNCHER_COPIER_CALLBACK)

 void Bootloader_CopierCallback(void)

 {

 /* Halt the device */

 CyHalt(0x00);

 }

#endif /*(0u != LAUNCHER_COPIER_CALLBACK)*/

Bootloader_Callback

This feature is intended for creation of the user’s own command for communication between
Host and Bootloader. The callback feature is available only if a callback functionality is initialized
by Bootloader_InitCallback() function.

The callback prototype is the following:

 void User_Callback_Function(Bootloader_in_packet_type* inputPacket,

 Bootloader_out_packet_type* outputPacket)

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 36 of 65 Document Number: 002-09794 Rev. *B

Parameters:

inputPacket A pointer on the following input structure:

struct

{

 uint8 command;

 uint16 packetLength;

 uint8* pInputBuffer;

} Bootloader_in_packet_type;

where

▪ command – a code of a new command that is going to be processed by callback.
See the existing commands in Bootloader Commands section. If your command
code matches with the existing enabled command, then the
existing command will be performed.

▪ packetLength – an input data length in bytes.

▪ pInputBuffer – a pointer on the Bootloader’s component internal buffer (the

maximum data length is (Bootloader_SIZEOF_COMMAND_BUFFER-

Bootloader_MIN_PKT_SIZE).

Note By default this is a pointer on the same buffer that pOutputBuffer points on, so
once something is written by pOutputBuffer, the input data by pInputBuffer pointer is
lost.

outputPacket A pointer on the following structure, actually the return:

struct

{

 cystatus status;

 uint16 packetLength;

 uint8* pOutputBuffer;

} Bootloader_out_packet_type;

where:

▪ status – the returned status, the existing error codes are described in Status/Error
codes section.

▪ packetLength - a returned data length in bytes.

▪ pOutputBuffer – a pointer on the Bootloader’s component internal buffer (the

maximum data length is Bootloader_SIZEOF_COMMAND_BUFFER-

Bootloader_MIN_PKT_SIZE).

Note By default this is a pointer on the same buffer that pInputBuffer points on, so
once something is written by pOutputBuffer, the input data by pInputBuffer pointer is
lost.

The packet structure is described in the Bootloader Packet Structure section.

The maximum input/output packet length (for instance, Start-of-packet + Command + Data
Length + Data + Checksum + End-of-packet) is currently limited to

Bootloader_SIZEOF_COMMAND_BUFFER. The minimum length is Bootloader_MIN_PKT_SIZE bytes.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 37 of 65

Note There is a “post processing” after a callback performed in Bootloader component. If the

output data length (outputPacket->packetLength) exceeds

(Bootloader_SIZEOF_COMMAND_BUFFER-Bootloader_MIN_PKT_SIZE) bytes and outputPacket->

pOutputBuffer points by default on internal buffer or outputPacket-> pOutputBuffer points to

NULL and outputPacket->packetLength is non-zero, then the following error is returned

Bootloader_ERR_CALLBACK.

The following is an example:

#define CALLBACK_COMMAND (0x60u)

#define CALLBACK_COMMAND_LENGTH (Bootloader_MIN_PKT_SIZE)

#define SOME_RETURN_DATA (0xAAu)

#define OUTPUT_DATA_LENGTH (Bootloader_MIN_PKT_SIZE + 1u)

void Bootloader_Callback(Bootloader_in_packet_type* inPacket,

Bootloader_out_packet_type* outPacket)

{

 outPacket->pOutputBuffer = NULL;

 outPacket->packetLength = Bootloader_MIN_PKT_SIZE;

 if (CALLBACK_COMMAND == inPacket->command)

 {

 if (CALLBACK_COMMAND_LENGTH == inPacket->packetLength)

 {

 outPacket->status = CYRET_SUCCESS;

 outPacket->packetLength = OUTPUT_DATA_LENGTH;

 outPacket->pOutputBuffer[0] = SOME_RETURN_DATA;

 }

 else

 {

 /* The command's length is not correct */

 outPacket->status = Bootloader_ERR_LENGTH;

 }

 }

 else

 {

 /* The command is not recognized */

 outPacket->status = Bootloader_ERR_CMD;

 }

}

int main()

{

 Bootloader_Initialize();

 Bootloader_InitCallback(Bootloader_Callback);

 ...

}

Note This feature is not available for PSoC3 device family.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 38 of 65 Document Number: 002-09794 Rev. *B

Code Examples

PSoC Creator provides numerous example projects that include schematics and example code
in the Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the dialog
to narrow the list of projects available to select.

Refer to the "Find Example Project" topic in the PSoC Creator Help for more information.

There are more code examples online, check the Code Examples webpage here.

Cypress provides a number of application notes describing how PSoC can be integrated into
your design. You can access the Application Notes search webpage here.

Check also the "References" section in this Datasheet.

Switching logic table
Case# app#1 app#2 Classic Bootloader Launcher

Active Valid Active Valid

1 0 0 0 0 Stay in Bootloader Stay in Launcher

2 0 0 0 1 Stay in Bootloader Pass control to Combination app#2

3 0 0 1 0 Stay in Bootloader Stay in Launcher

4 0 0 1 1 Pass control to
Bootloadable app#2

Pass control to Combination app#2

5 0 1 0 0 Stay in Bootloader Pass control to Combination app#1

6 0 1 0 1 Stay in Bootloader Pass control to Combination app#1

7 0 1 1 0 Pass control to
Bootloadable app#1, except
if auto-application switching
is disabled, then stay in
Bootloader.

Pass control to Combination app#1

8 0 1 1 1 Pass control to
Bootloadable app#2

Pass control to Combination app#2

9 1 0 0 0 Stay in Bootloader Stay in Launcher

10 1 0 0 1 Pass control to
Bootloadable app#2, except
if auto-application switching
is disabled, then stay in
Bootloader.

Pass control to Combination app#2

11 1 0 1 0 Stay in Bootloader Stay in Launcher

http://www.cypress.com/documentation/code-examples
http://www.cypress.com/documentation/application-notes

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 39 of 65

Case# app#1 app#2 Classic Bootloader Launcher

Active Valid Active Valid

12 1 0 1 1 Pass control to
Bootloadable app#2

Pass control to Combination app#2[8]

13 1 1 0 0 Pass control to
Bootloadable app#1

Pass control to Combination app#1

14 1 1 0 1 Pass control to
Bootloadable app#1

Pass control to Combination app#1

15 1 1 1 0 Pass control to
Bootloadable app#1

Pass control to Combination app#1[8]

16 1 1 1 1 Pass control to
Bootloadable app#1

Pass control to Combination app#1[8]

8 The invalidation of the non-active application in the metadata section is performed for this case, because there
could be a situation due to some error, when both applications are set active (cases #12,15,16). Only one
application can be active at the moment.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 40 of 65 Document Number: 002-09794 Rev. *B

Functional Description

Bootloader Project Types

Beginning with PSoC Creator 3.2, a project’s type is detected automatically. This is primarily
related to version 1.40 of the Bootloader and Bootloadable components and supported by all
future versions. The following diagram shows project type dependency on components on a
schematic.

Dual-application Bootloader Project Type

No Bootloader or Bootloadable component on schematic

Standard Project Type

#define CYDEV_PROJ_TYPE_STANDARD 0

#define CYDEV_PROJ_TYPE CYDEV_PROJ_TYPE_STANDARD

#define CYDEV_PROJ_TYPE_MULTIAPPBOOTLOADER 3

#define CYDEV_PROJ_TYPE CYDEV_PROJ_TYPE_MULTIAPPBOOTLOADER

Bootloader Project Type

#define CYDEV_PROJ_TYPE_BOOTLOADER 1

#define CYDEV_PROJ_TYPE CYDEV_PROJ_TYPE_BOOTLOADER

Bootloadable Project Type

#define CYDEV_PROJ_TYPE_LOADABLE 2

#define CYDEV_PROJ_TYPE CYDEV_PROJ_TYPE_LOADABLE

Bootloader

Dual-app Bootloader

Comm. Comp

Bootloader

Dual-app Bootloader

Comm. Comp

Bootloadable

Combination Project Type

#define CYDEV_PROJ_TYPE_LOADABLEANDBOOTLOADER 4

#define CYDEV_PROJ_TYPE CYDEV_PROJ_TYPE_LOADABLEANDBOOTLOADER

Comm. Comp

Bootloadable

Launcher Project Type

#define CYDEV_PROJ_TYPE_LAUNCHER 5

#define CYDEV_PROJ_TYPE CYDEV_PROJ_TYPE_LAUNCHER

Bootloader
Launch-only

Bootloader

Bootload-only

Bootloader

Bootloader
Launch-only

Bootloader

Bootload-only

Bootloader

Note Launcher and Combination project types are supported for PSoC 4 and PSoC 5LP device
families and are not supported for PSoC 3 device family.

Not Present Present

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 41 of 65

Bootloader and dual-application bootloader project types include features provided in the
Bootloader v1.30 component. This functionality is called "Classic Bootloader" to separate it from
the new launcher/combination architecture introduced in the Bootloader v1.40 component.

Launcher/Combined Application Project Functions

The Launcher performs switching to the active and valid combined application.

Note No bootloading functionality is available for the Launcher. Using the Launcher makes
sense only when the application has a Combination project type.

The Combined application is intended as the usual application that in addition is able to perform
bootloading for another application. The simplified control flow of launcher and combination
application interaction is below. For more details see Appendix A at the end of this document.

Power Up/Startup

Start Of
Application
Requested?

Run Application

Bootloadable_Load()

Reset

N

Run Launcher

Bootloader_Start()
Valid

Application?
Y

N

Y

Check
if another

Application is
valid?

N

Y

Halt

Set another application
active

Load another image

There is a need
 to switch to another

application

Y

N

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 42 of 65 Document Number: 002-09794 Rev. *B

Classic Bootloader and Bootloadable Project Functions

The bootloader project performs overall transfer of a bootloadable project, or new code, to the
flash via the bootloader project’s communication component. After the transfer, the processor is
always reset. At reset time, the bootloader project is also responsible for testing certain
conditions and auto-initiating a transfer if the bootloadable project is nonexistent or corrupt.

At startup, the bootloader code loads configuration bytes for its own configuration. It must also
initialize the stack and other resources as well as peripherals to do the transfer. When the
transfer is complete, control is passed to the bootloadable project with a software reset.

The bootloadable project then loads configuration bytes for its own configuration and reinitializes
the stack, as well as other resources and peripherals for its functions. The bootloadable project
may call the Bootloadable_Load() function in the bootloadable project to switch to the bootloader
application (this results in another software reset).

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 43 of 65

The following diagram shows how the Classic Bootloader for the single application works. The
difference between single and dual-applications is in the valid application determination logic that
is described in this flow.

Power Up/Startup

Start
Application
Requested?

Came from
Application?

Wait for
Command
 Enabled?

Set Wait Time
(Forever)

Set Wait Time

Perform Bootload

Wait for Command

Run Application

Bootloadable_Load()

Request Start
Bootloader

Set Wait Time
(Forever)

Data
Received?

Exit
Bootloader
Command?

Reset

Time Expired?

Request Start
Application

N

N

Run Bootloader

Bootloader_Start()

Valid
Application?

Process
Command

N Y N

Y YN

N

Y Y

Valid
Application?

YY

N

N

Y

When you have finished your development/test cycles and wish to create final images for your
bootloader and associated bootloadable applications, make sure to recompile all of the relevant
projects using the Release configuration of your IDE.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 44 of 65 Document Number: 002-09794 Rev. *B

Bootloader Auto-Switching

The auto-switching feature is available only for the classic dual-application Bootloader and it is
the option that disables automatic switching to another valid, but not active, application. In this
case the control stays in the Bootloader until it obtains a valid application in which to switch.

Start

validApp=BAD_DATA;

act iveApp=NONE;

APP#0

is act ive

APP#0

is valid

validApp=SUCCESS;

act iveApp=APP#0;

APP#1

is valid

validApp=SUCCESS;

activeApp=APP#1;

YES

NO

YES

NO

YES

NO

act iveApp==NONE

APP#1

is valid

validApp=SUCCESS;

act iveApp=APP#1;

APP#0

is valid

validApp=SUCCESS;

act iveApp=APP#0;

YES

NO

YES

NO

YES

NO

Init ialize flash subsystem

for non-PSoC 4 devices

Bootloader application

validation

(Bootloader was
scheduled) or (none of the

applications is valid)

Bootloader_Hostlink(WAIT_F

OR_COMMAND_FOREVER)

Bootloader_Hostlink(timeout)

Wait for command timeout
is set(not wait forever)

Bootloader_LaunchApplicat io

n()

YES

NO

YES

NO

It could halt the

processor if

validation fails.

Cmd Exit

(software Reset)

Software reset

Application was
scheduled

Auto-switching is disabled

Auto-switching is disabled

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 45 of 65

Golden Image

The Golden image feature is also for the classic dual-application bootloader only (refusing to
write to the certain image in order to retain the working image) is a single check if a given row
number is within the following range: startRowNumber ≤ rowNumber ≤ endRowNumber), where
startRowNumber is the Golden image’s first row, endRowNumber is the Golden image’s last row.

Note No bootloading functionality is available for the Launcher. Using the Launcher makes
sense only with the application that has the combination project type.

The combined application is intended as a usual application that in addition is able to perform
bootloading for another application.

The simplified control flow of launcher and combination applications interaction is below. For
more detail see Appendix A.

Bootloader Application

You typically complete a bootloader design project by dragging a Bootloader component and
communication component onto the schematic, routing the I/O to pins, setting up clocks, and so
on. A project with a Bootloader and a communication component implements the basic
bootloader application function of receiving new code and writing it to flash. You add custom
functions to a basic bootloader project by dragging other components onto the schematic or by
adding source code.

Bootloadable Application

The bootloadable application is actually the code. It is very similar to a normal application type.
In this instance, the differences between a bootloadable application and a normal application
include:

▪ a bootloadable is always associated with a bootloader

▪ a normal application is never associated with a bootloader.

Memory Usage

Bootloader

Normal and bootloader applications reside in flash starting at address zero.

Bootloadable

A bootloadable application occupies flash starting from the next empty flash row to the
bootloader application.

In case of a dual-application bootloader, the first bootloadable application resides above the
bootloader application. The second bootloadable application occupies flash starting at the row
that is halfway between the start of the first bootloadable application and the end of flash.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 46 of 65 Document Number: 002-09794 Rev. *B

If the Manual application image placement option in the Bootloadable component Configure
dialog is enabled, the bootloadable application is placed at an address specified by the
Placement address option.

Note In case of a dual-application bootloader, the Manual application image placement and
Placement Address options must be identical for both bootloadable applications.

Note In case of a dual-application bootloader, the Manual application image placement and
Placement Address options are applicable only to the first bootloadable application. The
second bootloadable application occupies flash starting at the row that is halfway between the
start of the first bootloadable application and the end of flash.

The following diagram shows (from left to right) the memory usage of a normal application,
bootloader and bootloadable applications, the dual-application bootloader with two bootloadable
applications, and a combination application:

Normal

application

Bootloadable

application

Single-app

Bootloader

Bootloadable

application #2

Bootloadable

application #1

Dual-app

Bootloader

Combination

application #2

Combination

application #1

Launcher

Combination
application #2

Combination

application #1

Dual-app

Bootloader

User

Application

Stack

Application

Launcher + Copier

metadata metadata #1

metadata #2

metadata #1

metadata #2

metadata #1

metadata #2

metadata #1

metadata #2

Normal

application

Classic Single-app

Bootloader

Classic Dual-app

Bootloader

Launcher – Combination

general use case

Upgradable Stack

use case

Classic Dual-app – 2

Combination projects

0x00000000

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 47 of 65

The following diagram shows the device's flash memory layout.

Byte 0 Byte 1 Byte L• • • • • • •

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

•

•

•

•

•

Row N

Array 0

Byte 0 Byte 1 Byte L• • • • • • •

Row 1

Row 2

Row 3

•

•

•

•

•

•

•

•

•

•

•

•

Array 1

• • • • • • •

Byte 0 Byte 1 Byte L• • • • • • •

Row 1

Row 2

Row 3

•

•

•

•

•

•

•

•

•

•

•

•

Array M

= number of bytes in a flash row. Depends on part. Refer to the device datasheet for the details.

= 32, 64, 128, or 256 depending on part

= 1, 2, 3, or 4 depending on part

= Bootloader Portion

= Bootloadable Portion

= Reserved for Metadata

L

N

M

The bootloader project always occupies the bottom X flash rows. X is set so that there is enough
flash for the following:

▪ The vector table for this project, starting at address 0 (except PSoC 3)

▪ The bootloader project configuration bytes

▪ The bootloader project code and data

▪ The checksum for the bootloader portion of flash

The bootloader project configuration bytes are always stored in main flash, never in ECC flash.
The relevant option is removed from the bootloader project design-wide resource file.

The bootloader application portion of flash should be protected in the Flash Protection tab of
the design-wide resource file to make it only be overwritten by downloading via JTAG / SWD.

The bootloadable project occupies flash starting at the first flash row size boundary after the
bootloader, and includes:

▪ The vector table for the project (except PSoC 3)

▪ The bootloadable project code and data

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 48 of 65 Document Number: 002-09794 Rev. *B

▪ 64 bytes of data reserved at the last row (or 64 bytes of data at each of 2 last flash rows
for Dual-app and Launcher use cases) of the last flash array to store metadata used by
both the bootloader and bootloadable

The bootloadable project’s configuration bytes may be stored in the same manner as in a
standard project, that is, in either main flash or ECC flash, per settings in the Design-Wide
Resources <project.cydwr> file.

Device-specific Details

PSoC 3

In PSoC 3, the only "exception vector" is the 3-byte instruction at address 0, which is executed at
processor reset. (The interrupt vectors are not in flash – they are supplied by the Interrupt
Controller [IC]). So at reset the PSoC 3 bootloader code simply starts executing from flash
address 0.

PSoC 5LP and PSoC 4

In the PSoC 5LP / PSoC 4 devices, a table of exception vectors must exist at address 0. (The
table is pointed to by the Vector Table Offset Register, at address 0xE000ED08, whose value is
set to 0 at reset.) The bootloader code starts immediately after this table.

The table contains the initial stack pointer (SP) value for the bootloader project and the address
of the start of the bootloader project code. It also contains vectors for the exceptions and
interrupts to be used by the bootloader.

The bootloadable project also has its own vector table which contains that project’s starting SP
value and first instruction address. When the transfer is complete, as part of passing control to
the bootloadable project, the value in the Vector Table Offset Register is changed to the address
of the bootloadable project’s table.

Metadata Memory Map

The metadata section is a 64-byte block of flash that is used as a common area for both
bootloader and bootloadable applications. In the bootloader application, the metadata is placed
at row N-1; in case of a dual-application bootloader, the bootloadable application number 1 uses
row N-1, and application number 2 uses row N-2 to store its metadata, where N is the total
number of rows for the selected device.

Address PSoC 3 PSoC 4 / PSoC 5LP

0x00 Bootloadable Application Checksum

0x01 Reserved Bootloadable Application Start Routine Address

0x02

0x03 Bootloadable Application Start Routine Address

0x04

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 49 of 65

0x05 Reserved Last Bootloader Row

0x06

0x07 Last Bootloader Row Reserved

0x08

0x09 Reserved Bootloadable Application Length

0x0A

0x0B Bootloadable Application Length

0x0C

0x0D Reserved

0x0E

0x0F

0x10 Active Bootloadable Application

0x11 Bootloadable Application Verification Status

0x12 Bootloader Application Version

0x13

0x14 Bootloadable Application ID

0x15

0x16 Bootloadable Application Version

0x17

0x18 Bootloadable Application Custom ID

0x19

0x1A

0x1B

0x1C Reserved Copy Flag

0x1D Reserved Set by Creator to indicate that Copier is available.

0x1E Reserved

0x1F

0x20 Reserved Checksum exclude section size.

0x21

0x22

0x23

0x24-0x3F Reserved

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 50 of 65 Document Number: 002-09794 Rev. *B

Name Description

Bootloadable
Application Checksum

This is the basic summation checksum that is computed by adding up all the bytes of
the bootloadable application image (excluding the metadata section).

Bootloadable
Application Start
Routine Address

The startup routine address of the bootloadable application. This is STARTUP1 for
PSoC 3 and Reset() for PSoC 4 / PSoC 5LP. The linker is free to put these anywhere it
wants after the minimum starting address of the application.

Bootloader Last Flash
Row

The number of the first flash row occupied by the application, minus 1.

Note For the second application (in dual-application bootloader and launcher cases),
this field contains the first flash row occupied by the second application, minus 1.

Bootloadable
Application Length

The size of the bootloadable application in bytes.

Active Bootloadable
Application

This field contains information about the active bootloadable application if the Dual-
application bootloader option is enabled.

Bootloadable
Application Verification
Status

This field contains the status of the bootloadable application validation when the Fast
bootloadable application validation option is enabled. The bootloader computes the
checksum only for the first time and assumes that it remains valid in each future startup.

Bootloader Application
Version

This field contains the application version of the bootloader application. Specified in the
bootloader component customizer.

Bootloadable
Application ID [9]

This field contains the application ID of the bootloadable application. Specified in the
bootloadable component customizer.

Bootloadable
Application Version [10]

This field contains the application version of the bootloadable application. Specified in
the bootloadable component customizer.

Bootloadable
Application Custom ID

This field contains the application custom ID of the bootloadable application. Specified
in the bootloadable component customizer.

Copy flag This field indicates a need to perform the “copy” operation. See Copier section.

Checksum exclude
section size

The number of bytes that occupy the user data section that will not be part of the
application checksum protection.

Note All fields are stored in the endianness of the processor: big-endian for PSoC 3 and little-
endian for PSoC 4/PSoC 5LP.

9 When the bootloader application is the only application in the device (no bootloadable applications are stored),
this field reports the number of images the bootloader application expects; 1 for bootloader projects, and 2 for
dual-application bootloader projects.

10 For PSoC 3/PSoC 5LP, when the bootloader application is the only application in the device, this field reports
whether ECC memory data should be included in the bootloadable application checksum.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 51 of 65

PSoC Creator Project Output Files

When either project type – bootloader or bootloadable - is built, an output file is created for that
project.

In addition, an output file for both projects, a "combination" file is created when the bootloadable
project is built. This file includes both the bootloader and bootloadable projects. This file is
typically used to facilitate downloading both projects (via JTAG / SWD) to device flash in a
production environment.

Configuration bytes for bootloadable projects may be stored in either main flash or ECC flash.
The format of the bootloadable project output file is such that when the device has ECC bytes
which are disabled, transfer operations are executed in a shorter time. This is done by
interleaving records in the bootloadable main flash address space with records in the ECC flash
address space. The bootloader takes advantage of this interleaved structure by programming the
associated flash row once – the row contains bytes for both main flash and ECC flash.

Each project has its own checksum. The checksums are included in the output files during
project build time.

Bootloader Packet Structure

Communication packets sent from the Host to the Bootloader have the following structure:

Start of Packet

(0x01)

Command Data Length (N) N bytes of data Checksum End of Packet

(0x17)

1 Byte 1 Byte 2 Bytes N Bytes 2 Bytes 1 Byte

Response packets read from the Bootloader have the following structure:

Start of Packet

(0x01)

Status Code Data Length (N) N bytes of data Checksum End of Packet

(0x17)

1 Byte 1 Byte 2 Bytes N Bytes 2 Bytes 1 Byte

Status/Error Codes

The possible status/error codes output from the bootloader are:

Status/Error Code Value Description

CYRET_SUCCESS 0x00 The command was successfully received and executed.

BOOTLOADER_ERR_LENGTH 0x03 The amount of data available is outside the expected range.

BOOTLOADER_ERR_DATA 0x04 The data is not of the proper form.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 52 of 65 Document Number: 002-09794 Rev. *B

Status/Error Code Value Description

BOOTLOADER_ERR_CMD 0x05 The command is not recognized.

BOOTLOADER_ERR_CHECKSUM 0x08 The packet checksum does not match the expected value.

BOOTLOADER_ERR_ARRAY 0x09 The flash array ID is not valid

BOOTLOADER_ERR_ROW 0x0A The flash row number is not valid.

BOOTLOADER_ERR_APP 0x0C The application is not valid and cannot be set as active.

BOOTLOADER_ERR_ACTIVE 0x0D The application is currently marked as active or Golden image.

BOOTLOADER_ERR_CALLBACK 0x0E The callback function returns invalid data.

BOOTLOADER_ERR_UNK 0x0F An unknown error occurred.

Bootloader Commands

The bootloader supports the following commands. All received bytes that do not start with a
command from the set of command bytes are discarded with no response generated. All multi-
byte fields are output LSB first.

Note The maximum input/output packet length (for instance, Start-of-packet + Command + Data
Length + Data + Checksum + End-of-packet) is currently limited to

Bootloader_SIZEOF_COMMAND_BUFFER bytes. The minimum length is Bootloader_MIN_PKT_SIZE
bytes.

Note The time required for the bootloader to execute any command is based on the
configuration of the device. Some of the factors that affect the timing include:

▪ The clock speed at which the part is running

▪ The toolchain used to build the project

▪ The optimization settings used during the build

▪ The number of interrupts running in the background

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 53 of 65

Bootloader Command Name (Command Code)

Data Byte
(bytes number)

Response
Packet Status

Code
Response Packet

Data (bytes number) Description

Enter Bootloader (0x38)

Security Key (6)
(optional)

Success

Error Command

Error Data

Error Length

Error Checksum

Device JTAG ID (4)

Device revision (1)

Bootloader version (3)

The bootloader responds to this command
with the device information and version of the
Bootloader component.

Version means the version of the Bootloader
component.

Get Flash Size (0x32) (optional)

Flash Array ID (1) Success

Error Command

Error Data

Error Length

Error Checksum

First available row (2)

Last available row (2)

The bootloader responds to this command
with the first full row after the bootloader
application (the first row of the bootloadable
application) and the last flash row in the
selected flash array.

Note In versions prior to v1.40, there was an
inconsistency in the returned value for
different device families. For PSoC 3 device
family Bootloader, the component actually
returned that first full row. While for PSoC 4
and PSoC 5LP device families, it returned
the last row of the Bootloader application.
That is fixed in the Bootloader v1.40
component version, and the first full row after
the Bootloader application is returned.

Program Row (0x39)

Flash Array ID (1)

Flash Row Number (2)

Data to write (n)

Success

Error Command

Error Data

Error Length

Error Checksum

Error Flash Row

Error Active

N/A Writes one row of flash data to the device.

The data to be written to the flash can be
sent in multiple packets using the Send Data
command.

This command may be sent along with the
last block of data to program the row.

Erase Row (0x34) (optional)

Flash Array ID (1)

Flash Row Number (2)

Success

Error Command

Error Data

Error Length

Error Checksum

Error Flash Row

Error Active

N/A Erases the contents of the provided flash
row.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 54 of 65 Document Number: 002-09794 Rev. *B

Bootloader Command Name (Command Code)

Data Byte
(bytes number)

Response
Packet Status

Code
Response Packet

Data (bytes number) Description

Get Row Checksum (0x3A) (optional)

Flash Array ID (1)

Flash Row Number (2)

Success

Error Command

Error Data

Error Length

Error Checksum

Row checksum (1) Gets a 1 byte checksum for the contents of
the provided row of flash.

Verify Application Checksum (0x31) (optional)

N/A Success

Error Command

Error Data

Error Length

Error Checksum

Checksum valid (1) A non-zero return value indicates that the
application code flash checksum matches
the expected value stored in the flash and
therefore the application is valid.

A return value of 0 indicates that the
checksums do not match and therefore the
application is not valid.

Send Data (0x37) (optional)

Data for Device (n) Success

Error Command

Error Data

Error Length

Error Checksum

N/A Sends a block of data to the device.

This data is buffered up in anticipation of
another command that will inform the
bootloader what to do with the data. If
multiple Send Data commands are issued
back-to-back, the data is appended to the
previous block.

This command is used to breakup large
transfers into smaller pieces to prevent bus
starvation in some protocols.

Sync bootloader (0x35) (optional)

N/A N/A N/A Resets the bootloader to a clean state, ready
to accept a new command.

Any data that was buffered is thrown out.
This command is only needed if the host and
client get out of sync with each other.

Exit Bootloader (0x3B)

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 55 of 65

Bootloader Command Name (Command Code)

Data Byte
(bytes number)

Response
Packet Status

Code
Response Packet

Data (bytes number) Description

N/A N/A N/A Exits from the bootloader by triggering a
software reset of the device.

Before the software reset is executed, the
bootloadable application is verified. If the
application passes verification, the
application is executed after software reset. If
the application fails verification, then
execution begins again with the bootloader
after the software reset.

Get Metadata (0x03C) (optional)

Application # (1) Success

Error Application

Error Command

Error Length

Error Data

Error Checksum

Metadata (56) Reports the first 56 bytes of the metadata for
a selected application. For more information
on metadata see the Metadata section.

Get Application Status (Dual-application bootloader Only) (0x33) (optional)

Application # (1) Success

Error Length

Error Checksum

Error Data

App # Valid (1)

App # Active (1)

Returns the status of the specified
application.

Set Active Application (Dual-application bootloader Only) (0x36)

Application # (1) Success

Error Application

Error Command

Error Length

Error Data

Error Checksum

N/A The specified bootloadable application is set
as active. This command is used to switch
between two bootloadable applications.

Verify Row (0x45) (optional)

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 56 of 65 Document Number: 002-09794 Rev. *B

Bootloader Command Name (Command Code)

Data Byte
(bytes number)

Response
Packet Status

Code
Response Packet

Data (bytes number) Description

Flash array ID (1)

Flash row number(2)

Data to compare with
the flash row (n)

Success

Error Verify

Error Command

Error Data

Error Length

Error Data

Error Checksum

Error Flash Row

N/A Compares data to one row of the device
internal flash.

The data to be written to the flash can be
sent in multiple packets using the Send Data
command.

Custom Communication Interface

The Bootloader component calls communication interface functions to send and receive
bootloader packets with a data to process. Some communication components, like SCB (UART,
I2C, SPI), USB, and BLE provide a communication interface to a bootloader component. Refer to
the corresponding datasheet for additional information.

To select a communication interface, see the Bootloader Component Parameters section.

The Bootloader component internally uses the functions described in the Communication
Interface functions section to receive and transmit bootloader packets through any
communication interface.

Note These functions are not implemented in the bootloader code; the bootloader only requires
them to be provided and meet the described requirements.

These functions are defined in a communication component code when using it for bootloading
purpose, but when Custom Interface for communication is chosen, it is up to the user to provide
their implementation.

Since the Bootloader does not define APIs for the communication interface functions, they must
be defined in a header file that is included by a bootloader component C source file (file name is
the same as the bootloader component name, for example Bootloader.c for a component with
the name Bootloader.)

This can be done in the cyapicallbacks.h header file, which is to be provided by user’s code.

These functions may be used not only to read from and write to a bootloader host, but also to
handle the bootloader packets. For example, a user may filter out some packets that are not
supposed to be received by the bootloader component code, or convert packets from the user’s
format to the format used by the bootloader component code. See section Bootloader Packet
Structure.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 57 of 65

Bootloader Application and Code Data File Format

The bootloader application and code data (.cyacd) file format stores the bootloadable portion of a
design. The file is a header followed by lines of flash data. Excluding the header, each line in the
.cyacd file represents an entire row of flash data. The data is stored as ASCII data in big-endian
format.

The header record format is as follows:

[4-byte SiliconID][1-byte SiliconRev][1-byte Checksum Type]

The data records have this format:

[1-byte ArrayID][2-byte RowNumber][2-byte DataLength][N-byte Data][1-byte Checksum]

The checksum type in the header indicates the type of checksum used for packets sent between
the bootloader host and the bootloader itself. The checksum in the data records is a basic
summation computed by summing all bytes (excluding the checksum itself) and then taking the
2's complement.

Bootloader Host Tool

PSoC Creator ships with a bootloader host tool (bootloader_host.exe) that you can use to test
the bootloader running on a PSoC chip. The bootloader host tool is the application that
communicates directly with the bootloader to send new bootloadable images. The bootloader
host tool provided is only a development and testing tool.

Source Code

In addition to the host executable itself, much of the source code used is also provided. Use this
source code to create your own bootloader host applications. The source code is located in this
directory:

<Install Dir>\cybootloaderutils\

By default, this directory is:

C:\Program Files\Cypress\PSoC Creator\<Release Version>\PSoC Creator\cybootloaderutils\

This source code is broken up into four different modules. These modules provide
implementations for the various pieces of functionality required for a bootloader host. Depending
on the desired level of control, some or all of these modules can be used in developing a custom
bootloader host application.

cybtldr_command.c/h

This module handles construction of packets to send to the bootloader, and the parsing of
packets received from the bootloader. It has a single function for constructing each type of
packet that the bootloader understands, and a single function for parsing the results for each
packet the bootloader can send back.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 58 of 65 Document Number: 002-09794 Rev. *B

cybtldr_parse.c/h

This module handles the parsing of the *.cyacd file that contains the bootloadable image to send
to the device. It has functions for setting up access to the file, reading the header, reading the
row data, and closing the file.

cybtldr_api.c/h

This is a row level API that allows sending a single row of data at a time to the bootloader using
a supplied communication mechanism. It has functions for setting up the bootload operation,
programming a row, erasing a row, verifying a row, and ending the bootload operation.

cybtldr_api2.c/h

This is a higher level API that handles the entire bootload process. It has functions for
programming the device, erasing the device, verifying the device, and aborting the current
operation.

Resources

The Bootloader and Bootloadable projects use these device resources:

▪ The Bootloader component uses both general purpose bits of the reset status
(RESET_SR0) register. These bits are necessary to communicate bootloader intents
across the software reset boundaries.

▪ The resources used by the communication component are in the corresponding
component datasheet.

Component Errata

This section lists known problems with the Bootloader/Bootloadable component.

Cypress
ID

Component
Version

Problem Workaround

233909 1.40, 1.50 Launcher launches invalid application on
PSoC 5LP in Launcher+Combination
project type.

Initialize flash subsystem in main for non
PSoC 4 devices before calling
Bootloader_Start. Example:

if (CYRET_SUCCESS !=

CySetTemp())

{

 CyHalt(0x00u);

}

Bootloader_Start();

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 59 of 65

Cypress
ID

Component
Version

Problem Workaround

241749 1.40, 1.50 Turning power OFF and ON quickly for
several minutes while bootloading may
corrupt some data in the flash. This may
cause the bootload operation to fail and
have to be restarted.

Connect stable power to the device Vdd
and Vss pins. For details, refer to the
device datasheet as well as AN61290 or
AN88619, PSoC Hardware Design
Considerations.

Component Changes

This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

1.50.b Minor datasheet edits.

1.50.a Edited datasheet. Added the Communication Interface functions and
Custom Communication Interface sections.

Added component errata for Cypress ID 241749.

1.50 Improved IAR compiler support for Bootloader
component in Launcher/Copier mode.

Added new device support.

To increase functionality.

Fixed a defect with the "Fast bootloable
application validation" option, which did not work
for PSoC 3 and PSoC 5LP devices.

This defect applied to v1.30 and v1.40, and it is
fixed in v1.50.

1.40.c Updated datasheet Added errata section to document defects 233909
and 241749.

1.40.b Updated datasheet. Added errata section to document defect 224638.

Added errata section to document defect 226826.

1.40.a Update datasheet. Fixed a few typos.

1.40 Removed mention of application type. No need to select the application type. PSoC
Creator does it automatically.

Renamed multi-application to dual-application. To provide updated interface information.

Added the Definition section. To provide information about terminology.

Added a description of project types. To provide information about new features.

Added descriptions of Golden image support,
Auto application switching, and Security key.

To provide updated interface information.

Updated the description of the section Bootloader
application validation

To fix a mistake with the checksum location.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 60 of 65 Document Number: 002-09794 Rev. *B

Version Description of Changes Reason for Changes / Impact

Updated the Functional Description section with
launcher project and combined project
functionality.

To update according to the new functionality

Added the following functions:

Bootloader_Initialize()

Bootloader_HostLink()

Bootloader_GetRunningAppStatus()

Bootloader_GetActiveAppStatus()

Bootloadable_SetActiveApplication()

Bootloadable_GetActiveApplication()

To increase functionality.

Updated the Enter Bootloader command (0x38).

Renamed the existing Verify Row command
(0x3A) as Get Row Checksum.

Added new Verify Row command (0x45).

To provide updated interface information.

Added ‘Copier’ option. For BLE OTA Upgradable Stack Example project.

Added Callback function section. New feature.

Added Debugging Bootloader/Bootloadable
Projects section.

To provide information about debugging Dual-app
Bootloader cases.

The command ‘Get Flash Size’ returns:

▪ The first full row after Bootloader application
for Classic Bootloader use case.

▪ The last flash row in the selected flash array.

In versions prior to v1.40, there was an
inconsistency in the returned value (a) for different
device families. For PSoC 3 device family, the
Bootloader component actually returned that first
full row. While for PSoC 4 and PSoC 5LP device
families, it returned the last row of the Bootloader
application. That is fixed in the Bootloader v1.40
component version, and the first full row after
Bootloader application is returned.

The inconsistency was fixed.

The following new use cases are added:

- Launcher and 2 Combinations;

- Upgradable Stack use case;

- Classic Dual-app Bootloader with 2
Combination applications;

New features.

Checksum exclude section feature added. This
allows to store the data that are not a part of a
checksum protection mechanism. So they could
change without breaking an image checksum.

New feature

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 61 of 65

Version Description of Changes Reason for Changes / Impact

1.30 Updated the list of supported communication
components.

To provide updated interface information.

Aligned diagram in the Bootloader and
Bootloadable Project Functions section with the
implementation.

Bootloadable application validation is performed
from the bootloader application before switching
to it through the software reset.

Added System Builder support. To support the new feature in PSoC Creator.

Added following functions to the Bootloader
component:

uint32 Bootloader_GetMetadata(uint8 field, uint8
appId)

cystatus Bootloader_ValidateBootloadable(uint8
appId)

void Bootloader_Exit(uint8 appId)

uint8 Bootloader Calc8BitSum(uint32 baseAddr,
uint32 start, uint32 size)

Increased functionality.

Updated Bootloader_Start() for the Multi-
Application Bootloader.

To implement the following algorithm: If active
bootloadable application is not valid, and the other
bootloadable application (inactive) is valid, the last
one is started.

Fixed an issue when Verify Row command was
always available independently of the customizer
settings.

Implemented additional verification. To make sure that bootloader application is not
overwritten during bootloadable application
transfer.

Updated the Get Flash Size command
implementation.

To address incorrect reply when bootloader
application consumes more than one flash array
(its size is above 64 KB).

The flash initialization for the PSoC 3 and
PSoC 5LP devices updated to be performed only
before flash write.

The startup time (time between reset and main()
entry) significantly decreased.

1.20.a Minor datasheet edits. Added note for PSoC 4000 devices and flash.

1.20 The Wait for command time option was changed
to be in units of 100 ms instead of 10 ms units.

Note While updating to version 1.20 the Wait for
command time option value will be automatically
increased by 10 times.

Added Get Metadata command. Reports first 56 bytes of the metadata for a
selected application.

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 62 of 65 Document Number: 002-09794 Rev. *B

Version Description of Changes Reason for Changes / Impact

All commands (with the exception of Exit
Bootloader, and Sync Bootloader) are ignored
by Bootloader application till the Enter
Bootloader command is received.

Bootloader application waits for valid traffic
(denoted by Enter Bootloader command), but
not for any traffic.

If traffic is received but not a valid bootloader
Enter Bootloader command, then the timeout
expires at the specified time and the bootloadable
application is launched.

Updated the Dependencies tab. Added field to specify Bootloader ELF file.

Updated MISRA Compliance section. The Bootloader/Bootloadable components were
verified for MISRA compliance and have specific
deviations described.

1.10 Added MISRA Compliance section. The Bootloader/Bootloadable components were
not verified for MISRA compliance.

Added PSoC 4 device support. New device support

Minor datasheet edits

1.0.a Datasheet corrections

1.0 Initial component version

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 63 of 65

Appendix A. Classic vs. Launcher Bootloader Comparison
Classic implementation (Dual-application

Bootloader)
Launch-only Bootloader implementation

Start Start

validApp=BAD_DATA;

activeApp=NONE;

APP#0

is act ive

APP#0

is valid

validApp=SUCCESS;

act iveApp=APP#0;

APP#1

is valid

validApp=SUCCESS;

act iveApp=APP#1;

YES

NO

YES

NO

YES

NO

act iveApp==NONE

APP#1

is valid

validApp=SUCCESS;

activeApp=APP#1;

APP#0

is valid

validApp=SUCCESS;

act iveApp=APP#0;

YES

NO

YES

NO

YES

NO

Init ialize flash subsystem

for non-PSoC 4 devices

Bootloader application

validation

(Bootloader was
scheduled) or (none of the

applications is valid)

Bootloader_Hostlink(WAIT_F

OR_COMMAND_FOREVER)

Bootloader_Hostlink(timeout)

Wait for command timeout
is set(not wait forever)

Bootloader_LaunchApplicat io

n()

YES

NO

YES

NO

validApp=BAD_DATA;

activeApp=NONE;

APP#0

is act ive

APP#0

is valid

validApp=SUCCESS;

act iveApp=APP#0;

APP#1

is valid

validApp=SUCCESS;

act iveApp=APP#1;

YES

NO

YES

NO

YES

NO

act iveApp==NONE

APP#1

is valid

validApp=SUCCESS;

act iveApp=APP#1;

APP#0

is valid

validApp=SUCCESS;

act iveApp=APP#0;

YES

NO

YES

NO

YES

NO

Bootloader application

validation

It could halt the

processor if

validation fails

It could halt the

processor if

validation fails.

Cmd Exit

(software Reset)

Software reset

Applicatio n was
scheduled

Bootloader_LaunchApplicat io

n()

Software reset

Bootloader and Bootloadable PSoC® Creator™ Component Datasheet

Page 64 of 65 Document Number: 002-09794 Rev. *B

CyBtldr_CheckLaunch() is a type of jumper that chooses either Bootloader or Application(s) to
load.

Note For classic implementation (up to Bootloader/Bootloadable component v1.30), the
Bootloader component is intended for the Bootloader project type only, while for the Bootloader
component v1.40, the Bootloader can also be present in an application (Combination project
type) only for the purpose of bootloading.

Bootloader_Start() is a central API that provides launching and bootloading functionality for the
classic implementation. Entering Bootloader_Start() API gives no provision for doing any other
tasks. Switching to the application by means of a software reset occurs either automatically (in
case both active and valid applications are determined and no need for bootloading), or if no
valid application is available, then the Bootloader component waits "forever" until the valid
application is downloaded and a command for exit for the bootloader is received.

The following is a comparative diagram for the Classic Bootloader flow and BLE256K use cases
update flow.

Device’s start-up

Classic implementation control flow

Reset(), stack initialization

CyBtldr_CheckLaunch()

LaunchBootloadable()

Bootloader

cy_boot/

Bootloadable

Memory initialization,

register configuration

main()

User task(s)

Bootloadable_Load()

cy_boot/Bootloader

Bootloader

cy_boot/

Bootloader
Bootloader

Bootloadable

SOFTWARE RESET SOFTWARE RESET

BLE256K use cases implementation control flow

Device’s start-up

CyBtldr_CheckLaunch()

Launcher

main()

User task(s)

Bootloader_Start()

or

Bootloader_Exit()

cy_boot/Launcher

Launcher

cy_boot/

Launcher

SOFTWARE RESET SOFTWARE RESET

Reset(), stack initialization,

memory initialization,

register configuration

Reset(), stack initialization

Memory initialization,

register configuration LaunchBootloadable()

cy_boot/

Application

main()

User task(s)

Bootloader_Start()

or

Bootloader_Exit()

or

Bootloadable_Load()

Launcher

Application

 (use case #1)

Reset(), stack initialization,

memory initialization,

register configuration

main()

User task(s)

Bootloader_Start()

or

Bootloader_Exit()

LaunchApplication()
or

cmd Exit Bootloader
LaunchApplication()

cmd Exit

Bootloader

main()

Bootloader_Initialize()

User task(s)

Bootloader_HostLink()

User task(s)

Bootloader_GetRunningApp()

User task(s)

Bootloadable_SetActiveApp()

Bootloadable_Load()

Application (In-App

use case, #2)

For BLE256K use cases, the Bootloader_Start() API is divided separately into launching and
bootloading parts of functionality by compile-time options. Bootloader_Start() in a launcher
project type is intended only for the launching functionality. Calling Bootloader_Start() in a
combination project type results in starting a bootloading process that lasts until the Exit
Bootloader command is received.

For BLE256K In-Application use case, Bootloader_Start() is substituted by the following APIs:

▪ Bootloader_Initialize()

▪ Bootloader_HostLink()

PSoC® Creator™ Component Datasheet Bootloader and Bootloadable

Document Number: 002-09794 Rev. *B Page 65 of 65

▪ Bootloader_GetRunningAppStatus()

▪ Bootloader_GetActiveAppStatus()

▪ Bootloadable_SetActiveApplication()

▪ Bootloadable_GetActiveApplication()

They give a possibility to interleave bootloading with user tasks. Bootloader_Initialize() performs
the initialization for the internal variables that keep active the application number, the number of
the running application, and the status of bootloading initialization. Bootloader_HostLink() is
made public to communicate with the host when there is a need to receive a new image or
respond with status information. The communication protocol can be used for other user’s
purposes. Note that it is a user responsibility to care about performing the bootloading process
(keep communication link, enabling/disabling interrupts during programming to flash).

	Features
	General Description
	Related Material
	Export a Design to a 3rd Party Integrated Development Environment (IDE)
	Definitions
	Bootloader Component
	Bootloadable Component
	Project Types

	Bootloader Component Parameters
	Communication component
	Dual-application bootloader
	Golden image support
	Auto application switching
	Copier
	Wait for command
	Wait for command time
	Bootloader application version
	Packet checksum type
	Fast bootloadable application validation
	Bootloader application validation
	Security key
	Optional Commands

	Bootloadable Component Parameters
	General Tab
	Application version
	Application ID
	Application custom ID
	Manual application image placement
	Placement Address
	Checksum exclude section size

	Dependencies Tab
	Bootloader HEX file
	Bootloader ELF file

	Application Programming Interface
	Functions
	Classic Bootloader use case specific functions
	Launcher-Combination use case specific functions
	Communication Interface functions
	Function Documentation
	void Bootloadable_Load (void)
	Returns:

	uint8 Bootloadable_GetActiveApplication (void)
	Returns:
	Note:

	cystatus Bootloadable_SetActiveApplication (uint8 appId)
	Parameters:
	Returns:
	Note:

	void Bootloader_Initialize (void)
	Returns:

	uint8 Bootloader_GetRunningAppStatus (void)
	Returns:

	uint8 Bootloader_GetActiveAppStatus (void)
	Returns:

	uint8 Bootloader_Calc8BitSum (uint32 baseAddr, uint32 start, uint32 size)
	Parameters:
	Returns:

	void Bootloader_Start (void)
	Returns:

	void Bootloader_Exit (uint8 appId)
	Parameters:
	Returns:

	cystatus Bootloader_ValidateBootloadable (uint8 appId)
	Parameters:
	Returns:

	void Bootloader_SetFlashByte (uint32 address, uint8 runType)
	Parameters:

	uint32 Bootloader_GetMetadata (uint8 field, uint8 appId)
	Parameters:
	Returns:

	void Bootloader_InitCallback(Bootloader_callback_type userCallback)
	Parameter:
	Returns:

	void Bootloader_HostLink(uint8 timeOut)
	Parameter:
	Returns:

	void CyBtldrCommStart(void)
	Parameters:
	Returts:

	void CyBtldrCommStop(void)
	Parameters:
	Returns:

	void CyBtldrCommReset(void)
	Parameters:
	Returns:

	cystatus CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
	Parameters:
	Returns:

	cystatus CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
	Parameters:
	Returns:

	Variables
	Variable Documentation
	uint8 Bootloader_initVar = (0u)
	uint8 Bootloader_runningApp = (2u)
	uint8 Bootloader_isBootloading = (0u)
	uint8 Bootloader_activeApp = Bootloader_MD_BTLDB_ACTIVE_NONE

	Constants
	Bootloader's deprecated code
	Bootloadable's deprecated code
	Error Codes
	Description

	Commands
	Description

	Metadata fields
	Description

	Data Structure Documentation
	Bootloader_ENTER Struct Reference
	Data Fields

	Sample Firmware Source Code
	MISRA Compliance
	Bootloader Component Specific Deviations:
	Bootloadable Component Specific Deviations:

	API Memory Usage
	PSoC 3 (Keil_PK51)
	PSoC 4 (GCC)
	PSoC 5LP (GCC)

	Callback Functions
	Bootloader_CopierCallback
	Bootloader_Callback
	Parameters:

	Code Examples

	Switching logic table
	Functional Description
	Bootloader Project Types
	Launcher/Combined Application Project Functions
	Classic Bootloader and Bootloadable Project Functions
	Bootloader Auto-Switching
	Golden Image

	Bootloader Application
	Bootloadable Application
	Memory Usage
	Bootloader
	Bootloadable
	Device-specific Details
	PSoC 3
	PSoC 5LP and PSoC 4

	Metadata Memory Map

	PSoC Creator Project Output Files
	Bootloader Packet Structure
	Status/Error Codes
	Bootloader Commands
	Custom Communication Interface
	Bootloader Application and Code Data File Format
	Bootloader Host Tool
	Source Code
	cybtldr_command.c/h
	cybtldr_parse.c/h
	cybtldr_api.c/h
	cybtldr_api2.c/h

	Resources
	Component Errata
	Component Changes
	Appendix A. Classic vs. Launcher Bootloader Comparison

