

CE222306 – PSoC 4 I2C Master

www.cypress.com Document No. 002-22306 Rev.*A 1

Objective

This example demonstrates the use of the PSoC® Creator Serial Communication Block (SCB) Component for PSoC 4 in I2C
master mode. Two projects demonstrate the use of high-level and low-level functions to communicate with an I2C slave.

Overview

This code example consists of two projects:

▪ I2C_Master_High_Level – implements the I2C Master device to send commands to the I2C Slave device and read the status
of the command execution: success or error. The RGB LED shows the result of the command execution: success – green;
error – red. The API that is used transfers entire buffers to the slave device, eliminating the need for byte-wise
communication.

▪ I2C_Master_Low_Level – Implements the same functionality as the High_Level project but uses lower-level firmware which
performs writes and reads on a byte-by-byte basis. The firmware also keeps track of write and read completion.

Requirements

Tool: PSoC Creator™ 4.2

Programming Language: C (Arm® GCC 5.4.1)

Associated Parts: All PSoC 4 Parts

Related Hardware: CY8CKIT-042 PSoC 4 Pioneer Kit

Hardware Setup

This example uses the CY8CKIT-042 kit to demonstrate the I2C master device. However, other PSoC 4 kits with I2C support can
be used. To get the most out of the example, it is recommended that a second PSoC 4 kit programmed with the EZI2C slave
code example CE195362 is connected to the CY8CKIT-042.

If you use two kits, connect a ground pin (GND) and the I2C pins (SCL and SDA) together between the two kits. Table 1 below

shows the I2C pins on each kit. Note that I2C bus lines are open drain and must be pulled up to VDD using resistors as Figure 1
shows. Resistor values can be calculated from Chapter 7 of the NXP I2C bus specification, UM10204, available here.

Figure 1. I2C Pull-up Resistor Schematic

http://www.cypress.com/
http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-042-psoc-4-pioneer-kit
http://www.cypress.com/documentation/code-examples/ce195362-psoc-4-ezi2c-slave-serial-communication-block-scb
https://www.nxp.com/search?keyword=UM10204

 PSoC 4 I2C Master

www.cypress.com Document No. 002-22306 Rev.*A 2

Table 1. Pin Assignments

Development Kit \I2C:scl\ \I2C:sda\

CY8CKIT-041-40XX
P3[0] P3[1]

CY8CKIT-041-41XX

CY8CKIT-042 P4[0] P4[1]

CY8CKIT-042-BLE
P3[5] P3[4]

CY8CKIT-042-BLE-A

CY8CKIT-044 P4[0] P4[1]

CY8CKIT-046 P4[0] P4[1]

CY8CKIT-048 P4[0] P4[1]

CY8CKIT-149 P3[0] P3[1]

Operation

1. Plug the CY8CKIT-042 kit into your computer’s USB port.

2. Build and program either of the PSoC4 I2C Master projects into the CY8CKIT-042. Choose Debug > Program. For more

information on device programming, see PSoC Creator Help.

3. If a second PSoC 4 Kit is available, program CE195362 into the second kit.

a. Connect the two kits following the instructions in Hardware Setup.

b. Press the reset button on each kit and observe the LED on the slave kit changing colors.

4. If a second PSoC 4 kit is not available, use an oscilloscope to observe the data and clock on the I2C bus lines. Connect
oscilloscope probes to each of the I2C pins and ground each probe to a pin labeled GND.

Design and Implementation

In each project, CY8CKIT-042 acts as an I2C master device sending commands to a PSoC 4 device programmed as an I2C
slave using code example CE195362.

The application uses two I2C buffers to communicate between the master and slave device. The write buffer carries the
commands to be written and the status buffer contains the status of the previous transaction. In each buffer, the first and last
bytes contain specific values which are used to check for correct packet format. The remaining positions are reserved for
commands and status values.

The command packet is organized as shown below.

Start of Packet
(SOP)

Red Compare Value Green Compare
Value

Blue Compare Value End of Packet (EOP)

(0x01) (0x00 – 0xFF) (0x00 – 0xFF) (0x00 – 0xFF) (0x17)

After a command packet is written to the slave device, the slave updates the contents of the status buffer indicating either
success or failure of the previous write operation. The status packet is organized as shown below.

SOP Status EOP

(0x01) (0x00 or 0xFF) (0x17)

http://www.cypress.com/
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-041-psoc-4-s-series-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-041-41xx-psoc-4100s-capsense-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-042-psoc-4-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-042-ble-bluetooth-low-energy-ble-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-042-ble-bluetooth-low-energy-42-compliant-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-044-psoc-4-m-series-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-046-psoc-4-l-series-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-048-psoc-analog-coprocessor-pioneer-kit
http://www.cypress.com/cy8ckit-149
http://www.cypress.com/documentation/code-examples/ce195362-psoc-4-ezi2c-slave-serial-communication-block-scb

 PSoC 4 I2C Master

www.cypress.com Document No. 002-22306 Rev.*A 3

The firmware for both projects begins by initializing buffers for reads and writes. Firmware then writes the red compare value to
the write buffer and transfers the buffer to the slave. After a successful write, the master reads status data from the slave into
the read buffer. If this read is successful, the firmware waits for a half-second before cycling to the next LED color. The process
repeats indefinitely.

I2C_Master_High_Level Design

The I2C_Master_High_Level project uses the SCB I2C Component in master mode with a data rate of 100 kbps. It uses high-
level functions from the SCB API to write the command buffer and read the status from the slave. The high-level functions handle
start and stop conditions and abstract away from the byte-wise transactions that lower-level functions use. The schematic in
Figure 2 shows the available commands.

Figure 2. Schematic for the I2C_Master_High_Level

Note: The Schematic for the I2C_Low_Level project is the same.

I2C_Master_Low_Level Design

The SCB Component is configured as an I2C master with a data rate of 100 kbps. The firmware uses low-level functions that
send start and stop conditions before and after each write or read operation. Firmware transmits the write buffer by iterating
through each byte in the buffer. Firmware reads the read buffer in a similar manner. The low-level API may be preferred if the
user needs a higher level of control in the timing of transactions.

Components and Settings

Table 2 lists the PSoC Creator Components used in this example, how they are used in the design, and the non-default settings
required so they function as intended.

Table 2. PSoC Creator Components

Component Instance Name Purpose Non-default Settings

I2C (SCB mode) mI2C Enables I2C communication as master Mode: Master

For information on the hardware resources used by a Component, see the Component datasheet.

http://www.cypress.com/

 PSoC 4 I2C Master

www.cypress.com Document No. 002-22306 Rev.*A 4

Reusing This Example

This example is designed for use with the CY8CKIT-042 pioneer kit. To port the design to a different PSoC 4 device and/or kit,
change the target device using the Device Selector (Project > Device Selector) and update the pin assignments in the Design

Wide Resources Pins settings as needed.

For this example, ensure that the I2C pins SCL and SDA as well as a GND pin are connected properly between the master and

slave devices. Pull the I2C bus lines up to VDD using resistors as shown in Figure 1. Resistor values can be calculated from
Chapter 7 of the NXP I2C bus specification, UM10204, available here.

In some cases, a resource used by a code example (for example, the CapSense hardware) is not supported on another device.
In that case the example will not work. If you build the code targeted at such a device, you will get errors. See the device
datasheet for information on what a particular device supports.

Related Documents

Application Notes

AN86526 – PSoC 4 and PSoC Analog
Coprocessor I2C Bootloader

Describes an I2C-based bootloader and demonstrates how to create an I2C-based
bootloadable project.

AN86439 – PSoC 4 – Using GPIO Pins Describes how to use PSoC 4 GPIO pins with various use case examples

Code Examples

CE195362 – PSoC 4 EZI2C Slave with Serial
Communication Block (SCB)

Demonstrates the basic usage of the EZI2C Slave Component with the Serial
Communication Block

CE224599 – I2C Slave using a Serial
Communication Block (SCB) with PSoC 4

Demonstrates the basic operation of the I2C slave (SCB mode) Component.

PSoC Creator Component Datasheets

Serial Communication Block (SCB) Supports serial communication usage

Device Documentation

PSoC 4 Datasheets PSoC 4 Technical Reference Manuals

Development Kit Documentation

PSoC 4 Kits

http://www.cypress.com/
https://www.nxp.com/search?keyword=UM10204
http://www.cypress.com/an86526
http://www.cypress.com/an86439
http://www.cypress.com/documentation/code-examples/ce195362-psoc-4-ezi2c-slave-serial-communication-block-scb
https://www.cypress.com/documentation/code-examples/ce224599-psoc-4-i2c-slave-serial-communication-block
http://www.cypress.com/documentation/component-datasheets/psoc-4-serial-communication-block-scb
https://www.cypress.com/search/all/PSOC%204?sort_by=search_api_relevance&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575
https://www.cypress.com/search/all/PSOC%204?sort_by=search_api_relevance&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A583
https://www.cypress.com/microcontrollers-mcus-kits#psoc4

 PSoC 4 I2C Master

www.cypress.com Document No. 002-22306 Rev.*A 5

Document History

Document Title: CE222306 – PSoC 4 I2C Master

Document Number: 002-22306

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 5985995 MYKZTMP1 01/12/2018 New code example

*A 6469732 BFMC 02/07/2019

Converted to Master Only

Updated I2C command format

Updated pin table

Moved SCB to top of component list

http://www.cypress.com/

 PSoC 4 I2C Master

www.cypress.com Document No. 002-22306 Rev.*A 6

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community Forums | Projects | Videos | Blogs | Training |
Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court

 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2018-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress
under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and
treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual
property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing
the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its
copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly
through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed
by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.
Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security
measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as
unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only
for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses
where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety
or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages,
and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

