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Objective 

This example demonstrates the use of the PSoC® Creator Serial Communication Block (SCB) Component for PSoC 4 in I2C 
master mode. Two projects demonstrate the use of high-level and low-level functions to communicate with an I2C slave.  

 

Overview 

This code example consists of two projects: 

▪ I2C_Master_High_Level – implements the I2C Master device to send commands to the I2C Slave device and read the status 
of the command execution: success or error. The RGB LED shows the result of the command execution: success – green; 
error – red. The API that is used transfers entire buffers to the slave device, eliminating the need for byte-wise 
communication.  

▪ I2C_Master_Low_Level – Implements the same functionality as the High_Level project but uses lower-level firmware which 
performs writes and reads on a byte-by-byte basis. The firmware also keeps track of write and read completion.  

Requirements 

Tool: PSoC Creator™ 4.2 

Programming Language: C (Arm® GCC 5.4.1) 

Associated Parts: All PSoC 4 Parts 

Related Hardware: CY8CKIT-042 PSoC 4 Pioneer Kit 

Hardware Setup 

This example uses the CY8CKIT-042 kit to demonstrate the I2C master device. However, other PSoC 4 kits with I2C support can 
be used. To get the most out of the example, it is recommended that a second PSoC 4 kit programmed with the EZI2C slave 
code example CE195362 is connected to the CY8CKIT-042. 

If you use two kits, connect a ground pin (GND) and the I2C pins (SCL and SDA) together between the two kits. Table 1 below 

shows the I2C pins on each kit. Note that I2C bus lines are open drain and must be pulled up to VDD using resistors as Figure 1 
shows. Resistor values can be calculated from Chapter 7 of the NXP I2C bus specification, UM10204, available here. 

Figure 1. I2C Pull-up Resistor Schematic 

 

http://www.cypress.com/
http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-042-psoc-4-pioneer-kit
http://www.cypress.com/documentation/code-examples/ce195362-psoc-4-ezi2c-slave-serial-communication-block-scb
https://www.nxp.com/search?keyword=UM10204
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Table 1. Pin Assignments 

Development Kit \I2C:scl\ \I2C:sda\ 

CY8CKIT-041-40XX 
P3[0] P3[1] 

CY8CKIT-041-41XX 

CY8CKIT-042 P4[0] P4[1] 

CY8CKIT-042-BLE 
P3[5] P3[4] 

CY8CKIT-042-BLE-A 

CY8CKIT-044 P4[0] P4[1] 

CY8CKIT-046 P4[0] P4[1] 

CY8CKIT-048 P4[0] P4[1] 

CY8CKIT-149 P3[0] P3[1] 

Operation 

1. Plug the CY8CKIT-042 kit into your computer’s USB port. 

2. Build and program either of the PSoC4 I2C Master projects into the CY8CKIT-042. Choose Debug > Program. For more 

information on device programming, see PSoC Creator Help. 

3. If a second PSoC 4 Kit is available, program CE195362 into the second kit.  

a. Connect the two kits following the instructions in Hardware Setup. 

b. Press the reset button on each kit and observe the LED on the slave kit changing colors. 

4. If a second PSoC 4 kit is not available, use an oscilloscope to observe the data and clock on the I2C bus lines. Connect 
oscilloscope probes to each of the I2C pins and ground each probe to a pin labeled GND. 

Design and Implementation 

In each project, CY8CKIT-042 acts as an I2C master device sending commands to a PSoC 4 device programmed as an I2C 
slave using code example CE195362. 

The application uses two I2C buffers to communicate between the master and slave device. The write buffer carries the 
commands to be written and the status buffer contains the status of the previous transaction. In each buffer, the first and last 
bytes contain specific values which are used to check for correct packet format. The remaining positions are reserved for 
commands and status values.  

The command packet is organized as shown below. 

Start of Packet 
(SOP) 

Red Compare Value Green Compare 
Value 

Blue Compare Value End of Packet (EOP) 

(0x01) (0x00 – 0xFF) (0x00 – 0xFF) (0x00 – 0xFF) (0x17) 

 

After a command packet is written to the slave device, the slave updates the contents of the status buffer indicating either 
success or failure of the previous write operation. The status packet is organized as shown below. 

SOP Status EOP 

(0x01) (0x00 or 0xFF) (0x17) 

 

 

 

http://www.cypress.com/
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-041-psoc-4-s-series-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-041-41xx-psoc-4100s-capsense-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-042-psoc-4-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-042-ble-bluetooth-low-energy-ble-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-042-ble-bluetooth-low-energy-42-compliant-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-044-psoc-4-m-series-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-046-psoc-4-l-series-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-048-psoc-analog-coprocessor-pioneer-kit
http://www.cypress.com/cy8ckit-149
http://www.cypress.com/documentation/code-examples/ce195362-psoc-4-ezi2c-slave-serial-communication-block-scb
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The firmware for both projects begins by initializing buffers for reads and writes. Firmware then writes the red compare value to 
the write buffer and transfers the buffer to the slave. After a successful write, the master reads status data from the slave into 
the read buffer. If this read is successful, the firmware waits for a half-second before cycling to the next LED color. The process 
repeats indefinitely.   

I2C_Master_High_Level Design 

The I2C_Master_High_Level project uses the SCB I2C Component in master mode with a data rate of 100 kbps. It uses high-
level functions from the SCB API to write the command buffer and read the status from the slave. The high-level functions handle 
start and stop conditions and abstract away from the byte-wise transactions that lower-level functions use. The schematic in 
Figure 2 shows the available commands. 

Figure 2. Schematic for the I2C_Master_High_Level 

 

Note: The Schematic for the I2C_Low_Level project is the same. 

I2C_Master_Low_Level Design 

The SCB Component is configured as an I2C master with a data rate of 100 kbps. The firmware uses low-level functions that 
send start and stop conditions before and after each write or read operation. Firmware transmits the write buffer by iterating 
through each byte in the buffer. Firmware reads the read buffer in a similar manner. The low-level API may be preferred if the 
user needs a higher level of control in the timing of transactions.  

Components and Settings 

Table 2 lists the PSoC Creator Components used in this example, how they are used in the design, and the non-default settings 
required so they function as intended. 

Table 2. PSoC Creator Components 

Component  Instance Name Purpose Non-default Settings 

I2C (SCB mode) mI2C Enables I2C communication as master Mode: Master 

 
For information on the hardware resources used by a Component, see the Component datasheet. 

http://www.cypress.com/
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Reusing This Example 

This example is designed for use with the CY8CKIT-042 pioneer kit. To port the design to a different PSoC 4 device and/or kit, 
change the target device using the Device Selector (Project > Device Selector) and update the pin assignments in the Design 

Wide Resources Pins settings as needed.  

For this example, ensure that the I2C pins SCL and SDA as well as a GND pin are connected properly between the master and 

slave devices. Pull the I2C bus lines up to VDD using resistors as shown in Figure 1. Resistor values can be calculated from 
Chapter 7 of the NXP I2C bus specification, UM10204, available here. 

In some cases, a resource used by a code example (for example, the CapSense hardware) is not supported on another device. 
In that case the example will not work. If you build the code targeted at such a device, you will get errors. See the device 
datasheet for information on what a particular device supports. 

Related Documents 

Application Notes 

AN86526 – PSoC 4 and PSoC Analog 
Coprocessor I2C Bootloader 

Describes an I2C-based bootloader and demonstrates how to create an I2C-based 
bootloadable project. 

AN86439 – PSoC 4 – Using GPIO Pins Describes how to use PSoC 4 GPIO pins with various use case examples 

Code Examples 

CE195362 – PSoC 4 EZI2C Slave with Serial 
Communication Block (SCB) 

Demonstrates the basic usage of the EZI2C Slave Component with the Serial 
Communication Block  

CE224599 – I2C Slave using a Serial 
Communication Block (SCB) with PSoC 4 

Demonstrates the basic operation of the I2C slave (SCB mode) Component. 

PSoC Creator Component Datasheets 

Serial Communication Block (SCB) Supports serial communication usage 

Device Documentation 

PSoC 4 Datasheets PSoC 4 Technical Reference Manuals 

Development Kit Documentation 

PSoC 4 Kits 

  

 

 

 

 

 

 

 

 

 

 

 

http://www.cypress.com/
https://www.nxp.com/search?keyword=UM10204
http://www.cypress.com/an86526
http://www.cypress.com/an86439
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https://www.cypress.com/search/all/PSOC%204?sort_by=search_api_relevance&f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A583
https://www.cypress.com/microcontrollers-mcus-kits#psoc4
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