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Features 

 Communication between SPI master (SCB) and SPI slave (UDB) 

 Simple packet protocol with command and status byte to update  RGB LED color 

General Description 
This example project demonstrates the basic operation of the SPI master (SCB mode) 
component. The SCB SPI master initiates transfers to a UDB-based SPI slave. The SPI slave 
accepts a 3 byte packet with a command from the master to control the RGB LED color. After the 
command has been executed, the slave updates its buffer with a status packet in response to 
the accepted command. 

Development Kit Configuration 

This example project is designed to run on the CY8CKIT-042 kit from Cypress Semiconductor. A 
description of the kit, along with more example programs and ordering information, can be found 
at http://www.cypress.com/go/cy8ckit-042. 
The project requires configuration settings changes to run on other kits from Cypress 
Semiconductor. Table 1 is the list of the supported kits. To switch from CY8CKIT-042 to any 
other kit, change the project’s device with the help of Device Selector called from the project’s 
context menu. 

Table 1. Development Kits vs Parts 
Development Kit Device 

CY8CKIT-042 CY8C4245AXI-483 
CY8CKIT-042-BLE CY8C4247LQI-BL483 
CY8CKIT-044 CY8C4247AZI-M485 
CY8CKIT-046 CY8C4248BZI-L489 

The pin assignments for the supported kits are in Table 2. 
Table 2. Pin Assignment 

Pin Name 
Development Kit 

CY8CKIT-042 CY8CKIT-042 BLE CY8CKIT-044 CY8CKIT-046 

\SPIM:miso_m\ P3[1] P0[1] P6[1] P6[1] 
\SPIM:mosi_m\ P3[0] P0[0] P6[0] P6[0] 
\SPIM:sclk_m\ P0[6] P0[3] P6[2] P6[2] 
\SPIM:ss0_m\ P0[7] P0[2] P2[7] P6[3] 
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Pin Name 
Development Kit 

CY8CKIT-042 CY8CKIT-042 BLE CY8CKIT-044 CY8CKIT-046 

miso_s P2[1] P2[1] P2[1] P2[1] 
mosi_s P2[2] P2[2] P2[2] P2[2] 
sclk_s P2[0] P2[0] P2[0] P2[0] 
ss_s P2[3] P2[3] P2[3] P2[3] 
LED_BLUE P0[3] P3[7] P6[5] P5[4] 
LED_GREEN P0[2] P3[6] P2[6] P5[3] 
LED_RED P1[6] P2[6] P0[6] P5[2] 

The appropriate SPI master and slave pins must be connected using external wires as described 
in the following table:  

Table 3. Required External Connections 
Master pins Slave pins Connection 

\SPIM:miso_m\ miso_s Connect MISO pins of master and slave 
\SPIM:mosi_m\ mosi_s Connect MOSI pins of master and slave 
\SPIM:sclk_m\ sclk_s Connect SCLK pins of master and slave 
\SPIM:ss0_m\ ss_s Connect SS pins of master and slave 

Project Configuration 

The example project consists of the SPI master (SCB mode), SPI slave (UDB), and pin 
components. Figure 1 is the design schematic. The SPI master and slave connections are in the 
design schematic. The blue annotation components represent the RGB LED installed on the kit. 
Three pin components are control the LED color, using the fixed connections already provided 
on the kit.  
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Figure 1. Example Project Design Schematic 

 
The SPI master operates with the bit rate of 1000 kbps. The sub-mode is Motorola, CPHA = 0, 
CPOL = 0, and Data width = 8 bits with Bit Order = MSB first. The packet size to transfer is less 
than 8 data elements, therefore only the hardware FIFO is used (the FIFO depth is 8 data 
elements[1]). The component configuration window is shown below. 
                                            
1 All devices except PSoC 4100/PSoC 4200 provide the ability to double the FIFO depth to be 16 data elements 
when the data frame width is 4-8 bits. 
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Figure 2. SPI Master (SCB mode) Component Configuration Basic Tab 
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Figure 3. SPI Master (SCB mode) Component Configuration Advanced Tab 

 
If you need to transfer more data elements than the FIFO depth[1], increase the buffer size to the 
required amount in Advanced Tab. This enables the hardware FIFO and a circular software 
buffer. The circular software buffer requires enabling global interrupts   as the component 
interrupt transfers data between the hardware FIFO and allocated software buffer. 
To see the SPI slave configuration, open the SPIS component configuration dialog. 

Project Description 

The SPI master and slave are combined into a single project and events from them are handled 
sequentially. The master sends a packet with a RGB color command; the slave receives it and 
updates the LED accordingly. After command execution, the slave updates the status byte in the 
response packet. The master transfers the response packet to retrieve the status from the slave 
(the slave cannot initiate the transfer to send the status to the master). If needed, the project can 
be divided into separate master and slave projects with minimum modifications. 
In the main firmware routine, the SPI master and slave configuration is executed by calling the 
start APIs. LEDs are turned off. Interrupts are not used in this example therefore enabling global 
interrupts is not required. 
In the main loop, the SPI master communicates with the slave every 500 milliseconds to change 
the LED color. The SPI master initializes a packet with a command and sets up a transfer by 
loading a packet into the TX buffer. The initial command is CMD_SET_RED. The packet 
structure, commands and responses are shown below.  
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Master Operation 

The code polls the RX buffer sizes calling SPIM_SpiUartGetRxBufferSize(), when the buffer size 
is equal to the packet size, the transfer is treated as completed. After transfer completion, the 
data in the RX buffer is thrown away as it contains dummy data bytes transferred by the slave. 
When the slave executes the command, the master initiates a transfer to get a status response 
packet by loading dummy data bytes into the TX buffer. After the transfer is complete, the 
response packet is read from the RX buffer. The basic verification of the packet structure is done 
by checking the start and end packet bytes. The status byte is checked afterwards. If all the 
checks are successful, the command is considered as executed and the master continues to 
execute the next command. The command sequence is the following: CMD_SET_RED, 
CMD_SET_GREEN, CMD_SET_BLUE, CMD_SET_OFF, CMD_SET_RED and so on. 

Slave Operation 

The SPI slave waits for a packet with a command from the master. When a packet is received, 
the packet is verified by checking the start and end packet bytes. The command from a valid 
packet is passed to the ExecuteCommand() function which sets the LED color and returns a 
status. The status is updated in the response packet and the SPI slave loads it into the TX buffer 
to be read by the master. After the response has been read, the slave TX buffer is cleared before 
accepting a next command packet. 
 
 Packet structure 

Start of packet (0x01) Command/Status End of Packet (0x17)
 

  Table 3. Command Constants 

Command Value Description 
CMD_SET_OFF 0 Turns off RGB LED 
CMD_SET_RED 1 Turns on Red color of RGB LED 
CMD_SET_GREEN  2 Turns on Green color of RGB LED 
CMD_SET_BLUE   3 Turns on Blue color of RGB LED 

  Table 4. Status Constants 

Status Value Description 
STS_CMD_DONE 0x00 Command was executed 
STS_CMD_FAIL 0xFF Incorrect format of packet or unknown 

command 
 
The packets with a command and status are converted into the following SPI transfers. Because 
the SPI interface is full-duplex, the data elements are transmitted and received simultaneously. 
Data elements received by the master while it is transferring the command packet are discarded. 
The same approach works for the slave. Data elements received by the slave while the master is 
collecting the status packet are discarded. 
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Expected Results 

1) Connect the SPI master and slave as explained in the Development Kit Configuration section. 
2) Build example project and program into the device. 
3) Observe that LED changes its color in the following sequence: RED, GREEN, BLUE, OFF, 

RED, and so on. An oscilloscope or SPI bus analyzer could be used to capture traffic on the 
SPI bus. 
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