

 PSoC® Creator™ Component Datasheet Example

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Features

 Communication between SPI master (SCB) and SPI slave (UDB)

 Simple packet protocol with command and status byte to update RGB LED color

General Description
This example project demonstrates the basic operation of the SPI master (SCB mode)
component. The SCB SPI master initiates transfers to a UDB-based SPI slave. The SPI slave
accepts a 3 byte packet with a command from the master to control the RGB LED color. After the
command has been executed, the slave updates its buffer with a status packet in response to
the accepted command.

Development Kit Configuration

This example project is designed to run on the CY8CKIT-042 kit from Cypress Semiconductor. A
description of the kit, along with more example programs and ordering information, can be found
at http://www.cypress.com/go/cy8ckit-042.
The project requires configuration settings changes to run on other kits from Cypress
Semiconductor. Table 1 is the list of the supported kits. To switch from CY8CKIT-042 to any
other kit, change the project’s device with the help of Device Selector called from the project’s
context menu.

Table 1. Development Kits vs Parts
Development Kit Device

CY8CKIT-042 CY8C4245AXI-483
CY8CKIT-042-BLE CY8C4247LQI-BL483
CY8CKIT-044 CY8C4247AZI-M485
CY8CKIT-046 CY8C4248BZI-L489

The pin assignments for the supported kits are in Table 2.
Table 2. Pin Assignment

Pin Name
Development Kit

CY8CKIT-042 CY8CKIT-042 BLE CY8CKIT-044 CY8CKIT-046

\SPIM:miso_m\ P3[1] P0[1] P6[1] P6[1]
\SPIM:mosi_m\ P3[0] P0[0] P6[0] P6[0]
\SPIM:sclk_m\ P0[6] P0[3] P6[2] P6[2]
\SPIM:ss0_m\ P0[7] P0[2] P2[7] P6[3]

SCB_SpiCommMaster Example Project
1.0

http://www.cypress.com/go/cy8ckit-042

SPI master (SCB mode) PSoC® Creator™ Component Datasheet Example

Page 2 of 7

Pin Name
Development Kit

CY8CKIT-042 CY8CKIT-042 BLE CY8CKIT-044 CY8CKIT-046

miso_s P2[1] P2[1] P2[1] P2[1]
mosi_s P2[2] P2[2] P2[2] P2[2]
sclk_s P2[0] P2[0] P2[0] P2[0]
ss_s P2[3] P2[3] P2[3] P2[3]
LED_BLUE P0[3] P3[7] P6[5] P5[4]
LED_GREEN P0[2] P3[6] P2[6] P5[3]
LED_RED P1[6] P2[6] P0[6] P5[2]

The appropriate SPI master and slave pins must be connected using external wires as described
in the following table:

Table 3. Required External Connections
Master pins Slave pins Connection

\SPIM:miso_m\ miso_s Connect MISO pins of master and slave
\SPIM:mosi_m\ mosi_s Connect MOSI pins of master and slave
\SPIM:sclk_m\ sclk_s Connect SCLK pins of master and slave
\SPIM:ss0_m\ ss_s Connect SS pins of master and slave

Project Configuration

The example project consists of the SPI master (SCB mode), SPI slave (UDB), and pin
components. Figure 1 is the design schematic. The SPI master and slave connections are in the
design schematic. The blue annotation components represent the RGB LED installed on the kit.
Three pin components are control the LED color, using the fixed connections already provided
on the kit.

SPI master (SCB mode) PSoC® Creator™ Component Datasheet Example

 Page 3 of 7

Figure 1. Example Project Design Schematic

The SPI master operates with the bit rate of 1000 kbps. The sub-mode is Motorola, CPHA = 0,
CPOL = 0, and Data width = 8 bits with Bit Order = MSB first. The packet size to transfer is less
than 8 data elements, therefore only the hardware FIFO is used (the FIFO depth is 8 data
elements[1]). The component configuration window is shown below.

1 All devices except PSoC 4100/PSoC 4200 provide the ability to double the FIFO depth to be 16 data elements
when the data frame width is 4-8 bits.

SPI master (SCB mode) PSoC® Creator™ Component Datasheet Example

Page 4 of 7

Figure 2. SPI Master (SCB mode) Component Configuration Basic Tab

SPI master (SCB mode) PSoC® Creator™ Component Datasheet Example

 Page 5 of 7

Figure 3. SPI Master (SCB mode) Component Configuration Advanced Tab

If you need to transfer more data elements than the FIFO depth[1], increase the buffer size to the
required amount in Advanced Tab. This enables the hardware FIFO and a circular software
buffer. The circular software buffer requires enabling global interrupts as the component
interrupt transfers data between the hardware FIFO and allocated software buffer.
To see the SPI slave configuration, open the SPIS component configuration dialog.

Project Description

The SPI master and slave are combined into a single project and events from them are handled
sequentially. The master sends a packet with a RGB color command; the slave receives it and
updates the LED accordingly. After command execution, the slave updates the status byte in the
response packet. The master transfers the response packet to retrieve the status from the slave
(the slave cannot initiate the transfer to send the status to the master). If needed, the project can
be divided into separate master and slave projects with minimum modifications.
In the main firmware routine, the SPI master and slave configuration is executed by calling the
start APIs. LEDs are turned off. Interrupts are not used in this example therefore enabling global
interrupts is not required.
In the main loop, the SPI master communicates with the slave every 500 milliseconds to change
the LED color. The SPI master initializes a packet with a command and sets up a transfer by
loading a packet into the TX buffer. The initial command is CMD_SET_RED. The packet
structure, commands and responses are shown below.

SPI master (SCB mode) PSoC® Creator™ Component Datasheet Example

Page 6 of 7

Master Operation

The code polls the RX buffer sizes calling SPIM_SpiUartGetRxBufferSize(), when the buffer size
is equal to the packet size, the transfer is treated as completed. After transfer completion, the
data in the RX buffer is thrown away as it contains dummy data bytes transferred by the slave.
When the slave executes the command, the master initiates a transfer to get a status response
packet by loading dummy data bytes into the TX buffer. After the transfer is complete, the
response packet is read from the RX buffer. The basic verification of the packet structure is done
by checking the start and end packet bytes. The status byte is checked afterwards. If all the
checks are successful, the command is considered as executed and the master continues to
execute the next command. The command sequence is the following: CMD_SET_RED,
CMD_SET_GREEN, CMD_SET_BLUE, CMD_SET_OFF, CMD_SET_RED and so on.

Slave Operation

The SPI slave waits for a packet with a command from the master. When a packet is received,
the packet is verified by checking the start and end packet bytes. The command from a valid
packet is passed to the ExecuteCommand() function which sets the LED color and returns a
status. The status is updated in the response packet and the SPI slave loads it into the TX buffer
to be read by the master. After the response has been read, the slave TX buffer is cleared before
accepting a next command packet.

 Packet structure

Start of packet (0x01) Command/Status End of Packet (0x17)

 Table 3. Command Constants

Command Value Description
CMD_SET_OFF 0 Turns off RGB LED
CMD_SET_RED 1 Turns on Red color of RGB LED
CMD_SET_GREEN 2 Turns on Green color of RGB LED
CMD_SET_BLUE 3 Turns on Blue color of RGB LED

 Table 4. Status Constants

Status Value Description
STS_CMD_DONE 0x00 Command was executed
STS_CMD_FAIL 0xFF Incorrect format of packet or unknown

command

The packets with a command and status are converted into the following SPI transfers. Because
the SPI interface is full-duplex, the data elements are transmitted and received simultaneously.
Data elements received by the master while it is transferring the command packet are discarded.
The same approach works for the slave. Data elements received by the slave while the master is
collecting the status packet are discarded.

SPI master (SCB mode) PSoC® Creator™ Component Datasheet Example

 Page 7 of 7

SOP = 0x01 Command EOP = 0x17

SOP = 0x01 Status EOP = 0x17

- Slave drives the bus- Master drives the bus

Packet with command

Packet with status

Does not care Does not care Does not care

MOSI

MISO

MOSI

MISO

Does not care Does not care Does not care

Master
Output

Slave
Input

Master
Input

Slave
Output

Master
Output

Slave
Input

Master
Input

Slave
Output

SOP – Start of packet EOP – End of packet

Expected Results

1) Connect the SPI master and slave as explained in the Development Kit Configuration section.
2) Build example project and program into the device.
3) Observe that LED changes its color in the following sequence: RED, GREEN, BLUE, OFF,

RED, and so on. An oscilloscope or SPI bus analyzer could be used to capture traffic on the
SPI bus.

© Cypress Semiconductor Corporation, 2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

