
PSoC 4 TRM

PSoC 4100/4200 Family

PSoC® 4 Architecture TRM
(Technical Reference Manual)

Document No. 001-85634 Rev. *A

April 18, 2013

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709

Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600

http://www.cypress.com

http://www.cypress.com


PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Copyrights

License

© 2013, Cypress Semiconductor Corporation. All rights reserved. This software, and associated documentation or materials
(Materials) belong to Cypress Semiconductor Corporation (Cypress) and may be protected by and subject to worldwide pat-
ent protection (United States and foreign), United States copyright laws and international treaty provisions. Unless otherwise
specified in a separate license agreement between you and Cypress, you agree to treat Materials like any other copyrighted
item.

You agree to treat Materials as confidential and will not disclose or use Materials without written authorization by Cypress.
You agree to comply with any Nondisclosure Agreements between you and Cypress.

If Material includes items that may be subject to third party license, you agree to comply with such licenses.

Copyrights

Copyright © 2013 Cypress Semiconductor Corporation. All rights reserved.

PSoC and CapSense are registered trademarks, and PSoC Creator is a trademark of Cypress Semiconductor Corporation
(Cypress), along with Cypress® and Cypress Semiconductor™. All other trademarks or registered trademarks referenced
herein are the property of their respective owners.

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Phil-

ips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard
Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semicon-
ductors.

The information in this document is subject to change without notice and should not be construed as a commitment by
Cypress. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that may appear
in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of Cypress. Made in the U.S.A.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress
does not authorize its products for use as critical components in life-support systems where a malfunction or failure may rea-
sonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems appli-
cation implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress Data Sheets. Cypress believes that its family of
PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used. There may
be methods that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and
possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code
protection does not mean that we are guaranteeing the product as “unbreakable.”

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly
evolving. We at Cypress are committed to continuously improving the code protection features of our products.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 3

Contents Overview

Section A: Overview 15

1. Introduction ........................................................................................................... 17

2. Getting Started ...................................................................................................... 23

3. Document Construction ......................................................................................... 25

Section B: CPU System 29
4. Cortex-M0 CPU ..................................................................................................... 31

5. Interrupts .............................................................................................................. 37

Section C: Memory System 45
6. Memory Map ......................................................................................................... 47

Section D: System-Wide Resources 49

7. I/O System ............................................................................................................ 51

8. Clocking System.................................................................................................... 61

9. Power Supply and Monitoring ................................................................................ 67

10. Chip Operational Modes ........................................................................................ 73

11. Power Modes ........................................................................................................ 75

12. Watchdog Timer .................................................................................................... 81

13. Reset System ........................................................................................................ 85

14. Device Security ..................................................................................................... 87

Section E: Digital System 89

15. Serial Communications (SCB) ................................................................................ 91

16. Universal Digital Blocks (UDB) ............................................................................. 129

17. Timer, Counter, and PWM .................................................................................... 165

Section F: Analog System 185
18. Precision Reference ............................................................................................ 187

19. SAR ADC ............................................................................................................ 191

20. Low-Power Comparator ....................................................................................... 221

21. Continuous Time Block mini (CTBm) .................................................................... 225

22. LCD Direct Drive ................................................................................................. 231

23. CapSense ........................................................................................................... 243

24. Temperature Sensor ............................................................................................ 251

Section G: Program and Debug 255



4 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Contents Overview

25. Program and Debug Interface.............................................................................. 257

26. Nonvolatile Memory Programming ....................................................................... 263

Glossary 275

Index  291



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 5

Contents

Section A: Overview 15

Document Revision History ..............................................................................................................15

1. Introduction 17
1.1 Top Level Architecture............................................................................................................18
1.2 Features..................................................................................................................................19
1.3 CPU System ...........................................................................................................................20

1.3.1 Processor...............................................................................................................20
1.3.2 Interrupt Controller .................................................................................................20

1.4 Memory...................................................................................................................................20
1.4.1 Flash ......................................................................................................................20
1.4.2 SRAM.....................................................................................................................20

1.5 System-Wide Resources ........................................................................................................20
1.5.1 Clocking System ....................................................................................................20
1.5.2 Power System........................................................................................................20
1.5.3 GPIO......................................................................................................................20

1.6 Programmable Digital .............................................................................................................21
1.7 Fixed-Function Digital .............................................................................................................21

1.7.1 Timer/Counter/PWM Block.....................................................................................21
1.7.2 Serial Communication Blocks ................................................................................21

1.8 Analog System........................................................................................................................21
1.8.1 SAR ADC...............................................................................................................21
1.8.2 Continuous Time Block mini (CTBm).....................................................................21
1.8.3 Low-power Comparators........................................................................................21

1.9 Special Function Peripherals ..................................................................................................21
1.9.1 LCD Segment Drive ...............................................................................................21
1.9.2 CapSense ..............................................................................................................21

1.10 Program and Debug ...............................................................................................................22

2. Getting Started 23
2.1 Support ...................................................................................................................................23
2.2 Product Upgrades...................................................................................................................23
2.3 Development Kits....................................................................................................................23

3. Document Construction 25

3.1 Major Sections ........................................................................................................................25
3.2 Documentation Conventions ..................................................................................................25

3.2.1 Register Conventions.............................................................................................25
3.2.2 Numeric Naming ....................................................................................................25
3.2.3 Units of Measure....................................................................................................26
3.2.4 Acronyms...............................................................................................................26

Section B: CPU System 29

Top Level Architecture .....................................................................................................................29



6 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

4. Cortex-M0 CPU 31

4.1 Features .................................................................................................................................31
4.2 Block Diagram ........................................................................................................................32
4.3 How It Works ..........................................................................................................................32

4.3.1 Registers ...............................................................................................................32
4.3.2 Operating Modes ...................................................................................................34
4.3.3 Instruction Set........................................................................................................34

4.3.3.1 Address Alignment .................................................................................35
4.3.3.2 Memory Endianness ..............................................................................35

4.3.4 Systick Timer .........................................................................................................35
4.3.5 Debug ....................................................................................................................35

5. Interrupts 37
5.1 Features .................................................................................................................................37
5.2 How It Works ..........................................................................................................................37
5.3 Interrupts and Exceptions - Operation....................................................................................37

5.3.1 Interrupt/Exception Handling in PSoC 4 ................................................................37
5.3.2 Level and Pulse Interrupts .....................................................................................38
5.3.3 Exception Vector Table ..........................................................................................38

5.4 Exception Sources..................................................................................................................39
5.4.1 Reset Exception ....................................................................................................39
5.4.2 Non-Maskable Interrupt (NMI) Exception ..............................................................39
5.4.3 HardFault Exception ..............................................................................................39
5.4.4 Supervisor Call (SVCall) Exception .......................................................................39
5.4.5 PendSV Exception.................................................................................................40
5.4.6 SysTick Exception .................................................................................................40

5.5 Interrupt Sources ....................................................................................................................40
5.6 Enabling/Disabling Exceptions ...............................................................................................41
5.7 Exception States.....................................................................................................................42

5.7.1 Pending Exceptions...............................................................................................42
5.7.2 Exception Priority...................................................................................................42

5.8 Stack Usage for Exceptions ...................................................................................................43
5.9 Interrupts and Low-Power Modes...........................................................................................43
5.10 Exception - Initialization and Configuration ............................................................................43
5.11 Registers ................................................................................................................................44
5.12 Associated Documents...........................................................................................................44

Section C: Memory System 45
Top Level Architecture .....................................................................................................................45

6. Memory Map 47

6.1 Features .................................................................................................................................47
6.2 How It Works ..........................................................................................................................47

Section D: System-Wide Resources 49

Top Level Architecture .....................................................................................................................49

7. I/O System 51
7.1 Features .................................................................................................................................51
7.2 Block Diagram ........................................................................................................................52
7.3 I/O Drive Modes......................................................................................................................53

7.3.1 High-Impedance Analog ........................................................................................54
7.3.2 High-Impedance Digital .........................................................................................54



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 7

7.3.3 Resistive Pull-Up or Resistive Pull-Down ..............................................................54
7.3.4 Open Drain, Drives High, and Drives Low .............................................................54
7.3.5 Strong Drive ...........................................................................................................54
7.3.6 Resistive Pull-Up and Pull-Down ...........................................................................54

7.4 Slew Rate Control...................................................................................................................54
7.5 CMOS LVTTL Level Control ...................................................................................................54
7.6 High-Speed I/O Matrix ...........................................................................................................54
7.7 Analog I/O...............................................................................................................................55
7.8 LCD Drive ...............................................................................................................................55
7.9 CapSense ...............................................................................................................................55
7.10 I/O Port Reconfiguration .........................................................................................................56
7.11 GPIO State on Power Up........................................................................................................56
7.12 Sleep Mode Behavior .............................................................................................................56
7.13 Low-Power Behavior...............................................................................................................56
7.14 Port Interrupt Controller Unit...................................................................................................57

7.14.1 Features.................................................................................................................57
7.14.2 Interrupt Controller Block Diagram.........................................................................57
7.14.3 Function and Configuration....................................................................................57

7.15 Input and Output Synchronization ..........................................................................................58
7.16 Pin Specific Sources...............................................................................................................58
7.17 Restrictions on Port 4 .............................................................................................................59
7.18 Registers.................................................................................................................................59

8. Clocking System 61

8.1 Block Diagram ........................................................................................................................61
8.2 Clock Sources.........................................................................................................................62

8.2.1 Internal Main Oscillator ..........................................................................................62
8.2.1.1 Startup Behavior.....................................................................................62
8.2.1.2 IMO Frequency Spread ..........................................................................62

8.2.2 Internal Low-speed Oscillator ................................................................................62
8.2.3 External Clock........................................................................................................62

8.3 Clock Distribution....................................................................................................................62
8.3.1 HFCLK Input Selection ..........................................................................................63
8.3.2 SYSCLK Prescaler Configuration ..........................................................................63
8.3.3 Peripheral Clock Divider Configuration ..................................................................63
8.3.4 Peripheral Clock Configuration ..............................................................................64

8.4 Low-Power Mode Operation ...................................................................................................66

9. Power Supply and Monitoring 67

9.1 Block Diagram ........................................................................................................................67
9.2 Power Supply Scenarios.........................................................................................................68

9.2.1 Single 1.8 V to 5.5 V Unregulated Supply..............................................................68
9.2.2 Direct 1.71 V to 1.89 V Regulated Supply .............................................................69

9.3 How It Works ..........................................................................................................................71
9.3.1 Regulator Summary ...............................................................................................71

9.3.1.1 Active Digital Regulator ..........................................................................71
9.3.1.2 Quiet Regulator ......................................................................................71
9.3.1.3 Deep-Sleep Regulator............................................................................71
9.3.1.4 Hibernate Regulator ...............................................................................71

9.3.2 Voltage Monitoring .................................................................................................72
9.3.2.1 Power-On-Reset (POR) .........................................................................72
9.3.2.2 Brownout-Detect (BOD) .........................................................................72
9.3.2.3 Low-Voltage-Detect (LVD) .....................................................................72



8 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

9.4 Register List ...........................................................................................................................72

10. Chip Operational Modes 73

10.1 Boot ........................................................................................................................................73
10.2 User ........................................................................................................................................73
10.3 Privileged................................................................................................................................73
10.4 Debug.....................................................................................................................................73

11. Power Modes 75
11.1 Active Mode............................................................................................................................77
11.2 Sleep Mode ............................................................................................................................77
11.3 Deep-Sleep Mode...................................................................................................................77
11.4 Hibernate Mode ......................................................................................................................78
11.5 Stop Mode ..............................................................................................................................78
11.6 Enter and Exit Low-Power Modes ..........................................................................................79
11.7 Register List............................................................................................................................80

12. Watchdog Timer 81

12.1 Features .................................................................................................................................81
12.2 Block Diagram ........................................................................................................................81
12.3 How It Works ..........................................................................................................................82

12.3.1 Enabling and Disabling WDT.................................................................................82
12.3.2 WDT Operating Modes .........................................................................................82
12.3.3 WDT Interrupts and Low-Power Modes.................................................................82
12.3.4 WDT Reset Mode ..................................................................................................82

12.4 Register List ...........................................................................................................................83

13. Reset System 85

13.1 Reset Sources........................................................................................................................85
13.1.1 Power-on Reset.....................................................................................................85
13.1.2 Brownout Reset .....................................................................................................85
13.1.3 Watchdog Reset ....................................................................................................85
13.1.4 Software Initiated Reset.........................................................................................85
13.1.5 External Reset .......................................................................................................86
13.1.6 Protection Fault Reset ...........................................................................................86
13.1.7 Hibernate Wakeup Reset.......................................................................................86
13.1.8 Stop Wakeup Reset ...............................................................................................86

13.2 Identifying Reset Sources.......................................................................................................86

14. Device Security 87

14.1 Features .................................................................................................................................87
14.2 How It Works ..........................................................................................................................87

Section E: Digital System 89
Top Level Architecture .....................................................................................................................89

15. Serial Communications (SCB) 91

15.1 Features .................................................................................................................................91
15.2 Serial Peripheral Interface (SPI).............................................................................................91

15.2.1 Features ................................................................................................................91
15.2.2 General Description...............................................................................................92
15.2.3 SPI Modes of Operation ........................................................................................92

15.2.3.1 Motorola SPI ..........................................................................................92
15.2.3.2 Texas Instruments SPI...........................................................................94



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 9

15.2.3.3 National Semiconductors SPI.................................................................96
15.2.4 Easy SPI (EZSPI) Protocol ....................................................................................97

15.2.4.1 EZ Address Write ...................................................................................98
15.2.4.2 Memory Array Write ...............................................................................98
15.2.4.3 Memory Array Read ...............................................................................98
15.2.4.4 Configuring SCB for EZSPI Mode ........................................................100

15.2.5 SPI Registers .......................................................................................................100
15.2.6 SPI Interrupts .......................................................................................................100
15.2.7 Enabling and Initializing SPI ................................................................................101
15.2.8 Internally and Externally Clocked SPI Operations ...............................................102

15.2.8.1 Non EZ Mode of Operation ..................................................................102
15.2.8.2 EZ Mode of Operation ..........................................................................103

15.3 UART....................................................................................................................................104
15.3.1 Features...............................................................................................................104
15.3.2 General Description .............................................................................................105
15.3.3 UART Modes of Operation...................................................................................105

15.3.3.1 Standard Protocol.................................................................................105
15.3.3.2 SmartCard (ISO7816) ..........................................................................108
15.3.3.3 IrDA ......................................................................................................109

15.3.4 UART Registers ...................................................................................................110
15.3.5 UART Interrupts ...................................................................................................110
15.3.6 Enabling and Initializing UART ............................................................................110

15.4 Inter Integrated Circuit (I2C) .................................................................................................112
15.4.1 Features...............................................................................................................112
15.4.2 General Description .............................................................................................112
15.4.3 I2C Modes of Operation.......................................................................................113

15.4.3.1 Write Transfer.......................................................................................113
15.4.3.2 Read Transfer ......................................................................................114

15.4.4 Easy I2C (EZI2C) Protocol...................................................................................114
15.4.4.1 Memory Array Write .............................................................................114
15.4.4.2 Memory Array Read .............................................................................114
15.4.4.3 Configuring SCB for EZI2C Mode ........................................................115

15.4.5 I2C Registers .......................................................................................................115
15.4.6 I2C Interrupts .......................................................................................................116
15.4.7 Enabling and Initializing I2C.................................................................................116
15.4.8 Internal and External Clock Operation in I2C.......................................................117

15.4.8.1 Non-EZ Operation Mode ......................................................................118
15.4.8.2 EZ Operation Mode ..............................................................................118

15.4.9 Wake up from Sleep ............................................................................................119
15.4.10 Master Mode Transfer Examples.........................................................................120

15.4.10.1 Master Transmit ...................................................................................120
15.4.10.2 Master Receive ....................................................................................121

15.4.11 Slave Mode Transfer Examples...........................................................................122
15.4.11.1 Slave Transmit .....................................................................................122
15.4.11.2 Slave Receive ......................................................................................123

15.4.12 EZ Slave Mode Transfer Example .......................................................................124
15.4.12.1 EZ Slave Transmit................................................................................124
15.4.12.2 EZ Slave Receive.................................................................................125

15.4.13 Multi-Master Mode Transfer Example ..................................................................126
15.4.13.1 Multi-Master - Slave Not Enabled.........................................................126
15.4.13.2 Multi-Master - Slave Enabled ...............................................................127



10 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

16. Universal Digital Blocks (UDB) 129

16.1 Features ...............................................................................................................................129
16.2 How It Works ........................................................................................................................130

16.2.1 PLDs....................................................................................................................130
16.2.1.1 PLD Macrocells ....................................................................................131
16.2.1.2 PLD Carry Chain ..................................................................................131
16.2.1.3 PLD Configuration................................................................................131

16.2.2 Datapath ..............................................................................................................132
16.2.2.1 Overview ..............................................................................................132
16.2.2.2 Datapath FIFOs....................................................................................134
16.2.2.3 FIFO Status..........................................................................................139
16.2.2.4 Datapath ALU.......................................................................................139
16.2.2.5 Datapath Inputs and Multiplexing.........................................................141
16.2.2.6 CRC/PRS Support ...............................................................................142
16.2.2.7 Datapath Outputs and Multiplexing ......................................................144
16.2.2.8 Datapath Parallel Inputs and Outputs ..................................................145
16.2.2.9 Datapath Chaining ...............................................................................146
16.2.2.10 Dynamic Configuration RAM................................................................146

16.2.3 Status and Control Module ..................................................................................147
16.2.3.1 Status and Control Mode .....................................................................149
16.2.3.2 Control Register Operation ..................................................................150
16.2.3.3 Parallel Input/Output Mode ..................................................................151
16.2.3.4 Counter Mode ......................................................................................151
16.2.3.5 Sync Mode ...........................................................................................152
16.2.3.6 Status and Control Clocking.................................................................153
16.2.3.7 Auxiliary Control Register.....................................................................153
16.2.3.8 Status and Control Register Summary.................................................153

16.2.4 Reset and Clock Control Module.........................................................................153
16.2.4.1 Clock Control........................................................................................154
16.2.4.2 Reset Control .......................................................................................156
16.2.4.3 UDB POR Initialization .........................................................................160

16.2.5 UDB Addressing ..................................................................................................160
16.2.6 System Bus Access Coherency ..........................................................................160

16.2.6.1 Simultaneous System Bus Access.......................................................160
16.2.6.2 Coherent Accumulator Access (Atomic Reads and Writes).................161

16.3 Port Adapter Block................................................................................................................161
16.3.1 PA Clock Multiplexer............................................................................................161
16.3.2 PA Reset Multiplexer ...........................................................................................162
16.3.3 PA Data Input Logic .............................................................................................163
16.3.4 PA Data Output Logic ..........................................................................................163
16.3.5 PA Output Enable Logic.......................................................................................163
16.3.6 PA Port Pin Clock Multiplexer Logic ....................................................................164

17. Timer, Counter, and PWM 165

17.1 Features ...............................................................................................................................165
17.2 Block Diagram ......................................................................................................................166

17.2.1 Enabling and Disabling Counters in TCPWM Block ............................................166
17.2.2 Clocking...............................................................................................................166
17.2.3 Events Based on Trigger Inputs...........................................................................167
17.2.4 Output Signals .....................................................................................................168

17.2.4.1 Signals upon Trigger Conditions ..........................................................168
17.2.4.2 Interrupts ..............................................................................................168
17.2.4.3 Outputs.................................................................................................168



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 11

17.2.5 Power Modes .......................................................................................................169
17.3 Modes of Operation ..............................................................................................................169

17.3.1 Timer Mode..........................................................................................................170
17.3.1.1 Block Diagram ......................................................................................170
17.3.1.2 How it Works ........................................................................................170
17.3.1.3 Configuring Counter for Timer Mode....................................................172

17.3.2 Capture Mode ......................................................................................................172
17.3.2.1 Block Diagram ......................................................................................172
17.3.2.2 How it Works ........................................................................................172
17.3.2.3 Configuring Counter for Capture Mode ................................................173

17.3.3 Quadrature Decoder Mode ..................................................................................174
17.3.3.1 Block Diagram ......................................................................................174
17.3.3.2 How it Works ........................................................................................174
17.3.3.3 Configuring Counter for Quadrature Mode...........................................176

17.3.4 Pulse-Width Modulation Mode .............................................................................177
17.3.4.1 Block Diagram ......................................................................................177
17.3.4.2 How it Works ........................................................................................177
17.3.4.3 Other Configurations ............................................................................179
17.3.4.4 Kill Feature ...........................................................................................179
17.3.4.5 Configuring Counter for PWM Mode ....................................................180

17.3.5 Pulse-Width Modulation with Dead Time Mode ...................................................180
17.3.5.1 Block Diagram ......................................................................................180
17.3.5.2 How it Works ........................................................................................181
17.3.5.3 Configuring Counter for PWM with Dead Time Mode ..........................181

17.3.6 Pulse-Width Modulation Pseudo Random Mode .................................................182
17.3.6.1 Block Diagram ......................................................................................182
17.3.6.2 How it Works ........................................................................................182
17.3.6.3 Configuring Counter for Pseudo Random PWM Mode ........................183

17.4 TCPWM Registers ................................................................................................................184

Section F: Analog System 185

Top Level Architecture ...................................................................................................................185

18. Precision Reference 187

18.1 Block Diagram ......................................................................................................................187
18.2 How it Works.........................................................................................................................188

18.2.1 Precision Bandgap...............................................................................................188
18.2.2 Trim Buffer ...........................................................................................................188
18.2.3 Low-Power Buffers...............................................................................................188
18.2.4 Leaf Cells .............................................................................................................189
18.2.5 V-CTAT Block.......................................................................................................189
18.2.6 IMO Reference Generator ...................................................................................189

18.3 Configuration ........................................................................................................................189

19. SAR ADC 191
19.1 Features................................................................................................................................191
19.2 Block Diagram ......................................................................................................................192
19.3 How it Works.........................................................................................................................193

19.3.1 SAR ADC Core ....................................................................................................193
19.3.1.1 Single-ended and Differential Mode .....................................................193
19.3.1.2 Input Range..........................................................................................193
19.3.1.3 Result Data Format ..............................................................................193
19.3.1.4 Negative Input Selection ......................................................................194



12 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

19.3.1.5 Resolution ............................................................................................194
19.3.1.6 Acquisition Time...................................................................................194
19.3.1.7 SAR ADC Clock ...................................................................................194
19.3.1.8 SAR ADC Timing .................................................................................195

19.3.2 SARMUX .............................................................................................................195
19.3.2.1 Analog Routing.....................................................................................195
19.3.2.2 Analog Interconnection ........................................................................196

19.3.3 SARREF ..............................................................................................................202
19.3.3.1 Reference Options ...............................................................................202
19.3.3.2 Bypass Capacitors ...............................................................................202
19.3.3.3 Input Range versus Reference ............................................................203

19.3.4 SARSEQ..............................................................................................................203
19.3.4.1 Averaging .............................................................................................204
19.3.4.2 Range Detection ..................................................................................204
19.3.4.3 Double Buffer .......................................................................................205
19.3.4.4 Injection Channel .................................................................................205

19.3.5 Interrupt ...............................................................................................................207
19.3.5.1 End-of-Scan Interrupt (EOS_INTR) .....................................................207
19.3.5.2 Overflow Interrupt.................................................................................207
19.3.5.3 Collision Interrupt .................................................................................207
19.3.5.4 Injection End-of-Conversion Interrupt (INJ_EOC_INTR) .....................207
19.3.5.5 Range Detection Interrupts ..................................................................207
19.3.5.6 Saturate Detection Interrupts ...............................................................207
19.3.5.7 Interrupt Cause Overview ....................................................................208

19.3.6 Trigger .................................................................................................................208
19.3.6.1 DSI Trigger Configuration ....................................................................208

19.3.7 SAR ADC Status..................................................................................................209
19.3.8 Low-Power Mode.................................................................................................209
19.3.9 System Operation................................................................................................209
19.3.10 Register Mode ..................................................................................................... 211

19.3.10.1 Set SARMUX Analog Routing..............................................................211
19.3.10.2 Set Global SARSEQ Configuration ......................................................211
19.3.10.3 Set Channel Configurations .................................................................212
19.3.10.4 Set Interrupt Masks ..............................................................................212
19.3.10.5 Trigger..................................................................................................213
19.3.10.6 Retrieve Data after Each Interrupt .......................................................213
19.3.10.7 Injection Conversions...........................................................................213

19.3.11 DSI Mode.............................................................................................................213
19.3.11.1 Set SARMUX Analog Routing..............................................................214
19.3.11.2 Set Global SARSEQ Configuration ......................................................215
19.3.11.3 Channel Configuration .........................................................................215
19.3.11.4 Interrupt................................................................................................215
19.3.11.5 Trigger..................................................................................................216
19.3.11.6 Retrieve Data .......................................................................................216

19.3.12 Analog Routing Configuration Example...............................................................216
19.3.13 Temperature Sensor Configuration......................................................................219

19.4 Registers ..............................................................................................................................220

20. Low-Power Comparator 221

20.1 Features ...............................................................................................................................221
20.2 Block Diagram ......................................................................................................................221
20.3 How It Works ........................................................................................................................222

20.3.1 Input Configuration ..............................................................................................222



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 13

20.3.2 Power Mode and Speed Configuration ................................................................222
20.3.3 Output and Interrupt Configuration ......................................................................222
20.3.4 Hysteresis ............................................................................................................222
20.3.5 Wakeup from Low-Power Modes.........................................................................222
20.3.6 Comparator Clock ................................................................................................222
20.3.7 Offset Trim ...........................................................................................................222

20.4 Register Summary ...............................................................................................................223

21. Continuous Time Block mini (CTBm) 225

21.1 Features................................................................................................................................225
21.2 Block Diagram ......................................................................................................................226
21.3 How It Works ........................................................................................................................226

21.3.1 Power Mode Configuration ..................................................................................226
21.3.2 Output Strength Configuration .............................................................................227
21.3.3 Compensation......................................................................................................227
21.3.4 Switch Control......................................................................................................227

21.3.4.1 Input Configuration ...............................................................................227
21.3.4.2 Output Configuration ............................................................................228
21.3.4.3 Comparator Mode ................................................................................229
21.3.4.4 Comparator Configuration ....................................................................229
21.3.4.5 Comparator Interrupt ............................................................................229

21.4 Register Summary ................................................................................................................230

22. LCD Direct Drive 231

22.1 Features................................................................................................................................231
22.2 LCD Segment Drive Overview..............................................................................................231

22.2.1 Drive Modes.........................................................................................................232
22.2.1.1 PWM Drive ...........................................................................................232
22.2.1.2 Digital Correlation.................................................................................237

22.2.2 Recommended Usage of Drive Modes ................................................................240
22.2.3 Digital Contrast Control........................................................................................240

22.3 Block Diagram ......................................................................................................................241
22.3.1 How it Works........................................................................................................241
22.3.2 High-Speed and Low-Speed Master Generators .................................................241
22.3.3 Multiplexer and LCD Pin Logic.............................................................................242
22.3.4 Display Data Registers ........................................................................................242

22.4 Register List .........................................................................................................................242

23. CapSense 243
23.1 Features................................................................................................................................243
23.2 Block Diagram ......................................................................................................................243
23.3 How It Works ........................................................................................................................244

23.3.1 CapSense CSD Sensing......................................................................................244
23.3.1.1 GPIO Cell Capacitance to Current Converter ......................................245
23.3.1.2 Switching Clock Generator...................................................................247
23.3.1.3 Sigma Delta Converter .........................................................................247
23.3.1.4 Analog Multiplexer................................................................................248

23.3.2 CapSense CSD Shielding....................................................................................248
23.3.2.1 CMOD Precharge.................................................................................249

24. Temperature Sensor 251
24.1 Features................................................................................................................................251
24.2 How it Works.........................................................................................................................251
24.3 Temperature Sensor Configuration ......................................................................................252



14 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

24.4 Algorithm ..............................................................................................................................253

Section G: Program and Debug 255

Top Level Architecture ...................................................................................................................255

25. Program and Debug Interface 257
25.1 Features ...............................................................................................................................257
25.2 Functional Description ..........................................................................................................257
25.3 Serial Wire Debug (SWD) Interface......................................................................................258

25.3.1 SWD Timing Details.............................................................................................259
25.3.2 ACK Details .........................................................................................................259
25.3.3 Turnaround (Trn) Period Details ..........................................................................259

25.4 Cortex-M0 Debug and Access Port (DAP) ...........................................................................259
25.4.1 Debug Port (DP) Registers..................................................................................260
25.4.2 Access Port (AP) Registers ................................................................................260

25.5 Programming the PSoC 4 Device.........................................................................................260
25.5.1 SWD Port Acquisition ..........................................................................................260

25.5.1.1 Primary and Secondary SWD Pin Pairs...............................................260
25.5.1.2  SWD Port Acquire Sequence..............................................................261

25.5.2 SWD Programming Mode Entry ..........................................................................261
25.5.3 SWD Programming Routines Executions............................................................261

25.6 PSoC 4 SWD Debug Interface .............................................................................................261
25.6.1 Debug Control and Configuration Registers ........................................................261
25.6.2 Breakpoint Unit (BPU) .........................................................................................262
25.6.3 Data Watchpoint (DWT).......................................................................................262
25.6.4 Debugging the PSoC 4 Device............................................................................262

26. Nonvolatile Memory Programming 263
26.1 Features ...............................................................................................................................263
26.2 Functional Description ..........................................................................................................263
26.3 System Call Implementation.................................................................................................263
26.4 Blocking and Non-Blocking System Calls.............................................................................264

26.4.1 Performing a System Call ....................................................................................264
26.5 System Calls.........................................................................................................................265

26.5.1 Silicon ID .............................................................................................................265
26.5.2 Load Flash Bytes.................................................................................................266
26.5.3 Write Row ............................................................................................................267
26.5.4 Program Row.......................................................................................................267
26.5.5 Erase All ..............................................................................................................268
26.5.6 Checksum............................................................................................................269
26.5.7 Write Protection ...................................................................................................269
26.5.8 Non-Blocking Write Row......................................................................................270
26.5.9 Non-Blocking Program Row ................................................................................271
26.5.10 Resume Non-Blocking.........................................................................................272

26.6 System Call Status ...............................................................................................................272
26.7 Non-Blocking System Call Pseudo Code .............................................................................273

Glossary 275

Index  291



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 15

Section A:   Overview

This section encompasses the following chapters:

■ Introduction chapter on page 17

■ Getting Started chapter on page 23

■ Document Construction chapter on page 25

Document Revision History

Revision Issue Date
Origin of 
Change

Description of Change

** 23 January, 2013 XKJ Initial release

*A 18 April, 2013 RLIU Extensive updates throughout the document



16 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 17

1.   Introduction

PSoC® 4 is the architecture of programmable embedded system controllers with an ARM® Cortex™-M0 CPU. PSoC 4 deliv-
ers a programmable platform for embedded applications. It combines programmable analog, programmable interconnect,
user-programmable digital logic, and commonly used fixed-function peripherals with a high-performance ARM Cortex-M0
subsystem. 

The PSoC 4100/4200 families are the first members of PSoC 4 architecture. They are upward compatible with larger mem-
bers of PSoC 4.

PSoC 4 devices have these characteristics:

■ High-performance Cortex-M0 CPU core

■ Fixed-function and configurable digital blocks 

■ Programmable digital logic 

■ High-performance analog system

■ Flexible and programmable interconnect

This document describes each function block of PSoC 4 devices in detail. This information will help designers to create sys-
tem-level designs. 



18 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Introduction

1.1 Top Level Architecture

Figure 1-1 shows the major components of the PSoC 4100 architecture. Figure 1-2 shows the architecture of the PSoC 4200
family.

Figure 1-1.  PSoC 4100 Family Block Diagram

PSoC 4100

32-bit

AHB-Lite 

CPU Subsystem

SRAM
Up to 4 kB

SRAM Controller

ROM
4 kB

ROM Controller

FLASH
Up to 32 kB

Read Accelerator

Deep Sleep
Hibernate

Active /Sleep

SWD

NVIC, IRQMX

Cortex
M0

24 MHz
FAST MUL

System Interconnect (Single Layer AHB)

IO Subsystem

36x GPIOs

IO
S

S
 G

P
IO

 (
5

x 
p

or
ts

)

Peripherals

System Resources

Power

Clock

WDT
ILO

Reset

Clock Control

DFT Logic
Test

IMO

DFT Analog

Sleep Control

PWRSYS
REF
POR LVD

NVLatches

BOD

WIC

Reset Control
XRES

Peripheral Interconnect (MMIO)PCLK

4x
 T

C
P

W
M

L
C

D

2x
 S

C
B

-I2
C

/S
P

I/U
A

R
T

2x
 L

P
 C

om
pa

ra
to

r

C
ap

se
ns

e
Port Interface & Digital System Interconnect (DSI)

Power Modes

CTBmSMX

SAR ADC
(12-bit)

x1

Programmable
Analog

x12x OpAmp

High Speed I/O Matrix



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 19

Introduction

Figure 1-2.  PSoC 4200 Family Block Diagram 

1.2 Features

PSoC 4100/4200 families have these major components:

■ 32-bit Cortex-M0 CPU with single-cycle multiply deliver-
ing up to 43 DMIPS at 48 MHz

■ Up to 32-KB flash and 4-KB SRAM

■ Four independent center-aligned pulse-width modulators 
(PWMs) with complementary dead-band programmable 
outputs and synchronized analog-to-digital converter 
(ADC) operation

■ Up to 1 Msps 12-bit ADC including sample-and-hold 
(S/H) capability with zero-overhead sequencing

■ Up to two opamps with comparator mode and succes-
sive approximation register (SAR) input buffering capa-
bility

■ Two low-power comparators

■ Two serial communication blocks (SCB) to work as SPI/
UART/I2C serial communication channels

■ Up to four programmable logic blocks, known as univer-
sal digital blocks (UDBs) 

■ CapSense® and segment LCD drive

■ Low-power operating modes: Sleep, Deep-Sleep, Hiber-
nate, and Stop

■ Programming and debug system through serial wire 
debug (SWD)

■ Fully supported PSoC Creator™ IDE tool

PSoC 4200

32-bit

AHB-Lite 

CPU Subsystem

SRAM
Up to 4 kB

SRAM Controller

ROM
4 kB

ROM Controller

FLASH
Up to 32 kB

Read Accelerator

Deep Sleep
Hibernate

Active /Sleep

SWD

NVIC, IRQMX

Cortex
M0

48 MHz
FAST MUL

System Interconnect (Single Layer AHB)

IO Subsystem

36x GPIOs

IO
S

S
 G

P
IO

 (
5

x 
p

or
ts

)

Peripherals

System Resources

Power

Clock

WDT
ILO

Reset

Clock Control

DFT Logic
Test

IMO

DFT Analog

Sleep Control

PWRSYS
REF
POR LVD

NVLatches

BOD

WIC

Reset Control
XRES

Peripheral Interconnect (MMIO)PCLK

4x
 T

C
P

W
M

L
C

D

2x
 S

C
B

-I2
C

/S
P

I/U
A

R
T

2x
 L

P
 C

om
pa

ra
to

r

C
ap

se
ns

e

Port Interface & Digital System Interconnect (DSI)

Programmable
Digital

x4

...UDB

Power Modes

CTBmSMX

SAR ADC
(12-bit)

x1

Programmable
Analog

x12x OpAmp

High Speed I/O Matrix

UDB



20 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Introduction

1.3 CPU System

1.3.1 Processor

The heart of the PSoC 4100/4200 is a 32-bit Cortex-M0
CPU core running up to 48 MHz for PSoC 4200 and 24 MHz
for PSoC 4100. It is optimized for low-power operation with
extensive clock gating. It uses 16-bit instructions and exe-
cutes a subset of the Thumb-2 instruction set. This enables
fully compatible binary upward migration of the code to
higher performance processors such as Cortex M3 and M4.

The PSoC 4100/4200 includes a hardware multiplier that
provides a 32-bit result in one cycle. 

1.3.2 Interrupt Controller

The CPU subsystem of PSoC 4100/4200 includes a nested
vectored interrupt controller (NVIC) with 32 interrupt inputs
and a wakeup interrupt controller (WIC), which can wake the
processor from deep-sleep mode. The Cortex-M0 CPU of
PSoC 4100/4200 implements an non-maskable interrupt
(NMI) input, which can be tied to digital routing for general-
purpose use.

1.4 Memory

The PSoC 4100/4200 memory subsystem consists of flash
and SRAM. A supervisory ROM, containing boot and config-
uration routines, is also provided. 

1.4.1 Flash

The PSoC 4100/4200 has a flash module with a flash accel-
erator tightly coupled to the CPU to improve average access
times from the flash block. The flash block is able to deliver
one wait-state (WS) access time at 48 MHz and zero WS
access time at 24 MHz. The flash accelerator delivers
85 percent of single-cycle SRAM access performance on an
average. Part of the flash module can be used to emulate
EEPROM operation optionally.

1.4.2 SRAM

The PSoC 4100/4200 provide SRAM, which is retained dur-
ing hibernate mode.

1.5 System-Wide Resources

1.5.1 Clocking System

The clock system for the PSoC 4100/4200 consists of the
internal main oscillator (IMO) and internal low-speed oscilla-

tor (ILO) as internal clocks and has provision for an external
clock.

The IMO with an accuracy of ±2 percent is the primary
source of internal clocking in the PSoC 4100/4200. The
default IMO frequency is 24 MHz and it can be adjusted
between 3 MHz and 48 MHz in steps of 1 MHz. Multiple
clock derivatives are generated from the main clock fre-
quency to meet various application needs.

The ILO is a low-power, less accurate oscillator and is used
to generate clocks for peripheral operation in deep-sleep
mode. Its clock frequency is 32 kHz with ±60 percent accu-
racy.

An external clock source ranging from 0 MHz to 48 MHz can
be pulled in to generate the clock derivatives for the
PSoC 4100/4200 functional blocks instead of the IMO. 

1.5.2 Power System

The PSoC 4100/4200 operates with a single external supply
over the range of 1.71 V to 5.5 V. PSoC 4100/4200 has sev-
eral low-power modes – sleep, deep-sleep, hibernate, and
stop modes – besides the default active mode. 

In active mode, CPU runs with all the logic powered. In
sleep, CPU does not run with the main clock stop. In deep-
sleep mode, the CPU, SRAM, and high-speed logic are in
retention; the main system clock is off while the low-fre-
quency clock is on and the low-frequency peripherals are in
operation. In hibernate mode, even the low-frequency clock
is off and low-frequency peripherals stop operating.

Multiple internal regulators are available in the system to
support power supply schemes in different power modes.

1.5.3 GPIO

Every GPIO in PSoC 4100/4200 has the following charac-
teristics:

■ Eight drive strength modes

■ Individual control of input and output disables

■ Hold mode for latching previous state 

■ Selectable slew rates 

■ Interrupt generation: edge triggered

■ CapSense and LCD drive support

The pins are organized in ports of 8-bit width. A high-speed
I/O matrix is used to multiplex between various signals that
may connect to an I/O pin. Pin locations for fixed-function
peripherals are also fixed. 



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 21

Introduction

1.6 Programmable Digital

The PSoC 4200 has up to four UDBs. Each UDB contains
structured data-path logic and uncommitted PLD logic with
flexible interconnect. The UDB array provides a switched
routing fabric called the Digital System Interconnect (DSI).
The DSI allows routing of signals from peripherals and ports
to and within the UDBs. 

The UDB arrays in PSoC 4200 enable custom logic or addi-
tional timers/PWMs and communication interfaces such as
I2C, SPI, I2S, and UART.

Note PSoC 4100 does not support UDBs.

1.7 Fixed-Function Digital

1.7.1 Timer/Counter/PWM Block

The Timer/Counter/PWM block consists of four 16-bit coun-
ters with user-programmable period length. The functionality
of these counters can be synchronized. Each block has a
capture register, period register, and compare registers. The
block supports complementary dead-band programmable
outputs. It also has a Kill input to force outputs to a predeter-
mined state. Other features of the block include center-
aligned PWM, clock pre-scaling, pseudo random PWM, and
quadrature decoding.

1.7.2 Serial Communication Blocks

The PSoC 4100/4200 has two SCBs, which can each imple-
ment a serial communication interface as I2C, universal
asynchronous receiver/transmitter (UART), or serial periph-
eral interface (SPI).

The features for each SCB include:

■ Standard I2C multi-master and slave function.

■ Standard SPI master and slave function with Motorola, 
TI, and National (MicroWire) mode.

■ Standard UART transmitter and receiver function with 
SmartCard reader (ISO7816), IrDA protocol, and LIN.

■ EZ function mode support for SPI and I2C with 32-byte 
buffer.

1.8 Analog System

1.8.1 SAR ADC

PSoC 4200 has a configurable 12-bit 1-Msps SAR ADC and
PSoC 4100 has a similar 12-bit SAR ADC with 806 ksps.
With a gain error of ±0.1 percent, integral nonlinearity (INL)
less than 1 LSB, differential nonlinearity (DNL) less than 1

LSB, and signal-to-noise ratio (SNR) better than 68 dB, this
convertor addresses a wide variety of analog applications. 

The ADC provides the choice of three internal voltage refer-
ences (VDD, VDD/2, and VREF) and an external reference
through a GPIO pin. The SAR is connected to a fixed set of
pins through an 8-input sequencer. The sequencer can buf-
fer each channel to reduce CPU interrupt service require-
ments. 

1.8.2 Continuous Time Block mini 
(CTBm)

The CTBm block provides continuous time functionality at
the entry and exit points of the analog subsystem. The
CTBm has two highly configurable and high-performance
opamps with a switch routing matrix. The opamps can also
work in comparator mode. 

The block allows open-loop opamp, linear buffer, and com-
parator functions to be performed without external compo-
nents. PGAs, voltage buffers, filters, and trans-impedance
amplifiers can be realized with external components used. 

1.8.3 Low-power Comparators 

The PSoC 4100/4200 has a pair of low-power comparators,
which operate in deep-sleep and hibernate modes. This
allows the analog system blocks to be disabled while retain-
ing the ability to monitor external voltage levels during low-
power modes. 

Two input voltages can both come from pins, or one from an
internal signal through the AMUXBUS.

1.9 Special Function Peripherals

1.9.1 LCD Segment Drive

The PSoC 4100/4200 has an LCD controller, which can
drive up to four commons and every GPIO can be config-
ured to drive common or segment. It uses full digital meth-
ods (digital correlation and PWM) to drive the LCD
segments, and does not require generation of internal LCD
voltages. 

1.9.2 CapSense

PSoC 4100/4200 devices has the CapSense feature, which
allows you to use the capacitive properties of your fingers to
toggle buttons, sliders, and wheels. CapSense functionality
is supported on all GPIO pins in PSoC 4100/4200 through a
CapSense Sigma-Delta (CSD) block. The CSD also pro-
vides waterproofing capability. The CapSense block has two



22 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Introduction

IDACs, which can be used for general purposes if
CapSense is not used.

1.10 Program and Debug

PSoC 4100/4200 devices support programming and debug
features of the device via the on-chip SWD interface. The
PSoC Creator IDE software provides fully integrated pro-
gramming and debug support for PSoC 4100/4200 devices.
The SWD interface is also fully compatible with industry
standard third-party tools.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 23

2.   Getting Started

2.1 Support

Free support for PSoC® 4 products is available online at http://www.cypress.com. Resources include Training Seminars, Dis-
cussion Forums, Application Notes, PSoC Consultants, CRM Technical Support Email, Knowledge Base, and Application
Support Technicians.

For application assistance, visit http://www.cypress.com/support/ or call 1-800-541-4736.

2.2 Product Upgrades

Cypress provides scheduled upgrades and version enhancements for PSoC Creator free of charge. Upgrades are available
from your distributor on CD-ROM; you can also download them directly from http://www.cypress.com in the Software Down-
loads option. Critical updates to system documentation are also provided in the Documentation section.

2.3 Development Kits

Development kits are available from Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store contains development kits,
C compilers, and the accessories you need to successfully develop PSoC projects. Go to the Cypress Online Store website at
http://www.cypress.com/shop/. Under Product Category, click Programmable System-on-Chip to view a current list of avail-
able items.

http://www.cypress.com
http://www.cypress.com/support/
http://www.cypress.com
http://www.cypress.com/shop/


24 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Getting Started



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 25

3.   Document Construction

The following sections in this document include these topics:

■ Section B: CPU System on page 29

■ Section C: Memory System on page 45

■ Section D: System-Wide Resources on page 49

■ Section E: Digital System on page 89

■ Section F: Analog System on page 185

■ Section G: Program and Debug on page 255

3.1 Major Sections

For ease of use, information is organized into sections and chapters that are divided according to device functionality.

■ Section – Presents the top-level architecture, how to get started, and conventions and overview information about any 
particular area that inform the reader about the construction and organization of the product.

■ Chapter – Presents the chapters specific to an individual aspect of the section topic. These are the detailed implementa-
tion and use information for some aspect of the integrated circuit.

■ Glossary – Defines the specialized terminology used in this technical reference manual. Glossary terms are presented in 
bold, italic font throughout.

■ PSoC® 4 Registers Technical Reference Manual – Supply all device register details summarized in the technical refer-
ence manual. These are additional documents. 

3.2 Documentation Conventions 

This document uses only four distinguishing font types, besides those found in the headings.

■ The first is the use of italics when referencing a document title or file name.

■ The second is the use of bold italics when referencing a term described in the Glossary of this document.

■ The third is the use of Times New Roman font, distinguishing equation examples.

■ The fourth is the use of Courier New font, distinguishing code examples.

3.2.1 Register Conventions

Register conventions are detailed in the PSoC® 4 Registers Technical Reference Manual.

3.2.2 Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or
‘3Ah’) and hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an
appended lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimal.



26 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Document Construction

3.2.3 Units of Measure

This table lists the units of measure used in this document.

3.2.4 Acronyms

This table lists the acronyms that are used in this document

Table 3-1.  Units of Measure

Symbol Unit of Measure

°C degrees Celsius

dB decibels

fF femtofarads

Hz Hertz

k kilo, 1000

K kilo, 2^10

KB 1024 bytes, or approximately one thousand bytes

Kbit 1024 bits

kHz kilohertz (32.000)

k kilohms

MHz megahertz

M megaohms

µA microamperes

µF microfarads

µs microseconds

µV microvolts

µVrms microvolts root-mean-square

mA milliamperes

ms milliseconds

mV millivolts

nA nanoamperes

ns nanoseconds

nV nanovolts

 ohms

pF picofarads

pp peak-to-peak

ppm parts per million

SPS samples per second

 sigma: one standard deviation

V volts

Table 3-2.  Acronyms 

Symbol Unit of Measure

ABUS analog output bus

AC alternating current

ADC analog-to-digital converter

AHB
AMBA (advanced microcontroller bus architecture) high-
performance bus, an ARM data transfer bus

API application programming interface

APOR analog power-on reset

BC broadcast clock

BOM bill of materials

BR bit rate

BRA bus request acknowledge

BRQ bus request

CAN controller area network

CI carry in

CMP compare

CO carry out

CPU central processing unit

CRC cyclic redundancy check

CT continuous time

DAC digital-to-analog converter

DC direct current

DI digital or data input

DMA direct memory access

DMAC direct memory access controller

DNL differential nonlinearity

DO digital or data output

DSI digital signal interface

ECO external crystal oscillator

EEPROM electrically erasable programmable read only memory

EMIF external memory interface

FB feedback

FIFO first in first out

FSR full scale range

GPIO general purpose I/O

I2C inter-integrated circuit

IDE integrated development environment

ILO internal low-speed oscillator

IMO internal main oscillator

INL integral nonlinearity

I/O input/output

IOR I/O read

IOW I/O write

IRES initial power on reset

IRA interrupt request acknowledge

IRQ interrupt request

ISR interrupt service routine

IVR interrupt vector read

LRb last received bit

LRB last received byte

LSb least significant bit

LSB least significant byte

LUT lookup table

MISO master-in-slave-out

MMIO memory mapped input/output

MOSI master-out-slave-in

Table 3-2.  Acronyms  (continued)

Symbol Unit of Measure



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 27

Document Construction

MSb most significant bit

MSB most significant byte

PC program counter

PCH program counter high

PCL program counter low

PD power down

PGA programmable gain amplifier

PHUB peripheral hub

PICU port interrupt control unit

PM power management

PMA PSoC memory arbiter

POR power-on reset

PPOR precision power-on reset

PRS pseudo random sequence

PSoC® Programmable System-on-Chip

PSRR power supply rejection ratio

PSSDC power system sleep duty cycle

PWM pulse-width modulator

RAM random-access memory

RETI return from interrupt

ROM read only memory

RW read/write

SAR successive approximation register

SC switched capacitor

SCB serial communication block

SIE serial interface engine

SIO special I/O

SE0 single-ended zero

SNR signal-to-noise ratio

SOF start of frame

SOI start of instruction

SP stack pointer

SPD sequential phase detector

SPI serial peripheral interconnect

SPIM serial peripheral interconnect master

SPIS serial peripheral interconnect slave

SRAM static random-access memory

SROM supervisory read only memory

SSADC single slope ADC

SSC supervisory system call

SWD single wire debug

TC terminal count

TD transaction descriptors

UART universal asynchronous receiver/transmitter

UDB universal digital block

USB universal serial bus

Table 3-2.  Acronyms  (continued)

Symbol Unit of Measure

USBIO USB I/O

WDT watchdog timer

WDR watchdog reset

XRES_N external reset, active low

Table 3-2.  Acronyms  (continued)

Symbol Unit of Measure



28 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Document Construction



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 29

Section B: CPU System

This section encompasses the following chapters:

■ Cortex-M0 CPU chapter on page 31

■ Interrupts chapter on page 37

Top Level Architecture

CPU System Block Diagram

SWD/TC

Cortex-M0
48 MHz (PSoC 4200)
24 MHz (PSoC 4100)

NVIC, IRQMX

System Interconnect (Single Layer AHB)



30 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 31

4.   Cortex-M0 CPU

The PSoC® 4 ARM Cortex-M0 core is a 32-bit CPU optimized for low-power operation. It has an efficient three-stage pipeline,
a fixed 4-GB memory map, and supports the ARMv6-M Thumb instruction set. The Cortex-M0 also features a single-cycle
multiply instruction and low-latency interrupt service routine (ISR) entry and exit.

The Cortex-M0 processor includes a number of other components that are tightly linked to the CPU core. These include a
Nested Vectored Interrupt Controller (NVIC), a SYSTICK timer, and debug.

This section gives an overview of the Cortex-M0 processor. For more details, see the ARM Cortex-M0 user guide or technical
reference manual, both available at http://www.arm.com.

4.1 Features
The PSoC 4 Cortex-M0 has the following features:

■ Easy to use, program and debug, ensuring easier migration from 8- and 16-bit processors

■ Operates at up to 0.9 DMIPS/MHz; this helps to increase execution speed or reduce power

■ Supports Thumb instruction set, for improved code density, ensuring efficient use of memory

■ NVIC unit to support interrupts and exceptions, for rapid and deterministic interrupt response

■ Extensive debug support including:

❐ Serial wire debug (SWD) port

❐ Break points

❐ Watch points

http://www.arm.com


32 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Cortex-M0 CPU

4.2 Block Diagram
Figure 4-1.  PSoC 4 CPU Subsystem Block Diagram

4.3 How It Works
The Cortex-M0 is a 32-bit processor with a 32-bit data path, 32-bit registers, and a 32-bit memory interface. It supports most
16-bit instructions in the Thumb instruction set and some 32-bit instructions in the Thumb-2 instruction set.

The processor supports two operating modes, and has a single cycle 32-bit multiplication instruction.

4.3.1 Registers

The Cortex-M0 has 16 32-bit registers, as Table 4-1 shows:

■ R0 to R12 – General-purpose registers. R0 to R7 can be accessed by all instructions; the other registers can be accessed 
by a subset of the instructions.

■ R13 – Stack pointer (SP). There are two stack pointers, with only one available at a time. In Thread mode, the CONTROL 
register indicates the stack pointer to use, Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

■ R14 – Link register. Stores the return program counter during function calls.

■ R15 – Program counter. This register can be written to control program flow.

ARM Cortex-M0 CPU

System Interconnect

Flash 
Accelerator

SRAM 
Controller

SROM 
Controller

DAP

CPU Subsystem 

Flash SRAM SROM

System 
Interconnect 

(Single Layer AHB)

Test 
Controller

Fi
xe

d
 I

n
te

rr
u

p
ts

D
S

I 
In

te
rr

u
p

ts
Flash 

Programming 
Interface

CPU and Memory 
Subsystem

Interrupt
MUX



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 33

Cortex-M0 CPU

Table 4-2 shows how the PSR bits are assigned.

Table 4-1.  Cortex-M0 Registers

Name Typea

a. Describes access type during program execution in thread mode and handler mode. Debug access can differ.

Reset Value Description

R0-R12 RW Unknown R0-R12 are 32-bit general-purpose registers for data operations.

MSP

RW [0x00000000]

The stack pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indi-
cates the stack pointer to use:

0 = Main stack pointer (MSP). This is the reset value.

1 = Process stack pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

PSP

LR RW Unknown
The link register (LR) is register R14. It stores the return information for subroutines, function 
calls, and exceptions.

PC RW [0x00000004]
The program counter (PC) is register R15. It contains the current program address. On reset, 
the processor loads the PC with the value from address 0x00000004. Bit[0] of the value is 
loaded into the EPSR T-bit at reset and must be 1.

PSR RW Unknownb

b. Bit[24] is the T-bit and is loaded from bit[0] of the reset vector.

The program status register (PSR) combines:

Application Program Status Register (APSR)

Execution Program Status Register (EPSR).

Interrupt Program Status Register (IPSR).

APSR RW Unknown
The APSR contains the current state of the condition flags, from previous instruction execu-
tions.

EPSR RO Unknownb The EPSR contains the Thumb state bit.

IPSR RO 0 The IPSR contains the exception number of the current ISR.

PRIMASK RW 0 The PRIMASK register prevents activation of all exceptions with configurable priority.

CONTROL RW 0 The CONTROL register controls the stack used when the processor is in Thread mode.

Table 4-2.  Cortex-M0 PSR Bit Assignments

Bit
PSR 

Register
Name Usage

31 APSR N Negative flag

30 APSR Z Zero flag

29 APSR C Carry or borrow flag

28 APSE V Overflow flag

27 – 25 Reserved

24 EPSR T
Thumb state bit. Must always be 1. Attempting to execute instructions when the T bit is 0 
results in a HardFault exception.

23 – 6 Reserved

5 – 0 IPSR n/a

Exception number of current ISR:

0 = thread mode
1 = reserved
2 = NMI
3 = HardFault
4 – 10 = reserved
11 = SVCall
12, 13 = reserved
14 = PendSV
15 = SysTick
16 = IRQ0
…
47 = IRQ31



34 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Cortex-M0 CPU

Use the MSR or CPS instruction to set or clear bit 0 of the
PRIMASK register. If the bit is 0, exceptions are enabled. If
the bit is 1, all exceptions with configurable priority, that is,
all exceptions except HardFault, NMI, and Reset, are dis-
abled. See the Interrupts chapter on page 37 for a list of
exceptions.

4.3.2 Operating Modes

The Cortex-M0 processor supports two operating modes:

■ Thread Mode – used by all normal applications. During 
the thread mode, the MSP or PSP can be used. The 
CONTROL register bit 1 determines which stack pointer 
is used:

❐ 0 = MSP is the current stack pointer

❐ 1 = PSP is the current stack pointer

■ Handler Mode – used to execute exception handlers. 
The MSP is always used.

In thread mode, use the MSR instruction to set the stack
pointer bit in the CONTROL register. When changing the
stack pointer, use an ISB instruction immediately after the
MSR instruction. This ensures that instructions after the ISB
execute using the new stack pointer.

In handler mode, explicit writes to the CONTROL register
are ignored, because the MSP is always used. The excep-
tion entry and return mechanisms automatically update the
CONTROL register.

4.3.3 Instruction Set

The Cortex-M0 implements a version of the Thumb instruc-
tion set. For details, see the Cortex-M0 Generic User Guide.

An instruction operand can be an ARM register, a constant,
or another instruction-specific parameter. Instructions act on
the operands and often store the result in a destination reg-
ister. Many instructions are unable to use, or have restric-
tions on whether you can use, the PC or SP for the
operands or destination register. 

Table 4-3.  Thumb Instruction Set

Mnemonic Brief Description

ADCS Add with Carry

ADD{S} Add

ADR PC-relative Address to Register

ANDS Bit wise AND

ASRS Arithmetic Shift Right

B{cc} Branch {conditionally}

BICS Bit Clear

BKPT Breakpoint

BL Branch with Link

BLX Branch indirect with Link

BX Branch indirect

CMN Compare Negative

CMP Compare

CPSID
Change Processor State, Disable Inter-
rupts

CPSIE
Change Processor State, Enable Inter-
rupts

DMB Data Memory Barrier

DSB Data Synchronization Barrier

EORS Exclusive OR

ISB Instruction Synchronization Barrier

LDM Load Multiple registers, increment after

LDR Load Register from PC-relative address

LDRB Load Register with word

LDRH Load Register with half-word

LDRSB Load Register with signed byte

LDRSH Load Register with signed half-word

LSLS Logical Shift Left

LSRS Logical Shift Right

MOV{S} Move

MRS
Move to general register from special 
register

MSR
Move to special register from general 
register

MULS Multiply, 32-bit result

MVNS Bit wise NOT

NOP No Operation

ORRS Logical OR

POP Pop registers from stack

PUSH Push registers onto stack

REV Byte-Reverse word

REV16 Byte-Reverse packed half-words

REVSH Byte-Reverse signed half-word

RORS Rotate Right

RSBS Reverse Subtract

SBCS Subtract with Carry

SEV Send Event

STM Store Multiple registers, increment after

STR Store Register as word

STRB Store Register as byte

STRH Store Register as half-word

SUB{S} Subtract

SVC Supervisor Call

SXTB Sign extend byte

SXTH Sign extend half-word

TST Logical AND based test

Table 4-3.  Thumb Instruction Set

Mnemonic Brief Description



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 35

Cortex-M0 CPU

4.3.3.1 Address Alignment

An aligned access is an operation where a word-aligned
address is used for a word or multiple word access, or
where a half word-aligned address is used for a half word
access. Byte accesses are always aligned.

No support is provided for unaligned accesses on the Cor-
tex-M0 processor. Any attempt to perform an unaligned
memory access operation results in a HardFault exception.

4.3.3.2 Memory Endianness

The PSoC 4 Cortex-M0 uses little-endian format, where the
least-significant byte of a word is stored at the lowest
address and the most significant byte is stored at the high-
est address.

4.3.4 Systick Timer

The Systick timer is integrated with the NVIC and generates
the SYSTICK interrupt. This interrupt can be used for task
management in a real-time system. The timer has a reload
register with 24 bits available to use as a countdown value.
The Systick timer uses the Cortex-M0 internal clock as a
source.

4.3.5 Debug

PSoC 4 contains a debug interface based on SWD; it fea-
tures four breakpoint (address) comparators and two watch-
point (data) comparators.

UXTB Zero extend a byte

UXTH Zero extend a half-word

WFE Wait For Event

WFI Wait For Interrupt

Table 4-3.  Thumb Instruction Set

Mnemonic Brief Description



36 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Cortex-M0 CPU



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 37

5.   Interrupts

The ARM Cortex-M0 (CM0) CPU in PSoC® 4 supports interrupts and exceptions. Interrupts refer to those events generated
by peripherals external to the CPU such as timers, analog-to-digital converters, and port pin signals. Exceptions refer to those
events that are generated by the CPU such as memory access faults and internal system timer events. Both interrupts and
exceptions result in the current program flow being stopped and the handler (or interrupt service routine) corresponding to the
interrupt/exception being executed by the CPU. PSoC 4 provides a unified exception vector table for both interrupt handlers
and exception handlers.

5.1 Features
PSoC 4 supports the following interrupt features:

■ Supports 32 interrupts

■ NVIC integrated with CPU core, yielding low interrupt latency

■ Vector table may be placed in either flash or SRAM

■ Configurable priority levels from 0 to 3 for each interrupt

■ Two sources for each interrupt: fixed-function or a flexible on-chip digital signal

■ Level-triggered and pulse-triggered interrupt signals

5.2 How It Works
Figure 5-1.  PSoC 4 Interrupts Block Diagram

Figure 5-1 shows the interaction between interrupt signals and the Cortex-M0 CPU. PSoC 4 has 32 interrupts; these interrupt
signals are processed by the NVIC. The NVIC takes care of enabling/disabling individual interrupts, priority resolution, and
communication with the CPU core. The exceptions are not shown in Figure 5-1 because they are part of CM0 core generated
events, unlike interrupts, which are generated by peripherals external to the CPU.

5.3 Interrupts and Exceptions - Operation

5.3.1 Interrupt/Exception Handling in PSoC 4

This section explains the sequence of events that happen when an interrupt or exception event is triggered. Assuming that all
the interrupt signals are initially low (idle or inactive state) and the processor is executing the main code, a rising edge on any
one of the interrupt lines is registered by the NVIC. The interrupt line is now in a pending state waiting to be serviced by the

Nested 
Vectored 
Interrupt 

Controller 
(NVIC)

Cortex-M0 
Processor Core

IRQ0

 

Cortex-M0 Processor

IRQ1

IRQ31

Interrupt 
signals from 

PSoC 4 on-chip 
peripherals



38 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Interrupts

CPU. On detecting the interrupt request signal from the
NVIC, the CPU stores its current context by pushing the
contents of the CPU registers onto the stack. The CPU also
receives the exception number of the triggered interrupt
from the NVIC. All interrupts and exceptions in PSoC 4 have
a unique exception number, as given in Table 5-1. By using
this exception number, the CPU fetches the address of the
specific exception handler from the vector table. The CPU
then branches to this address and executes the exception
handler that follows. Upon completion of the exception han-
dler, the CPU registers are restored to their original state
using stack pop operations, and the CPU resumes the main
code execution.

When the NVIC receives an interrupt request while another
interrupt is being serviced, or receives multiple interrupt
requests at the same time, it evaluates the priority of all
these interrupts, sending the exception number of the high-
est priority interrupt to the CPU. Thus, a higher priority inter-
rupt can preempt the execution of a lower priority interrupt
handler at any time. 

Exceptions are handled in the same way that interrupts are
handled. Each exception event has a unique exception num-
ber, which is used by the CPU to execute the appropriate
exception handler.

5.3.2 Level and Pulse Interrupts

PSoC 4 NVIC supports both level and pulse signals on the
interrupt lines (IRQ0 to IEQ31). The classification of an inter-
rupt as level or pulse is based on the interrupt source.

Figure 5-2.  Level Interrupts

Figure 5-3.  Pulse Interrupts 

Figure 5-2 and Figure 5-3 show the working level and pulse
interrupts, respectively. Assuming the interrupt signal is ini-
tially inactive (logic low), the following sequence of events
explains the handling of level and pulse interrupts: 

■ On a rising edge event of the interrupt signal, the NVIC 
registers the interrupt request. The interrupt is now in the 
pending state, which means the interrupt requests have 
not yet been serviced by the CPU.

■ The NVIC then sends the exception number along with 
the interrupt request signal to the CPU. When the CPU 
starts executing the ISR, the pending state of the inter-
rupt is cleared.

■ When the ISR is being executed by the CPU, one or 
more rising edges of the interrupt signal are logged as a 
single pending request. The pending interrupt is serviced 
again after the current ISR execution is complete (see 
Figure 5-3 for pulse interrupts).

■ If the interrupt signal is still high after completing the ISR, 
it will be pending and the ISR is executed again. 
Figure 5-2 illustrates this for level triggered interrupts, 
where the ISR is executed as long as the interrupt signal 
is high.

5.3.3 Exception Vector Table

The exception vector table (Table 5-1), stores the entry point
addresses for all exception handlers in PSoC 4. The CPU
fetches the appropriate address based on exception num-
ber. 

IRQn

CPU 
Execution 

State main
ISR ISR

main
ISR

main

IRQn is still high

IRQn

CPU 
Execution 

State main
ISR

main
ISR

main
ISR

Table 5-1.  PSoC 4 Exception Vector Table

Exception Number Exception Exception Priority Vector Address

Initial Stack Pointer Value Not Applicable (NA)
Base_Address - Can be 0x00000000 (start of flash mem-
ory) or 0x20000000 (start of SRAM)

1 Reset –3, the highest priority Base_Address + 0x04

2 Non Maskable Interrupt  (NMI) –2 Base_Address + 0x08

3 HardFault –1 Base_Address + 0x0C

4-10 Reserved NA Base_Address + 0x10 - Base_Address + 0x28

11 Supervisory Call (SVCall) Configurable (0 - 3) Base_Address + 0x2C

12-13 Reserved NA Base_Address + 0x30 - Base_Address + 0x34

14 PendSupervisory (PendSV) Configurable (0 - 3) Base_Address + 0x38 

15 System Timer (SysTick) Configurable (0 - 3) Base_Address + 0x3C

16 External Interrupt(IRQ0) Configurable (0 - 3) Base_Address + 0x40

… … Configurable (0 - 3) …

47 External Interrupt(IRQ31) Configurable (0 - 3) Base_Address + 0xBC



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 39

Interrupts

In Table 5-1, the first word (4-bytes) is not marked as excep-
tion number zero. This is because the first word in the
exception table is used to initialize the main stack pointer
(MSP) value on device reset; it is not considered as an
exception. In PSoC 4, the vector table can be configured to
be located either in flash memory (starting from address
0x00000000) or SRAM (address of 0x20000000). This con-
figuration is done by writing to the VECS_IN_RAM bit field
(bit 0) in the CPUSS_CONFIG register. When
VECS_IN_RAM bit field is ‘1’, CPU fetches for exception
handler addresses are done from the SRAM vector table
location. When this bit field is ‘0’ (reset state), the vector
table in flash memory is used for exception address fetches.
You must set the VECS_IN_RAM bit field as part of the
device boot code to configure the vector table to be in
SRAM. The advantage of moving the vector table to SRAM
is that the exception handler addresses can be dynamically
changed by modifying the SRAM vector table contents.
However, the nonvolatile flash memory vector table must be
modified by a flash memory write.

The exception sources (exception numbers 1 to 15) are
explained in 5.4 Exception Sources. The exceptions marked
as Reserved in Table 5-1 are not used in PSoC 4, though
they have addresses reserved for them in the vector table.
The interrupt sources (exception numbers 16 to 47) are
explained in 5.5 Interrupt Sources.

5.4 Exception Sources
This section explains the different exception sources listed
in Table 5-1 (exception numbers 1 to 15).

5.4.1 Reset Exception

Device reset is treated as an exception in PSoC 4. It is per-
manently enabled with a fixed priority of –3, the highest pri-
ority exception. A device reset can occur due to multiple
reasons, such as power-on-reset (POR), external reset sig-
nal on XRES pin, and watchdog reset. When the device is
reset, the initial boot code for configuring the device is exe-
cuted out of supervisory read-only memory (SROM). The
SROM has the vector address of the reset exception, which
is an address in the SROM itself. This address is the starting
address of the initial boot up code executed out of SROM.
The boot code and other data in SROM memory are pro-
grammed by Cypress, and are not read/write accessible to
external users. After completing the SROM boot sequence,
the CPU code execution jumps to flash memory. Flash
memory address 0x00000004 (Exception#1 in Table 5-1)
stores the location of the startup code in flash memory. The
CPU starts executing code out of this address. Note that the
reset exception address in SRAM vector table will never be
used because the device comes out of reset with the flash
vector table selected. The register configuration to select the
SRAM vector table can be done only as part of the startup
code in flash after the reset is deasserted.

5.4.2 Non-Maskable Interrupt (NMI) 
Exception

Non-maskable interrupt (NMI) is the highest priority excep-
tion other than reset. It is permanently enabled with a fixed
priority of –2. There are three ways to trigger an NMI excep-
tion in PSoC 4:

■ NMI exception due to a hardware signal (user NMI 
exception): PSoC 4 provides a provision to trigger NMI 
exception using a digital signal. This digital signal is 
referred to as irq_out[0] in Table 5-2. The flexible digital 
signal interconnect structure in PSoC 4 ensures that the 
irq_out[0] line can be driven by any of the digital outputs 
of on-chip peripherals, or external port pin signals. The 
NMI exception triggered due to irq_out[0] will execute 
the NMI handler pointed to by the active vector table 
(flash or SRAM vector table).

■ NMI exception by setting NMIPENDSET bit (user NMI 
exception): NMI exception can be triggered in software 
by setting the NMIPENDSET bit in the interrupt control 
state register (CM0_ICSR register). Setting this bit will 
execute the NMI handler pointed to by the active vector 
table (flash or SRAM vector table).

■ System Call NMI exception: This exception is used for 
nonvolatile programming operations in PSoC 4 such as 
flash write operation and flash checksum operation. It is 
triggered by setting the SYSCALL_REQ bit in the 
CPUSS_SYSREG register. An NMI exception triggered 
by SYSCALL_REQ bit always executes the NMI excep-
tion handler code that resides in SROM – the flash or 
SRAM exception vector table is not used for system call 
NMI exception. The NMI handler code in SROM is not 
read/write accessible because it contains nonvolatile 
programming routines that should not be modified by the 
user.

5.4.3 HardFault Exception

HardFault is an always-enabled exception that occurs
because of an error during normal or exception processing.
HardFault has a fixed priority of –1, meaning it has higher
priority than any exception with configurable priority. Hard-
Fault exception is a catch-all exception for different types of
fault conditions, which include executing an undefined
instruction and accessing an invalid memory addresses.
The CM0 CPU does not provide fault status information to
the HardFault exception handler, but it does permit the han-
dler to perform an exception return and continue execution
in cases where software has the ability to recover from the
fault situation.

5.4.4 Supervisor Call (SVCall) Exception

Supervisor Call (SVCall) is an always-enabled exception
caused when the CPU executes the SVC instruction as part
of the application code. Application software uses the SVC
instruction to make a call to an underlying operating system.
This is called a supervisor call. The SVC instruction enables
the application to issue a supervisor call that requires privi-



40 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Interrupts

leged access to the system. Note that the CM0 in PSoC 4
uses a proprietary privileged mode for the system call NMI
exception, which is not related to the SVCall exception.
There is no other privileged mode support for SVCall at the
architecture level in PSoC 4. The application developer must
define the SVCall exception handler according to the end
application requirements.

The priority of a SVCall exception can be configured to a
value between 0 and 3 by writing to the two bits [31:30] of
the System Handler Priority Register 2 (SHPR2). When the
SVC instruction is executed, the SVCall exception enters the
pending state and waits to be serviced by the CPU. The
SVCALLPENDED bit in the System Handler Control and
State Register (SHCSR) can be used to check or modify the
pending status of the SVCall exception.

5.4.5 PendSV Exception

PendSV is another supervisor call related exception similar
to SVCall. PendSV is permanently enabled and its priority is
configurable. The PendSV exception is triggered by setting
the PENDSVSET bit in the Interrupt Control State Register,
CM0_ICSR. On setting this bit, the PendSV exception
enters the pending state, and waits to be serviced by the
CPU. The pending state of a PendSV exception can be
cleared by setting the PENDSVCLR bit in the Interrupt Con-
trol State Register, CM0_ICSR. The priority of a PendSV
exception can be configured to a value between 0 and 3 by
writing to the two bits [23:22] of the System Handler Priority
Register 3 (SHPR3).

5.4.6 SysTick Exception

CM0 CPU in PSoC 4 supports a system timer, referred to as
SysTick, as part of its internal architecture. SysTick provides
a simple, 24-bit decrementing counter for various time keep-
ing purposes such as RTOS tick timer, high-speed alarm
timer, or simple counter. The SysTick timer can be config-
ured to generate an interrupt when its count value reaches
zero, which is referred to as SysTick Exception. The excep-
tion is enabled by setting the TICKINT bit in the SysTick
Control and Status Register (CM0_SYST_CSR). The priority
of a SysTick exception can be configured to a value
between 0 and 3 by writing to the two bits [31:30] of the Sys-
tem Handler Priority Register 3 (SHPR3). The SysTick
exception can always be generated in software at any
instant by writing a one to the PENDSTSET bit in the Inter-
rupt Control State Register, CM0_ICSR. Similarly, the pend-
ing state of the SysTick exception can be cleared by writing
a one to the PENDSTCLR bit in the Interrupt Control State
Register, CM0_ICSR.

5.5 Interrupt Sources
PSoC 4 supports 32 interrupts (IRQ0 - IRQ31 or exception
numbers 16 - 47) from peripherals. The source of each inter-
rupt is listed in Table 5-2. PSoC 4 provides flexible sourcing
options for each of the 32 interrupt lines. Figure 5-4 shows
the multiplexing options for interrupt source. Each interrupt
has two sources: a fixed-function interrupt source and a DSI
interrupt source. The CPUSS_INTR_SELECT register is
used to select between these sources. 

Figure 5-4.  Interrupt Source Multiplexing

Note The DSI interrupt signal naming (irq_out[n]) is not
readily accessible, but the PSoC Creator IDE simplifies the
task by doing the routing of the digital signals through the
DSI interrupt path. You do not need to manually configure
the DSI path. 

The fixed-function interrupts include standard interrupts from
the on-chip peripherals such as PWMs, serial communica-
tion blocks, ADC, and power manager. The fixed-function
interrupt generated is usually the logical OR of the different
peripheral states. The peripheral status register should be
read in the ISR to detect which condition generated the
interrupt. Fixed-function interrupts are usually level inter-
rupts, which require that the peripheral status register be
read in the ISR to clear the interrupt. If the status register is
not read in the ISR, the interrupt will remain asserted, and
the ISR will be executed continuously.

The second category of interrupt sources is the DSI interrupt
signals. Any digital signal on the chip, such as digital outputs

from UDBs or digital input signals on pins, can be routed as
DSI interrupt sources. This provides flexibility in the choice
of interrupt sources. You also have the option of routing the
DSI signal through a rising edge detect circuit, as shown in
Figure 5-4. This edge detect circuit converts a rising edge
signal on the DSI line to a pulse signal two system clocks
wide. This ensures that the interrupt is triggered once on the
rising edge of the signal on the DSI line. It is useful for inter-
rupt sources, which cannot generate proper level interrupt
signals to the NVIC. The UDB_INT_CFG register is used to
select between the direct DSI path and the edge detect path.

DSI Interrupt 
Source

Fixed Function Interrupt Source

Rising 
Edge 
Detect

0

1

IRQn
(n = 0 to 31)

Level

To NVIC

UDB_INT_CFG 
register

0

1

CPUSS_INTR_SELECT
register

(irq_out[n])



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 41

Interrupts

5.6 Enabling/Disabling 
Exceptions

The NVIC provides registers to individually enable and dis-
able the 32 interrupts in software. If an interrupt is not
enabled, the NVIC will not process the interrupt requests on
that interrupt line. The Interrupt Set-Enable Register
(CM0_ISER) and the Interrupt Clear-Enable Register
(CM0_ICER) are used to enable and disable the interrupts
respectively. These registers are 32-bit wide and each bit
corresponds to the same numbered interrupt. These regis-
ters can also be read in software to get the enable status of
the interrupts. Table 5-3 shows the register access proper-
ties for these two registers. Note that writing zero to these

registers has no effect.

Table 5-2.  List of PSoC 4 Interrupt Sources

Interrupt No. 
Cortex-M0 

Exception No.
Fixed Function DSI Interrupt Source

NMI (see 5.4 Exception Sources) 2 irq_out[0]

IRQ0 16 GPIO P0 (Port Interrupt) irq_out[1]

IRQ1 17 GPIO P1 (Port Interrupt) irq_out[1]

IRQ2 18 GPIO P2 (Port Interrupt) irq_out[2]

IRQ3 19 GPIO P3 (Port Interrupt) irq_out[3]

IRQ4 20 GPIO P4 (Port Interrupt) irq_out[4]

IRQ5 21 <DSI-only> irq_out[5]

IRQ6 22 <DSI-only> irq_out[6]

IRQ7 23 <DSI-only> irq_out[7]

IRQ8 24 LPCOMP (low-power comparator) irq_out[8]

IRQ9 25 WDT (Watchdog timer) irq_out[9]

IRQ10 26 SCB1 (Serial Communication Block 1) irq_out[10]

IRQ11 27 SCB2 (Serial Communication Block 2) irq_out[11]

IRQ12 28 SPC (System Performance Controller) irq_out[12]

IRQ13 29 PWR (Power Manager) irq_out[13]

IRQ14 30 SAR (Successive Approximation ADC) irq_out[14]

IRQ15 31 CSD (Capsense block counter overflow interrupt) irq_out[15]

IRQ16 32 TCPWM0 (Timer/Counter/PWM 0) irq_out[16]

IRQ17 33 TCPWM1 (Timer/Counter/PWM 1) irq_out[17]

IRQ18 34 TCPWM2 (Timer/Counter/PWM 2) irq_out[18]

IRQ19 35 TCPWM3 (Timer/Counter/PWM 3) irq_out[19]

IRQ20 36 <DSI-only> irq_out[20]

IRQ21 37 <DSI-only> irq_out[21]

IRQ22 38 <DSI-only> irq_out[22]

IRQ23 39 <DSI-only> irq_out[23]

IRQ24 40 <DSI-only> irq_out[24]

IRQ25 41 <DSI-only> irq_out[25]

IRQ26 42 <DSI-only> irq_out[26]

IRQ27 43 <DSI-only> irq_out[27]

IRQ28 44 <DSI-only> irq_out[28]

IRQ29 45 <DSI-only> irq_out[29]

IRQ30 46 <DSI-only> irq_out[30]

IRQ31 47 <DSI-only> irq_out[31]

Table 5-3.  Interrupt Enable/Disable Registers

Register Operation
Bit 

Value
Comment

Interrupt Set 
Enable Register 
(CM0_ISER)

Write
1 To enable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled

Interrupt Clear 
Enable Register 
(CM0_ICER)

Write
1 To disable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled



42 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Interrupts

The CM0_ISER and CM0_ICER registers are applicable
only for the interrupts (IRQ0 - IRQ31). These registers can-
not be used to enable or disable the exception numbers 1 -
15. The 15 exceptions have their own support for enabling
and disabling, as explained in Exception Sources on
page 39.

The PRIMASK register in Cortex-M0 (CM0) CPU can be
used as a global exception enable register to mask all the
configurable priority exceptions irrespective of whether they
are enabled. Configurable priority exceptions include all the
exceptions except the Reset, NMI, and HardFault excep-
tions listed in Table 5-1. They can be configured to a priority
level between 0 and 3, 0 being the highest priority and 3
being the lowest priority. When the PM bit (bit 0) in PRI-
MASK register is set, none of the configurable priority
exceptions can be serviced by the CPU, though they can be
in the pending state waiting to be serviced by the CPU after
the PM bit is cleared.

5.7 Exception States
Each exception can be in one of the following states.

The Interrupt Control State Register (CM0_ICSR) contains
status bits describing the various exceptions states.

■ The VECTACTIVE bits ([8:0]) in the CM0_ICSR register 
store the exception number for the current executing 
exception. This value is zero if the CPU is not executing 
any exception handler (CPU is in thread mode). Note 
that the value in VECTACTIVE bit fields is the same as 
the value in bits [8:0] of the Interrupt Program Status 
Register (IPSR), which is also used to store the active 
exception number.

■ The VECTPENDING bits ([20:12]) in the CM0_ICSR reg-
ister store the exception number of the highest priority 
pending exception. This value is zero if there are no 
pending exceptions.

■ The ISRPENDING bit (bit 22) in the CM0_ICSR register 
indicates if a NVIC generated interrupt (IRQ0 - IRQ-31) 
is in a pending state.

5.7.1 Pending Exceptions

When a peripheral generates an interrupt request signal to
the NVIC or an exception event occurs, the corresponding
exception is put into the pending state. When the CPU starts
executing the corresponding exception handler routine, the
exception is changed from the pending state to the active
state.

The NVIC allows software pending of the 32 interrupt lines
by providing separate register bits for setting and clearing
the pending states of the interrupts. The Interrupt Set-Pend-
ing Register (CM0_ISPR) and the Interrupt Clear-Pending
Register (CM0_ICPR) are used to set and clear the pending
status of the interrupt lines. These registers are 32-bits wide,
and each bit corresponds to the same numbered interrupt.
Table 5-5 shows the register access properties for these two
registers. Note that writing zero to these registers is not a
valid action.

Setting the pending bit when the same bit is already set
results in only one execution of the interrupt handler. The
pending bit can be updated regardless of whether the corre-
sponding interrupt is enabled or not. If the interrupt is not
enabled, the interrupt line will not move to the pending state
until it is enabled by writing to the CM0_ISER register.

Note that the CM0_ISPR and CM0_ICPR registers used
only for the 32 peripheral interrupts (exception numbers 16-
47). These registers cannot be used for pending the excep-
tion numbers 1 -15. These 15 exceptions have their own
support for pending, as explained in Exception Sources on
page 39.

5.7.2 Exception Priority

Exception priority is useful for exception arbitration when
there are multiple exceptions that need to be serviced by the
CPU. PSoC 4 provides flexibility in choosing priority values
for different exceptions. All exceptions except Reset, NMI,
and HardFault can be assigned a configurable priority level.
The Reset, NMI, and HardFault exceptions have a fixed pri-

Table 5-4.  Exception States

Exception State Meaning

Inactive
The exception is not active and not pending. 
Either the exception is disabled, or the 
enabled exception has not been triggered.

Pending
The exception request has been received by 
the CPU/NVIC and the exception is waiting to 
be serviced by the CPU. 

Active

An exception that is being serviced by the 
CPU but whose exception handler execution 
is not yet complete. A high-priority exception 
can interrupt the execution of lower priority 
exception. In this case, both the exceptions 
are in the active state.

Active and Pend-
ing

The exception is being serviced by the pro-
cessor and there is a pending request from 
the same source during its exception handler 
execution.

Table 5-5.  Interrupt Set Pending/Clear Pending Registers

Register Operation
Bit 

Value
Comment

Interrupt Set-
Pending Regis-
ter (CM0_ISPR)

Write
1

To put an interrupt to 
pending state

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending

Interrupt Clear-
Pending Regis-
ter (CM0_ICPR)

Write
1

To clear a pending 
interrupt

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 43

Interrupts

ority of –3, –2, and –1, respectively. In PSoC 4, lower prior-
ity numbers represent higher priorities, meaning that the
Reset, NMI, and HardFault exceptions have the highest pri-
orities. The other exceptions can be assigned a configurable
priority level between 0 and 3.

PSoC 4 supports nested exceptions in which a higher prior-
ity exception can preempt (interrupt) the currently active
exception handler. This pre-emption does not happen if the
incoming exception priority is the same as active exception.
The CPU resumes execution of the lower priority exception
handler after servicing the higher priority exception. The
CM0 CPU in PSoC 4 allows nesting of up to four exceptions.
When the CPU receives two or more exceptions requests of
the same priority, the lowest exception number is serviced
first.

The registers to configure the priority of exception numbers
1-15 are explained in Exception Sources on page 39.

The priority of the 32 interrupts (IRQ0 - IRQ31) can be con-
figured by writing to the Interrupt Priority registers
(CM0_IPR). This is a group of eight 32-bit registers with
each register storing the priority values of four interrupts, as
given in Table 5-6. The other bit fields in the register are not
used.

5.8 Stack Usage for Exceptions
When the CPU executes the main code (in thread mode)
and an exception request occurs, the CPU stores the state
of its general-purpose registers in the stack. It then starts
executing the corresponding exception handler (in handler
mode). The CPU pushes the contents of the eight 32-bit
internal registers into the stack. These registers are the Pro-
gram and Status Register (PSR), ReturnAddress, Link Reg-
ister (LR or R14), R12, R3, R2, R1, and R0. Cortex-M0 has
two stack pointers - MSP and PSP. Only one of the stack
pointers can be active at a time. When in thread mode, the
Active Stack Pointer bit in the Control register is used to
define the current active stack pointer. When in handler
mode, the MSP is always used as the stack pointer. The
stack pointer in Cortex-M0 always grows downwards and
points to the address that has the last pushed data.

When the CPU is in thread mode and an exception request
comes, the CPU uses the stack pointer defined in the con-
trol register to store the general-purpose register contents.
After the stack push operations, the CPU enters handler
mode to execute the exception handler. When another
higher priority exception occurs while executing the current
exception, the MSP is used for stack push/pop operations,
as the CPU is in handler mode already.

The Cortex-M0 uses two techniques: tail chaining and late
arrival, to reduce latency in servicing exceptions. These

techniques are not visible to the external user and are done
as part of the internal processor architecture (http://infocen-
ter.arm.com/help/topic/com.arm.doc.ddi0419c/index.html). 

5.9 Interrupts and Low-Power 
Modes

PSoC 4 allows device wakeup from low-power modes when
certain peripheral interrupt requests are generated. The
Wakeup Interrupt Controller (WIC) block generates a
wakeup signal that causes the device to enter active mode
when one or more wakeup sources generate an interrupt
signal. After entering active mode, the interrupt handler of
the peripheral interrupt is executed.

The Wait For Interrupt (WFI) instruction, executed by the
CM0 CPU, triggers the transition into sleep, deep-sleep, and
hibernate modes. The sequence of entering the different
low-power modes is detailed in the Power Modes chapter on
page 75. Chip low-power modes have three categories of
fixed-function interrupt sources:

■ Fixed-function interrupt sources that are available in the 
active, deep-sleep, and hibernate modes (port inter-
rupts, low-power comparators).

■ Fixed-function interrupt sources that are available only in 
the active and deep-sleep modes (watchdog timer inter-
rupt, serial communication block interrupts)

■ Fixed-function interrupt sources that are available only in 
the active mode (all other fixed-function interrupts)

DSI interrupt sources (irq_out[n] in Figure 5-4) do not have
the capability to wake up the device from low-power modes.
If a DSI interrupt source is selected for an interrupt line, then
the fixed-function source corresponding to that line also
loses the ability to wake up the device.

5.10 Exception - Initialization and 
Configuration

This section covers the different steps involved in initializing
and configuring exceptions in PSoC 4. 

1. Configuring the Exception Vector Table Location: The 
first step in using exceptions is to configure the vector 
table location as required - either in flash memory or 
SRAM. This configuration is done by writing either a ‘1’ 
(SRAM vector table) or ‘0’ (flash vector table) to the 
VECS_IN_RAM bit field (bit 0) in the CPUSS_CONFIG 
register. This register write is done as part of device ini-
tialization code. 

It is recommended to locate the exception vector table in 
SRAM so that dynamic change of exception handler 
address is possible. For example, an application may 
require the exception handler to be changed dynami-
cally. By placing the exception vector table in SRAM, you 
can modify the appropriate location in the SRAM vector 
table dynamically. If the flash memory vector table is 
used, then a flash write operation is required to modify 
the vector table contents.

Table 5-6.  Interrupt Priority Register Bit Definitions

Bits Name Description

7:6 PRI_N0 Priority of interrupt number N.

15:14 PRI_N1 Priority of interrupt number N+1.

23:22 PRI_N2 Priority of interrupt number N+2.

31:30 PRI_N3 Priority of interrupt number N+3.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419c/index.html


44 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Interrupts

2. Configuring Individual Exceptions: The next step is to 
configure individual exceptions required in an applica-
tion.

a. Configure the exception or interrupt source; this 
includes setting up the interrupt generation condi-
tions and configuring the interrupt source, as shown 
in Figure 5-4. The register configuration depends on 
the specific exception required.

b. Define the exception handler function and write the 
address of the function to the exception vector table. 
Table 5-1 gives the exception vector table format; the 
exception handler address should be written to the 
appropriate exception number entry in the table.

c. Set up the exception priority, as explained in Excep-
tion Priority on page 42.

d. Enable the exception, as explained in Enabling/Dis-
abling Exceptions on page 41.

5.11 Registers

5.12 Associated Documents
■ ARMv6-M Architecture Reference Manual - This docu-

ment explains the ARM Cortex-M0 architecture, includ-
ing the instruction set, NVIC architecture, and CPU 
register descriptions.

Register Acronym Register Name

CM0_ISER Interrupt Set-Enable Register

CM0_ICER Interrupt Clear Enable Register

CM0_ISPR Interrupt Set-Pending Register

CM0_ICPR Interrupt Clear-Pending Register

CM0_IPR Interrupt Priority Registers

CM0_ICSR Interrupt Control State Register

CM0_AIRCR
Application Interrupt and Reset Control 
Register

CM0_SCR System Control Register

CM0_CCR Configuration and Control Register

CM0_SHPR2 System Handler Priority Register 2

CM0_SHPR3 System Handler Priority Register 3

CM0_SHCSR System Handler Control and State Register

CM0_SYST_CSR Systick Control and Status

CPUSS_CONFIG CPU Subsystem Configuration

CPUSS_SYSREQ System Request Register

CPUSS_INTR_SEL
ECT

Interrupt Multiplexer Select Register

UDB_INT_CFG UDB Subsystem Interrupt Configuration

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html


PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 45

Section C: Memory System

This section presents the following chapter:

■ Memory Map chapter on page 47

Top Level Architecture

Memory System Block Diagram

SPCIF

FLASH
32 KB

Read Accelerator

SRAM
4 kB

SROM
4 kB

SRAM Controller ROM Controller

System Interconnect (Single Layer AHB)



46 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 47

6.   Memory Map

All PSoC® 4 memory (flash, SRAM, and supervisory ROM (SROM)) and all registers are accessible by the CPU and in most
cases by the debug system. This chapter contains an overall map of the addresses of the memories and registers.

6.1 Features
The PSoC 4 memory system has the following features:

■ 32K bytes flash, 4K bytes SRAM

■ 4K byte SROM contains boot and configuration routines

■ ARM Cortex-M0 32-bit linear address space, with regions for code, SRAM, peripherals, and CPU internal registers

■ Flash is mapped to the Cortex-M0 code region

■ SRAM is mapped to the Cortex-M0 SRAM region

■ Peripheral registers are mapped to the Cortex-M0 peripheral region

■ The Cortex-M0 Private Peripheral Bus (PPB) region includes registers implemented in the CPU core. These include reg-
isters for NVIC, SysTick timer, and serial communication block (SCB). For more information, see Cortex-M0 CPU chapter 
on page 31.

6.2 How It Works
The PSoC 4 memory map is detailed in the following tables. For additional information, refer to the PSoC 4 Registers Techni-
cal Reference Manual (TRM).

The ARM Cortex-M0 has a fixed address map allowing access to memory and peripherals using simple memory access
instructions. The 32-bit (4 GB) address space is divided into the regions shown in Table 6-1. Note that code can be executed
from the code and SRAM regions.

Table 6-1.  Cortex-M0 Address Map

Address Range Name Use

0x00000000 – 0x1FFFFFFF Code
Executable region for program code. You can also put data here. Includes the exception 
vector table which starts at address 0

0x20000000 – 0x3FFFFFFF SRAM Executable region for data. You can also put code here

0x40000000 – 0x5FFFFFFF Peripheral All peripheral registers. Code cannot be executed out of this region

0x60000000 – 0xDFFFFFFF Not used

0xE0000000 – 0xE00FFFFF PPB Peripheral registers within the CPU core

0xE0100000 – 0xFFFFFFFF Device PSoC 4 implementation-specific



48 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Memory Map

Table 6-2 shows the PSoC 4 address map.

Table 6-2.  PSoC 4 Address Map

Address Range Use

0x00000000 – 0x00007FFF 32 KB flash

0x10000000 – 0x10000FFF 4 KB supervisory flash

0x20000000 – 0x20000FFF 4 KB SRAM

0x40000000 – 0x4000FFFF CPU subsystem registers

0x40010000 – 0x40010FFF I/O port control (high-speed I/O matrix) registers

0x40020000 – 0x4002FFFF Programmable clocks registers

0x40040000- -0x4004FFFF I/O port registers

0x40050000- -0x40050FFF Timer/counter/PWM (TCPWM) registers

0x40060000- -0x4006FFFF Serial Communications Block (SCB) registers

0x40080000- -0x4008FFFF CapSense registers

0x40090000- -0x4009FFFF LCD registers

0x400A0000- -0x400AFFFF Low-power comparator registers

0x400B0000- -0x400BFFFF Power, clock, reset control registers

0x400F0000- -0x400FFFFF UDB control registers (available only in PSoC 4200 family)

0xE0000000 – 0xE00FFFFF Cortex-M0 PPB registers

0xF0000000 – 0xF0000FFF CoreSight ROM



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 49

Section D: System-Wide Resources

This section encompasses the following chapters:

■ I/O System chapter on page 51

■ Clocking System chapter on page 61

■ Power Supply and Monitoring chapter on page 67

■ Chip Operational Modes chapter on page 73

■ Power Modes chapter on page 75

■ Watchdog Timer chapter on page 81

■ Reset System chapter on page 85

■ Device Security chapter on page 87

Top Level Architecture

System-Wide Resources Block Diagram

System Resources

Power
Sleep Control

PWRSYS

REF

POR LVD

BOD

WIC

XRES

Clock

WDT

ILO

Reset

Clock Control

IMO

NVLatches

Reset Control

P
er

ip
he

ra
l I

nt
er

co
nn

ec
t (

M
M

IO
)



50 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 51

7.   I/O System 

This chapter discusses PSoC® 4's I/O system, its features, architecture, various operating modes, dedicated functionalities,
and interrupts. Pins are grouped into ports – there are eight pins per port and the largest PSoC 4 contains up to 4.5 ports.

The input/output (I/O) system provides an interface between the PSoC and the outside world. The flexibility of PSoC devices
and the capability of its I/O to route some signals to any pin simplifies circuit design and board layout. Although some critical
blocks have dedicated pins and restricted routability, the I/O system offers a large number of configurations to support several
types of I/O operations for mixed-signal systems. It is recommended to use dedicated pins, whenever available, for higher
performance.

7.1 Features
The PSoC 4 I/O system has these features:

■ Analog and digital input and output capability

■ LCD drive support

■ CapSense support

■ 8-mA sink and 4-mA source current

■ Separate port read (PS) and write (DR) data registers to avoid read modify write errors

■ Edge-triggered interrupts on rising edge, falling edge, or on both the edges, on pin basis

■ Slew rate control

■ Selectable CMOS and low-voltage LVTTL input thresholds



52 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

I/O System

7.2 Block Diagram
Figure 7-1 explains the various blocks and signals that drive the GPIOs.

Figure 7-1.  GPIO Block Diagram

Digital
Logic

Slew
Cntl

PRT[x]SLW

PRT[x]DM2

PRT[x]DM1

PRT[x]DM0

In

OE

PIN

Vdd

Vdd Vdd

Digital Output Path

GPIO

GPIO_DSI

DSI_DSI

DSI_GPIO

ACT_0

ACT_1

ACT_2

ACT_3

LCD_COM

LCD_SEG

DPSLP_0
DPSLP_1

OUTPUT ENABLE

SEL[3:0]

Interrupt
LogicPin Interrupt Signal

PICU[x]INTSTAT

PICU[x]INTCFG

Digital System Input

PRT[x]PS

PRT[x]PC2

Input Buffer Disable

Naming Convention

‘x’ = Port Number

Digital Input Path

Switches
SEL[3:0]

AMUXBUSA (CapSense)

AMUXBUSB (Cap Shield)

Analog

Dedicated Analog Resources (CTBm, LPCOMP, SAR ADC)

HSIOM



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 53

I/O System

7.3 I/O Drive Modes
Each GPIO is individually configurable into one of the eight
drive modes listed in Table 7-1. Figure 7-2 depicts a simpli-
fied pin view based on each of the eight drive modes.

Two Port Configuration registers are used to configure
GPIOs in PSoC 4: Port Configuration Register (PRTx_PC)
and Port Secondary Configuration Register (PRTx_PC2).
PC configures the output drive and input buffer state for

each pin, and the slew rate (Slew Rate Control on page 54)
and input threshold selection (CMOS LVTTL Level Control
on page 54) for the whole port. PC2 configures the input
buffer for each pin on the port, irrespective of the port con-
trol drive mode (PRTx_PC). Each port has dedicated PC
and PC2 registers. 

PC2 disables the input buffer independent of the port control
drive mode. This bit should be set to disable the input buffer
when analog signals are present on the pin.

Figure 7-2.  I/O Drive Mode Block Diagram

DR
PS

Pin
DR
PS

Pin
DR
PS

Pin
DR
PS

Pin

DR
PS

Pin
DR
PS

Pin
DR
PS

Pin DR
PS

Pin

0. High Impedance
    Analog

1. High Impedance
    Digital

2. Resistive Pull Up 3. Resistive Pull Down

4. Open Drain,
    Drives Low

5. Open Drain,
    Drives High

6. Strong Drive 7. Resistive Pull Up
    & Pull Down

Vdd Vdd

Vdd Vdd Vdd

Table 7-1.  Drive Mode Settings

PRTx_PC ('x' denotes port no and 'y' denotes pin no)

Bits Drive Mode PRTx_PC [3y+2: 3y] Data = 1 Data = 0

3y+2: 3y

SEL'y 'Selects Drive mode for Pin 'y' (0  y  7)

High-Impedance Analog 0 High Z High Z

High-impedance Digital 1 High Z High Z

Resistive Pull Up 2 Weak 1 (5K) Strong 0

Resistive Pull Down 3 Strong 1 Weak 0 (5K)

Open Drain, Drives Low 4 High Z Strong 0

Open Drain, Drives High 5 Strong 1 High Z

Strong Drive 6 Strong 1 Strong 0

Resistive Pull Up and Down  7 Weak 1 (5K) Weak 0 (5K)



54 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

I/O System

7.3.1 High-Impedance Analog

High-impedance analog mode is the default reset state; both
output driver and digital input buffer are turned off. This state
prevents a floating voltage from causing a current to flow
into the I/O digital input buffer. This drive mode is recom-
mended for pins that are floating or that support an analog
voltage. High-impedance analog pins cannot be used for
digital inputs. Reading the pin state register returns a 0x00
regardless of the data register value.

To achieve the lowest device current in sleep modes, I/Os
must be configured to the high-impedance analog mode.

7.3.2 High-Impedance Digital

High-impedance digital mode is the standard high-imped-
ance (High Z) state recommended for digital inputs. In this
state, the input buffer is enabled for digital signal input.

7.3.3 Resistive Pull-Up or Resistive Pull-
Down

Resistive modes provide a series resistance in one of the
data states and strong drive in the other. Pins can be used
either for digital input or output in these modes. Interfacing
mechanical switches is a common application. If a pull-up is
required in the Resistive Pull-Up Drive mode, a ‘1’ must be
written to that pin’s Data Register bit. If a pull-down is
required with the Resistive Pull-Down Drive mode, a ‘0’ must
be written to that pin’s Data Register. These drive modes
are used when interfacing PSoC with open drain drive line.
Resistive pull-up is used when input is open drain low and
resistive pull-down is used when input it open drain high.

7.3.4 Open Drain, Drives High, and 
Drives Low

Open drain modes provide high-impedance in one of the
data states and strong drive in the other. Pins can be used
as digital input or output in these modes. These drive modes
are used when a signal is externally pulled up or pulled
down. Open drain drive high mode is used when signal is
externally pulled down and open drain drive low is used
when signal is externally pulled down. 

A common application for these modes is driving I2C bus
signal lines.

7.3.5 Strong Drive

The strong drive mode is the standard digital output mode
for pins; it provides a strong CMOS output drive in both high
and low states. Strong drive mode pins must not be used as

inputs under normal circumstances. This mode is often used
to drive digital output signals or external FETs.

7.3.6 Resistive Pull-Up and Pull-Down

The resistive pull-up and pull-down mode is a single mode
and is similar to the resistive pull-up and resistive pull-down
modes, except that the pin is always in series with a resistor.
The high data state is pulled up while the low data state is
pulled down. This mode is used when the bus is driven by
other signals that may cause shorts.

7.4 Slew Rate Control
GPIO pins have fast and slow output slew rate options for
strong drive mode; this can be configured using
PRTx_PC[25] bit. Slew rate is individually configurable for
each port. This bit is cleared by default and the port works in
fast slew mode. For slow slew rate, set this bit. The fast slew
rate is for signals between 1 MHz and 33 MHz. Slower slew
rate results in reduced EMI and crosstalk; hence, the slow
option is recommended for signals that are not speed critical
– generally less than 1 MHz.

7.5 CMOS LVTTL Level Control
GPIO pins can work at two voltage levels. These levels can
be selected by writing to the PRTx_PC[24] bit. 

Input level is individually configurable for each port. This bit
is cleared by default and the port works in CMOS mode. Set
this bit, to configure the port on LVTTL mode.

CMOS mode can be used in most cases, whereas LVTTL
can be used for custom interface requirements, which works
at lower voltage levels.

7.6 High-Speed I/O Matrix 
High-speed I/O matrix (HSIOM) is a high-speed switch that
helps to route an I/O to a specific resource inside PSoC.
These resources can vary from analog sources such as the
AMUXBUS and CapSense to digital sources such as TCP-
WMs, SCBs or the LCD controller. It also allows selecting
Active and Deep-Sleep power domain sources for a pin (see
Pin Specific Sources on page 58). Port 4 has a few restric-
tions in DSI routing; hence, HSIOM Port Settings are not
valid for pins of port 4. See Restrictions on Port 4 on
page 59 for details. HSIOM_PORT_SELx are 32-bit wide
registers, where four dedicated bits are assigned to each
pin. They can provide up to 16 different options for GPIO pin
routing. This selection provides different functions, as listed
in Table 7-3, by connecting I/O pins to different peripherals.
These roles include: 

■ GPIO 

■ Fixed-function peripheral 

■ LCD controller 

■ SWD debug

■ Programmable digital interface (DSI)

■ External clock input

Table 7-2.  Input Buffer Disable (Port Configuration 2)

PRTx_PC2 ('x' denotes port no and 'y' denotes pin no)

Bits Name Description

7:0 INP_DIS

Disables the input buffer independent 
of the port control drive mode. This bit 
should be set when analog signals are 
present on the pin.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 55

I/O System

■ I2C

■ SPI

■ SWD

■ Wakeup

Some of these functions such as I2C, wakeup, and SWD
have dedicated pin resource connections. Table 7-4 gives a
list of these dedicated pins.

7.7 Analog I/O
Analog resources such as LPCOMP, SARMUX, and CSD
modulator capacitor, which need cleaner/low-impedance
analog signals have dedicated pins. Other analog resources
such as CSD sensor inputs and LCD, which do not require
dedicated analog inputs use analog mux lines. 

Dedicated analog pins provide direct connections to specific
analog blocks, such as CTBm, external reference,
LPCOMP, and SARMUX. Dedicated pins help improve per-
formance and should be given priority over other pins when
using these analog resources. See Table 7-4 for dedicated
pins.

To configure an I/O as a dedicated analog I/O, it should be
configured in high-impedance analog mode (Table 7-1) and
the respective connection should be enabled in the specific
analog resource. This is usually done via registers associ-
ated with the analog resources.

To configure an I/O as an analog pin connecting to AMUX
bus, it should be configured in high-impedance analog mode
(Table 7-1) and then routed to AMUX bus using
HSIOM_PORT_SELx register (Table 7-3).

7.8 LCD Drive
All GPIO pins have the capability of driving an LCD common
or segment. HSIOM_PORT_SELx registers are used to
enable individual pins for LCD drive. The same register is
used to select whether a pin is set as a common or segment
drive pin (Table 7-3). See the LCD Direct Drive chapter on
page 231 for details.

7.9 CapSense
All GPIO pins can be configured as a CapSense element
(Table 7-3) such as button, slider segment, and proximity
sensor. CapSense uses the analog mux for connecting any
pin as a capacitive sensor. 

AMUXBUS-A is used as a capacitive sensor element and
AMUXBUS-B can be configured as a shield signal for the
capacitive sensors. See the CapSense chapter on page 243
for more information.

Table 7-3.  HSIOM Port Settings

HSIOM PORT_SELx (‘x’ denotes port no and ‘y’ denotes pin no)

Bits Name Value Description

4y+3: 4y

SEL'y'  Selects pin 'y' source (0  y  7)

GPIO 0 Pin is regular firmware controlled GPIO or connected to dedicated hardware block.

GPIO_DSI 1 Output is firmware controlled, but OE is controlled from DSI.

DSI_DSI 2 Both Output and OE are controlled from DSI.

DSI_GPIO 3 Output is controlled from DSI, but OE is firmware controlled.

CSD_SENSE 4 Pin is a CSD sense pin (analog mode).

CSD_SHIELD 5 Pin is a CSD shield pin (analog mode).

AMUXA 6 Pin is connected to AMUXBUS-A.

AMUXB 7
Pin is connected to AMUXBUS-B. This mode is also used for CSD GPIO charging. When 
CSD GPIO charging is enabled in CSD_CONTROL, digital I/O driver is connected to 
csd_charge signal (pin is still connected to AMUXBUS-B).

ACT_0 8 Pin specific Active source #0 (TCPWM).

ACT_1 9 Pin specific Active source #1 (SCB UART).

ACT_2 10 Reserved

ACT_3 11 Reserved

LCD_COM 12
Pin is an LCD common pin. This mode remains active and usable in Deep-Sleep mode 
(provided the LCD block is enabled and configured correctly).

LCD_SEG 13
Pin is an LCD segment pin. This mode remains active and usable in Deep-Sleep mode 
(provided the LCD block is enabled and configured correctly).

DPSLP_0 14 Pin specific Deep-Sleep source #0 (either SCB I2C, SWD or Wakeup).

DPSLP_1 15 Pin specific Deep-Sleep source #1 (SCB SPI).



56 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

I/O System

7.10 I/O Port Reconfiguration
Drive mode and pin connections of I/O ports can be recon-
figured in runtime by changing the value of the PRTx_PC
and HSIOM_PORT_SELx registers. Take care to retain the
pin state during reconfiguration of pins when they are con-
nected directly to a digital peripheral. If the ports are driven
by the data registers, state maintenance is automatic. How-
ever, if the ports are bypassed and driven by the DSI, the
current value must be read and written to the data register
(PRTx_DR) before initiating reconfiguration. During port
configuration, the current configuration should be saved as
follows: 

1. Read the GPIO pin state, PRTx_PS in software.

2. Write the PRTx_PS value into the data registers, 
PRTx_DR.

3. Change the corresponding field in PORT_SELx to drive 
the pin by the data register, PRTx_DR.

7.11 GPIO State on Power Up
By default, during power up all I/Os are in high-impedance
analog state. Input buffers are disabled during power-up.
When the chip is powered up, its I/O is configured by writing
to the associated registers. See Registers on page 59.

7.12 Sleep Mode Behavior
The GPIO pad maintains the current pin state during sleep
modes. In sleep mode, all the GPIOs are active and can be
driven by active peripherals. 

7.13 Low-Power Behavior
PSoC 4 supports three low-power states: Deep-Sleep,
Hibernate, and Stop. 

In Deep-Sleep mode (Table 7-3), only dedicated deep-sleep
pins connected to deep-sleep peripherals are functional; the
remaining pin signals are latched into GPIO pins.

Table 7-4.  Dedicated Pins

Function Signal Name Signal Type Pad Name Comment

External Reference ext_vref Analog P1[7] External reference for SAR ADC

Opamp 0 ctb.oa0.out Analog P1[2] Output of CTBm Opamp 0

Opamp 1 ctb.oa1.out Analog P1[3] Output of CTBm Opamp 1

External Clock exe_clk Digital P0[6] Provides an option to use external clock instead of IMO

I2C

SCL_0 Digital P4[0]

SDA_0 Digital P4[1]

SCL_1 Digital P0[4]/P3[0] Two options available

SDA_1 Digital P0[5]/P3[1] Two options available

SPI

MOSI_0 Digital P4[0]

MISO_0 Digital P4[1]

CLK_0 Digital P4[2]

SSEL0_0 Digital P4[3]

SSEL1_0 Digital P0[0]

SSEL2_0 Digital P0[1]

SSEL3_0 Digital P0[2]

MOSI_1 Digital P0[4] / P3[0] Two options available

MISO_1 Digital P0[5] / P3[1] Two options available

CLK_1 Digital P0[6] / P3[2] Two options available

SSEL0_1 Digital P0[7] / P3[3] Two options available

SSEL1_1 Digital P3[4]

SSEL2_1 Digital P3[5]

SSEL3_1 Digital P3[6]

SWD
IO Digital P3[2] 

CLK Digital P3[3] 

WAKEUP WAKEUP Digital P0[7]



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 57

I/O System

In the Hibernate and Stop modes, all the I/O pins are
latched and remain in frozen state. See the Power
Modes chapter on page 75 for details.

7.14 Port Interrupt Controller Unit
This section describes the functions of the port interrupt
controller unit (PICU) for PSoC I/O.

7.14.1 Features

The features of the PICU are:

■ All eight pins in each port interface with their own PICU 
and associated interrupt vector

■ Pin status bits provide easy determination of interrupt 
source down to the pin level

■ Rising/falling/either edge interrupts are handled

■ Pin interrupts can be individually enabled or disabled

■ AHB interfaces for read and write into its registers

■ Sends out a single interrupt request (PIRQ) signal to the 
interrupt controller

7.14.2 Interrupt Controller Block Diagram

Each port has its own individual Interrupt Request and asso-
ciated IRQ vector and ISR. Additionally, one pin can be
selected on each port that is routed through a 50-ns glitch
filter to form a ninth glitch-tolerant interrupt. Figure 7-3
describes how this is combined. 

Figure 7-3.  Interrupt Controller

7.14.3 Function and Configuration

Each pin of the port can be configured independently to gen-
erate interrupt on rising edge, falling edge, or either edge by
writing to the PRTx_INTCFG register (Table 7-5). Level sen-
sitive interrupts are not supported. Apart from this
PRTx_INTCFG is also used to route a specific channel to
glitch filter to generate a ninth glitch tolerant interrupt. 

A single register is provided for each pin and to select the
pin number and mode for the ninth interrupt.

When a port interrupt is triggered by a signal change on an
enabled port pin, PRTx_INTSTAT register is updated. Firm-
ware reads this register to determine which of the pins on
the port triggered the IRQ. Firmware can then clear the IRQ
bit by writing a ‘1’ to its corresponding bit.

The steps to service an interrupt are: 

1. Depending on the configured mode for each pin, when-
ever the selected edge occurs on a pin, its correspond-
ing status bit in the status register is set to '1', and an 
interrupt request is sent to the interrupt controller.

2. Status bits that have '1' are cleared upon a read of the 
status register. Other bits of the status register can still 
respond to incoming interrupt sources.

3. If an interrupt is pending, and the status register is being 
read, all of the incoming events on the same interrupt 
source (GPIO) are blocked until the read is complete.

However, all of the other interrupt sources that were not
pending an interrupt in status register are not blocked.

Additionally, when the Port Interrupt Control Status Register
is read at the same time an interrupt is occurring on the cor-
responding port, it can result in the interrupt not being prop-
erly detected. So when using PICU interrupts, it is always
recommended to read the status register only inside the cor-
responding interrupt service routine and not in any other
part of code. 

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

50ns Glitch filter

Port_irq

Pin 1

Pin 2

Pin 3

Pin 4

Pin 0

Pin 5

Pin 6

Pin 7



58 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

I/O System

7.15 Input and Output 
Synchronization

For digital input and output signals GPIO provides synchro-
nization with internal clock or a digital signal as clock. By
default, HFCLK is used for synchronization but any other
clock can also be used.

This feature and other clock and reset features are imple-
mented using a combination of UDB port adapter and GPIO
blocks. See Port Adapter Block on page 161 for details. 

7.16 Pin Specific Sources
As explained in High-Speed I/O Matrix  on page 54, there
are two pin specific active power domain sources and two

deep-sleep power domain sources in HSIOM. 

Active sources such as timer, counter, and PWM block are
available only when the PSoC is working in active mode.
They are disabled when the device is put in any of the low-
power modes.

Deep-sleep sources such as the SCB block and LCD direct
drive are available in Active, Sleep, and Deep-Sleep power
modes. They are disabled in Hibernate and Stop modes.
See the Power Modes chapter on page 75 for more details. 

These sources have restricted routability and can be routed
to only specific pins using HSIOM. The list of pin specific
sources is given in Table 7-7. Some of the pins do not have
any dedicated active or deep-sleep power domain resources
and are therefore not included in the table.

Table 7-5.  Interrupt Configuration Register

PRTx_INTCFG ('x' denotes port no and 'y' denotes pin no)

Bits Interrupt Type PRTx_INTCFG Description

2y+1: 2y

PRTX_INTCFG[2y+1:2y] Selects Interrupt mode for Pin 'y' on the port (0  y  7)

Disable 0 Interrupt Disabled

Rising 1 Interrupt at rising edge of the signal

Falling 2 Interrupt at falling edge of the signal

Both 3 Interrupt at either edge of the signal

17:16

SEL INTYPE_FLT Selects Interrupt mode for ninth glitch free input

Disable 0 Interrupt Disabled

Rising 1 Interrupt at rising edge of the signal

Falling 2 Interrupt at falling edge of the signal

Both 3 Interrupt at either edge of the signal

20:18 Selects which pin gets routed to glitch filter

Table 7-6.  Port Interrupt Status Register

PRTx_INTSTAT ('x' denotes port no and 'y' denotes pin no)

Bits Interrupt Type Description

y PRTX_INTSTAT[y] Returns Interrupt status for Pin 'y' on the port (0  y  7)

8 PRTX_INTSTAT_FLT Returns Interrupt status for glitch tolerant interrupt

Table 7-7.  Pin Specific Active and Deep-Sleep Power Domain Sources

Pin ACT_0a ACT_1 DPSLP_0 DPSLP_1

P0[0] scb0_spi_ssel_1

P0[1] scb0_spi_ssel_2

P0[2] scb0_spi_ssel_3

P0[4] scb1_uart_rx scb1_i2c_scl scb1_spi_mosi

P0[5] scb1_uart_tx scb1_i2c_sda scb1_spi_miso

P0[6] ext_clk scb1_spi_clk

P0[7] wakeup scb1_spi_ssel_0

P1[0] tcpwm2_p



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 59

I/O System

7.17 Restrictions on Port 4
Port 4 does not have a dedicated port-adapter (Port Adapter Block on page 161). Therefore, none of the port 4 pins can be
routed through the DSI. However, port 4 pins can still be used as a firmware pin, LCD_COM, LCD_SEG or can be connected
to the SCB block through the HSIOM.

7.18 Registers

P1[1] tcpwm2_n

P1[2] tcpwm3_p

P1[3] tcpwm3_n

P2[4] tcpwm0_p

P2[5] tcpwm0_n

P2[6] tcpwm1_p

P2[7] tcpwm1_n

P3[0] tcpwm0_p scb1_uart_rx scb1_i2c_scl scb1_spi_mosi

P3[1] tcpwm0_n scb1_uart_tx scb1_i2c_sda scb1_spi_miso

P3[2] tcpwm1_p swd_io scb1_spi_clk

P3[3] tcpwm1_n swd_clk scb1_spi_ssel_0

P3[4] tcpwm2_p scb1_spi_ssel_1

P3[5] tcpwm2_n scb1_spi_ssel_2

P3[6] tcpwm3_p scb1_spi_ssel_3

P3[7] tcpwm3_n

P4[0] scb0_uart_rx scb0_i2c_scl scb0_spi_mosi

P4[1] scb0_uart_tx scb0_i2c_sda scb0_spi_miso

P4[2] scb0_spi_clk

P4[3] scb0_spi_ssel_0

a. tcpwm connections can be routed to any gpio except port 4, using DSI routing, though its recommended to use the pins mentioned
in the table whenever possible.

Table 7-8.  GPIO Registers

Name Quantity Description

PRTx_DR 4 Port Output Data Register

PRTx_PS 4 Port Pin State Register, Used to read logical pin state of GPIO

PRTx_PC 4 Port Configuration Register, configures the output drive mode, input threshold and slew rate

PRTx_PC2 4 Port Secondary Configuration Register, Configures the input buffer of GPIO

PRTx_INTCFG 4 Port Interrupt Configuration Register

PRTx_INTSTAT 4 Port Interrupt Status Register

HSIOM_PORT_SELx 4 HSIOM Port Selection Register

Table 7-7.  Pin Specific Active and Deep-Sleep Power Domain Sources

Pin ACT_0a ACT_1 DPSLP_0 DPSLP_1



60 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

I/O System



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 61

8.   Clocking System 

The PSoC® 4 clock system includes these clock resources:

■ Two internal clock sources:

❐ 3–48 MHz internal main oscillator (IMO) ±2 percent across all frequencies with trim

❐ 32 kHz internal low-speed oscillator (ILO) ±60 percent with trim

■ MHz range clock (EXTCLK) generated using an external signal from an I/O pin

■ High-frequency clock (HFCLK) selected from IMO or external clock

■ Low-frequency clock (LFCLK) sourced by ILO

■ Dedicated prescaler for system clock (SYSCLK) sourced by HFCLK

■ Four peripheral clock dividers, each containing three chainable 16-bit dividers

■ 16 digital and analog peripheral clocks

8.1 Block Diagram
Figure 8-1 gives a generic view of the clocking system in PSoC 4 devices.

Figure 8-1.  Clocking System Block Diagram

The three clock sources in the device are shown in Figure 8-1, on the left. The mux selects the HFCLK from an external clock
source or the IMO. The ILO sources the LFCLK. The prescaler and dividers generate the SYSCLK and the individual periph-
eral clocks.

IMO

ILO

EXTCLK

LFCLK

HFCLK
Prescaler SYSCLK

Peripheral 
Divider 0 Peripheral 

Clock 0

x16

...Peripheral 
Divider 1

Peripheral 
Divider 2

Peripheral 
Divider 3



62 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Clocking System

8.2 Clock Sources

8.2.1 Internal Main Oscillator

The internal main oscillator operates with no external com-
ponents and outputs a stable clock at a variety of user-
selectable frequencies spanning 3–48 MHz in 1-MHz incre-
ments. Frequencies are selected by setting the frequency
range in register CLK_IMO_TRIM2, setting the IMO trim in
register CLK_IMO_TRIM1, and finally setting the bandgap
trim in registers PWR_BG_TRIM4 and PWR_BG_TRIM5.
Each device has IMO trim measured during manufacturing
to meet datasheet specifications; the trim is stored in manu-
facturing configuration data in SFLASH. These values can
be retrieved and used at runtime to achieve datasheet spec-
ifications. Firmware can retrieve these trim values and
reconfigure the device to change the frequency during run-
time.

8.2.1.1 Startup Behavior

After reset, the IMO is configured for 24 MHz operation. Dur-

ing the “boot” portion of startup, trim values are read from
flash and the IMO is configured to achieve datasheet speci-
fied accuracy.

8.2.1.2 IMO Frequency Spread

The IMO is capable of operating in a spread-spectrum mode
to reduce the amplitude of noise generated at the IMO’s
central operating frequency. This mode causes the IMO to
vary in frequency across one of four distributions selected
by a register. The four distribution options are fixed fre-
quency, triangle wave, pseudo-random, and DSI input. The
DSI input mode allows you to specify the pattern with a digi-
tal signal. The distribution options are selected with register
CLOCK_IMO_SPREAD bits SS_MODE, which are shown in
Table 8-1. The limits of the distribution are defined with reg-
ister CLOCK_IMO_SPREAD bits SS_RANGE, which are
shown in Table 8-2. All spread options are downspread,
meaning that instantaneous clock frequency values are
always at or below the configured frequency. 

8.2.2 Internal Low-speed Oscillator

The internal low-speed oscillator operates with no external
components and outputs a stable clock at 32 kHz nominal.
The ILO is relatively low power and low accuracy. It is avail-
able in all power modes except Hibernate and Stop modes.
The ILO is always used as the system low-frequency clock
LFCLK in PSoC 4. The ILO is enabled and disabled with
register CLK_ILO_CONFIG bit ENABLE.

8.2.3 External Clock

The external clock is a MHz range clock that can be gener-
ated from a signal on a designated PSoC 4 pin. This clock
may be used in place of the IMO as the source of the system
high-frequency clock HFCLK. The allowable range of exter-
nal clock frequencies is 1–48 MHz. PSoC 4 always starts up

using the IMO, and the external clock must be enabled in
user mode, so the device cannot be started from a reset
clocked by the user clock.

8.3 Clock Distribution
PSoC 4 clocks are developed and distributed throughout the
part, as shown in Figure 8-1. The distribution configuration
options are as follows:

■ HFCLK input selection

■ SYSCLK prescaler configuration

■ Peripheral clock divider configuration

Table 8-1.  IMO Spread-Spectrum Distribution Mode Bits SS_MODE

Name Description

SS_MODE[1:0]

IMO spread-spectrum mode. Defines the shape of the spread-spectrum frequency distribution.

0: Off. IMO frequency is not changed.

1: Triangle. IMO frequency forms a triangular distribution about the center frequency. Count limits are 
defined by bits SS_MAX[4:0].

2: Pseudo-random. IMO frequency forms a pseudo-random distribution about the center frequency.

3: DSI. IMO frequency distribution is determined using a DSI input signal.

Table 8-2.  IMO Spread Spectrum Distribution Range Bits SS_RANGE

Name Description

SS_RANGE[1:0]

IMO spread-spectrum maximum range. Defines the frequency spread from nominal at the extreme count 
values of the spread-spectrum’s counter.

0: 1%. Spread-spectrum varies in frequency from 0 to –1% at the extreme count values.

1: 2%. Spread-spectrum varies in frequency from 0 to –2% at the extreme count values.

2: 4%. Spread-spectrum varies in frequency from 0 to –4% at the extreme count values.

3: Reserved. Do not use.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 63

Clocking System

8.3.1 HFCLK Input Selection

HFCLK in PSoC 4 has two input options: IMO and EXTCLK. The HFCLK input is selected using register CLK_SELECT bits
DIRECT_SEL, as described in Table 8-3. 

When manually configuring a pin as the input to the EXTCLK, the drive mode of the pin must be set to high-impedance digital
to enable the digital input buffer. See the I/O System chapter on page 51 for more details.

8.3.2 SYSCLK Prescaler Configuration

The SYSCLK prescaler allows the device to divide the HFCLK before use as SYSCLK, which allows for non-integer relation-
ships between peripheral clocks and the system clock. SYSCLK must be equal to or faster than all other clocks in the device
that are derived from HFCLK. The prescaler is capable of dividing the HFCLK by powers of 2 between 2^0 = 1 and 2^7 = 128.
The prescaler divide value is set using register CLK_SELECT bits SYSCLK_DIV, as described in Table 8-4. 

Note SYSCLK cannot exceed 24 MHz for the PSoC 4100 family.

8.3.3 Peripheral Clock Divider Configuration

PSoC 4 has four divider banks, each of which contains three 16-bit dividers, A, B, and C, which can be cascaded to further
divide clocks. One of the four banks is capable of fractional divides, which allows the clock divisor to include a fraction of
0..31/32. These four divider banks are used to generate all of the analog and digital peripheral clocks in the device. Figure 8-2
shows a block diagram of the cascaded dividers. The peripheral clocks are generated from the intermediate and final outputs
of the clock dividers.

Table 8-3.  HFCLK Input Selection Bits DIRECT_SEL

Name Description

DIRECT_SEL[2:0]

HFCLK input clock selection

0: IMO. Uses the IMO as the source of the HFCLK

1: EXTCLK. Uses the EXTCLK as the source of the HFCLK

2–7: Reserved. Do not use

Table 8-4.  SYSCLK Prescaler Divide Value Bits SYSCLK_DIV

Name Description

SYSCLK_DIV[3:0]

SYSCLK prescaler divide value

0: 1. SYSCLK = HFCLK

1: 2. SYSCLK = HFCLK / 2

2: 4. SYSCLK = HFCLK / 4

3: 8. SYSCLK = HFCLK / 8

4: 16. SYSCLK = HFCLK / 16

5: 32. SYSCLK = HFCLK / 32

6: 64. SYSCLK = HFCLK / 64

7: 128. SYSCLK = HFCLK / 128



64 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Clocking System

Figure 8-2.  Peripheral Clock Divider Block Diagram

The three non-fractional clock divider banks are configured with the DIVIDER_A, DIVIDER_B, and DIVIDER_C registers. The
fractional clock divider bank is configured with the DIVIDER_FRAC_A, DIVIDER_FRAC_B, and DIVIDER__FRAC_C regis-
ters. Table 8-5 and Table 8-6 describe the configurations for these registers.

8.3.4 Peripheral Clock Configuration

The four UDB clocks and 12 additional peripheral clocks,
including the analog SAR clock, are sourced by peripheral
clock dividers. Each divider input can be used to generate
two versions of the clock: a gated clock and a divided clock.
The gated version produces one in N clocking, where the
pulse width of the clock is the same as the HFCLK, but the
frequency is divided. The divided version has as close as
possible to 50 percent duty cycle, with the edges of the
divided clock always occurring on high edges of the HFCLK.
When divided by n, the divided version will be high for n/2
rounded down cycles, and low for n/2 rounded up cycles.
This is shown in Figure 8-3.

Clk_gated is used by most peripherals because they are
impacted only by rising edges. However, in certain peripher-

als that are negative edge sensitive as well, clk_divided may
be preferred.

Table 8-5.  Non Fractional Peripheral Clock Divider Configuration Register DIVIDER_x

Bits Name Description

15:0 DIVIDER_x Divide value for divider x in the row. Output = input / (DIVIDER_x +1)

30 CASCADE_x–1_x

Determines the input of divider x in the row.

0: DIVIDER_x clock input driven by HFCLK

1: DIVIDER_x clock input driven by the output of DIVIDER_x–1

Note No effect for DIVIDER_A

31 ENABLE_x Enables DIVIDER_x.

Table 8-6.  Fractional Peripheral Clock Divider Configuration Register DIVIDER_FRAC_x

Bits Name Description

15:0 DIVIDER_x Divide value for divider x in the row. Output = input / (DIVIDER_x +1 + FRAC_x/32)

20:16 FRAC_x
Fractional divider numerator value for divider x in the row. Output = input / (DIVIDER_x +1 + 
FRAC_x/32)

30 CASCADE_x–1_x

Determines the input of divider x in the row.

0: DIVIDER_x clock input driven by HFCLK

1: DIVIDER_x clock input driven by the output of DIVIDER_x–1

Note No effect for DIVIDER_A

31 ENABLE_x Enables DIVIDER_x.

Divider N-A
÷(1..65,536)

HFCLK

Divider N-B
÷(1..65,536)

Divider N-C
÷(1..65,536)

x4

...



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 65

Clocking System

Figure 8-3.  UDB and Peripheral Clock Timing Diagram

Each of the digital peripheral clocks is mapped to a specific digital peripheral; Table 8-7 shows the mapping. Each clock is 
configured using one of the 16 SELECT registers. 

 

 

Table 8-7.  Peripheral Clock Mapping

Peripheral Clock # Peripheral

0 IMO (SS)

1 SARPUMP

2 SCB0

3 SCB1

4 LCD

5 CSD (1)

6 CSD (2)

7 SAR

8 TCPWM0

9 TCPWM1

10 TCPWM2

11 TCPWM3

12 UDB0 (available only in PSoC 4200)

13 UDB1 (available only in PSoC 4200)

14 UDB2 (available only in PSoC 4200)

15 UDB3 (available only in PSoC 4200)

Table 8-8.  Peripheral Clock Configuration Register SELECT

Bits Name Description

3:0 DIVIDER_N

Select divider bank row to source clock from. 

0 to 2: non-fractional divider 0 to 2

3: fractional divider 0

5:4 DIVIDER_ABC

Selects which divider from row N to use:

0: Clock disabled

1: Divider N-A

2: Divider N-B

3: Divider N-C



66 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Clocking System

The SAR clock is derived from the clock dividers similar to
other peripheral clocks. Unlike the other peripheral clocks,
the SAR clock generates two outputs: a skewed and un-
gated 50 percent duty cycle version for analog circuits, and
a version synchronized with HFCLK for digital circuits. The
skew allows analog sampling to occur independently from
digital clock transitions, which can improve analog perfor-
mance.

8.4 Low-Power Mode Operation
PSoC 4 clock behavior is different in different power modes.
The MHz frequency clocks including the IMO, EXTCLK,
HFCLK, SYSCLK, and peripheral clocks only operate in
Active and Sleep modes. The ILO and LFCLK operate in all
power modes except Hibernate and Stop.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 67

9.   Power Supply and Monitoring

PSoC® 4 is capable of operating from a single 1.71 V to 5.5 V externally supplied voltage. This is supported through one of
the following operating ranges:

■ 1.80 V to 5.50 V supply input to the internal regulators

■ 1.71 V to 1.89 V direct supply 

PSoC 4 devices have different internal regulators to support various power modes. These include active digital regulator,
quiet regulator, deep-sleep regulator, and hibernate regulator.

9.1 Block Diagram

Figure 9-1.  Power System Block Diagram

Digital
Regulator

VDDD
VDDA

0.1 uF 1 uF

V
D

D
D

V
D

D
A

V
C

C
D

Active
Domain

Examples: CPU, 
IMO, Flash

Quiet
Regulator

Deep-Sleep
Regulator

Hibernate
Regulator

1 uF0.1 uF

Bandgap 
Voltage 

Reference

Deep-Sleep 
Domain

Examples: ILO, 
I2C

Hibernate 
Domain

Examples: LP 
COMP, SRAM, 

UDB

Analog
Domain 

Examples: CTBm, 
SAR

V
S

S
D

V
S

S
A

Note: Do not connect 
external load to VCCD



68 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Power Supply and Monitoring

The power system has separate digital and analog supply
pins labeled VDDD and VDDA, as shown in Figure 9-1. Simi-

larly, there are separate digital and analog ground pins
named VSSD and VSSA. In some PSoC 4 device packages,

VDDD and VDDA are shorted internally and made available

as a single VDD pin. On PSoC 4 systems, the VDDA supply

must always be equal to the VDDD supply. Typically, this is

achieved by supplying VDDA and VDDD from the same

source. Even if both VDDA and VDDD are supplied by the

same source, separate power supply routes are recom-
mended in precision analog applications to isolate digital
and analog currents. Similarly, separate VSSA and VSSD

routes are also recommended.

If two different sources are used to provide VDDA and VDDD,

VDDA supply must be present before VDDD supply. 

One active digital regulator is provided to allow the external
VDDD supply to be regulated to the nominal 1.8 V required

for the digital core. The output pin of this regulator has spe-
cific capacitor requirement, as shown in Figure 9-1. This
active digital regulator is designed to supply the internal cir-
cuits only and should not be loaded externally. 

The primary regulated supply, labeled VCCD, can be config-

ured for internal regulation or can be directly supplied by the
pin. In internal regulation mode, VDDD can vary between

1.8 V and 5.5 V and the on-chip regulators generate the
other low voltage supplies. 

In direct supply configuration, VCCD and VDDD must be

shorted together and connected to a supply of 1.71 V to
1.89 V. The active digital regulator is still powered up and
enabled by default. It must be disabled by the firmware to
reduce power consumption; see 9.3.1.1 Active Digital Regu-
lator.

Two additional regulators are used to provide supplemental
power domains including deep-sleep and hibernate. In addi-
tion, a quiet regulator powers sensitive analog circuitry
including the bandgap reference and capacitive sensing
sub-system.

9.2 Power Supply Scenarios

The following diagrams illustrate the different ways in which
the PSoC 4 device is powered.

9.2.1 Single 1.8 V to 5.5 V Unregulated 
Supply

Depending on board design, the 1.8 V to 5.5 V supply can
reach the PSoC 4 device via a single route or two different
routes (on boards with separate analog and digital supply
networks), as shown in Figure 9-2 and Figure 9-3, respec-
tively.

Figure 9-2.  Single Power Supply

PSoC 4

VDDD

VDDA

VCCD

VSSA

VSSD

0.1 uF 1 uF

1 uF

1.8 V - 5.5 V



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 69

Power Supply and Monitoring

Figure 9-3.  Separate VDDA and VDDD Supply Routes 

Some PSoC 4 device packages have a single power supply and ground pins labeled VDD and VSS, respectively. The 1.8 V to

5.5 V supply can be connected to these packages, as shown in Figure 9-4.

Figure 9-4.  Single VDD Supply

9.2.2 Direct 1.71 V to 1.89 V Regulated Supply

In direct supply configuration, VCCD and VDDD are shorted together and connected to a 1.71 V to 1.89 V supply. This supply

can reach the PSoC 4 device via a single route or two different routes, as shown in the following diagrams.

PSoC 4

VDDD

VDDA

VCCD

VSSA

VSSD

0.1 uF 1 uF 1 uF

1.8 V - 5.5 V

1.8 V - 5.5 V

0.1uF

VSSD

VSSA VSSA
VSSD

PSoC 4

VDD

VCCD

VSS

0.1 uF 1 uF

1 uF

1.8 V - 5.5 V



70 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Power Supply and Monitoring

Figure 9-5.  Single Power Supply Route

Figure 9-6.  Separate Power Supply Route 

Some PSoC 4 device packages have a single power supply and ground pins labeled VDD and VSS, respectively. The direct

supply connection to these packages is illustrated in Figure 9-7.

       PSoC 4

VDDD

VDDA

VCCD

VSSA

VSSD
0.1 uF 1 uF

1.71 V - 1.89 V

PSoC 4

VDDD

VDDA

VCCD

VSSA

VSSD
0.1 uF 1 uF

1.71 V - 1.89 V

0.1 uF 1 uF

1.71 V - 1.89 V

VSSD VSSD

VSSA VSSA



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 71

Power Supply and Monitoring

Figure 9-7.  Single VDD Supply

9.3 How It Works

The regulators in Figure 9-1 power the various domains of
the device. All four regulators draw their input power from
the VDDD pin supply.

Digital I/Os are supplied from VDDD. The analog circuits run

directly from the VDDA input.

9.3.1 Regulator Summary

Active digital regulator and quiet regulator are enabled dur-
ing the active or sleep power modes. They are turned off in
deep-sleep and hibernate power modes (see Table 11-1).
The deep-sleep and hibernate regulators are designed to
fulfill power requirements in the low-power modes of the
device.

9.3.1.1 Active Digital Regulator

For external supplies from 1.8 V and 5.5 V, this regulator
supplies the main digital logic in active and sleep modes.
This regulator has its output connected to a pin (VCCD) and

requires an external decoupling capacitor (1uFX5R).

For supplies below 1.80 V, VCCD must be supplied directly.

In this case, VCCD and VDDD must be shorted together as

shown in Figure 9-4.

The active digital regulator can be disabled by setting the
EXT_VCCD bit in PWR_CONTROL register. This reduces
the power consumption in direct supply mode. The active
digital regulator is available only in active and sleep power
modes.

9.3.1.2 Quiet Regulator

In active and sleep modes, this regulator supplies analog
circuits such as the bandgap reference and capacitive sens-
ing subsystem, which require a quiet supply, free of digital
switching noise, and power supply noise. This regulator has
a high-power supply rejection ratio. The quiet regulator is
available only in active and sleep power modes.

9.3.1.3 Deep-Sleep Regulator

This regulator supplies the circuits that remain powered in
deep-sleep mode, such as the ILO and SCB. The deep-
sleep regulator is available in all power modes except the
hibernate mode. In active and sleep power modes, the main
output of this regulator is connected to the output of the digi-
tal regulator (VCCD). This regulator also has a separate rep-

lica output that provides a stable voltage for the ILO. This
output is not connected to VCCD in active and sleep modes.

9.3.1.4 Hibernate Regulator

This regulator supplies the circuits that remain powered in
hibernate mode, such as the sleep controller, low-power
comparator, and SRAM. The hibernate regulator is available
in all power modes. In active and sleep modes, the output of
this regulator is connected to the output of the digital regula-
tor. In deep-sleep mode, the output of this regulator is con-
nected to the output of the deep-sleep regulator.

PSoC 4

VDD

VCCD

VSS

0.1 uF 1 uF

1.71 V-1.89 V



72 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Power Supply and Monitoring

9.3.2 Voltage Monitoring

Voltage detection includes power-on reset (POR), brownout
detection (BOD), and low-voltage detection (LVD). 

9.3.2.1 Power-On-Reset (POR)

Power-on-reset circuits provide a reset pulse during the ini-
tial power ramp. POR circuits monitor VCCD voltage. Typi-

cally, the POR circuits are not very accurate with respect to
trip-point. 

POR circuits are used during initial chip power-up and then
disabled.

9.3.2.2 Brownout-Detect (BOD)

These circuits protect the operating/retaining logic from pos-
sibly unsafe supply conditions by applying reset to the
device. BOD circuit monitors VCCD voltage. The BOD circuit

generates a reset if a voltage excursion dips below the mini-
mum VCCD voltage required for safe operation (see device

datasheet for details). The system will not come out of
RESET until the supply is detected to be valid again.

To enable firmware to distinguish a normal power cycle from
a brownout event, a special register is provided
(PWR_BOD_KEY) that will not be cleared after a BOD gen-
erated RESET. However, this register will be cleared if the
device goes through POR or XRES. BOD is available in all
power modes except the stop mode. 

9.3.2.3 Low-Voltage-Detect (LVD)

The LVD circuit monitors external supply voltage and accu-
rately detects depletion of the energy source. LVD detector
generates an interrupt to cause the system to take preven-
tive measures.

The LVD is available only in active and sleep power modes.
If LVD is required in deep-sleep mode, then the chip should
be configured to periodically wake up from deep sleep using
WDT as the wake up source; the LVD monitoring should be
done in active mode. LVD circuits generate interrupts at pro-
grammable levels within the safe operating voltage. The trip
point of LVD can be configured between 1.75 V to 4.5 V
using the LVD_SEL field in PWR_VMON_CONFIG register.

When enabling the LVD circuit, it is possible to get a false
interrupt during the initial settling time. Firmware can mask
this by waiting for 1 µs after setting the LVD_EN bit in
PWR_VMON_CONFIG register. The recommended firm-
ware procedure to enable the LVD function is:

1. Ensure that the LVD bit in the PWR_INTR_MASK regis-
ter is 0 to prevent propagating a false interrupt.

2. Set the required trip-point in the LVD_SEL field of the 
PWR_VMON_CFG register. 

3. Enable the LVD by setting the LVD_EN bit in the 
PWR_VMON_CFG. This may cause a false LVD event.

4. Wait at least 1 µs for the circuit to stabilize.

5. Clear the false event by writing a one to LVD bit in the 
PWR_INTR register. The bit will not clear if the LVD con-
dition is truly present.

6. Unmask the interrupt using the LVD bit in 
PWR_INTR_MASK.

9.4 Register List 

Table 9-1.  Power Supply and Monitoring Register List

Register Name Description

PWR_INTR Power System Interrupt Register – This register indicates the power system interrupt status.

PWR_INTR_MASK
Power System Interrupt Mask Register – This register controls which interrupts are propagated to 
the interrupt controller of the CPU.

PWR_VMON_CONFIG
Power System Voltage Monitoring Trim and Configuration – This register contains Trim and config-
uration bits for Voltage Monitoring System.

PWR_CONTROLDFT_SELECT Controls the device power mode options and allows observation of current state.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 73

10.   Chip Operational Modes 

PSoC® 4 is capable of executing firmware in four different modes. These modes dictate execution from different locations in
flash and ROM, and different levels of hardware privileges. Only three of the modes are used in end-applications. Debug
mode is used exclusively to debug designs during firmware development. PSoC 4’s operational modes are:

■ Boot

■ User

■ Privileged

■ Debug

10.1 Boot
Boot mode is an operational mode where the part is configured by instructions hard-coded in device ROM. This mode is
entered after reset ends, assuming that no debug acquire sequence is received by the part. Boot mode is a privileged mode –
interrupts are locked out in this mode so that the boot firmware may set up the device for operation without being interrupted.
During the power-up phase, hardware trim settings are loaded from NV-latches to guarantee proper operation during power-
up. When boot concludes, user mode is entered, and code execution from flash begins. This code in flash may include auto-
matically generated instructions from the PSoC Creator IDE that will further configure the part.

For more details on device startup, see the Reset System chapter on page 85.

10.2 User
User mode is an operational mode where normal user firmware execution is performed. User firmware is executed from flash.
User mode cannot execute code from ROM. Firmware execution during user mode includes firmware automatically gener-
ated by the PSoC Creator IDE and firmware written using the IDE. The automatically generated firmware can govern both
firmware startup and portions of normal operation. The boot process transfers control to this mode after it has completed its
tasks.

10.3 Privileged
Privileged mode is an operational mode, which allows execution of special subroutines that are stored in device ROM. These
subroutines are written by Cypress and not user-modifiable. They are used to execute proprietary code that is not meant to
be interrupted or observed. Debugging is not allowed in privileged mode. Exit from this mode returns the part to user mode.

10.4 Debug
Debug mode is an operational mode that allows observation of the operational parameters of the device, for the purpose of
debugging firmware during development. This mode is entered when an SWD debugger attaches to the device during the
acquire window, which occurs during device reset. Debug mode allows the use of an IDE such as PSoC Creator or ARM
MDK for firmware debugging. Debug mode is only available on devices in Open mode. For more details on the debug inter-
face, see the Program and Debug Interface chapter on page 257.

For more details on protection modes, see the Device Security chapter on page 87.



74 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Chip Operational Modes



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 75

11.   Power Modes

The PSoC® 4 provides a number of power modes, intended at minimizing the average power consumption for a given appli-
cation. The power modes, in the order of decreasing power consumption, are:

■ Active

■ Sleep

■ Deep-Sleep

■ Hibernate

■ Stop

Active, sleep, and deep-sleep are standard ARM defined power modes, supported by the ARM CPUs and instruction set
architecture (ISA). Hibernate and stop modes are lower power consuming modes that are entered from firmware similar to
deep-sleep, but on wakeup, the CPU and all peripherals go through a reset. 

The power consumption in different power modes is controlled by the following methods: 

■ Enabling/disabling clocks to peripherals

■ Powering on/off internal regulators

■ Powering on/off clock generators

■ Powering on/off parts of the PSoC

Figure 11-1 illustrates the various power modes and the possible transitions between them.



76 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Power Modes

Figure 11-1.  Power Mode Transitions State Diagram

RESET

ACTIVE

SLEEP

DEEP-SLEEP

HIBERNATE

Firmware
Action

Wakeup
Interrupt

Wakeup
Interrupt

Internal Resets (for 
example, WDT)

STOP Interrupt from 
WAKEUP Pin

Internal Reset Event

External Reset Event

Firmware Action

Other External Event
XRES, BOD, and 

POR*

*BOD is not available in STOP mode



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 77

Power Modes

Table 11-1 illustrates the power modes offered by PSoC 4 

11.1 Active Mode
Active mode is the primary power mode of the PSoC device.
This mode provides the option to use every possible sub-
system/peripheral in the device. In this mode, the CPU is
running and all the peripherals are powered. The firmware
may be used to dynamically disable specific peripherals that
are not in use to reduce the power consumption.

11.2 Sleep Mode
This is a CPU centric power mode. In this mode, the CPU
indicates that it is in “sleep” mode and its main clock is dis-
abled. It is a mode that the PSoC 4 must come to very often
or as soon as there is nothing to do for the CPU, to accom-
plish low power consumption. It is identical to active mode
from a peripheral point of view.

Any enabled interrupt can cause wakeup from sleep mode.

11.3 Deep-Sleep Mode
In deep-sleep mode, the CPU, SRAM, UDB, and high-speed
logic are in retention. 

The main system clock is off. Optionally, the internal low-fre-
quency (32 kHz) oscillator remains on and low-frequency
peripherals continue operating. Digital peripherals that do
not need a clock or receive a clock from their external inter-
face (for example, I2C slave) continue to operate. Interrupts
from low-speed, asynchronous or low-power analog periph-
erals can cause a wakeup from deep-sleep mode. 

The available wakeup sources are listed in Table 11-3. The
approximate current consumption in deep-sleep mode is
1.3 µA when the low-frequency clock is on and 0.5 µA when
the low-frequency clock is off.

Table 11-1.  PSoC 4 Power Modes

Power 
Mode

Description Entry Condition
Wakeup 
Sources

Active Clocks
Wakeup 
Action

Available Regulators

Active
Primary mode of opera-
tion, all peripherals are 
available (programmable)

Wakeup from other 
power modes, inter-
nal and external 
resets, brownout, 
power on reset

NA
Any (program-
mable)

Interrupt

All regulators are available. 
The active digital regulator 
can be disabled if external 
regulation is used.

Sleep

CPU enters sleep mode, 
SRAM is in retention, all 
peripherals are available 
(programmable)

Manual register entry Any interrupt
Any (program-
mable)

Interrupt

All regulators are available. 
The active digital regulator 
can be disabled if external 
regulation is used

Deep-
Sleep

All internal supplies are 
driven from Deep-Sleep 
regulator. IMO and high 
speed peripherals are off. 
Only the low-frequency 
(32 kHz) clock is avail-
able. Interrupts from low 
speed, asynchronous or 
low-power analog periph-
erals can cause a 
wakeup.

Manual register entry

PICU, low-
power com-
parator, SCB, 
Watchdog 
timer

ILO (32 kHz) Interrupt
Deep-sleep regulator and 
hibernate regulator

Hiber-
nate

Only SRAM and UDBs 
are retained, most internal 
supplies are off. Wakeup 
is possible from a pin 
interrupt or a low-power 
comparator.

Manual register entry
PICU, low-
power com-
parator

None Reset Hibernate regulator

Stop

All internal supplies are 
off. Only GPIO states are 
retained. Wakeup is pos-
sible from XRES or 
WAKEUP pins only.

Manual register entry
XRES, 
WAKEUP Pin

None Reset None



78 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Power Modes

11.4 Hibernate Mode
This is the lowest PSoC 4 power mode that retains SRAM. It
is implemented by switching off all clocks and removing
power from the CPU and all peripherals, with the exception
of a few (asynchronous) peripherals that can wake up the
system from an external event. Note that in this mode, the
CPU and all peripherals lose state.

In this mode, a hibernate regulator with limited capacity is
used to achieve an extremely low power consumption. This
puts a constraint on the maximum frequency of any signals
present on the input pins while in hibernate mode. The com-
bined toggle rate on all I/O pins (total frequency of signals in
all inputs and outputs) must not exceed 10 kHz.

Any system that has signals toggling at high rates can use
deep-sleep mode without seeing a significant difference in
total power consumption.

Wakeup from hibernate mode is possible from a pin interrupt
or a low-power comparator only. Wakeup from hibernate
involves a reset rather than a wakeup from interrupt. When
waking up from hibernate, the CPU and most peripherals
are in their reset state and firmware will start at the reset
vector. This reset tristates the I/Os, unless they are explicitly

frozen by firmware. The interrupt status will still be available,
allowing the system to identify the cause of wakeup. 

External reset (XRES) triggers a full system restart. In this
case, the cause is not readable after the device restarts. The
current consumption in hibernate mode is approximately
150 nA.

11.5 Stop Mode
In the stop mode, the CPU, all internal regulators, and all
peripherals are switched off. The GPIO output states are fro-
zen in stop mode. (The configuration, mode, and state of all
GPIOs in the system are locked. Changing the GPIO state is
not possible until the device enters active mode again.) No
other states are retained in this mode. Wakeup from stop
mode is a system reset and it is possible from XRES or
WAKEUP pins only. Note that the frozen GPIO states are
lost when XRES is aserted. The current consumption in stop
mode is approximately 20 nA.

Table 11-2 illustrates the available peripherals; Table 11-3
illustrates the available wakeup sources in each power
mode. 

Table 11-2.  Available Peripherals

Active Sleep Deep-Sleep Hibernate Stop

CPU On Retentiona Retention Off Off

SRAM On Retention Retention Retention Off

High Speed Peripherals On On Retention Off Off

Universal Digital Block (UDB) On On Retention Off Off

Low Speed Peripherals On On On (optional) Off Off

Internal Main Oscillator (IMO) On On Off Off Off

Internal Low Speed Oscillator (ILO, 32kHz) On On On (optional) Off Off

Asynchronous peripherals On On On Off Off

Power On Reset, Brownout Detection On On On Off Off

Regular Analog peripherals On On On Off Off

Hibernate Analog Peripheral (LP Compara-
tor)

On On On On Off

GPIO Output State On On On/Frozen Frozenb Frozen

a. The configuration and state of the peripheral is retained. Peripheral continues its operation when the device enters active mode.
b. The configuration, mode, and state of all GPIOs in the system are locked. Changing the GPIO state is not possible until the device enters active mode.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 79

Power Modes

11.6 Enter and Exit Low-Power 
Modes

A Wait For Interrupt (WFI) instruction from the Cortex-M0 
(CM0) triggers the transition into sleep, deep-sleep, and 
hibernate modes. The Cortex-M0 can delay the transition 
into a low-power mode until the lowest priority ISR is exited 
(if the SLEEPONEXIT bit in the CM0 System Control Regis-
ter is set).

The transition to sleep, deep-sleep, and hibernate is con-
trolled by the flags SLEEPDEEP in the CM0 System Control 
Register (SCR) and HIBERNATE in the System Resources 
Power subsystem (PWR_CONTROL).

■ Sleep is entered when WFI instruction is executed, 
SLEEPDEEP = 0 and HIBERNATE = x.

■ Deep-sleep is entered when WFI instruction is executed, 
SLEEPDEEP = 1 and HIBERNATE = 0.

■ Hibernate is entered when WFI is executed, SLEEP-
DEEP = 1 and HIBERNATE = 1.

Use the PWR_STOP register to freeze the GPIO states in
these low-power modes. This is recommended for the hiber-
nate mode because the wakeup from hibernate mode
causes a system reset. 

In sleep and deep-sleep modes, a selection of peripherals
are available (see Table 11-3), and firmware can either
enable or disable their associated interrupts. Enabled inter-
rupts can cause wakeup from the low-power mode to the
active mode. Additionally, any RESET returns the system to
active mode.

Stop mode is entered directly using the PWR_STOP regis-
ter in the System Resources Power subsystem. It removes
power from all of the low-voltage logic in the system. Only

the I/O state and PWR_STOP register contents are retained
and wakeup (reset) happens on either XRES or toggling of a
fixed WAKEUP pin.

The fields in PWR_STOP register are: 

■ TOKEN – This field contains an 8-bit token that is 
retained through a STOP/WAKEUP sequence that can 
be used by firmware to differentiate WAKEUP from a 
general RESET event. Note that waking up from STOP 
using XRES resets this register. 

■ UNLOCK – This register must be written to 0x3A to 
unlock stop mode. The hardware ignores the STOP bit if 
this field has any other setting. 

■ POLARITY – This bit sets the polarity of WAKEUP pin 
input. The device wakes up when the WAKEUP pin input 
matches the value of POLARITY bit. 

■ FREEZE – Setting this bit freezes the configuration, 
mode and state of all GPIOs in the system STOP –This 
bit must be set to enter the stop mode.

The recommended procedure to enter stop mode is: 

■ TOKEN = <any application-specified value>

■ UNLOCK = 0x3A

■ POLARITY = <application-specified polarity> 

■ FREEZE = 1 

■ STOP = 1 

It is recommended to add two NOP cycles after the third
write. Stop mode exits when either the XRES or WAKEUP
pins are toggled. Both events clear the STOP bit in the
PWR_STOP register and trigger a POR. A wakeup event
does not clear the other bits of the PWR_STOP register.

An XRES event clears all the bits. The recommended firm-

Table 11-3.  Wakeup Sources

Power Mode Wakeup Source Wakeup Action

Sleep
Any interrupt source Interrupt

Any reset source Reset

Deep-Sleep

PICU (port interrupt) Interrupt

Low-power comparator Interrupt

SCB (I2C address match) Interrupt

Watchdog timer Interrupt / Reset

XRES (external reset pin)a Reset

Hibernate 

PICU (port Interrupt) Reset

Low-power comparator Reset

XRES (external reset pin)a Reset

Stop
WAKEUP pin Reset

XRES (external reset pin)a Reset

a. XRES triggers a full system restart. All the states including frozen GPIOs are lost. In this case, the cause of wakeup is not readable after the device restarts.



80 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Power Modes

ware procedure on wakeup is as follows:

■ Optionally read TOKEN for application-specific branch-
ing.

■ Optionally write I/O drive modes and output data regis-
ters to the required settings. A typical procedure for digi-
tal output ports is to set the pad as output, read its frozen 
value, and set that value in the output data register.

■ Unfreeze the I/O.

11.7 Register List

Table 11-4.  Register List

Register Name Description

SCR System Control Register - Sets or returns system control data.

PWR_CONTROL Power Mode control - Controls the device power mode options and allows observation of current state.

PWR_STOP This register controls entry/exit from the Stop power mode.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 81

12.   Watchdog Timer 

The watchdog timer (WDT) circuit automatically resets the microcontroller in the event of an unexpected firmware execution
path. This timer, which is clocked by the 32-kHz ILO, must be serviced periodically in firmware to avoid a reset. Otherwise, the
microcontroller resets after a specified period of time. The WDT can also be used as wakeup source in low-power modes. 

12.1 Features

The WDT has these features:

■ Configurable timer period (Independent/Cascaded counters)

■ Can generate an interrupt in Sleep or Deep-Sleep power mode to wake up the microcontroller

■ Can generate an interrupt in Active mode after a specified interval

■ Protection settings to prevent accidental corruption of the registers

12.2 Block Diagram

Figure 12-1.  Watchdog Timer Block Diagram

Watchdog 
Timer

CLK

AHB 
Interface
Register

CFG/
STATUS

CPU
Subsystem

Reset BlockRESET

INTERRUPT

Internal Low 
Speed

Oscillator
(ILO)

32 kHz



82 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Watchdog Timer

12.3 How It Works

The WDT asserts an interrupt or a hardware reset to the
device after a preprogrammed interval, unless it is periodi-
cally serviced in firmware. In PSoC 4, the WDT has two 16-
bit counters (Counter-0 and Counter-1) and one 32-bit coun-
ter (Counter-2). These counters can be configured to work
independently or in cascade. The cascade configuration
provides an option to increase the reset or interrupt interval.

Counter-0 and Counter-1 generate an interrupt or a reset on
reaching the specified terminal count for the first time, or
generate a reset after three continuous unhandled interrupt,
whereas Counter-2 only generates an interrupt based on the
value stored in the WDT_BITS2[4:0] register bits.

12.3.1 Enabling and Disabling WDT

The WDT counters are enabled by setting the
WDT_ENABLE bit and are disabled by clearing it. Enabling
or disabling a WDT requires three LF clock cycles to come

into effect. Therefore, the WDT_ENABLE bit value must not
be changed more than once in that period.

After WDT is enabled, it is illegal to write WDT configuration
(WDT_CONFIG) and control (WDT_CONTROL) registers.
Accidental corruption of WDT registers can be prevented by
setting the bit-field WDT_LOCK of CLK_SELECT register. If
the application requires updating the terminal count value
(WDT_MATCH) when the WDT is running, clear the bit-field
WDT_LOCK. 

12.3.2 WDT Operating Modes 

The Counter-0 or Counter-1 can be used to generate a reset
to avoid the system going into the unresponsive state or to
generate an interrupt to wake up the system from Sleep or
Deep-Sleep mode. The register bits WDT_MODEX[1:0] are
configured to select the required match action when the
count value stored in the register bits WDT_CTRX equals
the preprogrammed terminal count value stored in the regis-
ter bits WDT_MATCHX, where X is either 0 or 1.

The Counter-2 can be used to generate the interrupt based on status of the WDT_BITS2[4:0] register bits.

12.3.3 WDT Interrupts and Low-Power 
Modes

The WDT counter sends the interrupt requests to the CPU in
Active mode and to the WakeUp Interrupt Controller (WIC)
in Sleep or Deep-Sleep mode. It works as follows:

■ Active Mode: The interrupt request from the WDT is 
sent to the CPU. The CPU acknowledges the interrupt 
request and executes the Interrupt Service Routine 
(ISR). The interrupt must be cleared after entering the 
ISR in firmware.

■ Sleep or Deep-Sleep Power Mode: In this mode, the 
CPU subsystem is powered-down. So, the interrupt 

request from the WDT is directly sent to the WIC, which 
will then wake up the CPU. The CPU acknowledges the 
interrupt request and executes the ISR. The interrupt 
must be cleared after entering the ISR in firmware.

12.3.4 WDT Reset Mode

The RESET_WDT bit is set in the RESET_CAUSE register
to indicate the reset generated by the WDT. This bit remains
set until cleared or until a power-on reset (POR) or brownout
reset (BOD) occurs; for example in the case of device power
cycle. All other resets leave this bit untouched.

For more details, see the Reset System chapter on page 85.

Table 12-1.  Counter-0 and Counter-1 Modes

Bit-field Name Description

WDT_MODE0[1:0]

or

WDT_MODE1[1:0]

Watchdog Counter Action on Match (WDT_CTR0=WDT_MATCH0) or 
(WDT_CTR1=WDT_MATCH1):

00: Do nothing

01: Assert WDT_INT0 or WDT_INT1

10: Assert WDT Reset

11: Assert WDT_INT0 or WDT_INT1, assert WDT reset after the third unhandled interrupt

Table 12-2.  Counter-2 Modes

Bit-field Name Description

WDT_MODE2

0: Free running counter with no interrupt requests

1: Free running counter with interrupt request when a specified bit in counter-2 toggles (see 
Table 12-4).



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 83

Watchdog Timer

12.4 Register List 

Note X = 0 or 1

Table 12-3.  Control and Status Register Bits for Counter-0 and Counter-1

Bit-field Name Description

WDT_CLEARX

Clear Watchdog Counter when WDT_CTRX=WDT_MATCHX. 

0: Free running counter. The counter restarts from 0 after reaching 0xFFFF.

1: Clear on match. The counter restarts from 0 after matching.

WDT_ENABLEX

Enable Counter-X

0: Counter is disabled (not counting)

1: Counter is enabled (counting up)

WDT_INTX
WDT Interrupt Request. This bit is set by hardware. This bit must be cleared by firmware. Clearing this 
bit also prevents Reset from happening when WDT_MODEX=3.

WDT_RESETX Reset counter-X count to 0. Hardware resets this bit after the counter is reset. 

WDT_CASCADE0_1

Cascade Watchdog Counters 0 and 1. 

The count value of the Counter-1 increments after the Counter-0 reaches terminal count 
(WDT_CTR0=WDT_MATCH0).

0: Independent counters

1: Cascaded counters

WDT_MATCH0 Match value for Watchdog Counter-0

WDT_MATCH1 Match value for Watchdog Counter-1

Table 12-4.  Control and Status Register Bits for Counter-2

Bit-field Name Description

WDT_CASCADE1_2

Cascade Watchdog Counters 1 and 2. The count value of the Counter-2 increments after the Counter-1 
reaches terminal count (WDT_CTR1=WDT_MATCH1).

You can cascade all 3 counters using WDT_CASCADE0_1 and WDT_CASCADE1_2.

0: Independent counters

1: Cascaded counters

WDT_ENABLE2

Enable Counter-2

0: Counter is disabled (not clocked)

1: Counter is enabled (counting up)

WDT_INT2 WDT Interrupt Request. This bit is set by hardware. This bit must be cleared by the firmware. 

WDT_RESET2 Resets counter-2 back to 0. Hardware resets this bit after counter is reset. 

WDT_BITS2[4:0]

The value stored in WDT_BITS2[4:0] decides the WDT_INT2 interrupt occurrence interval–one inter-
rupt per 2^(WDT_BITS[4:0])) clocks

0: Assert WDT_INT2 when bit 0 of Counter-2 toggles (one interrupt per 2^0 clock) 

1: Assert WDT_INT2 when bit 1 of Counter-2 toggles (one interrupt per 2^1 clocks)

...

31: Assert WDT_INT2 when bit 31 of Counter-2 toggles (one interrupt per 2^31 clocks) 



84 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Watchdog Timer



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 85

13.   Reset System

PSoC® 4 supports several types of resets that guarantee error-free operation during power up, and allow the device to reset
based on user-supplied external hardware or internal software reset signals.

The reset system has these sources:

■ Power-on reset (POR) to hold the part in reset while the power supply ramps up

■ Brownout reset (BOD) to reset the part if the power supply falls below specifications during operation

■ Watchdog reset (WRES) to reset the part if firmware execution fails to service the watchdog timer

■ Software initiated reset (SRES) to reset the part on demand using firmware

■ External reset (XRES) to reset the part using an electrical signal external to the PSoC 4

■ Protection fault reset (PROT_FAULT) to reset the part if unauthorized operating conditions occur

■ Hibernate wakeup reset to bring the part out of the hibernate low-power mode

■ Stop wakeup reset to bring the part out of the stop low-power mode

13.1 Reset Sources
The following sections provide a description of the reset sources.

13.1.1 Power-on Reset

Power-on reset is provided for system reset at power-up. POR holds the device in reset until all three voltages: VDDA, VDDD,
and VCCD, are according to datasheet specification. The POR activates automatically at power-up. 

POR events do not set a reset cause status bit, but can be partially inferred by the absence of any other reset source. If no
other reset event is detected, then the reset is caused by POR, undetectable BOD, or XRES.

13.1.2 Brownout Reset

Brownout reset monitors the digital voltage supply VCCD and generates a reset if VCCD is below the minimum logic operating
voltage specified in the device datasheet. BOD is available in all power modes except the Stop mode. 

BOD events do not set a reset cause status bit, but in some cases they can be detected. In some BOD events, VCCD will fall
below the minimum logic operating voltage, but remain above the minimum logic retention voltage. Thus, some BOD events
may be distinguished from POR events by checking for logic retention. This is explained further in the Identifying Reset
Sources on page 86 section.

13.1.3 Watchdog Reset

Watchdog reset (WRES) detects errant code by causing a reset if the watchdog timer is not cleared within the user-specified
time limit. This feature is enabled by setting the WDT_CONTROL[0] register bit. 

The RES_CAUSE[0] status bit is set when a watchdog reset occurs. This bit remains set until cleared or until a POR or BOD
reset, for example in the case of a device power cycle. All other resets leave this bit untouched.

For more details, see the Watchdog Timer chapter on page 81

13.1.4 Software Initiated Reset

Software initiated reset (SRES) is a mechanism that allows a software-driven reset. The Cortex-M0 application interrupt and
reset control register AIRCR forces a device reset when a ‘1’ is written into bit 2.



86 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Reset System

The RES_CAUSE[4] status bit is set when a software reset
occurs. This bit remains set until cleared or until a POR or
BOD reset, for example in the case of a device power cycle.
All other resets leave this bit untouched.

13.1.5 External Reset

External reset (XRES) is a user-supplied reset that causes
immediate system reset when asserted. The XRES_N pin is
active low – a high voltage on the pin causes no behavior
and a low voltage causes a reset. XRES_N is available as a
dedicated pin on all devices.

The XRES pin holds the part in reset while held active.
When the pin is released, the part goes through a normal
boot sequence. The external reset is active low, so that a
low voltage on the XRES_N pin causes a reset. The logical
thresholds for XRES and other electrical characteristics, are
listed in the Electrical Specifications section of the device
datasheet.

XRES events do not set a reset cause status bit, but can be
partially inferred by the absence of any other reset source. If
no other reset event is detected, then the reset is caused by
POR, undetectable BOD, or XRES.

13.1.6 Protection Fault Reset

Protection fault reset (PROT_FAULT) detects unauthorized
protection violations and causes a device reset if they occur.
One example of a protection fault is if a debug breakpoint is
reached while executing privileged code.

The RES_CAUSE[3] bit is set when a protection fault
occurs. This bit remains set until cleared or until a POR or
BOD reset – for example, in the case of a device power
cycle. All other resets leave this bit untouched.

13.1.7 Hibernate Wakeup Reset

Hibernate wakeup reset detects hibernate wakeup sources
and performs a device reset to return to the active power
mode. Hibernate wakeup resets are caused by interrupts.
Both pin and comparator interrupts are available in the
hibernate low-power mode. After a hibernate wakeup reset,
both SRAM and UDB register contents are retained, but
code execution begins after reset as it does after any other
reset source occurs. 

Hibernate resets can be detected by checking the interrupt
registers for comparators and pins. These interrupt register
states will be retained across resets.

For more details, see Hibernate Mode on page 78.

13.1.8 Stop Wakeup Reset

Stop wakeup reset detects stop wakeup sources and per-
forms a device reset to return to the active power mode.
Stop wakeup resets are caused by the XRES pin or the
WAKEUP pin. After a stop wakeup reset, no memory con-
tents are retained; code execution begins after reset as it
does after any other reset source occurs. 

Some stop wakeup resets can be detected by examining the
TOKEN bit-field (bits 0:7) in the PWR_STOP register. This
bit-field will be filled with a key when stop mode is entered.

Its contents will be retained if the part is woken up using the
WAKEUP pin. If the part is woken up with the XRES pin, the
wakeup source cannot be detected. For more details, see
Stop Mode on page 78.

13.2 Identifying Reset Sources
When the device comes out of reset, it is often useful to
know the cause of the most recent or even older resets. This
is achieved in the device primarily through the RES_CAUSE
register. This register has specific status bits allocated for
some of the reset sources. The RES_CAUSE register sup-
ports detection of watchdog reset, software reset, and pro-
tection fault reset. It does not record the occurrences of
POR, BOD, XRES, or the Hibernate and Stop wakeup
resets. The bits are set on the occurrence of the correspond-
ing reset, and remain set after the reset, until cleared or a
loss of retention, such as a POR reset or brownout below
the logic retention voltage. Hibernate wakeup resets can be
detected by examining the comparator and pin interrupt reg-
isters that were configured to wake the part up from hiber-
nate mode. Stop wakeup resets that occur as a result of a
WAKEUP pin event can be detected by examining the
PWR_STOP register, as described previously. Stop wakeup
resets that occur as a result of an XRES cannot be detected.

The other reset sources can be inferred to some extent by
the status of RES_CAUSE. Brownout events can be subdi-
vided into two categories: retention resets and non-retention
resets. If VCCD dips below the minimum logic operating volt-
age, but not below the minimum logic retention voltage, then
a BOD reset occurs; but retention of registers is maintained.
If VCCD dips below both minimum operating and minimum
retention voltage, then a BOD reset occurs without retention
of registers. This register retention can be detected using a
special register, PWR_BOD_KEY. The PWR_BOD_KEY
register only changes value when written by firmware or
when a non-retention reset such as a non-retention BOD,
XRES, or POR event. This register may be initialized by
firmware, and then checked in subsequent executions of
startup code to determine if a retention BOD occurred.

If these methods cannot detect the cause of the reset, then it
can be one of the non-recorded and non-retention resets:
non-retention BOD, POR, XRES, or XRES Stop Wakeup
reset. These four cannot be distinguished using on-chip
resources.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 87

14.   Device Security

PSoC® 4 offers a number of options for protecting user designs from unauthorized access or copying. Disabling debug fea-
tures and robust flash protection provide a high level of security. Additional security can be gained by implementing custom
functionality in the universal digital blocks (UDBs) instead of in firmware.

The debug circuits are enabled by default and can only be disabled in firmware. If disabled, the only way to re-enable them is
to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging. Addi-
tionally, all device interfaces can be permanently disabled for applications concerned about phishing attacks due to a mali-
ciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences.
Permanently disabling interfaces is not recommended for most applications because the designer then cannot access the
device. 

Note Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4
devices with full device security enabled may not be returned for failure analysis.

14.1 Features
The PSoC 4 device security system has the following features:

■ User-selectable levels of protection

■ In the most secure case provided, the chip can be “locked” such that it cannot be acquired for test/debug and it cannot 
enter erase cycles. Interrupting erase cycles is a known way for hackers to leave chips in an undefined state and open to 
observation.

■ CPU execution in a privileged mode by use of the non-maskable interrupt (NMI). When in privileged mode, NMI remains 
asserted to prevent any inadvertent return from interrupt instructions causing a security leak.

14.2 How It Works
The CPU operates in normal user mode or in privileged mode, and the device operates in one of four protection modes:
BOOT, OPEN, PROTECTED, and KILL. Each mode provides specific capabilities for the CPU software and debug (through
the DAP):

■ BOOT mode: The device comes out of reset in BOOT mode. It stays there until its protection state is copied from supervi-
sor flash to the protection control register (CPUSS_PROTECTION). The debug-access port is stalled until this has hap-
pened. BOOT is a transitory mode required to set the part to its configured protection state. During BOOT mode, the CPU 
always operates in privileged mode.

■ OPEN mode: This is the factory default. The CPU can operate in user mode or privileged mode. In user mode, flash can 
be programmed and debugger features are supported. Privileged mode access restrictions are enforced.

■ PROTECTED mode: The user may change the mode from OPEN to PROTECTED. This disables all debug access to 
user code or memory. Only access to user registers is still available; this prevents debug access to reprogram flash. The 
mode can be set back to OPEN but only after completely erasing the flash.

■ KILL mode: The user may change the mode from OPEN to KILL. This removes all debug access to user code or memory, 
and the flash cannot be erased. Only access to user registers is still available; this prevents debug access to reprogram 
flash. The part cannot be taken out of KILL mode; devices in KILL mode may not be returned for failure analysis.



88 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Device Security



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 89

Section E: Digital System

This section encompasses the following chapters:

■ Serial Communications (SCB) chapter on page 91

■ Universal Digital Blocks (UDB) chapter on page 129

■ Timer, Counter, and PWM chapter on page 165

Top Level Architecture

Digital System Block Diagram

Port Interface & Digital System Interconnect (DSI)

High Speed I/O Matrix

 

Peripheral Interconnect (MMIO)

4x
 T

C
P

W
M

2x
 S

C
B

- 
I2

C
/S

P
I/U

A
R

T
 Programmable

Digital

UDB UDB

UDBUDB

x4



90 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 91

15.   Serial Communications (SCB)

The Serial Communications Block (SCB) of PSoC® 4 supports three serial interface protocols: SPI, UART, and I2C. Only one
of the protocols is supported by an SCB at any given time. PSoC 4 devices have two SCBs. Additional instances of any of the
protocols can be implemented using Universal Digital Blocks (UDBs) and PSoC Creator.

15.1 Features

This block supports the following features:

■ Standard SPI master and slave functionality with Motorola, Texas Instruments, and National Semiconductor protocols

■ Standard UART functionality with SmartCard reader, Local Interconnect Network, and IrDA protocols

■ Standard I2C master and slave functionality

■ SPI and I2C EZ mode, which allows for operation without CPU intervention

■ Low-power (Deep-Sleep) mode of operation for SPI and I2C protocols (using external clocking)

Each of the three protocols is explained in the following sections.

15.2 Serial Peripheral Interface (SPI)

The Serial Peripheral Interface (SPI) protocol is a synchronous serial interface protocol. Devices operate in either master or
slave mode. The master initiates the data transfer. The SCB supports Single Master-Multiple Slaves topology for SPI. Multiple
slaves are supported with individual slave select lines. 

You can use the SPI master mode when the PSoC has to communicate with one or more SPI slave devices. The SPI slave
mode can be used when the PSoC has to communicate with an SPI master device. 

15.2.1 Features

■ Supports master and slave functionality

■ Supports 3 types of SPI protocols:

❐ Motorola SPI – modes 0, 1, 2, and 3

❐ TI SPI, with coinciding and preceding data frame indicator for mode 1

❐ National (MicroWire) SPI for mode 0

■ Data frame size programmable from 4 bits to 16 bits

■ Interrupts or polling CPU interface

■ Programmable oversampling

■ Supports EZ mode of operation (Easy SPI (EZSPI) Protocol and Easy I2C (EZI2C) Protocol)

■ Supports externally clocked slave operation:

❐ In this mode, the slave operates in Active, Sleep, and Deep-Sleep system power modes

❐ EZSPI mode allows for operation without CPU intervention



92 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

15.2.2 General Description

Figure 15-1 illustrates an example of SPI master with four slaves.

Figure 15-1.  SPI Example

A standard SPI interface consists of four signals as follows. 

■ SCLK: Serial clock (clock output from the master, input 
to the slave).

■ MOSI: Master-out-slave-in (data output from the master, 
input to the slave).

■ MISO: Master-in-slave-out (data input to the master, out-
put from the slave).

■ Slave Select (SS): Typically an active low signal (output 
from the master, input to the slave).

An SPI interface can also have just three signals for bidirec-
tional operations (MOSI and MISO lines combined). A single
serial data (SDAT) line replaces the MOSI and MISO lines.

A simple SPI data transfer involves the following: the master
selects a slave by driving its SS line, then it drives data on
the MOSI line and a clock on the SCLK line, The slave uses
the edges of SCLK to capture the data on the MOSI line; it
also drives data on the MISO line, which is captured by the
master.

By default, the SPI interface supports a data frame size of
eight bits (1 byte). The data frame size can be configured to
any value in the range 4 to 16 bits. The serial data can be
transmitted either most significant bit (MSB) first or least sig-
nificant bit (LSB) first.

Three different variants of the SPI protocol are supported by
the SCB:

■ Motorola SPI: This is the original SPI protocol.

■ Texas Instruments SPI: A variation of the original SPI 
protocol, in which data frames are identified by a pulse 
on the SS line.

■ National Semiconductors SPI: A half duplex variation of 
the original SPI protocol.

15.2.3 SPI Modes of Operation

15.2.3.1 Motorola SPI

The original SPI protocol was defined by Motorola. It is a full
duplex protocol. Multiple data transfers may happen with the
SS line held at '0'. As a result, slave devices must keep track
of the progress of data transfers to separate individual data
frames. When not transmitting data, the SS line is held at '1'
and SCLK is typically off.

Modes of Motorola SPI

The Motorola SPI protocol has four different modes based
on how data is driven and captured on the MOSI and MISO
lines. These modes are determined by clock polarity (CPOL)
and clock phase (CPHA). 

Clock polarity determines the value of the SCLK line when
not transmitting data. CPOL = '0' indicates that SCLK is '0'

SPI 
Master

SPI
Slave 1

SPI
Slave 2

SPI
Slave 4

SCLK

MOSI

MISO

Slave Select (SS) 2

Slave Select (SS) 4

SPI
Slave 3

Slave Select (SS) 3

Slave Select (SS) 1



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 93

Serial Communications (SCB)

when not transmitting data. CPOL = '1' indicates that SCLK
is '1' when not transmitting data.

Clock phase determines when data is driven and captured.
CPHA=0 means sample (capture data) on the leading (first)
clock edge, while CPHA=1 means sample on the trailing
(second) clock edge, regardless of whether that clock edge
is rising or falling. With CPHA=0, the data must be stable for
setup time before the first clock cycle.

■ Mode 0: CPOL is '0', CPHA is '0': Data is driven on a fall-
ing edge of SCLK. Data is captured on a rising edge of 
SCLK.

■ Mode 1; CPOL is '0', CPHA is '1': Data is driven on a ris-
ing edge of SCLK. Data is captured on a falling edge of 
SCLK.

■ Mode 2: CPOL is '1', CPHA is '0': Data is driven on a ris-
ing edge of SCLK. Data is captured on a falling edge of 
SCLK.

■ Mode 3: CPOL is '1', CPHA is '1': Data is driven on a fall-
ing edge of SCLK. Data is captured on a rising edge of 
SCLK.

Figure 15-2 illustrates driving and capturing of MOSI/MISO
data as a function of CPOL and CPHA.

Figure 15-2.  SPI Motorola, 4 Modes

CPOL = 0          CPHA = 0

SCLK

MISO / 
MOSI

SCLK

MISO / 
MOSI

SCLK

MISO / 
MOSI

SCLK

MISO / 
MOSI

LEGEND: 
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

MSB LSB

MSB LSB

MSB LSB

MSB LSB

CPOL = 0          CPHA = 1

CPOL = 1          CPHA = 0

CPOL = 1          CPHA = 1



94 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

Figure 15-3 illustrates a single 8-bit data transfer and two successive 8-bit data transfers in mode 0 (CPOL is '0', CPHA is '0').

Figure 15-3.  SPI Motorola Data Transfer Example

Configuring SCB for SPI Motorola Mode

To configure the SCB for SPI Motorola mode, set various
register bits in the following order: 

1. Select SPI by writing '01' to the SCB_MODE (bits 
[25:24]) of the SCB_CTRL register.

2. Select SPI Motorola mode by writing '00' to the 
SCB_MODE (bits [25:24]) of the SCB_SPI_CTRL regis-
ter.

3. Select the mode of operation in Motorola by writing to 
the SCB_CPHA and SCB_CPOL fields (bits 2 and 3 
respectively) of the SCB_SPI_CTRL register.

4. Follow steps 2 to 4 mentioned in Enabling and Initializing 
SPI on page 101. 

Note that PSoC Creator does all this automatically with the
help of GUIs. For more information on these registers, see
the PSoC 4 Registers TRM.

15.2.3.2 Texas Instruments SPI

The Texas Instruments' SPI protocol redefines the use of the
SS signal. It uses the signal to indicate the start of a data
transfer, rather than a low active slave select signal, as in

the case of Motorola SPI. As a result, slave devices need
not keep track of the progress of data transfers to separate
individual data frames. The start of a transfer is indicated by
a high active pulse of a single bit transfer period. This pulse
may occur one cycle before the transmission of the first data
bit, or may coincide with the transmission of the first data bit.
The TI SPI protocol supports only mode 1 (CPOL is '0' and
CPHA is '1'): data is driven on a rising edge of SCLK and
data is captured on a falling edge of SCLK.

Figure 15-4 illustrates a single 8-bit data transfer and two
successive 8-bit data transfers. The SELECT pulse pre-
cedes the first data bit. Note how the SELECT pulse of the
second data transfer coincides with the last data bit of the
first data transfer.

SCLK

Slave Select

MOSI

MISO

LEGEND: 
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

SCLK

Slave Select

MOSI

MISO

CPOL = 0,  CPHA = 0 single data transfer

MSB LSB

MSB LSB MSB LSB

LSBMSB

MSB LSB MSB LSB

                                                              CPOL = 0,  CPHA = 0   two successive data transfers



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 95

Serial Communications (SCB)

Figure 15-4.  SPI TI Data Transfer Example

SCLK

Slave Select

MOSI

MISO

LEGEND: 
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

SCLK

Slave Select

MOSI

MISO

CPOL=0, CPHA=1 single data transfer

MSB LSB

MSB LSB MSB LSB

MSB LSB

MSB LSB MSB LSB

  
 CPOL=0, CPHA=1  two successive data transfers



96 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

Figure 15-5 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SELECT pulse coincides with
the first data bit of a frame.

Figure 15-5.  SPI TI Data Transfer Example

Configuring the SCB for SPI TI Mode

To configure the SCB for SPI TI mode, set various register
bits in the following order: 

1. Select SPI by writing '01' to the SCB_MODE (bits 
[25:24]) of the SCB_CTRL register.

2. Select SPI TI mode by writing '01' to the SCB_MODE 
(bits [25:24]) of the SCB_SPI_CTRL register.

3. Select the mode of operation in TI by writing to the 
SELECT_PRECEDE field (bit 1) of the SCB_SPI_CTRL 
register ('1' configures the SELECT pulse to precede the 
first bit of next frame and '0' otherwise).

4. Follow steps 2 to 4 mentioned in Enabling and Initializing 
SPI on page 101. 

Note that PSoC Creator does all this automatically with the
help of GUIs. For more information on these registers, see
the PSoC 4 Registers TRM.

15.2.3.3 National Semiconductors SPI

The National Semiconductors' SPI protocol is a half duplex
protocol. Rather than transmission and reception occurring
at the same time, they take turns. The transmission and
reception data sizes may differ. A single "idle" bit transfer
period separates transmission from reception. However, the
successive data transfers are NOT separated by an "idle" bit
transfer period.

The National Semiconductors SPI protocol only supports
mode 0: data is driven on a falling edge of SCLK and data is
captured on a rising edge of SCLK.

Figure 15-6 illustrates a single data transfer and two succes-
sive data transfers. In both cases the transmission data
transfer size is 8 bits and the reception data transfer size is 4
bits.

SCLK

Slave Select

MOSI

MISO

LEGEND: 
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

SCLK

Slave Select

MOSI

MISO

CPOL=0, CPHA=1 single data transfer

MSB LSB

MSB LSB MSB LSB

MSB LSB

MSB LSB MSB LSB

                                                                                          
CPOL=0, CPHA=1   two successive data transfers



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 97

Serial Communications (SCB)

Figure 15-6.  SPI NS Data Transfer Example

Configuring the SCB for SPI NS Mode

To configure the SCB for SPI NS mode, set various register
bits in the following order: 

1. Select SPI by writing '01' to the SCB_MODE (bits 
[25:24]) of the SCB_CTRL register.

2. Select SPI NS mode by writing '10' to the SCB_MODE 
(bits [25:24]) of the SCB_SPI_CTRL register.

3. Follow steps 2 to 4 mentioned in Enabling and Initializing 
SPI on page 101. 

Note that PSoC Creator does all this automatically with the
help of GUIs. For more information on these registers, see
the PSoC 4 Registers TRM.

15.2.4 Easy SPI (EZSPI) Protocol

The easy SPI (EZSPI) protocol is based on the Motorola SPI
operating in mode 0. It allows communication between mas-
ter and slave without the need for CPU intervention at the
level of individual frames.

The EZSPI protocol defines an 8-bit EZ address that
indexes a memory array (32-entry array of eight bit per entry
is supported) located on the slave device. To address these
32 locations, the lower five bits of the EZ address are used.
All EZSPI data transfers have 8-bit data frames. 

Note The SCB has a FIFO memory, which is a 16 word by
16 bit SRAM, with byte write enable. The access methods
for EZ and non-EZ functions are different. In non-EZ mode,
the FIFO is split into TXFIFO and RXFIFO. Each has eight
entries of 16 bits per entry. The 16-bit width per entry is used
to accommodate configurable data width. In EZ mode, it is
used as a single 32x8 bit EZFIFO because only a fixed 8-bit
width data is used in EZ mode.

EZSPI has three types of transfers: a write of the EZ
address from the master to the slave, a write of data from
the master to an addressed slave memory location, and a
read by the master from an addressed slave memory loca-
tion.

MSB LSB

MSB LSB

MSB LSB

MSB LSB

MSB

“idle” ‘0’ cycle

“idle” ‘0’ cycle
No “idle” cycle

SCLK

Slave Select

MOSI

MISO

SCLK

Slave Select

MOSI

MISO

CPOL=0, CPHA=0 Transfer of one MOSI  and one MISO data frame

CPOL=0, CPHA=0 Successive transfer of two MOSI  and one MISO data frame

LEGEND: 
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out



98 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

15.2.4.1 EZ Address Write

A write of the EZ address starts with a command byte (0x00)
on the MOSI line indicating the master's intent to write the
EZ address. The slave then drives a reply byte on the MISO
line to indicate that the command is observed (0xFE) or not
(0xFF). The second byte on the MOSI line is the EZ
address.

15.2.4.2 Memory Array Write

A write to a memory array index starts with a command byte
(0x01) on the MOSI line indicating the master's intent to
write to the memory array. The slave then drives a reply byte
on the MISO line to indicate that the command was
observed (0xFE) or not (0xFF). Any additional write data
bytes on the MOSI line are written to the memory array at
locations indicated by the communicated EZ address. The
EZ address is automatically incremented by the slave as
bytes are written into the memory array. When the EZ
address exceeds the maximum number of memory entries
(32), it wraps around to 0.

15.2.4.3 Memory Array Read

A read from a memory array index starts with a command
byte (0x02) on the MOSI line indicating the master's intent to
read from the memory array. The slave then drives a reply
byte on the MISO line to indicate that the command was
observed (0xFE) or not (0xFF). Any additional read data
bytes on the MISO line are read from the memory array at
locations indicated by the communicated EZ address. The
EZ address is automatically incremented by the slave as
bytes are read from the memory array. When the EZ
address exceeds the maximum number of memory entries
(32), it wraps around to 0.

Figure 15-7 illustrates the write of EZ address, write to a
memory array and read from a memory array operations in
the EZSPI protocol.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 99

Serial Communications (SCB)

Figure 15-7.  EZSPI Example

Command 0x00 EZ Address

Command 0x00 : Write EZ address

Command 0x01

Command 0x01 : Write DATA

Write DATA

Command 0x02

Command 0x02 : Read DATA

Read DATA

SCLK

Slave Select

MOSI

MISO

SCLK

Slave Select

MOSI

MISO

SCLK

Slave Select

MOSI

MISO

EZ address

EZ address (8 bits)

EZ buffer
(32 bytes SRAM)

EZ address

Write 
DATA

Read 
DATA

LEGEND :
CPOL : Clock Polarity                                               0x00 : Write EZ address
CPHA : Clock Phase                                                 0x01 : Write DATA
SCLK : SPI Interface Clock                                       0x02 : Read DATA
MISO : SPI Master-In-Slave-Out                               0xFE : “slave ready”
MOSI : SPI Master-Out-Slave-In                               0xFF  : “slave busy”



100 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

15.2.4.4 Configuring SCB for EZSPI Mode

By default, the SCB is configured for non-EZ mode of opera-
tion. To configure the SCB for EZSPI mode, set various reg-
ister bits in the following order: 

1. Select EZ mode by writing '1' to the EZ_MODE bit (bit 
10) of the SCB_CTRL register.

2. Follow steps 2 to 4 mentioned in Enabling and Initializing 
SPI on page 101.

3. Use continuous transmission mode for transmitter by 
writing '1' to the SCB_CONTINUOUS bit of 
SCB_SPI_CTRL register. 

4. EZSPI mode is applicable only for slave functionality 
(write '0' to the SCB_MASTER_MODE field, bit 31 of 
SCB_SPI_CTRL register).

5. Set the data frame width eight bits long (write ‘0111’ to 
the SCB_DATA_WIDTH field, bits [3:0] of 
SCB_TX_CTRL and SCB_RX_CTRL registers).

6. Set the shift direction as MSB first (write '1' to the 
SCB_MSB_FIRST field, bit 8 of SCB_TX_CTRL and 
SCB_RX_CTRL registers).

Note that PSoC Creator does all this automatically with the
help of GUIs. For more information on these registers, see
the PSoC 4 Registers TRM.

15.2.5 SPI Registers

The SPI interface is controlled using a set of 32-bit control
and status registers listed in Table 15-1. For more informa-
tion on these registers, see the PSoC 4 Registers TRM.

15.2.6 SPI Interrupts

The SPI supports both internal and external interrupt
requests. The internal interrupt events are listed here. PSoC
Creator generates the necessary interrupt service routines
(ISRs) for handling buffer management interrupts. Custom
ISRs can also be used by connecting external interrupt com-
ponent to the interrupt output of the SPI component (with
external interrupts enabled).

The SPI predefined interrupts can be classified as TX inter-
rupts and RX interrupts. The TX interrupt output is the logi-
cal OR of the group of all possible TX interrupt sources. This
signal goes high when any of the enabled TX interrupt
sources are true. The RX interrupt output is the logical OR of
the group of all possible RX interrupt sources. This signal
goes high when any of the enabled Rx interrupt sources are
true. Various interrupt registers are used to determine the
actual source of the interrupt. 

Table 15-1.  SPI Registers

Register Name Operation

SCB_CTRL
Used to enable the SCB, select the type of serial interface (SPI, UART, I2C), and for selecting internally and 
externally clocked operation, EZ and non-EZ modes of operation.

SCB_STATUS In EZ mode, this register indicates whether the externally clocked logic is potentially using the EZ memory.

SCB_SPI_CTRL
Used to configure the SPI as either a master or a slave, selecting SPI protocols (Motorola, TI, National), 
clock-based submodes in Motorola SPI (modes 0,1,2,3), selecting the type of SELECT signal in TI SPI.

SCB_SPI_STATUS
Indicates whether the SPI bus is busy. It is also used to set the SPI slave EZ address in the internally 
clocked mode.

SCB_TX_CTRL
Used to enable the transmitter, also to specify the data frame width and to specify whether MSB or LSB is 
the first bit in transmission.

SCB_RX_CTRL Performs the same function as that of the SCB_TX_CTRL register, but for the Receiver.

SCB_TX_FIFO_CTRL
Used to specify the trigger level, clear the transmitter FIFO and shift registers, and for FREEZE operation of 
the transmitter FIFO. 

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_FIFO_RD
Holds the data read from the receiver FIFO. Reading a data frame removes the data frame from the FIFO - 
behavior is similar to that of a POP operation. This register has a side effect when read by software: a data 
frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data read from the receiver FIFO. Reading a data frame does not remove the data frame from the 
FIFO; behavior is similar to that of a PEEK operation.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by 
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides 
if the transmitter FIFO holds the valid data.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver.

SCB_EZ_DATA Holds the data in EZ memory location 



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 101

Serial Communications (SCB)

The SPI supports interrupts on the following events: 

■ SPI transfer done

■ SPI is Idle

■ TX FIFO is not full

■ TX FIFO is empty

■ SPI Byte / Word transfer complete

■ RX FIFO is empty

■ RX FIFO is not empty

■ Attempt to write to a full RX FIFO.

■ RX FIFO is Full

15.2.7 Enabling and Initializing SPI 

The SPI must be programmed in the following order:

1. Program protocol specific information using the 
SCB_SPI_CTRL register, according to Table 15-2. This 
includes selecting the submodes of the protocol and 
selecting master-slave functionality.

2. Program the generic transmitter and receiver information 
using the SCB_TX_CTRL and SCB_RX_CTRL regis-
ters, as shown in Table 15-3:

a. Specify the data frame width.

b. Specify whether MSB or LSB is the first bit to be 
transmitted / received.

c. Enable the transmitter and receiver.

3. Program the transmitter and receiver FIFOs using the 
SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL regis-
ters respectively, as shown in Table 15-4:

a. Set the trigger level

b. Clear the transmitter and receiver FIFO and Shift 
registers.

c. Freeze the TX and RX FIFO.

4. Program SCB_CTRL register to enable the SCB block. 
Also select the mode of operation. These register bits 
are shown in Table 15-5.

After the block is enabled, control bits should not be
changed. Changes should be made AFTER disabling the
block; for example, to modify the operation mode (from
Motorola mode to TI mode) or to go from externally to inter-
nally clocked operation. The change takes effect only after
the block is re-enabled. Note that re-enabling the block
causes re-initialization and the associated state is lost (for
example, FIFO content).

The last step of initialization should always be to enable the
block (write a '1' to the ENABLED bit of the SCB_CTRL reg-
ister).

Table 15-2.  SCB_SPI_CTRL Register

Bits Name Value Description

[25:24] MODE

00 SPI Motorola submode

01
SPI Texas Instruments sub-
mode

10
SPI National Semiconductors 
submode

11 Reserved

31
MASTER_
MODE

0 Master mode

1 Slave mode

Table 15-3.  SCB_TX_CTRL / SCB_RX_CTRL Registers

Bits Name Description

[3:0]
DATA_ 
WIDTH

'DATA_WIDTH + 1' is the number of bits 
in the transmitted or received data 
frame. The valid range is [3, 15]. This 
does not include start, stop and parity 
bits.

8
MSB_FIRS
T

1= MSB first 

0= LSB first

31 ENABLED

Transmitter enable bit for 
SCB_TX_CTRL and Receiver enable bit 
for SCB_RX_CTRL registers. They 
must be enabled for all the protocols. 
Otherwise, the block may not function or 
the data may get lost.

Table 15-4.  SCB_TX_FIFO_CTRL / SCB_RX_FIFO_CTRL 
Registers

Bits Name Description

[2:0]
TRIGGER_LE
VEL

Trigger level. When the transmitter 
FIFO has less entries or receiver FIFO 
has more entries than the value of this 
field, a transmitter or receiver trigger 
event is generated in the respective 
case.

16 CLEAR
When '1', the transmitter or receiver 
FIFO and the shift registers are 
cleared.

17 FREEZE

When '1', hardware reads / writes to 
the transmitter or receiver FIFO have 
no effect. Freeze does not advance the 
TX or RX FIFO read / write pointer.

Table 15-5.  SCB_CTRL Register

Bits Name Value Description

[25:24] MODE

00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED
0 SCB block enabled

1 SCB block disabled



102 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

15.2.8 Internally and Externally Clocked 
SPI Operations

The SCB supports both internally and externally clocked
operations for SPI and I2C functions. Internally clocked
operation uses a clock provided by the chip. Externally
clocked operation uses a clock provided by the serial inter-
face. Externally clocked operation enables operation in the
Deep-Sleep system power mode, in which no chip internal
clock is provided to the block. 

Internally clocked operation of the SCB uses the high-fre-
quency clock of the system. For more information on system
clocking, see the PSoC 4 Registers TRM. It also supports
oversampling. Oversampling is implemented with respect to

the high-frequency clock. The SCB_OVS (bits [3:0]) of the
SCB_CTRL register specify the oversampling. 

In SPI Master mode, the valid range for oversampling is 4 to
16. Hence, the maximum bit rate is 12 Mbps. 

In SPI Slave mode, the oversampling field (bits [3:0]) of
SCB_CTRL register is not used. However, there is a fre-
quency requirement for the SCB clock with respect to the
interface clock (SCLK). This requirement is expressed in
terms of the ratio (SCB Clock / SCLK). This ratio is depen-
dent on two fields: MEDIAN of SCB_RX_CTRL register and
LATE_MISO_SAMPLE of SCB_CTRL register. Based on
these bits, the maximum bit rates are given in Table 15-6. 

Externally clocked operation is limited to:

■ Slave functionality.

■ EZ functionality. EZ functionality uses the block's SRAM 
as a memory structure. Non EZ functionality uses the 
block's SRAM as TX and RX FIFOs; FIFO support is not 
available in externally clocked operation.

■ Motorola mode 0 (in the case of SPI slave functionality).

Externally clocked EZ mode of operation can support a data
rate of 48 Mbps (at a peripheral clock of 48 MHz).

Internally and externally clocked operation is determined by
two register fields of the SCB_CTRL register:

■ EC_AM_MODE: Indicates whether SPI slave selection 
is internally ('0') or externally ('1') clocked. SPI slave 
selection comprises the first part of the protocol.

■ EC_OP_MODE: Indicates whether the rest of the proto-
col operation (besides SPI slave selection) is internally 
('0') or externally ('1') clocked. As mentioned earlier, 
externally clocked operation does NOT support non EZ 
functionality.

These two register fields determine the functional behavior
of SPI. The register fields should be set based on the
required behavior in Active, Sleep, and Deep-Sleep system
power mode. Improper setting may result in faulty behavior
in certain system power modes. Table 15-7 and Table 15-8
describe the settings for SPI (in EZ and non EZ mode).

15.2.8.1 Non EZ Mode of Operation

In non EZ mode there are two possible settings. As exter-
nally clocked operation is not supported for non EZ function-

ality (no FIFO support), EC_OP_MODE should always be
set to '0'. However, EC_AM_MODE can be set to '0' or '1'.
Table 15-7 gives an overview of the possibilities. The combi-
nation EC_AM_MODE=0 and EC_OP_MODE=1 is invalid
and the block will not respond.

Table 15-6.  SPI Slave Maximum Data Rates

Median of 
SCB_RX_CTRL

LATE_MISO_SAMPLE of SCB_CTRL Ratio Requirement
Maximum Bit Rate at Peripheral Clock of 48 

MHz

0 0 >6 8 Mbps

0 1 >3 16 Mbps

1 0 >8 6 Mbps

1 1 >4 12 Mbps



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 103

Serial Communications (SCB)

EC_OP_MODE is '0' and EC_AM_MODE is '0': This setting
only works in Active and Sleep system power modes. The
entire block's functionality is provided in the internally
clocked domain.

EC_OP_MODE is '0' and EC_AM_MODE is '1': This setting
works in Active and Sleep system power mode and provides
limited (wake up) functionality in Deep-Sleep system power
mode. SPI slave selection is performed by both the inter-
nally and externally clocked logic: in Active system power
mode both are active and in Deep-Sleep system power
mode only the externally clocked logic is active. When the
externally clocked logic detects slave selection, it sets a
wakeup interrupt cause bit, which can be used to generate
an interrupt to wake up the CPU.

■ In Active system power mode, the CPU and the block's 
internally clocked slave selection logic are active and the 
wakeup interrupt cause is disabled (associated MASK 
bit is '0'). But in the Sleep mode, wakeup interrupt cause 
can be either enabled or disabled (MASK bit can be 
either '1' or '0') based on the application. The remaining 
operations in the Sleep mode are same as that of the 
Active mode. The internally clocked logic takes care of 
the ongoing SPI transfer.

■ In Deep-Sleep system power mode, the CPU needs to 
be woken up and the wakeup interrupt cause is enabled 
(MASK bit is '1'). Waking up takes time, so the ongoing 
SPI transfer is negatively acknowledged ('1' bits or 
"0xFF" bytes are send out on the MISO line) and the 
internally clocked logic takes care of the next SPI trans-
fer when it is woken up.

15.2.8.2 EZ Mode of Operation

EZ mode has three possible settings. EC_AM_MODE can
be set to '0' or '1' when EC_OP_MODE is '0' and
EC_AM_MODE must be set to '1' when EC_OP_MODE is
'1'. Table 15-8 gives an overview of the possibilities (the grey
colored cells indicate a possible, yet non preferred setting
as it involves a switch from the externally clocked logic
(slave selection) to the internally clocked logic (rest of the
operation)). The combination EC_AM_MODE=0 and
EC_OP_MODE=1 is invalid and the block will not respond.

Table 15-7.  SPI Non-EZ Mode

SPI, standard (non-EZ) mode

EC_OP_MODE = 0 EC_OP_MODE = 1

System Power Mode EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 1 EC_AM_MODE=0

Active and Sleep

Selection using internal 
clock. 

Operation using internal 
clock.

Selection using external 
clock => Wake up interrupt 
cause disabled for Active 
mode - mask=0 and in Sleep 
mode, the mask bit can be 
configured by the user. 

Generate 0xff bytes. 

Selection using internal 
clock.

Operation using internal 
clock.

Not supported

Invalid configuration

Deep-Sleep Not supported

Selection using external 
clock = > Wake up interrupt 
cause enabled (mask=1). 

Generate 0xff bytes

Not supported

Hibernate The SCB is not available in these modes (see Power Modes chapter on page 75)

Stop



104 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

EC_OP_MODE is '0' and EC_AM_MODE is '0': This setting
only works in Active system power mode. The entire block's
functionality is provided in the internally clocked domain.

EC_OP_MODE is '0' and EC_AM_MODE is '1': This setting
works in Active system power mode and provides limited
(wake up) functionality in Deep-Sleep system power mode.
SPI slave selection is performed by both the internally and
externally clocked logic: in Active system power mode both
are active and in Deep-Sleep system power mode only the
externally clocked logic is active. When the externally
clocked logic detects slave selection, it sets a wakeup inter-
rupt cause bit, which can be used to generate an interrupt to
wake up the CPU.

■ In Active system power mode, the CPU and the block's 
internally clocked slave selection logic are active and the 
wakeup interrupt cause is disabled (associated MASK 
bit is '0'). But in Sleep mode, wakeup interrupt cause can 
be either enabled or disabled (MASK bit can be either '1' 
or '0') based on the application. The remaining opera-
tions in the Sleep mode are same as that of the Active 
mode. The internally clocked logic takes care of the 
ongoing SPI transfer.

■ In Deep-Sleep system power mode, the CPU needs to 
be woken up and the wakeup interrupt cause is enabled 
(MASK bit is '1'). Waking up takes time, so the ongoing 
SPI transfer is negatively acknowledged ('1' bits or 
"0xFF" bytes are send out on the MISO line) and the 
internally clocked logic takes care of the next SPI trans-
fer when it is woken up.

EC_OP_MODE is '1' and EC_AM_MODE is '1': This setting
works in Active system power mode and Deep-Sleep sys-

tem power mode. The SCB functionality is provided in the
externally clocked domain. Note that this setting results in
externally clocked accesses to the block's SRAM. These
accesses may conflict with internally clocked accesses from
the device. This may cause wait states or bus errors. The
field FIFO_BLOCK of the SCB_CTRL register determines
whether wait states ('1') or bus errors ('0') are generated.

15.3 UART

The Universal Asynchronous Receiver/Transmitter (UART)
protocol is an asynchronous serial interface protocol. UART
communication is typically point-to-point. The UART inter-
face consists of two signals:

■ TX: Transmitter output

■ RX: Receiver input

15.3.1 Features

■ Asynchronous transmitter and receiver functionality

■ Supports a maximum data rate of 1 Mbps

■ Supports UART protocol

❐ Standard UART

❐ SmartCard (ISO7816) reader.

❐ IrDA

■ Supports Local Interconnect Network (LIN)

❐ Break detection

❐ Baud rate detection

Table 15-8.  SPI EZ Mode

SPI, EZ mode

EC_OP_MODE = 0 EC_OP_MODE = 1

System Power Mode EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 1 EC_AM_MODE=0 

Active and Sleep

Selection using internal 
clock.

Operation using internal 
clock.

Selection using external 
clock => Wake up interrupt 
cause disabled for Active 
mode - mask=0 and in Sleep 
mode, the mask bit can be 
configured by the user.

Generate 0xff byes 

Selection using internal 
clock.

Operation using internal 
clock.

Selection using external 
clock.

Operation using exter-
nal clock.

Invalid configuration

Deep-Sleep Not supported

Selection using external 
clock= > Wake up interrupt 
cause enabled (mask=1). 

Generate 0xff bytes.

Selection using external 
clock

Operation using exter-
nal clock

Hibernate
The SCB is not available in these modes (refer the chapter on Power modes)

Stop



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 105

Serial Communications (SCB)

❐ Collision detection (ability to detect that a driven bit 
value is not reflected on the bus, indicating that 
another component is driving the same bus).

■ Multi-processor mode

■ Data frame size programmable from 4 bits to 16 bits.

■ Programmable number of STOP bits, which can be sret 
to 1, 1.5, or 2 data bits

■ Parity support (odd and even parity)

■ Interrupt or polling CPU interface

■ Programmable oversampling

15.3.2 General Description

Figure 15-8 illustrates a standard UART TX and RX.

Figure 15-8.  UART Example

A typical UART transfer consists of a "Start Bit" followed by
multiple "Data Bits", optionally followed by a "Parity Bit" and
finally completed by one or more "Stop Bits". The Start and
Stop bits indicate the start and end of data transmission. The
Parity bit is sent by the transmitter and is used be the
receiver to detect single bit errors. As the interface does not
have a clock (asynchronous), the transmitter and receiver
use their own clocks; also, they need to agree upon the
period of a bit transfer.

Three different serial interface protocols are supported:

■ Standard UART protocol

❐ Multi-Processor Mode

❐ Local Interconnect Network (LIN)

■ SmartCard, similar to UART, but with a possibility to 
send a negative acknowledgement

■ IrDA, modification to the UART with a modulation 
scheme

By default, UART supports a data frame width of eight bits.
However, this can be configured to any value in the range of
4 to 9. This does not include start, stop and parity bits. The

number of stop bits can be in the range of 1 to 3. The parity
bit can be either enabled or disabled. If enabled, the type of
parity can be set to either even parity or odd parity. The
option of using the parity bit is available only in the Standard
UART and SmartCard UART modes. For IrDA UART mode,
the parity bit is automatically disabled. Figure 15-9 depicts
the default configuration of the UART interface of the SCB.

Note UART interface does not support external clocking
operation. Hence, UART operates only in the Active and
Sleep system power modes. 

15.3.3 UART Modes of Operation

15.3.3.1 Standard Protocol

A typical UART transfer consists of a start bit followed by
multiple data bits, optionally followed by a parity bit and
finally completed by one or more stop bits. The start bit
value is always '0', the data bits values are dependent on
the data transferred, the parity bit value is set to a value
guaranteeing an even or odd parity over the data bits, and
the stop bits value is '1'. The parity bit is generated by the
transmitter and can be used by the receiver to detect single
bit transmission errors. When not transmitting data, the TX
line is '1' – the same value as the stop bits. 

Because the interface does not have a clock, the transmitter
and receiver need to agree upon the period of a bit transfer.
The transmitter and receiver have their own internal clocks.
The receiver clock runs at a higher frequency than the bit
transfer frequency, such that the receiver may oversample
the incoming signal. 

The transition of a stop bit to a start bit is represented by a
change from '1' to '0' on the TX line. This transition can be
used by the receiver to synchronize with the transmitter
clock. Synchronization at the start of each data transfer
allows error-free transmission even in the presence of fre-
quency drift between transmitter and receiver clocks. The
required clock accuracy is dependent on the data transfer
size. 

The stop period or the amount of stop bits between succes-
sive data transfers is typically agreed upon between trans-
mitter and receiver, and is typically in the range of 1 to 3-bit
transfer periods. 

Figure 15-9 illustrates the UART protocol.

Figure 15-9.  UART, Standard Protocol Example

UART UART

TX

RX
TX

RX

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)

LEGEND:
TX / RX : Transmit or Receive line

TX / RX



106 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

The receiver oversamples the incoming signal; the value of the sample point in the middle of the bit transfer period (on the
receiver's clock) is used. Figure 15-10 illustrates this. 

Figure 15-10.  UART, Standard Protocol Example (Single Sample)

Alternatively, three samples around the middle of the bit transfer period (on the receiver's clock) are used for a majority vote to
increase accuracy. Figure 15-11 illustrates this.

Figure 15-11.  UART, Standard Protocol (Multiple Samples)

UART Multi-Processor Mode

The UART_MP (multi-processor) mode is defined with "single-master-multi-slave" topology, as shown in Figure 15-12. This
mode is also known as UART 9-bit protocol because the data field is nine bits wide. UART_MP is part of Standard UART
mode. 

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

TX clock

RX clock

TX / RX

LEGEND:
TX / RX : Transmit or Receive line

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

TX clock

RX clock

TX / RX

LEGEND:
TX / RX : Transmit or Receive line



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 107

Serial Communications (SCB)

Figure 15-12.  UART MP Mode Bus Connections

The main properties of UART_MP mode are: 

■ Single master with multiple slave concept (multi-drop network)

■ Each slave is identified by a unique address

■ Using 9-bit data field, with the ninth bit as address/data flag (MP bit). When set high, it indicates an address byte; when 
set low it indicates a data byte. A data frame is illustrated in Figure 15-13

■ Parity bit is disabled

Figure 15-13.  UART MP Data Frame

The SCB can be used as either master or slave device in
UART_MP mode. Both SCB_TX_CTRL and
SCB_RX_CTRL registers should be set to 9-bit data frame
size. When the SCB works as UART_MP master device, the
firmware changes the MP flag for every address or data
frame. When it works as UART_MP slave device, the
MP_MODE field of the SCB_UART_RX_CTRL register
should be set to '1'. The SCB_RX_MATCH register should
be set for the slave address and address mask. The
matched address is written in the RX_FIFO when
SCB_ADDRESS_ACCEPT field of the SCB_CTRL register
is set to '1'. If received address does not match its own
address, then the interface ignores the following data, until
next address is received for compare.

UART LIN Mode

The Local Interconnect Network (LIN) protocol is supported
by the SCB as part of the standard UART. LIN is designed
with Single Master-Multi Slave topology. There is one mas-
ter node and multiple slave nodes on the LIN bus. The SCB

UART supports both LIN master and slave functionality.
Figure 15-14 illustrates the UART_LIN and LIN Transceiver.

UART MP
Master

UART MP
Slave 1

UART MP
Slave 2

UART MP
Slave 3

TX

RXTX TXTX

RX

RXRX

Master TX

Master RX

DATA DATA DATA DATA DATA DATA DATA DATAIDLE START STOPMP

DATA Field



108 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

Figure 15-14.  UART_LIN and LIN Transceiver

LIN protocol defines two tasks:

■ Master task: This task involves sending a header packet 
to initiate a LIN transfer. 

■ Slave task: This task involves transmitting or receiving a 
response.

The master node supports master task and slave task; the
slave node supports only slave task, as shown in
Figure 15-15. 

Figure 15-15.  LIN Bus Nodes and Tasks

LIN is based on the transmission of frames at pre-deter-
mined moments of time. A frame is divided into header and
response fields.

■ The header field consists of:

❐ Break field (at least 13 bit periods with the value '0').

❐ Sync field (a 0x55 byte frame). A sync field can be 
used to synchronize the clock of the slave task with 
that of the master task.

❐ Identifier field (a frame specifying a specific slave).

■ The response field consists of data and checksum.

The UART LIN of SCB supports slave task, receiving the
header and transmitting the response. It provides baud rate
detection (using sync field - 0x55) operation. Apart from the
break field, a frame transmission (both header and
response) consist of one or multiple byte frame transmis-
sions, with each byte transmission consisting of a start bit, 8
data bits and 1 or more stop bits (on both the UART TX and
RX lines).

To support LIN, a dedicated (off-chip) line driver/receiver is
required. Supply voltage range on the LIN bus is 7 V to 18 V.
Typically, LIN line drivers will drive the LIN line with the value
provided on the SCB TX line and present the value on the

LIN line to the SCB RX line. By comparing TX and RX lines
in the SCB, bus collisions can be detected (indicated by the
SCB_UART_ARB_LOST field of the SCB_INTR_TX regis-
ter).

Configuring the SCB as Standard UART interface

To configure the SCB as a standard UART interface, set var-
ious register bits in the following order:

1. Configure the SCB as UART interface by writing '10' to 
the SCB_MODE field (bits [25:24]) of the SCB_CTRL 
register.

2. Configure the UART interface to operate as a Standard 
protocol by writing '00' to the SCB_MODE field (bits 
[25:24]) of the SCB_UART_CTRL register.

3. To enable the UART MP Mode or UART LIN Mode, write 
'1' to the SCB_MP_MODE (bit 11) or SCB_LIN_MODE 
(bit 12) respectively of the SCB_UART_RX_CTRL regis-
ter.

4. Follow steps 2 to 4 described in Enabling and Initializing 
UART on page 110.

Note that PSoC Creator does all this automatically with the
help of GUIs. For more information on these registers, see
the PSoC 4 Registers TRM.

15.3.3.2 SmartCard (ISO7816)

ISO7816 is asynchronous serial interface, defined with sin-
gle-master-single slave topology. ISO7816 defines both
Reader (master) and Card (slave) functionality. For more
information, refer to the ISO7816 Specification. Only master
(reader) function is supported by the SCB. This block pro-
vides the basic physical layer support with asynchronous
character transmission. UART_TX line is connected to
SmartCard IO line, by internally multiplexing between
UART_TX and UART_RX control modules.

The SmartCard transfer is similar to a UART transfer, with
the addition of a negative acknowledgement (NACK) that
may be sent from the receiver to the transmitter. A NACK is
always '0'. Both master and slave may drive the same line,
although never at the same time. 

UART LIN

LIN Transceiver

UART LIN

LIN Transceiver

LIN Master 1 LIN Slave 1 LIN Slave 2

TX RX TX RX

LIN BUS

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38770


PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 109

Serial Communications (SCB)

A SmartCard transfer has the transmitter drive the start bit
and data bits (and optionally a parity bit). After these bits, it
enters its stop period by releasing the bus. Releasing results
in the line being '1' (the value of a stop bit). After one bit
transfer period into the stop period, the receiver may drive a
NACK on the line (a value of '0') for one bit transfer period.
This NACK is observed by the transmitter, which reacts by
extending its stop period by one bit transfer period. For this

protocol to work, the stop period should be longer than one
bit transfer period. Note that a data transfer with a NACK
takes one bit transfer period longer, than a data transfer
without a NACK. Typically, implementations use a tristate
driver with a pull-up resistor, such that when the line is not
transmitting data or transmitting the Stop bit, its value is '1'.

Figure 15-16 illustrates the SmartCard protocol.

Figure 15-16.  SmartCard Example

The communication Baud rate for ISO7816 is given as:

Baud rate= f7816 × (D / F)

Where f7816 is the clock frequency, F is the clock rate con-
version integer, and D is the baud rate adjustment integer.

By default, F = 372, D = f1, and the maximum clock fre-
quency is 5 MHz. Thus, maximum baud rate is 13.4 Kbps.
Typically, a 3.57-MHz clock is selected. The typical value of
the baud rate is 9.6 Kbps. 

Configuring SCB as UART SmartCard Interface

To configure the SCB as a UART SmartCard interface, set
various register bits in the following order; note that PSoC
Creator does all this automatically with the help of GUIs. For
more information on these registers, see the PSoC 4 Regis-
ters TRM.

1. Configure the SCB as UART interface by writing '10' to 
the SCB_MODE (bits [25:24]) of the SCB_CTRL regis-
ter.

2. Configure the UART interface to operate as a Smart-
Card protocol by writing '01' to the SCB_MODE (bits 
[25:24]) of the SCB_UART_CTRL register.

3. Then follow steps 2 to 4 described in Enabling and Ini-
tializing UART on page 110.

15.3.3.3 IrDA

The SCB supports the Infrared Data Association (IrDA) pro-
tocol for data rates of up to 115.2 Kbits/s using the UART
interface. It supports only the basic physical layer of IrDA
protocol with rates less than 115.2 Kbps. Hence, the system

instantiating this block must consider how to implement a
complete IrDA communication system with other available
system resources.

The IrDA protocol adds a modulation scheme to the UART
signaling. At the transmitter, bits are modulated. At the
receiver, bits are demodulated. The modulation scheme
uses a Return-to-Zero-Inverted (RZI) format. A bit value of
'0' is signaled by a short '1' pulse on the line and a bit value
of '1' is signaled by holding the line to '0'. For these data
rates (<=115.2 Kbps), the RZI modulation scheme is used
and the pulse duration is 3/16 of the bit period. The sam-
pling clock frequency should be set 16 times the selected
baud rate, by configuring the SCB_OVS field of the
SCB_CTRL register. 

Different communication speeds under 115.2 Kb/s can be
achieved by configuring corresponding block clock fre-
quency. Additional allowable rates are 2.4 Kbps, 9.6 Kbps,
19.2 Kbps, 38.4 Kbps, and 57.6 Kbps. An IrDA serial infra-
red interface operates at 9.6 Kbps. Figure 15-17 shows how
a UART transfer is IrDA modulated.

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) without NACK
TX / RX

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) with NACK

LEGEND:
TX / RX : Transmit or Receive line

TX / RX

STOPNACK



110 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

Figure 15-17.  IrDA Example

Configuring the SCB as UART IrDA Interface

To configure the SCB as a UART IrDA interface, set various
register bits in the following order; note that PSoC Creator
does all this automatically with the help of GUIs. For more
information on these registers, see the PSoC 4 Registers
TRM.

1. Configure the SCB as UART interface by writing '10' to 
the SCB_MODE (bits [25:24]) of the SCB_CTRL regis-
ter.

2. Configure the UART interface to operate as IrDA proto-
col by writing '10' to the SCB_MODE (bits [25:24]) of the 
SCB_UART_CTRL register.

3. Configure the SCB as described in Enabling and Initializ-
ing UART on page 110.

15.3.4 UART Registers

The UART interface is controlled using a set of 32-bit regis-
ters listed in Table 15-9. For more information on these reg-
isters, see the PSoC 4 Registers TRM.

15.3.5 UART Interrupts

The UART supports both internal and external interrupt
requests. The internal interrupt events are listed in this sec-
tion. PSoC Creator generates the necessary interrupt ser-
vice routines (ISRs) for handling buffer management
interrupts. Custom ISRs can also be used by connecting the
external interrupt component to the interrupt output of the
UART component (with external interrupts enabled).

The UART predefined interrupts can be classified as TX
interrupts and RX interrupts. The TX interrupt output is the
logical OR of the group of all possible TX interrupt sources.
This signal goes high when any of the enabled TX interrupt
sources are true. The RX interrupt output is the logical OR of
the group of all possible RX interrupt sources. This signal
goes high when any of the enabled Rx interrupt sources are
true. The UART provides interrupts on the following events: 

■ UART transmission done.

■ UART TX received a NACK in SmartCard mode.

■ UART arbitration lost (in LIN or SmartCard modes).

■ Frame error in received data frame.

■ Parity error in received data frame.

■ LIN baud rate detection is completed.

■ LIN break detection is successful.

15.3.6 Enabling and Initializing UART

The UART must be programmed in the following order:

1. Program protocol specific information using the 
SCB_UART_CTRL register, according to Table 15-10. 
This includes selecting the submodes of the protocol, 
transmitter-receiver functionality, and so on. 

2. Program the generic transmitter and receiver information 
using the SCB_TX_CTRL and SCB_RX_CTRL regis-
ters, as shown in Table 15-11.

a. Specify the data frame width.

b. Specify whether MSB or LSB is the first bit to be 
transmitted or received.

c. Enable the transmitter and receiver.

‘1' ‘0' PARIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)
TX / RX

‘1'‘1' ‘1' ‘1' ‘1' ‘1'‘0' ‘0' ‘0'

IrDA
TX / RX

LEGEND:
TX / RX : Transmit or Receive line

Table 15-9.  UART Registers

Register Name Operation

SCB_UART_CTRL
Used to select the sub-modes of UART 
(standard UART, SmartCard, IrDA), also 
used for local loop back control.

SCB_UART_STAT
US

Used to specify the BR_COUNTER value 
that determines the bit period.

SCB_UART_TX_C
TRL

Used to specify the number of stop bits, 
enable parity, select the type of parity, and 
enable retransmission on NACK.

SCB_UART_RX_C
TRL

Performs same function as 
SCB_UART_TX_CTRL but is also used for 
enabling multi processor mode, LIN mode 
drop on parity error, and drop on frame 
error.

SCB_TX_CTRL

Used to enable the transmitter, also to spec-
ify the data frame width and to specify 
whether MSB or LSB is the first bit in trans-
mission.

SCB_RX_CTRL
Performs the same function as that of the 
SCB_TX_CTRL register, but for the 
Receiver.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 111

Serial Communications (SCB)

3. Program the transmitter and receiver FIFOs using the 
SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL regis-
ters respectively, as shown in Table 15-12. 

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift 
registers.

c. Freeze the TX and RX FIFOs.

4. Program SCB_CTRL register to enable the SCB block. 
Also select the mode of operation, as shown in 
Table 15-13.

After the block is enabled, control bits should not be
changed. Changes should be made AFTER disabling the
block; for example, to modify the operation mode (from
SmartCard to IrDA). The change takes effect only after the
block is re-enabled. Note that re-enabling the block causes
re-initialization and the associated state is lost (for example
FIFO content).

The last step of initialization should always be to enable the
block (write a '1' to the ENABLED bit of the SCB_CTRL reg-
ister).

Table 15-10.  SCB_UART_CTRL Register

Bits Name Value Description

[25:24] MODE

00 Standard UART

01 SmartCard

10 IrDA

11 Reserved

16 LOOP_BACK
Loop back control. This allows a SCB UART transmitter to communicate with its 
receiver counterpart.

Table 15-11.  SCB_TX_CTRL / SCB_RX_CTRL Registers

Bits Name Description

[3:0] DATA_ WIDTH
'DATA_WIDTH + 1' is the no. of bits in the transmitted or received data frame. The 
valid range is [3, 15]. This does not include start, stop, and parity bits.

8 MSB_FIRST
1= MSB first 

0= LSB first

31 ENABLED
Transmitter enable bit for SCB_TX_CTRL and Receiver enable bit for 
SCB_RX_CTRL registers. They must be enabled for all the protocols. Otherwise, 
the block may not function or the data may get lost.

Table 15-12.  SCB_TX_FIFO_CTRL / SCB_RX_FIFO_CTRL Registers

Bits Name Description

[2:0] TRIGGER_LEVEL
Trigger level. When the transmitter FIFO has less entries or receiver FIFO has more 
entries than the value of this field, a transmitter or receiver trigger event is gener-
ated in the respective case.

16 CLEAR
When '1', the transmitter or receiver FIFO and the shift registers are cleared / invali-
dated.

17 FREEZE
When '1', hardware reads / writes to the transmitter or receiver FIFO have no effect. 
Freeze will not advance the TX or RX FIFO read / write pointer.

Table 15-13.  SCB_CTRL Register

Bits Name Value Description

[25:24] MODE 00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED 0 SCB block enabled

1 SCB block disabled



112 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

15.4 Inter Integrated Circuit (I2C)

The effective chip-to-chip communication is the important
requirement in embedded systems. The serial data transfer
standards have become popular in low data-rate applica-
tions because it reduces the number of pins, and thus effec-
tive area of the chip. The 2-wire Inter Integrated Circuit (I2C)
standard is widely used synchronous serial interface for
communicating with peripheral devices such as microcon-
troller, ADC, DAC, and EEPROM. 

15.4.1 Features

The following are the I2C features supported in PSoC 4.

■ Master, slave, and master/slave mode

■ Slow-mode (50 kbps), standard-mode (100 kbps) fast-
mode (400 kbps), and fast-mode plus (1000 kbps) data-
rate

■ 7- or 10-bit slave addressing (10-bit addressing requires 
firmware support)

■ Routes data signal (SDA) and clock signal (SCL) con-
nections directly to one of the two pairs of assigned pins 
on the SIO port, or through the DSI to any pair of GPIO 
or SIO pins

■ Clock stretching and collision detection

■ Programmable oversampling of I2C clock signal (SCL)

■ Error reduction by means of digital median filter on the 
input path of I2C data signal (SDA)

■ Glitch-free signal transmission with an analog glitch filter, 
which can filter out glitches less than 10 ns or 50 ns 

■ EZI2C mode support

■ Externally clocked slave functionality

■ Interrupt or polling CPU interface

15.4.2 General Description

Figure 15-18 illustrates an example of I2C master with three
slaves.

Figure 15-18.  I2C Interface Block Diagram

The standard I2C bus is a two wire interface:

■ Serial Data (SDA)

■ Serial Clock (SCL)

I2C devices are connected to these lines using open collec-
tor or open-drain output stages, with pull-up resistors (Rp).
Simple master/slave relationships exist between devices.
Masters and slaves can operate as either transmitter or
receiver. Each slave device connected to the bus is software
addressable by a unique 7-bit address. PSoC 4 also sup-
ports 10-bit address matching with firmware support.

Table 15-14 illustrates the various features supported by I2C
interface.

VDD

RpRp

SCL

SDA

I2C
Master I2C Slave I2C Slave I2C Slave

Table 15-14.  Definition of I2C Bus Terminology

Term Description

Transmitter The device that sends data to the bus

Receiver The device that receives data from the bus

Master
The device that initiates a transfer, generates 
clock signals, and terminates a transfer

Slave The device addressed by a master

Multi-master
More than one master can attempt to control the 
bus at the same time without corrupting the mes-
sage

Arbitration

Procedure to ensure that, if more than one mas-
ter simultaneously tries to control the bus, only 
one is allowed to do so and the winning message 
is not corrupted

Synchroniza-
tion

Procedure to synchronize the clock signals of two 
or more devices



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 113

Serial Communications (SCB)

Bus Stalling (Clock Stretching)

When a slave device is not capable of processing data, it
may hold down the SCL line by driving a '0'. Due to the
implementation of the I/O signal interface, the SCL line
value will be '0', independent of the values any other master
or slave may be driving on the SCL line. This is known as
clock stretching and is the only situation in which a slave
drives the SCL line. The master device monitors the SCL
line and detects it when it cannot generate a positive clock
pulse ('1') on the SCL line. It reacts by postponing the gener-
ation of a positive edge on the SCL line, effectively synchro-
nizing with the slave device that is stretching the clock.

Bus Arbitration

The I2C protocol is a multi-master, multi-slave interface. Bus
arbitration is implemented on master devices by monitoring
the SDA line. Bus collisions are detected when the master
observes a SDA line value that is not the same as the value
it is driving on the SDA line. For example, when master 1 is
driving the value '1' on the SDA line and master 2 is driving
the value '0' on the SDA line, the actual line value will be '0'
(due to the implementation of the I/O signal interface). Mas-
ter 1 detects the inconsistency and loses control of the bus.
Master 2 does not detect any inconsistency and keeps con-
trol of the bus.

15.4.3 I2C Modes of Operation

I2C is a synchronous single master, multi-master, multi-
slave serial interface. Devices operate in either master
mode, slave mode, or master/slave mode. In master/slave
mode, the device switches from master to slave mode when

it is addressed. Only a single master may be active during a
data transfer. The active master is responsible for driving the
serial interface clock on the serial interface clock lane.

Table 15-15 illustrates the I2C modes of operation.

When operating in Multi-Master mode, the bus should
always be checked to see if it is busy. Another master may
already be communicating with another slave. In this case,
the master must wait until the current operation is complete
before issuing a START signal. The master looks for STOP
signal to start the data transmission.

When operating in Multi-Master-Slave mode, if the master
loses arbitration during an address byte, the hardware
reverts to Slave mode and the received byte generates a
slave address interrupt.

The data transfer in all these modes happens through write
and read transfer. In write transfer, the master sends data to
slave; in read transfer, the master receives data from slave.
Write and read transfer examples are available in Master
Mode Transfer Examples on page 120, Slave Mode Trans-
fer Examples on page 122, and Multi-Master Mode Transfer
Example on page 126. 

15.4.3.1 Write Transfer

Figure 15-19.  Master Write Data Transfer

■ A typical write transfer starts with the master transmitting 
a START event. Next, it transmits a 7-bit I2C slave 
address and a write indicator ('0'). The addressed slave 
transmits an acknowledgement byte by pulling the data 
line low during the ninth bit time.

■ If the slave address does not match with that of the con-
nected slave device or if the addressed device does not 
want to acknowledge the request, no acknowledgement 
is transmitted. The absence of an acknowledgement, 

Table 15-15.  I2C Modes

Mode Description

Slave Slave only operation (default)

Master Master only operation

Multi-Master Supports more than one master on the bus

Multi-Master-Slave
Simultaneous slave and multi-master oper-
ation 

MSB LSBSDA

SCL

START Slave address (7 bits) Write ACK ACKData(8 bits) STOP

Write data transfer(Master writes the data)

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

LEGEND :



114 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

results in a SDA line value of '1' (due to the pull-up resis-
tor implementation). 

■ If no acknowledgement is transmitted by the slave, the 
master may end the write transfer with a STOP event. A 
Repeated Start condition may also be generated for a 
retry attempt.

■ If an acknowledgement is transmitted, the master may 
transmit write data. The addressed slave transmits an 
acknowledgement to confirm the receipt of the write 
data. Upon receipt of this acknowledgement, the master 
may transmit another write data.

■ When the transfer is complete, the master generates a 
STOP condition.

15.4.3.2 Read Transfer

Figure 15-20.  Master Read Data Transfer

■ A typical read transfer starts with the master transmitting 
a START event. Next, it transmits a 7-bit I2C slave 
address and a read indicator ('1'). The addressed slave 
transmits an acknowledgement by pulling the data line 
low during the ninth bit time.

■ If the slave address does not match with that of the con-
nected slave device or if the addressed device does not 
want to acknowledge the request, no acknowledgement 
is transmitted. The absence of an acknowledgement, 
results in a SDA line value of '1' (due to the pull-up resis-
tor implementation). 

■ If no acknowledgement is transmitted by the slave, the 
master may end the read transfer with a STOP event.

■ Next, the addressed slave transmits data. The master 
transmits an acknowledgement to confirm the receipt of 
the data. Upon receipt of this acknowledgement, the 
addressed slave may transmit more data.

■ When the transfer is complete, the master generates a 
STOP condition.

15.4.4 Easy I2C (EZI2C) Protocol

The Easy I2C (EZI2C) protocol allows data frame communi-
cation between the master and slave without the need for
CPU intervention at the level of individual frames. The
EZI2C protocol defines an 8-bit EZ address that indexes a
memory array (8-bit wide 32 locations) located on the slave
device. To address these 32 locations, lower five bits of the
EZ address are used. By comparing the EZ address at
START detection event and the EZ address at STOP detec-
tion event, you can find how many bytes are written into the
memory. 

Note The SCB has a FIFO memory, which has 16-bit wide
16 locations (16x16) with byte write enable. The access
methods for EZ and non-EZ functions are different. In non-
EZ mode, the FIFO is split into TXFIFO and RXFIFO. Each
has 16-bit wide eight locations. In EZ mode, FIFO is used as
a single memory unit, which has 8-bit wide 32 locations
(32x8).

EZI2C has two types of transfers: an EZ write of data from
the master to an addressed slave memory location, and a
read by the master from an addressed slave memory loca-
tion.

15.4.4.1 Memory Array Write

An EZ write to a memory array index is by means of an I2C
write transfer. The first transmitted write data is used to send
an EZ address from the master to the slave. The five lowest
significant bits of the write data are used as the "new" EZ
address at the slave. Any additional write data elements in
the write transfer are bytes that are written to the memory
array. The EZ address is automatically incremented by the
slave as bytes are written into the memory array. When the
EZ address exceeds the amount of memory entries of 32, it
wraps around to 0. 

15.4.4.2 Memory Array Read

An EZ read from a memory array index is by means of an
I2C read transfer. The EZ read relies on an earlier EZ write
to have set the EZ address at the slave. The first received
read data is the byte from the memory array at the EZ
address memory location. The EZ address is automatically
incremented as bytes are read from the memory array.

MSB LSB

START Slave address (7 bits) Read ACK ACKData(8 bits) STOP

Read data transfer(Master reads the data)

SDA

SCL

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

LEGEND :



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 115

Serial Communications (SCB)

Figure 15-21.  EZI2C Write and Read Data Transfer

See EZ Slave Mode Transfer Example on page 124 for
examples.

15.4.4.3 Configuring SCB for EZI2C Mode

By default, the SCB is configured for non-EZ mode of opera-
tion. To configure the SCB for EZI2C mode, set various reg-
ister bits in the following order: 

1. Select EZI2C mode by writing '1' to the EZ_MODE bit 
(bit 10) of the SCB_CTRL register.

2. Follow the steps 2 to 4 mentioned in Enabling and Initial-
izing I2C on page 116.

15.4.5 I2C Registers 

The I2C interface is controlled by reading and writing a set
of configuration, control, and status registers listed in
Table 15-16. 

LEGEND :

MS
B

LS
BSDA

SCL

START Slave address (7 bits) Write ACK ACKEZ address(8 bits) STOP

Write data transfer(single write data)

MSB LSB

START Slave address (7 bits) Read ACK ACKRead Data(8 bits) STOP

Read data transfer(single read data)

SDA

SCL

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

Write Data(8 bits) ACK

EZ  address

Address

Data

EZ Buffer
(32 bytes SRAM)

Table 15-16.  I2C Registers

Register Function

SCB_CTRL
Used to enable the SCB block and select the type of serial interface (SPI, UART, I2C). Also used to select 
internally and externally clocked operation, EZ and non-EZ modes of operation.

SCB_I2C_CTRL Used for mode selection (Master, Slave) and send ACK or NACK signal based receiver FIFO status.

SCB_I2C_STATUS Indicates bus busy status detection, Read/Write transfer status of slave/master, and store EZ slave address.

SCB_I2C_M_CMD Enables master to generate START, STOP, and ACK/NACK signal.

SCB_I2C_S_CMD Enables slave to generate ACK/NACK signal.



116 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

15.4.6 I2C Interrupts

The I2C interface generates interrupts for the following con-
ditions. These interrupts are internal only; therefore, they
cannot be routed to external pins to write custom ISRs.
PSoC Creator generates the necessary interrupt service
routines (ISRs) for internal interrupts to handle buffer man-
agement.

■ Arbitration lost

■ After slave address match

■ I2C bus Stop/Start condition is detected

■ I2C bus error is detected

■ I2C Byte / Word transfer complete

■ I2C TX FIFO is not full

■ I2C TX FIFO is empty

■ I2C RX FIFO is empty

■ I2C RX FIFO is not empty

■ I2C RX FIFO is overrun

■ I2C RX FIFO is full

The TX interrupt output is the logical OR of the group of all
possible TX interrupt sources. This signal goes high when
any of the enabled TX interrupt sources are true. The RX
interrupt output is the logical OR of the group of all possible
RX interrupt sources. This signal goes high when any of the
enabled RX interrupt sources are true. Various interrupt reg-
isters are used to determine the actual source of the inter-
rupt. For more information, see the PSoC 4 Registers TRM.

15.4.7 Enabling and Initializing I2C

The I2C interface must be programmed in the following
order.

1. Program protocol specific information using the 
SCB_I2C_CTRL register according to Table 15-17. This 
includes selecting master - slave functionality.

2. Program the generic transmitter and receiver information 
using the SCB_TX_CTRL and SCB_RX_CTRL regis-
ters, as shown in Table 15-18. 

a. Specify the data frame width.

b. Specify whether MSB or LSB is the first bit to be 
transmitted / received.

c. Enable the transmitter and receiver

3. Program transmitter and receiver FIFO using the 
SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL regis-
ters, respectively, as shown in Table 15-19. 

a. Set the trigger level

b. Clear the transmitter and receiver FIFO and Shift 
registers

c. Freeze the TX and RX FIFO

4. Program SCB_CTRL register to enable the SCB block. 
Also select the mode of operation. These register bits 
are shown in Table 15-20.

SCB_STATUS
In the EZ mode, this register indicates whether the externally clocked logic is potentially using the EZ mem-
ory.

SCB_TX_CTRL
Used to enable the transmitter and specify the data frame width; also used to specify whether MSB or LSB is 
the first bit in transmission.

SCB_TX_FIFO_CTRL
Used to specify the trigger level, clearing of the transmitter FIFO and shift registers, and for FREEZE opera-
tion of the transmitter FIFO.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by 
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides 
if the transmitter FIFO holds the valid data. 

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_CTRL Performs the same function as that of the TX_CTRL register, but for the Receiver.

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the Receiver.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver. 

SCB_RX_FIFO_RD
Holds the data read from the receiver FIFO. Reading a data frame removes the data frame from the FIFO; 
behavior is similar to that of a POP operation. This register has a side effect when read by software: a data 
frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data read from the receiver FIFO. Reading a data frame does not remove the data frame from the 
FIFO; behavior is similar to that of a PEEK operation.

SCB_RX_MATCH Stores slave device address and is also used as Slave device address MASK. 

SCB_EZ_DATA Holds the data in EZ memory location.

Table 15-16.  I2C Registers

Register Function



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 117

Serial Communications (SCB)

The last step of initialization should always be enabling the
SCB. When the block is enabled, no control information
should be changed. Changes should be made after dis-
abling the block. The change takes effect after the block is
re-enabled. Note that disabling the block causes re-initial-
ization of the design and associated state is lost (for exam-
ple, FIFO content).

15.4.8 Internal and External Clock 
Operation in I2C

The SCB supports both internally and externally clocked
operation for data-rate generation. Internally clocked opera-
tion uses a SCBCLK clock, which is derived from the system
bus clock. Externally clocked operation uses a clock pro-
vided by the serial interface. Externally clocked operation
allows for limited functionality in the Deep-Sleep power
mode, in which no chip internal clock is provided to the SCB.

Internally clocked operation of the SCB uses the high-fre-
quency clock of the system. For more information on system

clocking, see the Clocking System chapter on page 61. It
also supports oversampling. Oversampling is implemented
for the high-frequency clock. The SCB_OVS (bits [3:0]) of
the SCB_CTRL register specify the oversampling. 

Externally clocked operation is limited to:

■ Slave functionality.

■ EZ functionality. TX and RX FIFOs do not support exter-
nally clocked operation; therefore it is not used for non 
EZ functionality. 

Internally and externally clocked operation is determined by
two register fields of the SCB_CTRL register:

■ EC_AM_MODE: Indicates whether I2C slave selection 
is internally ('0') or externally ('1') clocked. I2C slave 
selection comprises the first part of the protocol.

■ EC_OP_MODE: Indicates whether the rest of the proto-
col operation (besides I2C slave selection) is internally 
('0') or externally ('1') clocked. As mentioned earlier, 
externally clocked operation does not support non EZ 
functionality.

Table 15-17.  SCB_I2C_CTRL Register

Bits Name Value Description

30 SLAVE_MODE 1 Slave mode

31 MASTER_MODE 1 Master mode

Table 15-18.  SCB_TX_CTRL / SCB_RX_CTRL Register

Bits Name Description

[3:0] DATA_ WIDTH
'DATA_WIDTH + 1' is the number of bits in the transmitted or re-ceived data 
frame. The valid range is [3, 15]. This does not include start, stop and parity bits.

8 MSB_FIRST
1= MSB first

0= LSB first

31 ENABLED
Transmitter enable bit for SCB_TX_CTRL and Receiver ena-ble bit for 
SCB_RX_CTRL regis-ters. They must be enabled for all the protocols. Other-
wise, the block may not function or the data may get lost.

Table 15-19.  SCB_TX_FIFO_CTRL/ SCB_RX_FIFO_CTRL 

Bits Name Description

[2:0] TRIGGER_LEVEL
Trigger level. When the transmitter FIFO has less entries or receiver FIFO has 
more entries than the val-ue of this field, a transmitter or re-ceiver trigger event is 
generated in the respective case.

16 CLEAR When '1', the transmitter or receiver FIFO and the shift registers are cleared.

17 FREEZE
When '1', hardware reads / writes to the transmitter or receiver FIFO have no 
effect. Freeze does not advance the TX or RX FIFO read / write pointer.

Table 15-20.  SCB_CTRL Registers

Bits Name Value Description

[25:24] MODE 00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED 0 SCB block enabled

1 SCB  block disabled



118 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

These two register fields determine the functional behavior
of I2C. The register fields should be set based on the
required behavior in Active, Sleep, and Deep-Sleep system
power mode. Improper setting may result in faulty behavior
in certain system power modes. Table 15-21 and
Table 15-22 describe the settings for I2C (in EZ and non EZ
mode).

15.4.8.1 Non-EZ Operation Mode

In non-EZ mode, there are two possible settings. As exter-
nally clocked operation is not supported for non-EZ function-
ality (no FIFO support), EC_OP_MODE should always be
set to '0'. However, EC_AM_MODE can be set to '0' or '1'.
Table 15-21 gives an overview of the possibilities. The com-
bination EC_AM_MODE=0 and EC_OP_MODE=1 is invalid
and the block will not respond.

EC_OP_MODE is '0' and EC_AM_MODE is '0'. This set-
ting only works in Active/Sleep system power mode. The
SCB functionality is provided in the internally clocked
domain.

EC_OP_MODE is '0' and EC_AM_MODE is '1'. This set-
ting works in Active system power mode and Deep-Sleep
system power mode. I2C address matching is performed by
the externally clocked logic in both Active and Deep-Sleep
system power modes. When the externally clocked logic
matches the address, it sets a wakeup interrupt cause bit,
which can be used to generate an interrupt to wake up the
CPU.

■ In Active system power mode, the CPU is active and the 
wakeup interrupt cause is disabled (associated MASK 
bit is '0'). The externally clocked logic takes care of the 
address matching and the internally locked logic takes 
care of the rest of the I2C transfer.

■ In the Sleep mode, wakeup interrupt cause can be either 
enabled or disabled (MASK bit can be either '1' or '0') 
based on the application. The remaining operations are 
same as that of the Active mode.

■ In Deep-Sleep system power mode, the CPU needs to 
be woken up and the wakeup interrupt cause is enabled 
(MASK bit is '1'). Waking up takes time and the ongoing 
I2C transfer is either negatively acknowledged or the 
clock is stretched. In the case of a negative acknowl-
edge, the internally clocked logic takes care of the first 
I2C transfer after it is woken up. In the case of clock 
stretching, the internally clocked logic takes care of the 
ongoing/stretched transfer when it is woken up. The reg-
ister bit S_NOT_READY_ADDR_NACK of 
SCB_I2C_CTRL register determines whether the exter-
nally clocked logic performs a negative acknowledge 
('1') or clock stretch ('0').

15.4.8.2 EZ Operation Mode

EZ mode has three possible settings. EC_AM_MODE can
be set to '0' or '1' when EC_OP_MODE is '0' and
EC_AM_MODE must be set to '1' when EC_OP_MODE is
'1'. Table 15-22 gives an overview of the possibilities (the
grey colored cells indicate a possible, yet non preferred set-
ting as it involves a switch from the externally clocked logic
(slave selection) to the internally clocked logic (rest of the

Table 15-21.  I2C Non-EZ Mode

I2C Standard (Non-EZ) Mode

EC_OP_MODE = 0 EC_OP_MODE = 1

System Power Mode EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE=1 EC_AM_MODE=0

Active and Sleep

Address match using 
internal clock 

Operation using internal 
clock

Address match using exter-
nal clock => wakeup inter-
rupt cause disabled (mask = 
0) in Active mode and in 
Sleep mode it can be config-
ured by the user. 

Operation using internal 
clock (generates ACK)

Not supported

Invalid configuration

Deep-Sleep Not Supported

Address match using exter-
nal clock => wakeup Inter-
rupt cause 
enabled(mask=1), generate 
NACK or Stretch operation 
using internal clock (gener-
ates ACK)

Not Supported

Hibernate
The SCB is not available in these modes (see Power Modes chapter on page 75)

Stop



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 119

Serial Communications (SCB)

operation)). The combination EC_AM_MODE=0 and
EC_OP_MODE=1 is invalid and the block will not respond.

■ EC_AM_MODE is '0' and EC_OP_MODE is '0'. This set-
ting only works in Active/Sleep system power mode. 

■ EC_AM_MODE is '1' and EC_OP_MODE is '0'. This set-
ting works same as I2C non EZ mode.

■ EC_AM_MODE is '1' and EC_OP_MODE is '1'. This set-
ting works in Active system power mode and Deep-
Sleep system power mode. 

The SCB functionality is provided in the externally clocked
domain. Note that this setting results in externally clocked
accesses to the block's SRAM. These accesses may conflict
with internally clocked accesses from the device. This may
cause wait states or bus errors. The field FIFO_BLOCK of
the SCB_CTRL register determines whether wait states ('1')
or bus errors ('0') are generated.

15.4.9 Wake up from Sleep 

The system wakes up from sleep or deep-sleep when an
address match occurs. The I2C interface performs one of
two actions after address match: Address ACK or Address
NACK.

Address ACK - the I2C slave executes the clock stretching
and waits until device wakes up and acknowledges the
address. 

Address NACK - the I2C slave NACKs the address immedi-
ately. The master must poll the slave again after device
wakeup time passed. This option is only valid if the mode is
Slave or Muti-Master-Slave.

Note You must enable the interrupt bit SCB_
INTR_I2C_EC.SCB_WAKE_UP to wake up the device on
slave address match while switching to the sleep mode.

Table 15-22.  I2C EZ Mode

I2C, EZ mode

EC_OP_MODE= 0 EC_OP_MODE = 1

System Power Mode EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 1 EC_AM_MODE=0

Active and Sleep

Address match using inter-
nal clock 

Operation using internal 
clock

Address match using 
external clock=> wakeup 
interrupt cause is disabled 
(mask= 0)in Active mode 
and in Sleep mode it can 
be configured by the user. 

Operation using internal 
clock (generates ACK)

Address match using 
external clock 

Operation using exter-
nal clock 

Invalid configuration 

Deep-Sleep Not Supported

Address match using 
external clock => wakeup 
interrupt cause is enabled 
(mask=1), generate 
NACK or stretch

Operation using internal 
clock (generates ACK)

Address match using 
external clock 

Operation using exter-
nal clock

Hibernate
The SCB is not available in these modes (see Power Modes chapter on page 75)

Stop



120 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

15.4.10 Master Mode Transfer Examples

Master mode transmits or receives data.

15.4.10.1 Master Transmit

Figure 15-22.  Single Master Mode Write Operation Flow Chart

Default

Disable  SCB

Select I2C mode

Select Master
mode

Enable
TX fifo

Enable SCB

Transmission of 1-
Byte slave address 

Complete?
No

(stretch)

E

Addr ACK’ed or
NACK’ed?

Error

Yes

NACK

STOP/
RESTART

Set to transmit
mode

Transmission of 1-byte
Data complete?

Byte ACK’ed or
NACK’ed?

Yes

NACK

STOP/
RESTART

Data transfer
Complete?

ACK

No

Send STOP
signal

Yes

Send START
signal

ACK

No
(stretch)

Begin

E

Error

STOP

Begin

E

Report and 
handle error

TX fifo
Empty?

E
Yes

No

RESTART



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 121

Serial Communications (SCB)

15.4.10.2 Master Receive

Figure 15-23.  Single Master Mode Read Operation Flow Chart

Default

Disable  SCB

Select I2C mode

Select Master
mode

Enable
RX fifo

Enable SCB

Transmission of 1-
Byte slave address 

Complete?
No

(stretch)

E

Addr ACK’ed or
NACK’ed?

Error

Yes

NACK

STOP/
RESTART

Set to receive
mode

Receiving 1-byte
Data complete?

RX fifo
Full?

Yes

Yes
E

Data transfer
Complete?No

Send STOP
signal

Yes

Send START
signal

ACK

Begin

E

Error

STOP

Begin

E

Report and 
handle error

Send ACK

Send NACK

No

No

RESTART



122 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

15.4.11 Slave Mode Transfer Examples

Slave mode transmits or receives data.

15.4.11.1 Slave Transmit

Figure 15-24.  Slave Mode Write Operation Flow Chart

Default

Disable  SCB

Select I2C mode

Select Slave
mode

Enable
TX fifo

Enable SCB

Receiving 1-Byte 
slave address 

Complete?
No

(stretch)

E

Addr ACK’ed or
NACK’ed?

Error

Yes

NACK

Set to transmit
mode

Transmitting 1-byte
Data complete?

Tx fifo
empty?

Yes

Yes
E

Byte ACK’ed 
or NACK’ed?

ACK

ACK

No

Begin

E
Error

Begin

Begin

E

Report and 
handle error

START detected

Wake up 

No

NACK

Data Transfer
Complete?

No

Yes



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 123

Serial Communications (SCB)

15.4.11.2 Slave Receive

Figure 15-25.  Slave Mode Read Operation Flow Chart

Default

Disable  SCB

Select I2C mode

Select Slave
mode

Enable
RX fifo

Enable SCB

Receiving 1-Byte 
slave address 

Complete?
No

(stretch)

E

Addr ACK’ed or
NACK’ed?

Error

Yes

NACK

Set to receive
mode

Receiving 1-byte
Data complete?

RX fifo
full?

Yes

Yes
E

ACK

No
(stretch)

E
Error

Begin

E

Report and 
handle error

START detected

Wake up 

No

Data Transfer
Complete?

No

Yes

Send
ACK

Send
NACK

Begin



124 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

15.4.12 EZ Slave Mode Transfer Example

The EZ Slave mode transmits or receives data.

15.4.12.1 EZ Slave Transmit

Figure 15-26.   EZI2C Slave Mode Write Operation Flow Chart

Default

Disable  SCB

Select I2C mode

Select Slave
mode

Enable
TX fifo

Enable SCB

Begin

Select EZ
mode

Receiving 1-Byte 
slave address 

Complete?
No

(stretch)

E

Addr ACK’ed or
NACK’ed?

Error

Yes

NACK

ACK

START detected

Wake up 

Transmitting 1-byte
Data complete?

EZ buffer
empty

Yes

Yes
E

Byte ACK’ed 
or NACK’ed?

ACK

No

Begin

E
Error

Begin

No

NACK

Data Transfer
Complete?

No

Yes

Select transmit
mode

E

Report and 
handle error



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 125

Serial Communications (SCB)

15.4.12.2 EZ Slave Receive

Figure 15-27.  EZI2C Slave Mode Read Operation Flow Chart

Default

Disable  SCB

Select I2C mode

Select Slave
mode

Enable
RX fifo

Enable SCB

Begin

Select EZ
mode

Receiving 1-Byte 
slave address 

Complete?
No

(stretch)

E

Addr ACK’ed or
NACK’ed?

Error

Yes

NACK

ACK

START detected

Wake up 

Receiving 1-byte
Data complete?

EZ buffer
full Yes

E

No
(stretch)

E
Error

No

Select receive
mode

E

Report and 
handle error

Receiving 1-Byte 
EZ address 
Complete?

Addr ACK’ed or
NACK’ed?

ACK

Begin

NACK

Yes
No

(stretch)

Yes

Data Transfer
Complete?

No

Yes

Send
ACK

Send
NACK

Begin



126 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)

15.4.13 Multi-Master Mode Transfer Example

In multi-master mode, data transfer can be achieved with the slave mode enabled or not enabled.

15.4.13.1 Multi-Master - Slave Not Enabled

Figure 15-28.  Multi-Master, Slave Not Enabled Flow Chart

Default

Disable  SCB

Select I2C mode

Select Master
mode

Enable
TX fifo

Enable SCB

Send START
signal

Begin

Transmission of 1-
Byte slave address 

Complete?
No

(stretch)

E

Lost arbitration?

Error

Yes

Begin

Bus Busy?

No

Bus Busy?

Yes

No

Yes

No

Continue with data transfer as 
in single master

E

Report and 
handle error

Yes



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 127

Serial Communications (SCB)

15.4.13.2 Multi-Master - Slave Enabled

Figure 15-29.   Multi-Master, Slave Enabled Flow Chart

Default

Disable  SCB

Select I2C mode

Select Master and
Slave mode

Enable
TX fifo

Enable SCB

Send START
signal

Begin

Transmission of 1-
Byte slave address 

Complete?
No

(stretch)

E

Bus busy or
Lost arbitration?

Error

Yes

Bus Busy?

No

Yes

No

Continue with data transfer as 
in single master

E

Report and 
handle error

Yes

Continue with address 
recognition as a slave



128 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Serial Communications (SCB)



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 129

16.   Universal Digital Blocks (UDB)

This chapter shows the design details of the PSoC® 4 universal digital blocks (UDBs). The UDB architecture implements a
balanced approach between configuration granularity and efficiency; UDBs have a combination of programmable logic
devices (PLDs), structured logic (datapaths), and a flexible routing scheme. Note UDBs are not supported in the PSoC 4100
family of devices.

16.1 Features
■ PSoC 4 contains an array of four UDBs

■ For optimal flexibility, each UDB contains several components:

❐ An ALU-based 8-bit datapath (DP) with multiple registers, FIFOs, and an 8-word instruction store

❐ Two PLDs, each with 12 inputs, eight product terms, and four macrocell outputs

❐ Control and status modules

❐ Clock and reset modules

■ Flexible routing through the UDB array

■ Portions of UDBs can be shared or chained to enable larger functions

■ Flexible implementations of multiple digital functions, including timers, counters, PWM (with dead band generator), UART, 
I2C, SPI, and CRC generation/checking

■ Register-based interface to CPU

Figure 16-1 shows the components of a single UDB: two PLDs, a datapath, and control, status, clock and reset functions.
Figure 16-2 shows how the array of four UDBs interfaces with the rest of the PSoC 4.

Figure 16-1.  Single UDB Block Diagram Figure 16-2.  UDBs Array in PSoC 4

PLD 
12C4

(8 PTs)

PLD 
12C4

(8 PTs)

Datapath

Clock
 and Reset 

Control

Routing Channel

Datapath 
Chaining

PLD 
Chaining

Status and 
Control

Programmable Digital Subsystem

UDBIF

UDB UDB

UDB UDB

DSI DSI

DSI DSI

BUS IF CLK IF Port IFPort IFPort IF

H
igh

-S
p

ee
d

 I/O
 M

a
trix

CPUSS
System Interconnect
(Single Layer AHB)

Dig. CLKs

4 to 88 to 32

Routing 
Channels

O
th

er D
ig

ital 
S

ign
als in

 C
hip

IRQ IF



130 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

16.2 How It Works
The major components of a UDB are:

■ PLDs (2) – These blocks take inputs from the routing 
channel and form registered or combinational sum-of-
products logic to implement state machines, control for 
datapath operations, conditioning inputs, and driving out-
puts.

■ Datapath – This block contains a dynamically program-
mable ALU, four registers, two FIFOs, comparators, and 
condition generation.

■ Control and Status – These modules provide a way for 
CPU firmware to interact and synchronize with UDB 
operation.

■ Reset and Clock Control – These modules provide 
clock selection and enabling, and reset selection, for the 
other blocks in the UDB.

■ Chaining Signals – The PLDs and datapath have 
chaining signals that enable neighboring UDBs to be 
linked, to create higher precision functions.

■ Routing Channel – UDBs are connected to the routing 
channel through a programmable switch matrix for con-

nections between blocks in one UDB, and to all other 
UDBs in the array. 

■ System Bus Interface – All registers and RAM in each 
UDB are mapped into the system address space and are 
accessible by the CPU as 8, 16 and 32-bit accesses.

16.2.1 PLDs

Each UDB has two “12C4” PLDs. The PLD blocks, shown in
Figure 16-3, can be used to implement state machines, per-
form input or output data conditioning, and to create lookup
tables (LUTs). PLDs may also be configured to perform
arithmetic functions, sequence the datapath, and generate
status. General-purpose RTL can be synthesized and
mapped to the PLD blocks. This section presents an over-
view of the PLD design.

A PLD has 12 inputs, which feed across eight product terms
(PT) in the AND array. In a given product term, the true (T)
or complement (C) of the input can be selected. The outputs
of the PTs are inputs into the OR array. The 'C' in 12C4 indi-
cates that the OR terms are constant across all inputs, and
each OR input can programmatically access any or all of the
PTs. This structure gives maximum flexibility and ensures
that all inputs and outputs are permutable.

Figure 16-3.  PLD 12C4 Structure

P
T

0

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8

IN9

IN10

IN11

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

P
T

1

P
T

2

P
T

3

P
T

4

P
T

5

P
T

6

P
T

7

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

AND 
Array

OR 
Array

MC0

MC1

MC2

OUT0

OUT1

OUT2

OUT3MC3

Carry In

Carry Out



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 131

Universal Digital Blocks (UDB)

16.2.1.1 PLD Macrocells

Figure 16-4 shows the macrocell architecture. The output drives the routing array and can be registered or combinational.
The registered modes are D Flip-Flop (DFF) with true or inverted input and Toggle Flip-Flop (TFF) on input high or low. The
output register can be set or reset for purposes of initialization, or asynchronously during operation under control of a routed
signal.

Figure 16-4.  PLD Macrocell Architecture

PLD Macrocell Read-Only Registers

The outputs of the eight macrocells in the two PLDs can be accessed by the CPU/DMA as an 8-bit read-only register. Macro-
cells across multiple UDBs can be accessed as 16 or 32-bit read-only registers. See UDB Addressing on page 160.

16.2.1.2 PLD Carry Chain

PLDs are chained together in UDB address order. As shown in Figure 16-5, the carry chain input “selin” is routed from the
previous UDB in the chain through each macrocell in both PLDs, and then to the next UDB as the carry chain out “selout”. To
support the efficient mapping of arithmetic functions, special product terms are generated and used in the macrocell in con-
junction with the carry chain.

Figure 16-5.  PLD Carry Chain and Special Product Term Inputs

16.2.1.3 PLD Configuration

The PLDs can be configured by accessing a set of 16 or 32-bit registers; see UDB Addressing on page 160.

set

res

D Q

QB

From OR gate

out
0

1

0

1

2

3

reset

selin

Output Bypass (BYP)
0: Registered
1: Combinational

XOR Feedback (XORFB)
00: D FF
01: Arithmetic (Carry)
10: T FF on high
11: T FF on low

Set Select (SSEL)
0: Set not used
1: Set from input

Reset Select (RSEL)
0: Set not used
1: Set from input

0

1

0

1

Carry Out Enable (COEN)
0:Carry Out disabled
1: Carry Out enabled

Constant (CONST)
0: D FF true in
1: D FF inverted in

selout

(to next MC)

(from prev MC)

BYP

RSEL

SSEL

COEN

CONST

0

1

clk

To macrocell
read-only registercpt0

cpt1

pld_en

XORFB[1:0]

selinMC0

{P
T

1,P
T

0}

MC1

{P
T

3,P
T

2}

MC2

{P
T

5,P
T

4}

MC3

{P
T

7,P
T

6}

MC0

{P
T

1,P
T

0}

cpt1,cpt0

MC1

{P
T

3,P
T

2}

MC2

{P
T

5,P
T

4}

MC3

{P
T

7,P
T

6}

selout

PLD0PLD1

To the next
PLD block

in the chain

cpt1,cpt0cpt1,cpt0cpt1,cpt0 cpt1,cpt0cpt1,cpt0 cpt1,cpt0cpt1,cpt0

From previous
PLD block in

the chain  



132 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

16.2.2 Datapath

The datapath, shown in Figure 16-6, contains an 8-bit single-cycle ALU, with associated compare and condition generation
circuits. A datapath may be chained with datapaths in neighboring UDBs to achieve higher precision functions. The datapath
includes a small RAM-based control store, which can dynamically select the operation to perform in a given cycle.

The datapath is optimized to implement typical embedded functions such as timers, counters, PWMs, PRS, CRC, shifters,
and dead band generators. The add and subtract functions allow support for digital delta-sigma operations.

Figure 16-6.  Datapath Top Level

16.2.2.1 Overview

The following are key datapath features:

Dynamic Configuration

Dynamic configuration is the ability to change the datapath
function and interconnect on a cycle-by-cycle basis, under
sequencer control. This is implemented using the configura-
tion RAM, which stores eight unique configurations. The
address input to this RAM can be routed from any block con-
nected to the routing fabric, typically PLD logic, I/O pins, or
other datapaths.

ALU

The ALU can perform eight general-purpose functions:
increment, decrement, add, subtract, AND, OR, XOR, and
PASS. Function selection is controlled by the configuration
RAM on a cycle-by-cycle basis. Independent shift (left, right,
nibble swap) and masking operations are available at the
output of the ALU.

Conditionals

Each datapath has two comparators with bit masking
options, which can be configured to select a variety of data-
path register inputs for comparison. Other detectable condi-
tions include all zeros, all ones, and overflow. These
conditions form the primary datapath output selects to be
routed to the digital routing fabric as inputs to other func-
tions.

Built-in CRC/PRS

The datapath has built-in support for single-cycle cyclic
redundancy check (CRC) computation and pseudo random
sequence (PRS) generation of arbitrary width and arbitrary
polynomial specification. To achieve longer than 8-bit CRC/
PRS widths, signals may be chained between datapaths.
This feature is controlled dynamically and therefore, can be
interleaved with other functions.

ALU

A0

A1

D0

D1

PI

ALU

Mask

Shift

Data Registers

Output 
Muxes

F1

F0

FIFOs

Accumulators

PO

A0

A1

D0

D1

Output to 
Programmable 
Routing

Chaining

C
o

n
tro

l S
to

re R
A

M
8 W

o
rd

 X
 16 b

it

Parallel Input/Output
(to/from Programmable

Routing)

Input from 
Programmable 

Routing

Input 
Muxes

To/From
Next 
Datapath

To/From
Prev 

Datapath

D
ata

p
ath

 C
o

n
tro

l

System Bus

R/W Access to all 
registers

C
o

n
d

itio
n

s
2

 C
om

pares
2 Z

ero D
e

tect, 2 O
nes D

e
tect

O
verflow

 D
ete

ct

66



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 133

Universal Digital Blocks (UDB)

Variable MSB

The most significant bit of an arithmetic and shift function
can be programmatically specified. This supports variable
width CRC/PRS functions and, in conjunction with ALU out-
put masking, can implement arbitrary width timers, counters,
and shift blocks.

Input/Output FIFOs

Each datapath contains two 4-byte FIFOs, which can be
individually configured for direction as an input buffer (CPU
writes to the FIFO, datapath internals read the FIFO), or an
output buffer (datapath internals write to the FIFO, the CPU
reads from the FIFO). These FIFOs generate full or empty
status signals that can be routed to interact with sequencers
or interrupts.

Chaining

The datapath can be configured to chain conditions and sig-
nals with neighboring datapaths. Shift, carry, capture, and
other conditional signals can be chained to form higher pre-
cision arithmetic, shift, and CRC/PRS functions.

Time Multiplexing

In applications that are oversampled or do not need the
highest clock rates, the single ALU block in the datapath can
be efficiently shared between two sets of registers and con-
dition generators. ALU and shift outputs are registered and

can be used as inputs in subsequent cycles. Usage exam-
ples include support for 16-bit functions in one (8-bit) data-
path, or interleaving a CRC generation operation with a data
shift operation.

Datapath Inputs

The datapath has three types of inputs: configuration, con-
trol, and serial and parallel data. The configuration inputs
select the control store RAM address. The control inputs
load the data registers from the FIFOs and capture accu-
mulator outputs into the FIFOs. Serial data inputs include
shift in and carry in. A parallel data input port allows up to
eight bits of data to be brought in from routing.

Datapath Outputs

A total of 16 signals are generated in the datapath. Some of
these signals are conditional signals (for example, com-
pares), some are status signals (for example, FIFO status),
and the rest are data signals (for example, shift out). These
16 signals are multiplexed into the six datapath outputs and
then driven to the routing matrix. By default, the outputs are
single synchronized (pipelined). A combinational output
option is also available for these outputs.

Datapath Working Registers

Each datapath module has six 8-bit working registers. All
registers are readable and writable by CPU: 

Table 16-1.  Datapath Working Registers

Type Name Description

Accumulator A0, A1
The accumulators may be both a source and a destination for the ALU. They may also be loaded from a Data 
register or a FIFO. The accumulators typically contain the current value of a function, such as a count, CRC, or 
shift. These registers are non-retention; they lose their values in sleep and are reset to 0x00 on wakeup.

Data D0, D1
The Data registers typically contain constant data for a function, such as a PWM compare value, timer period, 
or CRC polynomial. These registers retain their values across sleep intervals.

FIFOs F0, F1

The two 4-byte FIFOs provide both a source and a destination for buffered data. The FIFOs can be configured 
as both input buffers, both output buffers, or as one input buffer and one output buffer. Status signals indicate 
the full/empty status of these registers. Usage examples include buffered TX and RX data in the SPI or UART 
and buffered PWM compare and buffered timer period data. These registers are non-retention; they lose their 
values in sleep and are reset to 0x00 on wakeup.



134 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

16.2.2.2 Datapath FIFOs

FIFO Modes and Configurations

Each FIFO has a variety of operation modes and configurations.

Figure 16-7 shows the possible FIFO configurations controlled by the input/output modes. The TX/RX mode has one FIFO in
input mode and the other in output mode. The primary example of this configuration is SPI. The dual capture configuration
provides independent capture of A0 and A1, or two separately controlled captures of either A0 or A1. Finally, the dual buffer
mode can provide buffered periods and compares, or two independent periods/compares.

Figure 16-7.  FIFO Configurations

Table 16-2.  FIFO Modes and Configurations

Mode Description

Input/Output
In input mode, the CPU writes to the FIFO and the data is read and consumed by the datapath internals. In 
output mode, the FIFO is written to by the datapath internals and is read and consumed by the CPU.

Single Buffer
The FIFO operates as a single-byte buffer with no status. Data written to the FIFO is immediately available for 
reading, and can be overwritten at anytime.

Level/Edge The control to load the FIFO from the datapath internals can be either level or edge triggered.

Normal/Fast
The control to load the FIFO from the datapath source is sampled on the currently selected datapath clock 
(normal) or the bus clock (fast). This allows captures to occur at the highest rate in the system (bus clock), 
independent of the datapath clock.

Software

Capture

When this mode is enabled and the FIFO is in output mode, a read by the CPU of the associated accumulator 
(A0 for F0, A1 for F1) initiates a synchronous transfer of the accumulator value into the FIFO. The captured 
value may then be immediately read from the FIFO. If chaining is enabled, the operation follows the chain to 
the MS block for atomic reads by datapaths of multi-byte values.

Asynch
When the datapath is being clocked asynchronously to the bus clock, the FIFO status signals can be routed to 
the rest of the datapath either directly, single sampled to the datapath clock, or double sampled in the case of 
an asynchronous datapath clock

Independent Clock Polarity Each FIFO has a control bit to invert polarity of the FIFO clock with respect to the datapath clock.

System Bus

F0

F1

System Bus

A0/A1/ALU

D0/D1

A0/A1/ALU

System Bus

F1

A0/A1/ALU

F0

D0

System Bus

F1

A0

D1

A1

F0

TX/RX Dual Capture Dual Buffer



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 135

Universal Digital Blocks (UDB)

Figure 16-8 shows a detailed view of FIFO sources and sinks.

Figure 16-8.  FIFO Sources and Sinks

When the FIFO is in input mode, the source is the system bus and the sinks are the Dx and Ax registers. When in output
mode, the sources include the Ax registers and the ALU, and the sink is the system bus. The multiplexer selection is statically
set in UDB configuration register CFG15, as shown in Table 16-3 for the F0_INSEL[1:0] or F1_INSEL[1:0].

FIFO Status

Each FIFO generates two status signals, “bus” and “block,” which are sent to the UDB routing through the datapath output
multiplexer. The “bus” status can be used to assert an interrupt request to read/write the FIFO. The “block” status is primarily
intended to provide the FIFO state to the UDB internals. The meanings of the status bits depend on the configured direction
(Fx_INSEL[1:0]) and the FIFO level bits. The FIFO level bits (Fx_LVL) are set in the Auxiliary Control Working register in
working register space. Table 16-4 shows the options. 

Table 16-3.  FIFO Multiplexer Set in UDB Configuration Register

Fx_INSEL[1:0] Description

00 Input mode - System bus writes the FIFO, FIFO output destination is Ax or Dx.

01 Output Mode - FIFO input source is A0, FIFO output destination is the system bus.

10 Output Mode - FIFO input source is A1, FIFO output destination is the system bus.

11 Output Mode - FIFO input source is the ALU output, FIFO output destination is the system bus.

Table 16-4.  FIFO Status Options

Fx_INSEL[1:0] Fx_LVL Status Signal Description

Input 0 Not Full Bus Status Asserted when there is room for at least 1 byte in the FIFO.

Input 1
At Least Half 
Empty

Bus Status Asserted when there is room for at least 2 bytes in the FIFO.

Input NA Empty Block Status
Asserted when there are no bytes left in the FIFO. When not empty, the 
datapath internals may consume bytes. When empty the datapath may 
idle or generate an underrun condition.

Output 0 Not Empty Bus Status
Asserted when there is at least 1 byte available to be read from the 
FIFO.

Output 1
At Least Half 
Empty

Bus Status
Asserted when there are at least 2 bytes available to be read from the 
FIFO.

Output NA Full Block Status
Asserted when the FIFO is full. When not full, the datapath internals may 
write bytes to the FIFO. When full, the datapath may idle or generate an 
overrun condition.

FIFO F1

D1

A1
U

D
B

 L
ocal D

ata B
us

FIFO F0

D0

A0

A
0

A
0

A
1

A
1

A
L

U

A
L

U



136 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

FIFO Operation

Figure 16-9 illustrates a typical sequence of reads and writes and the associated status generation. Although the figure shows
reads and writes occurring at different times, a read and write can also occur simultaneously.

Figure 16-9.  Detailed FIFO Operation Sinks

FIFO Fast Mode (FIFO FAST)

When the FIFO is configured for output, the FIFO load operation normally uses the currently selected datapath clock for sam-
pling the write signal. As shown in Figure 16-10, with the FIFO fast mode set, the bus clock can be optionally selected for this
operation. Used in conjunction with edge sensitive mode, this operation reduces the latency of accumulator-to-FIFO transfer
from the resolution of the datapath clock to the resolution of the bus clock, which can be much higher. This allows the CPU to
read the captured result in the FIFO with minimal latency.

Figure 16-10 illustrates that the fast load operation is independent of the currently selected datapath clock; however, using
the bus clock may cause higher power consumption. Note that the incoming fx_ld signal must be able to meet bus clock tim-
ing, which can require local resynchronization.

Figure 16-10.  FIFO Fast Configuration Sinks

WR_PTR

RD_PTR RD_PTR

Reset Write 2 bytes

Empty = 1

At Least Half Empty = 1

D0

D1

Full = 0

At Least Half Full = 0

Empty = 0

At Least Half Empty = 1

Full = 0

At Least Half Full = 1

Write 2 more bytes

Empty = 0

At Least Half Empty = 0

Full = 1

At Least Half Full = 1

D0

D1

D2

D3

WR_PTR

WR_PTR

RD_PTR

Read 3 bytes

Empty = 0

At Least Half Empty = 1

Full = 0

At Least Half Full = 0

X

X

X

D3
RD_PTR

WR_PTR

Write 2 bytes

Empty = 0

At Least Half Empty = 0

Full = 0

At Least Half Full = 1

D4

D5

X

D3
RD_PTR

WR_PTR

Read 2 bytes

Empty = 0

At Least Half Empty = 1

Full = 0

At Least Half Full = 0

X

D5

X

X

RD_PTR

WR_PTR

Read 1 bytes

Empty = 1

At Least Half Empty = 1

Full = 0

At Least Half Full = 0

X

X

X

X

RD_PTR

WR_PTR

 

FIFO
(In Output Mode)

DP clk

bus clk

DP Operation

fx_ld

FIFO Fast

0

1

bus clk

digital
clocks

UDB DP
Clock Mux

Write

 



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 137

Universal Digital Blocks (UDB)

FIFO Edge/Level Write Mode

Two modes are available for writing the FIFO from the data-
path. In the first mode, data is synchronously transferred
from the accumulators to the FIFOs. The control for that
write (fx_ld) is typically generated from a state machine or
condition that is synchronous to the datapath clock. The
FIFO is written in any cycle where the input load control is a
'1'.

In the second mode, the FIFO is used to capture the value
of the accumulator in response to a positive edge of the
fx_ld signal. In this mode the duty cycle of the waveform is
arbitrary (however, it must be at least one datapath clock
cycle in width). An example of this mode is capturing the
value of the accumulator using an external pin input as a
trigger. The limitation of this mode is that the input control
must revert to '0' for at least one cycle before another posi-
tive edge is detected.

Figure 16-11 shows the edge detect option on the fx_ld con-
trol input. One bit for this option sets the mode for both
FIFOs in a UDB. Note that edge detection is sampled at the
rate of the selected FIFO clock.

Figure 16-11.  Edge Detect Option for Internal FIFO Write

FIFO Software Capture Mode

A common and important requirement is to allow the CPU
the ability to reliably read the contents of an accumulator
during normal operation. This is done with software capture
and is enabled by setting the FIFO Cap configuration bit.
This bit applies to both FIFOs in a UDB, but is only opera-
tional when a FIFO is in output mode. When using software
capture, F0 should be set to load from A0 and F1 from A1.

As shown in Figure 16-12, reading the accumulator triggers
a write to the FIFO from that accumulator. This signal is
chained so that a read of a given byte simultaneously cap-
tures accumulators in all chained UDBs. This allows the
CPU to reliably read 16 bits or more simultaneously. The
data returned in the read of the accumulator should be
ignored; the captured value may be read from the FIFOs
immediately.

The fx_ld signal, which generates a FIFO load, is ORed with
the software capture signal; the results can be unpredictable
when both hardware and software capture are used at the
same time. As a general rule, these functions should be
mutually exclusive; however, hardware and software cap-
ture can be used simultaneously with the following settings:

■ FIFO capture clocking mode is set to FIFO FAST

■ FIFO write mode is set to FIFO EDGE

With these settings, hardware and software capture work
essentially the same and in any given bus clock cycle, either
signal asserted initiates a capture.

It is also recommended to clear the target FIFO in firmware
(ACTL register) before initiating a software capture. This ini-
tializes the FIFO read and write pointers to a known state.

Figure 16-12.  Software Capture Configuration

FF

0

1fx_ld (from Routing)

FIFO Edge

fx_write

0

1

FIFO Fast

dp_clk

bus_clk

capxi (chaining in)
capx (chaining out)

read ax

Chain X

FIFO Cap

fx_write

fx_ld

bus clk

(FIFO FAST)

FIFO EDGE

0

1



138 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

FIFO Control Bits

The Auxiliary Control register has four bits that may be used
by the CPU firmware to control the FIFO during normal oper-
ation.

The FIFO0 CLR and FIFO1 CLR bits are used to reset or
flush the FIFO. When a '1' is written to one of these bits, the
associated FIFO is reset. The bit must be written back to '0'
for FIFO operation to continue. If the bit is left asserted, the
given FIFO is disabled and operates as a one byte buffer
without status. Data can be written to the FIFO; the data is
immediately available for reading and can be overwritten at
anytime. Data direction using the Fx INSEL[1:0] configura-
tion bits is still valid.

The FIFO0 LVL and FIFO1 LVL bits control the level at
which the 4-byte FIFO asserts bus status (when the bus is
either reading or writing to the FIFO) to be asserted. The
meaning of FIFO bus status depends on the configured
direction, as shown in Table 16-5. 

FIFO Asynchronous Operation

Figure 16-13 illustrates the concept of asynchronous FIFO
operation. As an example, assume F0 is set for input mode
and F1 is set for output mode, which is a typical configura-
tion for TX and RX registers.

On the TX side, the datapath state machine uses "empty" to
determine if there are any bytes available to consume.
Empty is set synchronously to the DP state machine, but is
cleared asynchronously due to a bus write. When cleared,
the status is synchronized back to the DP state machine.

On the RX side, the datapath state machine uses “full” to
determine whether there is a space left to write to the FIFO.
Full is set synchronously to the DP state machine, but is
cleared asynchronously due to a bus read. When cleared,
the status is synchronized back to the DP state machine.

A single FIFO ASYNCH bit is used to enable this synchroni-
zation method; when set it applies to both FIFOs. It is only
applied to the block status, as it is assumed that bus status
is naturally synchronized by the interrupt process.

FIFO Overflow Operation

Use FIFO status signaling to safely implement both internal
(datapath) and external (CPU) reads and writes. There is no
built-in protection from underflow and overflow conditions. If
the FIFO is full and subsequent writes occur (overflow), the
new data overwrites the front of the FIFO (the data currently
being output, the next data to read). If the FIFO is empty and
subsequent reads occur (underflow), the read value is unde-
fined. FIFO pointers remain accurate regardless of under-
flow and overflow.

Figure 16-13.  FIFO Asynchronous Operation

Table 16-5.  FIFO Level Control Bits

FIFOx

LVL

Input Mode

(Bus is Writing FIFO)

Output Mode

 (Bus is Reading FIFO)

0

Not Full

At least 1 byte can be writ-
ten

Not Empty

At least 1 byte can be read

1

At least Half Empty

At least 2 bytes can be writ-
ten

At least Half Full

At least 2 bytes can be read

System Bus

F0 (TX)

F1 (RX)

System Bus

Datapath Process
(Asynch)

blk_stat

Synch to
DP

blk_stat

Synch to
DP

empty

full

set

DP clk

d q

async

1

0 Empty to
DP state
machine

empty

set

DP clk

d q

async

1

0 Full to
DP state
machine

full

Asynchronously cleared
by bus write,

sycnhyronously set by
DP read

Asynchronously cleared
by bus read,

sycnhyronously set by
DP write

 



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 139

Universal Digital Blocks (UDB)

FIFO Clock Inversion Option

Each FIFO has a control bit called Fx CK INV that controls
the polarity of the FIFO clock, with respect to the polarity of
the DP clock. By default, the FIFO operates at the same
polarity as the DP clock. When this bit is set, the FIFO oper-
ates at the opposite polarity as the DP clock. This provides
support for “both clock edge” communication protocols,
such as SPI.

FIFO Dynamic Control

Normally, the FIFOs are configured statically in either input
or output mode. As an alternative, each FIFO can be config-
ured into a mode where the direction is controlled dynami-
cally, that is, by routed signals. One configuration bit per
FIFO (Fx DYN) enables the mode. Figure 16-13 shows the
configurations available in dynamic FIFO mode.

Figure 16-14.  FIFO Dynamic Mode

In internal access mode, the datapath can read and write
the FIFO. In this configuration, the Fx INSEL bits must be
configured to select the source for the FIFO writes. Fx
INSEL = 0 (CPU bus source) is invalid in this mode; they
can only be 1, 2, or 3 (A0, A1, or ALU). Note that the only
read access is to the associated accumulator; the data reg-
ister destination is not available in this mode.

In external access mode, the CPU can both read and write
the FIFO. The configuration between internal and external
access is dynamically switchable using datapath routing sig-
nals. The datapath input signals d0_load and d1_load are
used for this control. Note that in the dynamic control mode,
d0_load and d1_load are not available for their normal use
in loading the D0/D1 registers from F0/F1. The dx_load sig-
nals can be driven by any routed signal, including constants.

In one usage example, starting with external access
(dx_load == 1), the CPU can write one or more bytes of data
to the FIFO. Then toggling to internal access (dx_load == 0),
the datapath can perform operations on the data. Then tog-
gling back to external access, the CPU can read the result
of the computation.

Because the Fx INSEL must always be set to 01, 10, or 11
(A0, A1, or ALU), which is “output mode” in normal opera-
tion, the FIFO status signals have the following definitions
(also dependent on Fx LVL control).

Because the datapath and CPU may both write and read the
FIFO, these signals are no longer considered “block” and
“bus” status. The blk_stat signal is used for write status and
the bus_stat signal is used for read status.

16.2.2.3 FIFO Status

There are four FIFO status signals, two for each FIFO:
fifo0_bus_stat, fifo0_blk_stat, fifo1_bus_stat, and
fifo1_blk_stat. The meaning of these signals depends on the
direction of the given FIFO, which is determined by static
configuration. 

16.2.2.4 Datapath ALU

The ALU core consists of three independent 8-bit program-
mable functions, which include an arithmetic/logic unit, a
shifter unit, and a mask unit.

Arithmetic and Logic Operation

The ALU functions, which are configured dynamically by the
RAM control store, are shown in Table 16-7. 

Carry In

The carry in is used in arithmetic operations. Table 16-8
shows the default carry in value for certain functions. 

In addition to this default arithmetic mode for carry opera-

FIFO Fx

Ax

Internal Access

A
0

A
1

A
L

U

UDB Local Data Bus

FIFO Fx

UDB Local Data Bus

External Access

Table 16-6.   FIFO Status

Status Signal Meaning Fx LVL = 0 Fx LVL = 1

fx_blk_stat Write Status FIFO full FIFO full

fx_bus_stat Read Status FIFO not empty At least ½ full

Table 16-7.  ALU Functions

Func[2:0] Function Operation

000 PASS srca

001 INC ++srca

010 DEC --srca

011 ADD srca +srcb

100 SUB srca – srcb

101 XOR srca ^ srcb

110 AND srca and srcb

111 OR srca | srcb

Table 16-8.  Carry In Functions

Function Operation Default Carry In Implementation

INC ++srca srca + 00h + ci, where ci is forced to 1

DEC --srca srca + ffh + ci, where ci is forced to 0

ADD srca + srcb srca + srcb + ci, where ci is forced to 0

SUB srca – srcb srca + ~srcb + ci, where ci is forced to 1



140 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

tion, there are three additional carry options. The CI SELA
and CI SELB configuration bits determine the carry in for a
given cycle. Dynamic configuration RAM selects either the A
or B configuration on a cycle-by-cycle basis. The options are
defined in Table 16-9. 

When a routed carry is used, the meaning with respect to
each arithmetic function is shown in Table 16-10. Note that
in the case of the decrement and subtract functions, the
carry is active low (inverted).

Carry Out

The carry out is a selectable datapath output and is derived
from the currently defined MSB position, which is statically
programmable. This value is also chained to the next most
significant block as an optional carry in. Note that in the case
of decrement and subtract functions, the carry out is
inverted. 

Carry Structure

Figure 16-15 shows the options for carry in, and for MSB
selection for carry out generation. The registered carry out
value may be selected as the carry in for a subsequent arith-
metic operation. This feature can be used to implement
higher precision functions in multiple cycles.

Figure 16-15.  Carry Operation

Table 16-9.  Additional Carry In Functions

CI SEL A
CI SEL B

Carry 
Mode

Description

00 Default
Default arithmetic mode as described in 
Table 16-8.

01 Registered

Carry Flag, result of the carry from the pre-
vious cycle. This mode is used to imple-
ment add with carry and subtract with 
borrow operations. It can be used in suc-
cessive cycles to emulate a double preci-
sion operation.

10 Routed
Carry is generated elsewhere and routed to 
this input. This mode can be used to imple-
ment controllable counters.

11 Chained

Carry is chained from the previous data-
path. This mode can be used to implement 
single cycle operations of higher precision 
involving two or more datapaths.

Table 16-10.  Routed Carry In Functions

Function
Carry In 
Polarity

Carry In 
Active

Carry In
 Inactive

INC True ++srca srca

DEC Inverted --srca srca

ADD True (srca + srcb) + 1 srca + srcb

SUB Inverted (srca – srcb) – 1 (srca – srcb)

Table 16-11.  Carry Out Functions

Function
Carry Out 
Polarity

Carry Out
Active

Carry Out
Inactive

INC True ++srca == 0 srca

DEC Inverted --srca == –1 srca

ADD True srca + srcb > 255 srca + srcb

SUB Inverted srca – srcb < 0 (srca – srcb)

co_msb
(to DP output mux)

ci

Selected MSB

Arithmetic ALU Function
(inc, dec, add, sub)

Default function value

Chained (from prev datapath)

Routed (from interconnect)

Registered (from co_msb_reg)

ALU 
Bit 0

ALU 
Bit 1

ALU 
Bit 2

ALU 
Bit 3

ALU 
Bit 4

ALU 
Bit 5

ALU 
Bit 6

ALU 
Bit 7

co_msb_reg



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 141

Universal Digital Blocks (UDB)

Shift Operation

The shift operation occurs independent of the ALU opera-
tion, according to Table 16-12.

A shift out value is available as a datapath output. Both shift
out right (sor) and shift out left (sol_msb) share that output
selection. A static configuration bit (SHIFT SEL in register
CFG15) determines which shift output is used as a datapath
output. When no shift is occurring, the sor and sol_msb sig-
nal is defined as the LSB or MSB of the ALU function,
respectively.

The SI SELA and SI SELB configuration bits determine the
shift in data for a given operation. Dynamic configuration
RAM selects the A or B configuration on a cycle-by-cycle
basis. Shift in data is only valid for left and right shift; it is not
used for pass and nibble swap. Table 16-13 shows the
selections and usage that apply to both left and right shift
directions.

 

The shift out left data comes from the currently defined MSB
position, and the data that is shifted in from the left (in a shift
right operation) goes into the currently defined MSB posi-
tion. Both shift out data (left or right) are registered and can
be used in a subsequent cycle. This feature can be used to
implement a higher precision shift in multiple cycles.

Figure 16-16.  Shift Operation

Note that the bits that are isolated by the MSB selection are
still shifted. In the example shown, bit 7 still shifts in the sil
value on a right shift and bit 5 shifts in bit 4 on a left shift.
The shift out either right or left from the isolated bits is lost.

ALU Masking Operation

An 8-bit mask register in the UDB static configuration regis-
ter space defines the masking operation. In this operation,
the output of the ALU is masked (ANDed) with the value in
the mask register. A typical use for the ALU mask function is
to implement free-running timers and counters in power of
two resolutions.

16.2.2.5 Datapath Inputs and Multiplexing

The datapath has a total of nine inputs, as shown in
Table 16-14, including six inputs from the channel routing.
These consist of the configuration RAM address, FIFO and
data register load control signals, and the data inputs shift in
and carry in.

Table 16-12.   Shift Operation Functions

Shift[1:0] Function

00 Pass

01 Shift Left

10 Shift Right

11 Nibble Swap

Table 16-13.  Shift In Functions

SI SEL A 
SI SEL B

Shift In 
Source

Description

00
Default/Arith-
metic

The default input is the value of the 
DEF SI configuration bit (fixed 1 or 
0). However, if the MSB SI bit is set, 
then the default input is the currently 
defined MSB (for right shift only).

01 Registered

The shift in value is driven by the cur-
rent registered shift out value (from 
the previous cycle). The shift left 
operation uses the last shift out left 
value. The shift right operation uses 
the last shift out right value.

10 Routed
Shift in is selected from the routing 
channel (the SI input).

11 Chained

Shift in left is routed from the right 
datapath neighbor and shift in right is 
routed from the left datapath neigh-
bor.

3 2 1 07 6 5 4

shift in left (sil)

shift out left (sol_msb)
(to DP output mux) shift in right (sir)

shift out right (sor)
(to DP output mux)

Selected MSB

Shift right or shift left

Default (tie value)

Registered (sor_reg)

Chained (from next Datapath)

Routed (from interconnect)

Default (tie value)

Chained (from prev Datapath)

Routed (from interconnect)

Registered (from sol_msb_reg)

sor_reg

sol_msb_reg

sil

Select default value or 
arithmetic shift



142 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

As shown in Figure 16-17, each input has a 6-to-1 multiplexer, therefore, all inputs are permutable. Inputs are handled in one
of two ways, either level sensitive or edge sensitive. RAM address, shift in and data in values are level sensitive; FIFO and
data register load signals are edge sensitive.

Figure 16-17.  Datapath Input Select

16.2.2.6 CRC/PRS Support

The datapath can support cyclic redundancy checking
(CRC) and pseudo random sequence (PRS) generation.
Chaining signals are routed between datapath blocks to
support CRC/PRS bit lengths of longer than eight bits.

The most significant bit (MSB) of the most significant block
in the CRC/PRS computation is selected and routed (and
chained across blocks) to the least significant block. The
MSB is then XORed with the data input (SI data) to provide
the feedback (FB) signal. The FB signal is then routed (and
chained across blocks) to the most significant block. This
feedback value is used in all blocks to gate the XOR of the
polynomial (from the Data0 or Data1 register) with the cur-
rent accumulator value.

Figure 16-18 shows the structural configuration for the CRC
operation. The PRS configuration is identical except that the
shift in (SI) is tied to '0'. In the PRS configuration, D0 or D1
contain the polynomial value, while A0 or A1 contain the ini-
tial (seed) value and the CRC residual value at the end of
the computation.

To enable CRC operation, the CFB_EN bit in the dynamic
configuration RAM must be set to '1'. This enables the AND
of SRCB ALU input with the CRC feedback signal. When set
to zero, the feedback signal is driven to '1', which allows for
normal arithmetic operation. Dynamic control of this bit on a
cycle-by-cycle basis gives the capability to interleave a

CRC/PRS operation with other arithmetic operations.

Figure 16-18.  CRC Functional Structure

CRC/PRS Chaining

Figure 16-19 illustrates an example of CRC/PRS chaining
across three UDBs. This scenario can support a 17- to 24-bit
operation. The chaining control bits are set according to the
position of the datapath in the chain as shown in the figure.

Table 16-14.  Datapath Inputs

Input Description

RAD2

RAD1

RAD0

Asynchronous dynamic configuration RAM address. There are eight 16-bit words, which are user-programmable. Each 
word contains the datapath control bits for the current cycle. Sequences of instructions can be controlled by these address 
inputs.

F0 LD

F1 LD

When asserted in a given cycle, the selected FIFO is loaded with data from one of the A0 or A1 accumulators or from the 
output of the ALU. The source is selected by the Fx INSEL[1:0] configuration bits. This input is edge sensitive. It is sampled 
at the datapath clock; when a '0' to '1' transition is detected, a load occurs at the subsequent clock edge.

D0 LD

D1 LD

When asserted in a given cycle, the Dx register is loaded from associated FIFO Fx. This input is edge sensitive. It is sam-
pled at the datapath clock; when a '0' to '1' transition is detected, a load occurs at the subsequent clock edge.

SI This is a data input value that can be used for either shift in left or shift in right.

CI This is the carry in value used when the carry in select control is set to "routed carry."

{0, dp_in[5:0], 0} rad0
(similar for rad1, rad2, si, ci)

CFGx
RAD0 MUX[2:0]

f0_ld
(similar for f1_ld, d0_ld, d1_ld)

CFGx
F0 LD MUX[2:0]

{0, dp_in[5:0], 0}

These inputs are
edge sensitive

 

SI 
(shift in)

D0/D1 
(POLY)

A0/A1 
(CRC)

ALU 
(XOR)

SHIFTER 
(LEFT)

MSB
(most significant bit) FB

(feedback)

srcasrcb Tie input to 
zero for PRS 
operation



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 143

Universal Digital Blocks (UDB)

Figure 16-19.  CRC/PRS Chaining Configuration

The CRC/PRS feedback signal (cfbo, cfbi) is chained as fol-
lows:

■ If a given block is the least significant block, then the 
feedback signal is generated in that block from the built-
in logic that takes the shift in from the right (sir) and 
XORs it with the MSB signal. (For PRS, the "sir" signal is 
tied to '0'.)

■ If a given block is not the least significant block, the 
CHAIN FB configuration bit must be set and the feed-
back is chained from the previous block in the chain.

The CRC/PRS MSB signal (cmsbo, cmsbi) is chained as fol-
lows:

■ If a given block is the most significant block, the MSB bit 
(according to the polynomial selected) is configured 
using the MSB_SEL configuration bits.

■ If a given block is not the most significant block, the 
CHAIN MSB configuration bit must be set and the MSB 
signal is chained from the next block in the chain.

CRC/PRS Polynomial Specification

As an example of how to configure the polynomial for pro-
gramming into the associated D0/D1 register, consider the
CCITT CRC-16 polynomial, which is defined as x16 + x12

+x5 + 1. The method for deriving the data format from the
polynomial is shown in Figure 16-20.

The X0 term is inherently always '1' and therefore does not
need to be programmed. For each of the remaining terms in
the polynomial, a '1' is set in the appropriate position in the
alignment shown.

Note This polynomial format is slightly different from the for-
mat normally specified in Hex. For example, the CCITT
CRC16 polynomial is typically denoted as 1021H. To con-
vert to the format required for datapath operation, shift right
by one and add a '1' in the MSB bit. In this case, the correct
polynomial value to load into the D0 or D1 register is 8810H.

Figure 16-20.  CCITT CRC16 Polynomial Format

Example CRC/PRS Configuration

The following is a summary of CRC/PRS configuration
requirements, assuming that D0 is the polynomial and the
CRC/PRS is computed in A0:

1. Select a suitable polynomial and write it into D0.

2. Select a suitable seed value (for example, all zeros for 
CRC, all ones for PRS) and write it into A0.

3. Configure chaining if necessary.

4. Select the MSB position as defined in the polynomial 
from the MSB_SEL static configuration register bits and 
set the MSB_EN register bit.

5. Configure the dynamic configuration RAM word fields:

6. Select D0 as the ALU "SRCB" (ALU B Input Source)

7. Select A0 as the ALU "SRCA" (ALU A Input Source)

8. Select "XOR" for the ALU function

9. Select "SHIFT LEFT" for the SHIFT function

10. Select "CFB_EN" to enable the support for CRC/PRS

11. Select ALU as the A0 write source

If a CRC operation, configure "shift in right" for input data
from routing and supply input on each clock. If a PRS opera-
tion, tie "shift in right" to '0'.

Clocking the UDB with this configuration generates the
required CRC or outputs the MSB, which may be output to
the routing for the PRS sequence.

External CRC/PRS Mode

A static configuration bit may be set (EXT CRCPRS) to
enable support for external computation of a CRC or PRS.
As shown in Figure 16-21, computation of the CRC feed-
back is done in a PLD block. When the bit is set, the CRC

CHAIN MSB = 1

CHAIN FB = 1CHAIN FB = 1

UDB 1

cmsbi

cfbo

cmsbo

cfbi

cmsbi

cfbo

cmsbo

cfbi
UDB 0

CHAIN MSB = 1

UDB 2

cmsbi

cfbo

cmsbo

cfbi

Set msb_sel

sir CRC data in

0000100000010001

X0X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15X16

CCITT  16-Bit  Polynomial  is  0x8810

X16 X12 X5 1+ + +



144 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

feedback signal is driven directly from the CI (Carry In) data-
path input selection mux, bypassing the internal computa-
tion. The figure shows a simple configuration that supports
up to an 8-bit CRC or PRS. Normally the built-in circuitry is
used, but this feature gives the capability for more elaborate
configurations, such as up to a 16-bit CRC/PRS function in
one UDB using time division multiplexing.

In this mode, the dynamic configuration RAM bit CFB_EN
still controls whether the CRC feedback signal is ANDed
with the SRCB ALU input. Therefore, as with the built-in
CRC/PRS operation, the function can be interleaved with
other functions if required.

Figure 16-21.  External CRC/PRS Mode

16.2.2.7 Datapath Outputs and Multiplexing

Conditions are generated from the registered accumulator values, ALU outputs, and FIFO status. These conditions can be
driven to the digital routing for use in other UDB blocks, for use as interrupts, or to I/O pins. The 16 possible conditions are
shown in Table 16-15. 

Table 16-15.  Datapath Condition Generation

Name Condition Chain Description

ce0 Compare Equal Y A0 == D0

cl0 Compare Less Than Y A0 < D0

z0 Zero Detect Y A0 == 00h

ff0 Ones Detect Y A0 == FFh

ce1 Compare Equal Y A1 or A0 == D1 or A0 (dynamic selection)

cl1 Compare Less Than Y A1 or A0 < D1 or A0 (dynamic selection)

z1 Zero Detect Y A1 == 00h

ff1 Ones Detect Y A1 == FFh

ov_msb Overflow N Carry(msb) ^ Carry(msb–1)

co_msb Carry Out Y Carry out of MSB defined bit

cmsb CRC MSB Y MSB of CRC/PRS function

so Shift Out Y Selection of shift output

f0_blk_stat FIFO0 Block Status N Definition depends on FIFO configuration

f1_blk_stat FIFO1 Block Status N Definition depends on FIFO configuration

f0_bus_stat FIFO0 Bus Status N Definition depends on FIFO configuration

f1_bus_stat FIFO1 Bus Status N Definition depends on FIFO configuration

SI
(shift in)

D0/D1
(POLY)

A0/A1
(CRC)

ALU
(XOR)

SHIFTER
(LEFT)

MSB
(Most Significant Bit)

FB
(feedback)

srcasrcb

Tie shift in to
zero for PRS

operation

CI Mux

PLD
D

P
Inputs

RoutingRouting

SI Mux

When the
EXT_CRCPRS bit is
set, the CI selection
drives the CRC
feedback line.

 



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 145

Universal Digital Blocks (UDB)

There are a total of six datapath outputs. As shown in
Figure 16-22, each output has a 16-1 multiplexer that allows
any of these 16 signals to be routed to any of the datapath
outputs.

Figure 16-22.  Output Mux Connections

Compares

There are two compares, one of which has fixed sources
(Compare 0) and the other has dynamically selectable
sources (Compare 1). Each compare has an 8-bit statically
programmed mask register, which enables the compare to
occur in a specified bit field. By default, the masking is off
(all bits are compared) and must be enabled.

Comparator 1 inputs are dynamically configurable. As
shown in Table 16-16, there are four options for Comparator
1, which applies to both the "less than" and the "equal" con-
ditions. The CMP SELA and CMP SELB configuration bits
determine the possible compare configurations. A dynamic
RAM bit selects one of the A or B configurations on a cycle-
by-cycle basis. 

Compare 0 and Compare 1 are independently chainable to
the conditions generated in the previous datapath (in
addressing order). Whether to chain compares is statically

specified in UDB configuration registers. Figure 16-23 illus-
trates compare equal chaining, which is just an ANDing of
the compare equal in this block with the chained input from
the previous block.

Figure 16-23.  Compare Equal Chaining

Figure 16-24 illustrates compare less than chaining. In this
case, the “less than” is formed by the compare less than
output in this block, which is unconditional. This is ORed
with the condition where this block is equal, and the chained
input from the previous block is asserted as less than.

Figure 16-24.  Compare Less Than Chaining

All Zeros and All Ones Detect

Each accumulator has dedicated all zeros detect and all
ones detect. These conditions are statically chainable as
specified in UDB configuration registers. Whether to chain
these conditions is statically specified in UDB configuration
registers. Chaining of zero detect is the same concept as
the compare equal. Successive chained data is ANDed if
the chaining is enabled.

Overflow

Overflow is defined as the XOR of the carry into the MSB
and the carry out of the MSB. The computation is done on
the currently defined MSB as specified by the MSB_SEL
bits. This condition is not chainable, however the computa-
tion is valid when done in the most significant datapath of a
multi-precision function as long as the carry is chained
between blocks.

16.2.2.8 Datapath Parallel Inputs and Outputs

As shown in Figure 16-25, the datapath Parallel In (PI) and
Parallel Out (PO) signals give limited capability to bring
routed data directly into and out of the Datapath. Parallel
Out signals are always available for routing as the ALU asrc
selection between A0 and A1.

Table 16-16.  Compare Configuration

CMP SEL A 
CMP SEL B

Comparator 1 Compare Configuration

00 A1 Compare to D1

01 A1 Compare to A0

10 A0 Compare to D1

11 A0 Compare to A0

1
4

2
1

3
1

2
1

1
3

4
5

6
7

8
9

1
0

1

O
utput M

u
x

 (6
 - 1

6
 to

 1)

0ce0

cl0

z0

ff0

ce1

cl1

z1

ff1

ov_msb

co_msb

cmsb
sor

sol_msb
f0_blk_stat

f1_blk_stat

dp_out[5:0]
6

Output Mux

1
5

f0_bus_stat

f1_bus_stat

CFGx
CCHAIN0

Compare Equal

ce0i
(from chaining)

ce0
(to routing

and chaining)

CFGx
CCHAIN0

Compare 
Less Than

cl0i
(from chaining)

cl0
(to routing

and chaining)

Compare 
Equal



146 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

Figure 16-25.  Datapath Parallel In/Out

Parallel In needs to be selected for input to the ALU. The
two options available are static operation or dynamic opera-
tion. For static operation, the PI SEL bit forces the ALU asrc
to be PI. The PI DYN bit is used to enable the PI dynamic
operation. When it is enabled, and assuming the PI SEL is

0, the PI multiplexer may then be controlled by the CFB_EN
dynamic control bit. The primary function of the CFB_EN bit
is to enable PRS/CRC functionality.

16.2.2.9 Datapath Chaining

Each datapath block contains an 8-bit ALU, which is
designed to chain carries, shifted data, capture triggers, and
conditional signals to the nearest neighbor datapaths, to cre-
ate higher precision arithmetic functions and shifters. These
chaining signals, which are dedicated signals, allow single-
cycle 16-, 24- and 32-bit functions to be efficiently mple-
mented without the timing uncertainty of channel routing
resources. In addition, the capture chaining supports the
ability to perform an atomic read of the accumulators in
chained blocks. As shown in Figure 16-26, all generated
conditional and capture signals chain in the direction of least
significant to most significant blocks. Shift left also chains
from least to most significant. Shift right chains from most to
least significant. The CRC/PRS chaining signal for feedback
chains least to most significant; the MSB output chains from
most to least significant.

Figure 16-26.  Datapath Chaining Flow

16.2.2.10 Dynamic Configuration RAM

Each datapath contains a 16 bit-by-8 word dynamic configu-
ration RAM, which is shown in Figure 16-27. The purpose of
this RAM is to control the datapath configuration bits on a
cycle-by-cycle basis, based on the clock selected for that
datapath. This RAM has synchronous read and write ports
for purposes of loading the configuration via the system bus.

An additional asynchronous read port is provided as a fast
path to output these 16-bit words as control bits to the data-
path. The asynchronous address inputs are selected from
datapath inputs and can be generated from any of the possi-
ble signals on the channel routing, including I/O pins, PLD
outputs, control block outputs, or other datapath outputs.
The primary purpose of the asynchronous read path is to
provide a fast single-cycle decode of datapath control bits.

Alu

PI[7:0] A1[7:0]A0[7:0]

ASRC[7:0]

PI SEL
(static config bit)

PI DYN
(static config bit)

CFB_EN

01

PO[7:0]

UDB1

CE0

CL0

Z0

FF0

CE1

CL1

Z1

FF1

CO_MSB

SOL_MSB

SIL

CE0i

CL0i

Z0i

FF0i

CE1i

CL1i

Z1i

FF1i

CI

SIR

SOR

CMSBI CMSBO

UDB0

CE0

CL0

Z0

FF0

CE1

CL1

Z1

FF1

CO_MSB

SOL_MSB

SIL

CE0i

CL0i

Z0i

FF0i

CE1i

CL1i

Z1i

FF1i

CI

SIR

SOR

CMSBI CMSBO

UDB2

CE0

CL0

Z0

FF0

CE1

CL1

Z1

FF1

CO_MSB

SOL_MSB

SIL

CE0i

CL0i

Z0i

FF0i

CE1i

CL1i

Z1i

FF1i

CI

SIR

SOR

CMSBI CMSBO

0

0

0

0

0

0

0

0

0

0

0

0

CFBI CFBI CFBICFBOCFBOCFBO 0

CAP0

CAP1

CAP0i

CAP1i

CAP0

CAP1

CAP0i

CAP1i

CAP0

CAP1

CAP0i

CAP1i

0

0



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 147

Universal Digital Blocks (UDB)

Figure 16-27.  Configuration RAM I/O

The fields of this dynamic configuration RAM word are shown here. A description of the usage of each field follows.

16.2.3 Status and Control Module

Figure 16-28 shows a high-level view of the Status and Con-
trol module. The Control register drives into the routing to
provide firmware control inputs to UDB operation. The Sta-
tus register read from routing provides firmware a method of
monitoring the state of UDB operation.

Register Address 15 14 13 12 11 10 9 8

CFGRAM
61h - 6Fh 

(odd)
FUNC[2:0] SRCA SRCB[1:0] SHIFT[1:0]

Register Address 7 6 5 4 3 2 1 0

CFGRAM
60h - 6Eh 

(even)
A0 WR 

SRC[1:0]

A1 WR 

SRC[1:0]
CFB EN CI SEL SI SEL CMP SEL

16 Bit-by-8 Word RAM
Array

R
ead/W

rite

A
ddress

D
ecoder

bus_addr
[2:0]

W
r C

trl

wrl

wrh

R
ea

d
 O

nl
y

A
dd

re
ss

 D
ec

od
er

rad[2:0]

Datapath Control
Inputs bus_data[15:0]

R/W
Read

16

Config RAM
dyn_cfg_ram

[15:0]

16

RO
Read

16

rd
dpram

U
D

B
 Local B

us

 

Table 16-17.  Dynamic Configuration Quick Reference

Field Bits Parameter Values

FUNC[2:0] 3 ALU Function

000 PASS

001 INC SRCA

010 DEC SRCA

011 ADD

100 SUB

101 XOR

110 AND

111 OR

SRCA 1 ALU A Input Source
0 A0

1 A1

SRCB 2 ALU B Input Source

00 D0

01 D1

10 A0

11 A1

SHIFT[1:0] 2 SHIFT Function

00 PASS

01 Left Shift

10 Right Shift

11 Nibble Swap

A0 WR

SRC[1:0]
2 A0 Write Source

00 None

01 ALU

10 D0

11 F0

A1 WR

SRC[1:0]
2 A1 Write Source

00 None

01 ALU

10 D1

11 F1

CFB EN 1 CRC Feedback Enable
0 Enable

1 Disable

CI SEL 1
Carry In Configuration 
Select

0 ConfigA

1 ConfigBa

SI SEL 1
Shift In Configuration 
Select

0 ConfigA

1 ConfigBa

CMP SEL 1
Compare Configuration 
Select

0 ConfigA

1 ConfigBa

a. For CI, SI, and CMP, the RAM fields select between two predefined stat-
ic settings. See Static Register Configuration

Table 16-17.  Dynamic Configuration Quick Reference

Field Bits Parameter Values



148 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

Figure 16-28.  Status and Control Registers

Figure 16-29 shows a more detailed view of the Status and Control module. The primary purpose of this block is to coordinate
CPU firmware interaction with internal UDB operation. However, due to its rich connectivity to the routing matrix, this block
may be configured to perform other functions.

Figure 16-29.  Status and Control Module

Modes of operation include:

■ Status Input – The state of routing signals can be input and captured as status and read by the CPU.

■ Control Output – The CPU can write to the control register to drive the state of the routing.

■ Parallel Input – To datapath parallel input.

■ Parallel Output – From datapath parallel output.

■ Counter Mode – In this mode, the control register operates as a 7-bit down counter with programmable period and auto-
matic reload. Routing inputs can be configured to control both the enable and reload of the counter. When this mode is 
enabled, control register operation is not available.

■ Sync Mode – In this mode, the status register operates as a 4-bit double synchronizer. When this mode is enabled, status 
register operation is not available.

Routing Channel

8-Bit Status Register
(Read Only)

8-Bit Control Register
(Write/Read)

System Bus

Interrupt
Gen

sc_out[7:0]

From
Datapath
Parallel
Output

(po[7:0])

To
Datapath
Parallel
Input

(pi[7:0])

8

8

sc_io_out[2:0]

INT

{sc_io_in[3:0],sc_in[3:0]}

7-Bit
Down Count

7-Bit
Period Register
(same as Mask)

8-Bit
Status Register

7-Bit
Mask Register

(same as Period)

8-Bit
Control Register

Status and Control Module

Horizontal Channel Routing

8

8

EN/LD CTL

7
TC CNT

8
CFGx

SC OUT
CTL[1:0]

CFGx
INT MD

8

3

4-Bit Sync

4

CFGx
SYNC MD

8 8

sc_io_out[3]

sc_in[3:0]



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 149

Universal Digital Blocks (UDB)

16.2.3.1 Status and Control Mode

When operating in status and control mode, this module functions as a status register, interrupt mask register, and control
register in the configuration shown in Figure 16-30.

Figure 16-30.  Status and Control Operation

Status Register Operation

One 8-bit, read-only status register is available for each
UDB. Inputs to this register come from any signal in the digi-
tal routing fabric. The status register is nonretention; it loses
its state across sleep intervals and is reset to 0x00 on
wakeup. Each bit can be independently programmed to
operate in one of two ways, as shown in Table 16-18. 

An important feature of the status register clearing operation
is to note that the clear of status is only applied to the bits
that are set. This allows other bits that are not set to con-
tinue to capture status, so that a coherent view of the pro-
cess can be maintained.

Transparent Status Read

By default, a CPU read of this register transparently reads
the state of the associated routing. This mode can be used
for a transient state that is computed and registered inter-
nally in the UDB.

Sticky Status, with Clear on Read

In this mode, the status register inputs are sampled on each
cycle of the status and control clock. If the signal is high in a
given sample, it is captured in the status bit and remains
high, regardless of the subsequent state of the input. When
the CPU reads the status register the bit is cleared. The sta-
tus register clearing is independent of mode and occurs
even if the UDB clock is disabled; it is based on the bus
clock and occurs as part of the read operation.

Status Latching During Read

Figure 16-31 shows the structure of the status read logic.
The sticky status register is followed by a latch, which
latches the status register data and holds it stable during the
duration of the read cycle, regardless of the number of wait
states in a given read.

8-Bit Status

Register

sc_out[7:0]

7-Bit Mask

Register

Read
Write

Reset

{sc_io_in[3:0],sc_in[3:0]

8

Read
Only

(Routed Reset

from Reset and Clock 
Control Block

8-Bit Control

Register

Read
Write

8

System Bus

sc_io_out[3]

7 7

7

00: Read Transparently
01: Sticky, Clear on Read

CFGx
STAT MD[7:0]

CFGx
INT MD

ACTL
INT EN

SC OUT CTL bits must
be set to select Control
register bits for output

CFGx
SC OUT
CTL[1:0]

INT

Table 16-18.  Status Register

STAT MD Description

0
Transparent read. A read returns the current value 
of the routed signal

1
Sticky, clear on read. A high on the input is sampled 
and captured. It is cleared when the register is read.



150 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

Figure 16-31.  Status Read Logic

Interrupt Generation

In most functions, interrupt generation is tied to the setting of
status bits. As shown in Figure 16-31, this feature is built
into the status register logic as the masking and OR reduc-
tion of status. Only the lower seven bits of status input can
be used with the built-in interrupt generation circuitry. The
most significant bit is typically used as the interrupt output
and may be routed to the interrupt controller through the dig-
ital routing. In this configuration, the MSB of the status regis-
ter is read as the state of the interrupt bit.

16.2.3.2 Control Register Operation

One 8-bit control register is available for each UDB. This
operates as a standard read/write register on the system
bus, where the output of these register bits are selectable as
drivers into the digital routing fabric.

The Control register is nonretention; it loses its contents
across sleep intervals and is reset to 0x00 on wakeup.

Control Register Operating Modes

Three modes are available that may be configured on a bit-
by-bit basis. The configuration is controlled by the concate-
nation of the bits of the two 8-bit registers CTL_MD1[7:0]
and CTL_MD0[7:0]. For example,
{CTL_MD1[0],CTL_MD0[0]} controls the mode for Control
Register bit 0, as shown in Table 16-19. 

Control Register Direct Mode

The default mode is Direct mode. As shown in Figure 16-32,
when the Control Register is written by the CPU the output
of the control register is driven directly to the routing on that
write cycle.

Figure 16-32.  Control Register Direct Mode

Control Register Sync Mode

In Sync mode, as shown in Figure 16-33, the control register
output is driven by a re-sampling register clocked by the cur-
rently selected Status and Control (SC) clock. This allows
the timing of the output to be controlled by the selected SC
clock, rather than the bus clock.

Figure 16-33.  Control Register Sync Mode

Control Register Double Sync Mode

In Double Sync mode, as shown in Figure 16-34, a second
register clocked by the selected SC clock is added after the
re-sampling register. This allows the circuit to perform
robustly when bus clock and SC clock are asynchronous.

Status and 
Control Clock

from Routing

UDB Local Bus

D Q

AR

Sticky/!Transparent

0

1

Sticky Status 
Register

EN

D Q

Read Latch

Status Register 
Read

End of Status 
Register Read

Table 16-19.  Mode for Control Register Bit 0

CTL MD Description

00 Direct mode

01 Sync mode

10 Double sync mode

11 Pulse mode

Bus Write 
Clock

Data Bus To 
Routing

SC CLKBus Write
 Clock

Data Bus
To 

Routing



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 151

Universal Digital Blocks (UDB)

Figure 16-34.  Control Register Double Sync Mode

Control Register Pulse Mode

Pulse mode is similar to Sync mode in that the control bit is
re-sampled by the SC clock; the pulse starts on the first SC
clock cycle following the bus write cycle. The output of the
control bit is asserted for one full SC clock cycle. At the end
of this clock cycle, the control bit is automatically reset.

With this mode of operation, firmware can write a ‘1’ to a
control register bit to generate a pulse. After it is written as a
‘1’, it is read back by firmware as a ‘1’ until the completion of
the pulse, after which it is read back as a ‘0’. The firmware
can then write another ‘1’ to start another pulse. A new

pulse cannot be generated until the previous one is com-
pleted. Therefore, the maximum frequency of pulse genera-
tion is every other SC clock cycle.

Control Register Reset

The control register has two reset modes, controlled by the
EXT RES configuration bit, as shown in Figure 16-35. When
EXT RES is 0 (the default) then in sync or pulse mode the
routed reset input resets the synced output but not the
actual control bit. When EXT RES is 1 then the routed reset
input resets both the control bit and the synced output.

Figure 16-35.  Control Register Reset

16.2.3.3 Parallel Input/Output Mode

In this mode, as Figure 16-36 shows, the status and control routing is connected to the datapath parallel in and parallel out
signals. To enable this mode, the SC OUT configuration bits are set to select datapath parallel out. The parallel input connec-
tion is always available, but these routing connections are shared with the status register inputs, counter control inputs, and
the interrupt output.

Figure 16-36.  Parallel Input/Output Mode

16.2.3.4 Counter Mode As shown in Figure 16-37, when the block is in counter
mode, a 7-bit down counter is exposed for use by UDB inter-

SC CLK
Bus 

Write
 Clock

Data Bus

To 
Routing

Bit by Bit 
CFG

0

1

EXT RES

Routed Reset

res resStatic configuration 
bit

sc_out[7:0]

88

Datapath

po[7:0] pi[7:0]

Datapath
Parallel Out

Datapath
Parallel InSC OUT CTL bits must

be set to select
datapath parallel out bits
for output to routing.

The INT MD and SYNC
MD control bits should
be cleared to enable
SC_IO bits to input mode.

{sc_io_in[3:0], sc_in[3:0]}



152 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

nal operation or firmware applications. This counter has the
following features:

■ A 7-bit read/write period register.

■ A 7-bit read/write count register. It can be accessed only 
when the counter is disabled.

■ Automatic reload of the period to the count register on 
terminal count (0).

■ A firmware control bit in the Auxiliary Control Working 
register called CNT START, to start and stop the counter. 
(This is an overriding enable and must be set for optional 
routed enable to be operational.)

■ Selectable bits from the routing for optional dynamic 
control of the counter enable and load functions:

❐ EN, routed enable to start or stop counting.

❐ LD, routed load signal to force the reload of period. 
When this signal is asserted, it overrides a pending 
terminal count. It is level sensitive and continues to 
load the period while asserted.

■ The 7-bit count may be driven to the routing fabric as 
sc_out[6:0].

■ The terminal count may be driven to the routing fabric as 
sc_out[7].

■ In default mode, the terminal count is registered. In alter-
nate mode the terminal count is combinational.

■ In default mode, the routed enable, if used, must be 
asserted for routed load to operate. In alternate mode 
the routed enable and routed load signals operate inde-
pendently.

To enable the counter mode, the SC_OUT_CTl[1:0] bits
must be set to counter output. In this mode the normal oper-
ation of the control register is not available. The status regis-
ter can still be used for read operations, but should not be
used to generate an interrupt because the mask register is
reused as the counter period register. The Period register is
retention and maintains its state across sleep intervals. For
a period of N clocks, the period value of N–1 should be
loaded. N = 1 (period of 0) is not supported as a clock divide
value, and results in the terminal count output of a constant
1.The use of SYNC mode depends on whether the dynamic
control inputs (LD/EN) are used. If they are not used, SYNC
mode is unaffected. If they are used, SYNC mode is unavail-
able.

Figure 16-37.  Counter Mode

16.2.3.5 Sync Mode

As shown in Figure 16-38, the status register can operate as
a 4-bit double synchronizer, clocked by the current SC_CLK,
when the SYNC MD bit is set. This mode may be used to
implement local synchronization of asynchronous signals,
such as GPIO inputs. When enabled, the signals to be syn-
chronized are selected from SC_IN[3:0], the outputs are
driven to the SC_IO_OUT[3:0] pins, and SYNC MD auto-
matically puts the SC_IO pins into output mode. When in
this mode, the normal operation of the status register is not
available, and the status sticky bit mode is forced off,

regardless of the control settings for this mode. The control
register is not affected by the mode. The counter can still be
used with limitations. No dynamic inputs (LD/EN) to the
counter can be enabled in this mode.

sc_out[6:0]

7-Bit Period

Register

4

7-Bit Counter

7

Zero
Detect

sc_out[7]

EN

4

LD

0: Reload is only controlled by terminal count
1: Reload is also controlled by routing

CFGx
ROUTE LD

CFGx
ROUTE EN

0: Enable is only controlled by firmware
1: Enable is also controlled by routing

CFGx
LD SEL[1:0]

Terminal
Count
(TC)

RES

CFGx
EN SEL[1:0]

ACTL
CNT START

Routed Reset from
Reset and Clock

Control Block

SC OUT CTL bits must be set
to select the counter output
as the selected output to
routing.

The INT MD and SYNC
MD bits should be
cleared to configure the
SC_IO bits to input mode.

Read
Only*

P3B Bus System Bus

Read
Write

*Current count value is
only readable when
not enabled.

{sc_io_in[3:0], sc_in[3:0]}

8

[3:0][7:4]



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 153

Universal Digital Blocks (UDB)

Figure 16-38.  Sync Mode

16.2.3.6 Status and Control Clocking

The status and control registers require a clock selection for
any of the following operating modes:

■ Status register with any bit set to sticky, clear on read 
mode.

■ Control register in counter mode.

■ Sync mode.

The clock for this is allocated in the reset and clock control
module. See Reset and Clock Control Module on page 153.

16.2.3.7 Auxiliary Control Register

The read-write Auxiliary Control register is a special register
that controls fixed function hardware in the UDB. This regis-
ter allows CPU to dynamically control the interrupt, FIFO,
and counter operation. The register bits and descriptions are
as follows:

FIFO0 Clear, FIFO1 Clear

The FIFO0 CLR and FIFO1 CLR bits are used to reset the
state of the associated FIFO. When a '1' is written to these
bits, the state of the associated FIFO is cleared. These bits
must be written back to '0' to allow FIFO operation to con-
tinue. When these bits are left asserted, the FIFOs operate
as simple one-byte buffers, without status.

FIFO0 Level, FIFO1 Level

The FIFO0 LVL and FIFO1 LVL bits control the level at
which the 4-byte FIFO asserts bus status (when the bus is
either reading or writing to the FIFO) to be asserted. The
meaning of FIFO bus status depends on the configured

direction, as shown in Table 16-20.

 

Interrupt Enable

When the status register’s generation logic is enabled, the
INT EN bit gates the resulting interrupt signal.

Count Start

The CNT START bit may be used to enable and disable the
counter (only valid when the SC_OUT_CTL[1:0] bits are
configured for counter output mode).

16.2.3.8 Status and Control Register 
Summary

Table 16-21 summarizes the function of the status and con-
trol registers. Note that the control and mask registers are
shared with the count and period registers and the meaning
of these registers is mode dependent. 

16.2.4 Reset and Clock Control Module

The primary function of the reset and clock block is to select
a clock from the available global system clocks or bus clock
for each of the PLDs, the datapath, and the status and con-
trol block. It also supplies dynamic and firmware-based
resets to the UDB blocks. As shown in Figure 16-39, there
are four clock control blocks, and one reset block. Four
inputs are available for use from the routing matrix
(RC_IN[3:0]). Each clock control block can select a clock
enable source from these routing inputs, and there is also a
multiplexer to select one of the routing inputs to be used as
an external clock source. As shown, the external clock
source selection can be optionally synchronized. There are
a total of 10 clocks that can be selected for each UDB com-

Auxiliary Control Registers

7 6 5 4 3 2 1 0

CNT 
START

INT 
EN

FIFO1 
LVL

FIFO0 
LVL

FIFO1 
CLR

FIFO0 
CLR

sc_io_out[3:0]

Sync Module (Status Register)

Digital Routing

4

CFGx
SYNC MD

sc_in[3:0]

01234567

4

Table 16-20.  FIFO Level Control Bits

FIFOx 
LVL

Input Mode
(Bus is Writing FIFO)

Output Mode
(Bus is Reading FIFO)

0

Not Full

At least 1 byte can be writ-
ten

Not Empty

At least 1 byte can be 
read

1

At Least Half Empty

At least 2 bytes can be writ-
ten

At Least Half Full

At least 2 bytes can be 
read

Table 16-21.  Status, Control Register Function Summary

Mode Control/Count Status/SYNC Mask/Period

Control Control Out Status In or 
SYNC

Status Mask

Control Count Out Count Perioda

a. Note that in counter mode, the mask register is operating as a period
register and cannot function as a mask register. Therefore, interrupt out-
put is not available when counter mode is enabled.

Status Control Out or Count 
Out

Status In Status Mask

SYNC SYNC NAb

b. Note that in SYNC mode, the status register function is not available, and
therefore, the mask register is unusable. However, it can be used as a
period register for count mode.



154 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

ponent: eight global digital clocks, bus clock, and the
selected external clock (ext clk). Any of the routed input sig-
nals (rc_in) can be used as either a level sensitive or edge
sensitive enable. The reset function of this block provides a
routed reset for the PLD blocks and SC counter, and a firm-
ware reset capability to each block to support reconfigura-
tion.

The bus clock input to the reset and clock control is distinct
from the system bus clock. This clock is called
“bus_clk_app” because it is gated similar to the other global
digital clocks and used for UDB applications. The system
bus clock is only used for I/O access and is automatically
gated, per access. The datapath clock generator produces
three clocks: one for the datapath in general, and one for
each of the FIFOs.

Figure 16-39.  Reset and Clock Control

16.2.4.1 Clock Control

Figure 16-40 illustrates one instance of the clock selection
and enable circuit. Each UDB has four of these circuits: one
for each of the PLD blocks, one for the datapath, and one for
the status and control block. The main components of this
circuit are a global clock selection multiplexer, clock inver-
sion, clock enable selection multiplexer, clock enable inver-
sion, and edge detect logic.

PLD0
Clock

Select/Enable
pld0_clk  (to PLD0)rc_in[3:0]

pld1_clk  (to PLD1)

dp_clk  (to Datapath)

sc_clk (to Status and Control)

cnt_routed_ reset (to SC counter)

sc_reset (firmware/system reset)

bus_clk_app, gclks[7:0]

dp_reset (firmware/system reset)

CFGx
EXT CLK SEL[1:0]

2

global_enable

PLD1
Clock

Select/Enable

DP
Clock

Select/Enable

SC
Clock

Select/Enable

rc_in_gated[3:0]

ext_clk

rc_in_gated[3:0]

sysreset

From channel routing

pld0_reset (firmware/system reset)

pld1_reset (firmware/system reset)

Reset
Select/Enable

mf

CFGx
EXT SYNC

bus_clk

f0_clk (to FIFO0)

f1_clk (to FIFO1)



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 155

Universal Digital Blocks (UDB)

Figure 16-40.  Clock Select/Enable Control

Clock Selection

Eight global digital clocks are routed to all UDBs; any of
these clocks may be selected. Global digital clocks are the
output of user-selectable clock dividers. Another selection is
bus clock, which is the highest frequency in the system.
Called “bus_clk_app,” this signal is routed separately from
the system bus clock. In addition, an external routing signal
can be selected as a clock input to support direct-clocked
functions such as SPI. Because application functions are
mapped to arbitrary boundaries across UDBs, individual
clock selection for each UDB subcomponent block supports
a fine granularity of programming.

Clock Inversion

The selected clock may be optionally inverted. This limits
the maximum frequency of operation due to the existence of
one half cycle timing paths. Simultaneous bus writes and
internal writes (for example writing a new count value while
a counter is counting) are not supported when the internal
clock is inverted and the same frequency as bus clock. This
limitation affects A0, A1, D0, D1, and the Control register in
counter mode.

Clock Enable Selection

The clock enable signal may be routed to any synchronous
signal and can be selected from any of the four inputs from
the routing matrix that are available to this block.

Clock Enable Inversion

The clock enable signal may be optionally inverted. This
feature allows the clock enable to be generated in any polar-
ity.

Clock Enable Mode

By default, the clock enable is OFF. After configuring the tar-
get block operation, software can set the mode to one of the
following using the CFGxEN MODE[1:0] register shown in
Figure 16-39. 

Clock Enable Usage

The two general usage scenarios for the clock enable are:

Firmware Enable – It is assumed that most functions
require a firmware clock enable to start and stop the func-
tion. Because the boundary of a function mapped into the
UDB array is arbitrary–it may span multiple UDBs and/or
portions of UDBs–there must be a way to enable a given
function atomically. This is typically implemented from a bit
in a control register routed to one or more clock enable
inputs. This scenario also supports the case where applica-
tions require multiple, unrelated blocks to be enabled simul-
taneously.

Emulated Local Clock Generation – This feature allows
local clocks to be generated by UDBs, and distributed to

Latch

CFGx
CK SEL[3:0]

{bus_clk_app,ext_clk, gclk[7:0]}

clk

Clock Select
0000: gclk[0]  0100: gclk[4]
0001: gclk[1]  0101: gclk[5]
0010: gclk[2]  0110: gclk[6]
0011: gclk[3]  0111: gclk[7]
1000: ext_clk
1001: bus_clk_app

CFGx
EN SEL[1:0]

Enable Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

CFGx
EN INV

2

Enable Invert
0: true
1: inverted

4
Clock Invert
0: true
1: inverted

rc_in_gated[3:0] FF

CFGx
EN MODE[1:0]

Enable Mode
00: off
01: on
10: positive edge
11: level

1 1

0

22

0

1

CFGx
CK INV

2

0

1

0

3

2

Table 16-22.  Clock Enable Mode

Clock Enable 
Mode

Description

OFF Clock is OFF.

ON
Clock is ON. The selected global clock is free run-
ning.

Positive Edge

A gated clock is generated on each positive edge 
detect of the clock enable input. Maximum fre-
quency of enable input is the selected global clock 
divided by two.

Level
Clocks are generated while the clock enable input 
is high ('1').



156 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

other UDBs in the array by using a synchronous clock
enable implementation scheme, rather than directly clocking
from one UDB to another. Using the positive edge feature of
the clock enable mode eliminates restrictions on the duty
cycle of the clock enable waveform.

Special FIFO Clocking

The datapath FIFOs have special clocking considerations.
By default, the FIFO clocks follow the same configuration as
the datapath clock. However, the FIFOs have special control
bits that alter the clock configuration:

■ Each FIFO clock can be inverted with respect to the 
selected datapath clock polarity.

■ When FIFO FAST mode is set, the bus clock overrides 
the datapath clock selection normally in use by the FIFO.

16.2.4.2 Reset Control

The two modes of reset control are: compatible mode and
alternate mode. The modes are controlled by the ALT RES
bit in each UDB configuration register CFG31. When this bit
is ‘0’, the compatible scheme is implemented. When this bit
is ‘1’, the alternate scheme is implemented.

Compatible Reset Scheme

This scheme features a routed reset, for dynamically reset-
ting the embedded state of block, which can be applied to
each PLD macrocell and the SC counter.

Compatible PLD Reset Control

Figure 16-41 shows the compatible PLD reset system, using
routed dynamic resets.

Figure 16-41.  Compatible PLD Reset Structure

Compatible Datapath Reset Control

Figure 16-42 shows the compatible datapath reset system,
using firmware reset. The firmware reset asynchronously
clears the DP output registers, the carry and shift out flags,
the FIFO state, accumulators, and data registers. Note that
the DO and D1 registers are implemented as retention regis-
ters that maintain their state across sleep intervals. The
FIFO data is unknown because it is RAM-based.

CFGx
PLD0 RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
PLD0 RES POL
Reset Invert
0: true
1: inverted

rc_in[3:0]

set

res

D Q

QB

SSEL

0

1

0

1

RSEL

SSEL

PLD 
Macrocell

M
C

PLD0

M
C

M
C

M
C

routed 
reset

System 
Reset

M
C

PLD1

M
C

M
C

M
C

sysreset

pld_routed_reset



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 157

Universal Digital Blocks (UDB)

Figure 16-42.  Compatible Datapath Reset Structure

Compatible Status and Control Reset Control

Figure 16-43 shows the compatible status and control block reset. The mask/period and auxiliary control registers are reten-
tion registers.

Figure 16-43.  Compatible Status and Control Reset Control

sysreset

CFGx
DP  FRES dp_reset

A0/A1
RES

F1 Status
RES

ACTL
F0 CLR

F0 Status
RES

ACTL
F1 CLR

res res res

OUT
res

OUT
res

OUT
res

OUT
res

OUT
res

res
OUT

SYNC

CO
REG

SOL 
MSB
REG

SOR
REG

D0/D1
RES

sysreset _ret

dp_reset_ret

CFGx
RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
RES INV

Reset Invert
0: true
1: inverted

rc_in[3:0]

sysreset

CFGx
SC  FRES sc_reset

CFGx
EN RES 
CNTCTL

Status

RES

Mask/Period
(retention)

RES

Aux Control
(retention)

RES

sysreset_ret

sc_reset_ret

CFGx
EXT RES

CGFx
SC OUT CTL[1:0]

Control register is enabled for routed reset, either in 
Counter mode, OR with the EXT RES bit explicitly. 

Control Write Register
And Counter

RES

Control Sampling 
Register 

(embedded)

RES

sc_routed_reset



158 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

The two modes of reset control are: compatible mode and alternate mode. The modes are controlled by the ALT RES bit in
each UDB configuration register CFG31. When this bit is ‘0’, the compatible scheme is implemented. When this bit is ‘1’, the
alternate scheme is implemented.

Alternate Reset Scheme

Table 16-23 shows a summary of the differences between the compatible reset scheme and the alternate reset scheme. 

Alternate PLD Reset Control

Figure 16-44 shows the alternate PLD reset system. Although there are provisions for individual resets for each PLD, this is
not supported in the PLD block. Therefore, in the alternate reset scheme, the PLD0 reset control settings applies to both
PLDs.

Figure 16-44.  Alternate PLD Reset Structure

Table 16-23.  Reset Schemes

Feature Compatible Alternate

Granularity One routed reset is shared by all blocks in the UDB Each UDB component block can select an individual reset

Status register No routed reset capability Optionally can use the selected SC routed reset

Datapath No routed reset capability Optionally can use the selected DP routed reset

CFGx
PLD0 RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
PLD0 RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

set

res

D Q

QB

SSEL

0

1

0

1

RSEL

SSEL

PLD Macrocell

MC

PLD0

MC

MC

MC

routed 
reset

system/
firmware 

reset

MC

PLD1

MC

MC

MC

sysreset

pld_routed_reset

pld0_reset

pld1_reset
sysreset

CFGx
PLD1 RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
PLD1 RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

NOTE: The current 
PLD only supports 1 
routed reset.  Both 
are controlled by 
PLD0 routed reset.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 159

Universal Digital Blocks (UDB)

Alternate Datapath Reset Control

Figure 16-45 shows the alternate datapath reset system. The datapath routed reset applies to all datapath states, except the
Data Registers, which are implemented as retention registers.

Figure 16-45.  Alternate Datapath Reset Structure

Alternate Status and Control Reset Control

Figure 16-46 shows the alternate status and control block reset. The mask/period and auxiliary control registers are retention
registers.

Figure 16-46.  Alternate Status and Control Reset Control

CFGx
 DP RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
DP RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

sysreset

CFGx
EN RES DP

Carry Out 
Register

Shift Out Left 
Register

Output 
Sync 
Registers

RES

Shift Out Right 
Register

Accumulator
Accumulators

RES

Accumulator
Data Registers

RES

RES

RES

RES

FIFO0 Status
RES

All elements of the Datapath are reset by the selected 
DP routed reset signal, EXCEPT the Data Registers

FIFO1 Status
RES

ACTL
F0 CLR

ACTL
F1 CLR

sysreset_ret

CFGx
 SC RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
SC RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

sysreset

CFGx
EN RES CNTCTL

Control Write Register 
and Counter

RES

Status

RES

CFGx
EN RES STAT

Mask/Period

RES

Aux Control

RESsysreset_ret

CFGx
EXT RES

CGFx
SC OUT CTL[1:0]

Control register is enabled for routed reset, either in 
Counter mode, OR with the EXT RES bit explicitly. 

Control Sampling 
Register

(embedded)

RES



160 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

16.2.4.3 UDB POR Initialization

Register and State Initialization 

Routing Initialization

On POR, the state of input and output routing is as follows:

■ All outputs from the UDB that drive into the routing 
matrix are held at '0'.

■ All drivers out of the routing and into UDB inputs are ini-
tially gated to '0'.

As a result of this initialization, conflicting drive states on the
routing are avoided and initial configuration occurs in an
order-independent sequence.

16.2.5 UDB Addressing

The UDBs can be accessed through a number of address
spaces, for 8, 16, and 32-bit accesses of both the working

registers (A0, A1, D0, D1, FIFOs, and so on) and the config-
uration registers.

■ 8-bit working registers – This address space allows 
access to individual working registers in a single UDB.

■ 16-bit working registers consecutive – This address 
space allows access to the same working register in two 
consecutive UDBs, for example D0 of UDB n and D0 of 
UDB n + 1

■ 16-bit working registers paired – This address space 
allows access to two working registers, for example A0 
and A1, from the same UDB.

■ 32-bit working registers – This address space allows 
access to the same working register, for example A1, in 
all four UDBs.

■ 8, 16 or 32-bit configuration registers – This address 
space allows access to the configuration registers for a 
single UDB.

16.2.6 System Bus Access Coherency

UDB registers have dual access modes:

■ System bus access, where the CPU is reading or writing 
a UDB register.

■ UDB internal access, where the UDB function is updat-
ing or using the contents of a register.

16.2.6.1 Simultaneous System Bus Access

Table 16-25 lists the possible simultaneous access events
and required behavior: 

Table 16-24.  UDB POR State Initialization

State Element State Element POR State

Configuration Latches CFG 0 – 31 0

Ax, Dx, CTL, ACTL, 
MASK

Accumulators, data regis-
ters, auxiliary control reg-
ister, mask register

0

ST, Macrocell
Status and macrocell read 
only registers

0

DP CFG RAM and Fx 
(FIFOs)

Datapath configuration 
RAM and FIFO RAM

Unknown

PLD RAM PLD configuration RAM Unknown

Table 16-25.  Simultaneous System Bus Access

Register
UDB Write

Bus Write

UDB Write

Bus Read

UDB Read

Bus Write

UDB Read

Bus Read

Ax
Undefined result Not allowed directlya, b UDB reads previous value Current value is read by both

Dx

Fx
Not supported (UDB and bus 
must be opposite access)

If FIFO status flags are used, no simultaneous read/
write at the same location is possible

Not supported (UDB and bus 
must be opposite access)

ST NA, bus does not write Bus reads previous value NA, UDB does not read

CTL NA, UDB does not write

UDB reads previous value
Current value is read by both

CNT Undefined result Not allowed directlyc

ACTL

NA, UDB does not writeMASK

PER

Macrocell (RO) NA, bus does not write Not allowed directlyd NA, bus does not write

a. The Ax registers can be safely read by using software capture feature of the FIFOs.
b. The Dx registers can only be written to dynamically by the FIFOs. When this mode is programmed, direct read of the Dx registers is not allowed.
c. The CNT register can only be safely read when it is disabled. An alternative for dynamically reading the CNT value is to route the output to the SC register

(in transparent mode).
d. Macrocell register bits can also be routed to the status register (in transparent mode) inputs for safe reading.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 161

Universal Digital Blocks (UDB)

16.2.6.2 Coherent Accumulator Access 
(Atomic Reads and Writes)

The UDB accumulators are the primary target of data com-
putation. Therefore, reading these registers directly during
normal operation gives an undefined result, as indicated in
Table 16-25. However, there is built-in support for atomic
reads in the form of software capture, which is implemented
across chained blocks. In this usage model, a read of the
least significant accumulator transfers the data from all
chained blocks to their associated FIFOs. Atomic writes to

the accumulator can be implemented programmatically.
Individual writes can be performed to the input FIFOs, and
then the status signal of the last FIFO written can be routed
to all associated blocks and simultaneously transfer the
FIFO data into the Dx or Ax registers.

16.3 Port Adapter Block
The Port Adaptor block extends the UDBs to provide an
interface to port pins. Figure 16-47 shows a high-level view.

Figure 16-47.  Port Adapter Block Diagram

The inputs and outputs from the GPIOs are not connected
directly to the pins, but rather go through the High Speed I/O
Matrix. This allows I/Os to be shared amongst various cli-
ents; for example, port data registers and special hardware
peripherals such as I2C.

Each 8-bit port connection has one port adaptor. There are
eight inputs from the GPIO data in, eight outputs to the
GPIO data out, and eight OE connections.

Figure 16-47 also shows that multiplexing exists for the
GPIO data output; it allows any bit of the upper and lower
nibble of the DSI connections to be routed to any bit in the
upper or lower nibble of the port.

Note that only four DSI connections are allocated for OE
control, but the output multiplexing converts those four sig-
nals to 8 - any of the four DSI signals can be routed to any
OE control.

Two programmable clock selectors are available, to supply
separate clocks for port inputs and outputs. The OE outputs
share the same clock as the data outputs.

Another feature is the port clock multiplexer. This multi-
plexer selects one of the eight bits from the port data input to
be used as a clock. The clock can be used locally in the PA
and to clock the UDBs.

Two programmable reset selectors are available - one for
port input registers and one for port output and OE.

16.3.1 PA Clock Multiplexer

Figure 16-48 shows the structure of the PA Clock Multi-
plexer. As noted previously, each PA has two programma-
ble clock selectors, to supply separate clocks for port inputs
and outputs and output enables (OEs).

From DSI

7:4 3:0
44



162 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

Figure 16-48.  PA Clock Multiplexer Detail

16.3.2 PA Reset Multiplexer

The structure of the PA Reset Multiplexer is shown in Figure 16-49.

Figure 16-49.  PA Reset Multiplexer Detail

As shown in Figure 16-50, the reset selection logic is duplicated, one for input, and one that serves both output and output
enable. Each of these resets has an individual enable, which applies to all the 8 bits in the associated category.

Figure 16-50.  PA Reset System

Latch

PACFGx
CK SEL[3:0]

{dsi_xx_rc[2:0],port_xx_rc,bus_clk_app, gclk[7:0]}

Input/Output clk

1000: res
1001: bus_clk_app
1010: res
1011: res
1100: port_xx_rc
1101: dsi_xx_rc[0]
1110: dsi_xx_rc[1]
1111: dsi_xx_rc[2]

PACFGx
EN SEL[1:0]

00: port_xx_rc
01: dsi_xx_rc[0]
10: dsi_xx_rc[1]
11: dsi_xx_rc[2]

PACFGx
EN INV

2

0: true
1: inverted

4

0: true
1: inverted

{dsi_xx_rc[2:0],port_xx_rc} FF

PACFGx
EN MODE[1:0]

00: off
01: on
10: pos edge
11: level

1 1

0

22

0

1

PACFGx
CK INV

2

0

1

0

3

2

0000: gclk[0]  
0001: gclk[4]
0010: gclk[1]  
0011: gclk[5]
0100: gclk[2]  
0101: gclk[6]
0110: gclk[3]  
0111: gclk[7]

PACFGx
RES SEL[1:0]

00: port_xx_rc
01: dsi_xx_rc[0]
10: dsi_xx_rc[1]
11: dsi_xx_rc[2]

2

PACFGx
RES INV

0: true
1: inverted

{dsi_xx_rc[2:0],port_xx_rc} To Input/Output reset

{dsi_xx_rc[2:0],port_xx_rc}

To Input/Output reset

Input 
Reset Select

PACFGx
RES IN EN

PACFGx
RES OUT EN

PACFGx
RES OE EN

Output 
Reset Select

0

0

0

To Input Sync 
Register Resets

To Output Sync 
Registers Resets

To OE Sync 
Registers Resets



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 163

Universal Digital Blocks (UDB)

16.3.3 PA Data Input Logic

Figure 16-51 shows the structure for the data input logic. Inputs are from each pin of an I/O port. The signal can be either sin-
gle synchronized or double synchronized, or synchronization can be bypassed for asynchronous inputs. Synchronization is to
the selected port input clock. The output of this circuit connects to the DSI routing.

Figure 16-51.  Detail of GPIO Input Logic

16.3.4 PA Data Output Logic

Figure 16-52 shows the structure for the data output logic. Outputs go to each pin of an I/O port (through the high-speed I/O
mux). The signal can be single synchronized or synchronization can be bypassed for asynchronous outputs. Other options
include the ability to output either the selected clock or an inverted version of the clock. The input has a data mux, which pro-
vides connections from the DSI on a nibble basis. The upper nibble of the DSI connections can be routed to any of the four
upper GPIO outputs, and similarly for the lower nibble.

Figure 16-52.  Detail of GPIO Output Data Logic

16.3.5 PA Output Enable Logic

Figure 16-53 shows the output enable (OE) logic. This cir-
cuit shares the clock and reset associated with data output.
This connection is unique in that there are four DSI outputs
associated with the OE, but these are muxed to a total of
four OE connections to the I/O port pins, as Figure 16-54
shows.

Figure 16-53.  GPIO Output Enable (OE) Sync Logic

2

PACFGx
IN SYNC[1:0]

00: transparent
01: single sync
10: double sync
11: reserved

Selected 
Input Reset

Selected 
Input Clock

From Port Pin[j]
where j = 0-7

dsi_from_pin[j]
(To DSI routing)

8 Instances (one per port pin) in each  Port Adapter

2

PACFGx
OUT SYNC[1:0]

00: transparent
01: single sync
10: clock
11: clock inverted

Selected 
Output Reset

Selected 
Outout Clock

Data Mux

To Port Pin[j]
where j = i+ 0,1,2,3

dsi_to_pin[i+0]

dsi_to_pin[i+1]

2

PACFGx
DATA SEL[1:0]

00: Sel i+0
01: Sel i+1
10: Sel i+2
11: Sel i+3
where i = 0, 4

dsi_to_pin[i+2]

dsi_to_pin[i+3]

(From DSI routing)

8 Instances (one per port pin) in each  Port Adapter

2

PACFGx
OE SNYC[1:0]

00: transparent
01: single sync
10: 1
11: 0

Selected 
Output Reset

Selected 
Outout Clock

0

1

dsi_to_oe[j]
( j=0 to 3)

4 Instances (one per DSI 
OE connection) in each  

Port Adapter

To OE Muxes



164 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Universal Digital Blocks (UDB)

Figure 16-54.  Output Enable (OE) Multiplexers

Note that due to the active low sense of the OE signals at
the ports, there is an additional inversion in the path
between the OE sync logic and the OE multiplexers.

16.3.6 PA Port Pin Clock Multiplexer 
Logic

Figure 16-55 shows the Port Pin multiplexer. Each port has
eight data input signals, one of which is selected for use as a
clock. This selection is routed for use as:

■ Programmable clock in the port adapter

■ Source for the UDB clock tree

■ Programmable reset in the port adapter

■ For use as a clock enable in the port adapter.

Note that the selected signal does not pass through syn-
chronizers and is asynchronous to other clock domains
within the block. It should be used carefully for selected
functions.

Figure 16-55.  Detail of GPIO Pin Selection

OE MUXes

2

PACFGx
OE SEL[1:0]

00: Sel 0
01: Sel 1
10: Sel 2
11: Sel 3

8 Instances (one per OE 
port pin input) in each  Port 

Adapter

OE selected[0]

OE selected[2]

OE selected[3]

To Port Pin OE[j]
j = 0 to 7

OE selected[1]
OE Sync

OE Sync

OE Sync

OE Sync

dsi_to_oe[0]

dsi_to_oe[1]

dsi_to_oe[2]

dsi_to_oe[3]

PIN CLK
MUX

dsi_from_pin[4]

dsi_from_pin[5]

3

PACFGx
PIN SEL[2:0]

Pin Clk Sel
000: sel pin 0
001: sel pin 1
010: sel pin 2
011: sel pin 3
100: sel pin 4
101: sel pin 5
110: sel pin 6
111: sel pin 7

dsi_from_pin[6]

dsi_from_pin[7]

(From Port Pins)

dsi_from_pin[0]

dsi_from_pin[1]

dsi_from_pin[2]

dsi_from_pin[3] To PA CLK/
Reset Select



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 165

17.   Timer, Counter, and PWM

The Timer, Counter, and Pulse-Width Modulator (TCPWM) block in PSoC® 4 implements a 16-bit timer, counter, and pulse-
width modulation functionality using four dedicated counters and corresponding logic circuits. The block can be used to mea-
sure period and pulse width of the input signal, for quadrature decoding, to find the time of occurrence of interrupt, and as a
PWM generation unit. This chapter explains the operational modes of the TCPWM block.

17.1 Features
■ Four 16-bit timers, counters, and pulse-width modulator (PWM)

■ The TCPWM block supports the following operational modes for each counter independently:

❐ Timer and counter

❐ Capture

❐ Quadrature decoding

❐ Pulse-width modulation

❐ Pseudo random PWM

❐ PWM with dead time

■ Multiple counting modes – Up, down, and up/down 

■ Clock pre-scaling (division by 1, 2, 4, ... 64, 128)

■ Double buffering of compare/capture and period values

■ Supports interrupt on:

❐ Terminal Count – The final value in the counter register is reached

❐ Capture/Compare – The count is captured to the capture/compare register or the counter value equals the compare 
value

■ Synchronized counters – The counters can reload, start, stop, and count at the same time

■ DSI output signals for each counter to indicate underflow, overflow, and capture/compare condition

■ Complementary line output for PWMs

■ Selectable start, reload, stop, count, and capture event signals for each counter from up to 14 DSI signals with rising 
edge, falling edge, both edges, and level trigger options



166 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Timer, Counter, and PWM

17.2 Block Diagram
Figure 17-1.  TCPWM Block Diagram

The block has these interfaces:

■ Bus interface: Connects block to CPU and Memory sub-
system.

■ I/O signal interface with DSI: Used to route signals to or 
from the Universal Digital Block (UDB) and TCPWM 
block. It consists of input triggers (such as reload, start, 
stop, count, and capture) and output signals (such as 
overflow (OV), underflow (UV), and capture/compare 
(CC)). Any GPIO can be used as the input trigger signal.

■ Interrupts: Provides interrupt request signals from each 
counter based on terminal count (TC) or CC conditions, 
and a combined interrupt signal generated by the logical 
OR of all four interrupt request signals.

■ System interface: Consists of control signals such as 
clock and reset related signals from the system to the 
block.

The TCPWM block consists of four counters, which can be
configured independently by writing to the registers. See
TCPWM Registers on page 184 for more information on all
registers required for this block.

17.2.1 Enabling and Disabling Counters 
in TCPWM Block

The counters can be enabled by setting the
COUNTER_ENABLED[3:0] field of control register
TCPWM_CTRL, as shown in Table 17-1. The bit position
from the LSB corresponds to the counter number. The coun-
ter must be configured before enabling it. Enabling the coun-

ter after configuring it, updates the registers with the new
configured value. Disabling the counter retains the values in
the registers until it is enabled again.

For example, to update the count value of counter x with a
new value:

1. Disable counter x

2. Update the count register (TCPWM_CNTx_COUNTER) 
of counter x

3. Enable counter x

Note x can be 0, 1, 2, and 3

17.2.2 Clocking

The TCPWM receives the system clock through the system
interface to synchronize all events in the block. Counter
enable signals (counter_en[3:0]), generated when the coun-
ter is enabled, gate the system clock to provide counter spe-
cific clocks counter_clock[3:0] for each counter. 

Clock Pre-Scaling: counter_clock can be pre-scaled, with
1, 2, 4… 64, 128 dividers. This can be done independently
for all counters by modifying the GENERIC field of counter
control (TCPWM_CNTx_CTRL) register, as shown in
Table 17-2.

Bus Interface

DSI:
underflow[3:0],
overflow[3:0],
cc[3:0]

Interrupts[3:0],
Interrupt

line_out[3:0],
line_compl_out[3:0]

System 
Interface

14

5

Counter 0

Counter 1

Counter 2

Counter 3

T
rig

g
er

 
S

yn
ch

ro
n

iz
a

tio
n

C
o

nf
ig

ur
at

io
n

 
R

e
gi

st
er

s

Bus Interface Logic

812

CPU and Memory Sub-System

DSI:
Trigger_in

Table 17-1.  Bit-Field Settings to Enable/Disable Counter x

COUNTER_ENABLED[x] Description

0 Disable counter x

1 Enable counter x



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 167

Timer, Counter, and PWM

Note Clock pre-scaling cannot be done in pulse-width mod-
ulation with dead time (PWM-DT) and quadrature mode.

17.2.3 Events Based on Trigger Inputs

These are the events that can be triggered by hardware and
software. Hardware triggers can be level signal, rising edge,
falling edge, or both edges.

■ Reload

■ Start

■ Stop

■ Count

■ Capture/switch

Figure 17-2.  TCPWM Trigger Selection and Event Detection

Figure 17-2 explains the flow of event detection in the
TCPWM block. Trigger control register 0
(TCPWM_CNTx_TR_CTRL0) selects one of the 14 trigger
inputs as the event signal. A constant '0' or '1' signal can
also be used as event signal.

Any edge (rising, falling, or both) or level (high or low) can
be selected for the occurrence of an event by modifying trig-
ger control register 1 (TCPWM_CNTx_TR_CTRL1). This
configuration is for each event and is present in each coun-
ter. Alternatively, firmware can generate an event by writing
to the counter command register (TCPWM_CMD), as shown
in Figure 17-2.

The events derived from these triggers can have different
definitions in different modes. 

■ Reload: A reload event initializes and starts the counter.

❐ In up counting mode, the count register 
(TCPWM_CNTx_COUNTER) is initialized with ‘0’.

❐ In down counting mode, the counter is initialized with 
the period value stored in TCPWM_CNTx_PERIOD 
register.

❐ In up/down counting mode, the count register is ini-
tialized with ‘0’.

❐ In quadrature mode, the reload event acts as a 
quadrature index event. An index/reload event indi-
cates a completed rotation and can be used to syn-
chronize quadrature decoding.

■ Start: A start event is used to start counting and can be 
used after a stop event or after re-initialization of the 

counter register to any value by software. The count reg-
ister is not initialized with any value on this event. 

❐ In quadrature mode, the start event acts as quadra-
ture phase input phiB, which is explained in detail in 
Quadrature Decoder Mode on page 174.

■ Count: A count event causes the counter to increment 
or decrement, depending on its configuration. 

❐ In quadrature mode, the count event acts as quadra-
ture phase input phiA.

■ Stop: A stop event stops the counter from incrementing 
or decrementing. A start event will start the counting 
again. 

❐ In the PWM modes, the stop event acts as a kill 
event. A kill event disables the PWM output lines.

■ Capture: A capture event copies the counter register 
value to the capture register and capture register value 
to the buffer capture register. In the PWM modes, the 
capture event acts as a switch event. It switches the val-
ues of the capture/compare and period registers with 
their buffer counterparts. This feature can be used to 
modulate the pulse width and frequency.

Notes

■ All trigger inputs are synchronized to the system clock.

■ When more than one event occurs in the same counter 
clock period, one or more events may be missed. This 
can happen for high-frequency events (in the counter 
frequency domain) and a timer configuration in which a 
pre-scaled (divided) counter clock is used.

Table 17-2.  Bit-Field Setting to Pre-Scale Counter Clock

GENERIC[10:8] Description

0 Divide by 1

1 Divide by 2

2 Divide by 4

3 Divide by 8

4 Divide by 16

5 Divide by 32

6 Divide by 64

7 Divide by 128

trigger control register 1

rising edge

falling edge

both

pass through
counter command register 

(SW generated)

event

2

Edge 
Detector 
Circuit

Trigger signal

Trigger
Synchronisation

System bus 
clock

1

0

Trigger_in [13:0]

trigger control register 0

14

4



168 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Timer, Counter, and PWM

17.2.4 Output Signals

The TCPWM block generates several output signals, as
shown in Figure 17-3.

Figure 17-3.  TCPWM Output Signals

17.2.4.1 Signals upon Trigger Conditions

■ A counter generates an internal overflow (OV) condition 
when counting up and the count register reaches the 
period value.

■ A counter generates an internal underflow (UN) condi-
tion when counting down and the count register reaches 
zero. 

■ The capture/compare (CC) condition is generated by the 
TCPWM when the counter is running.

❐ The counter value equals the compare value - When 
this event occurs, the device behavior depends on 
the mode in which it is configured. This is explained 
in the respective sections.

❐ A capture event occurs - When a capture event 
occurs, the TCPWM_CNTx_COUNTER register 
value is copied to the capture register and capture 
register value is copied to the buffer capture register. 

17.2.4.2 Interrupts

The block provides a dedicated interrupt output signal for
each of the four counters. An interrupt can be generated for
a TC condition and a CC condition. The exact definition of
these conditions is mode-specific. All four interrupt output
signals are also OR’ed together to produce a single interrupt
output signal.

Four registers are used for interrupt handling in this block,
as shown in Table 17-3.

17.2.4.3 Outputs

Each counter is provided with two outputs, line_out[3:0] and line_compl_out[3:0] (complementary of line_out). Note that the
OV, UN, and CC conditions can be used to drive line_out and line_compl_out as needed, by configuring the
TCPWM_CNTx_TR_CTRL2 register (see Table 17-4).

TCPWM block

Interrupt 0
Interrupt 1
Interrupt 2
Interrupt 3

Interrupt

line_out
line_compl_out

4
4
4

Underflow
Overflow
CC

4
4

Table 17-3.  Interrupt Register

Interrupt Registers Bits Name Description

TCPWM_CNTx _INTR

0 TC
Terminal count. Is set to '1', when a terminal count is detected. Write with '1' 
to clear bit.

1 CC_MATCH
Counter matches Capture/Compare register. It is set to '1' when a CC con-
dition is detected. Write with '1' to clear bit.

TCPWM_CNTX _INTR_SET

0 TC
Write with '1' to set corresponding bit in the interrupt request register. When 
read, this register reflects the interrupt request register status.

1 CC_MATCH
Write with '1' to set corresponding bit in the interrupt request register. When 
read, this register reflects the interrupt request register status.

TCPWM_CNTX _INTR_MASK
0 TC Mask bit for corresponding TC bit in the interrupt request register.

1 CC_MATCH Mask bit for corresponding CC_MATCH bit in the interrupt request register.

TCPWM_CNTx _INTR_MASKED
0 TC Logical AND of corresponding TC request and mask bits.

1 CC_MATCH Logical AND of corresponding CC_MATCH request and mask bits.

Table 17-4.  Configuring Output Line for OV, UN, and CC Conditions

Field Bit Value Event Description

CC_MATCH_MODE 
Default Value = 3

1:0

0 Set line_out to '1

Configures output line on a com-
pare match (CC) event

1 Clear line_out to '0

2 Invert line_out

3 No change



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 169

Timer, Counter, and PWM

17.2.5 Power Modes

The TCPWM block works in Active and Sleep modes. The block's power is connected to VCCD. The configuration registers
and other logic are powered in deep-sleep mode to keep the states for registers, which need to retain their values. See
Table 17-5.

17.3 Modes of Operation
The counter block can function in six operational modes, depending on register configuration, as shown in Table 17-6. MODE
[26:24] field of counter control register (TCPWM_CNTx_CTRL) register configures the counter in specific operational mode.

The block can be set to count using up, down, and up/down counting modes by setting UP_DOWN_MODE[17:16] field in
TCPWM_CNTx_CTRL register, as shown in Table 17-7.

OVERFLOW_MODE 
Default Value = 3

3:2

0 Set line_out to '1

Configures output line on a over-
flow (OV) event

1 Clear line_out to '0

2 Invert line_out

3 No change

UNDERFLOW_MODE 
Default Value = 3

5:4

0 Set line_out to '1

Configures output line on a under-
flow (UN) event

1 Clear line_out to '0

2 Invert line_out

3 No change

Table 17-5.  Power Modes in TCPWM Block

Power Mode Block Status

Active This block is fully operational in this mode with clock running and power switched on.

Sleep All counter clocks are on, but bus interface cannot be accessed.

Deep-sleep
In this mode, the power to this block is still on but no bus clock is provided; hence, the logic is not functional. 
All the configuration registers will keep their state.

Hibernate In this mode, the power to this block is switched off. Configuration registers will lose their state.

Table 17-4.  Configuring Output Line for OV, UN, and CC Conditions

Field Bit Value Event Description

Table 17-6.  Operational Mode Configuration

Mode
MODE Field 

[26:24]
Description

Timer 000
Increments or decrements by ‘1’ every counter clock cycle in which a count event is 
detected.

Capture 010
Increments or decrements by ‘1’ every counter clock cycle in which a count event is 
detected. A capture event copies the counter value into the capture register.

Quadrature Decoder 011
Quadrature decoding. Counter is decremented or incremented, based on two phase inputs 
according to X1, X2, or X4 encoding scheme.

PWM 100 Pulse-width modulation - Modulates the duty cycle and period.

PWM-DT 101
Pulse-width modulation with dead time. Disables the PWM outputs for some configured 
time.

PWM-PR 110
Pseudo random pulse-width modulation. Uses 16-bit LFSR to generate pseudo random val-
ues.



170 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Timer, Counter, and PWM

17.3.1 Timer Mode

The timer mode is used to time the occurrence of events or to measure time difference between events using interrupt
requests.

17.3.1.1 Block Diagram

Figure 17-4.  Timer Mode Block Diagram

17.3.1.2 How it Works

The timer can be configured to count in up, down, and up/
down counting modes. It can be configured to run in either
continuous mode or one-shot mode.

The following explains the working of the timer:

■ The timer is an up, down, and up/down counter.

❐ The current count value is stored in the count regis-
ter (TCPWM_CNTx_COUNTER). Note  Do not write 
values to this register while the counter is running.

❐ The period value for the timer is stored in the period 
register.

■ The counter is re-initialized in different counting modes 
as follows:

❐ In the up counting mode, after the count reaches the 
period value, the count register is automatically 
reloaded with 0.

❐ In the down counting mode, after the count register 
reaches zero, the count register is reloaded with the 
value in the period register.

❐ In the up/down counting modes, the count register 
value is not updated upon reaching the terminal val-
ues. Instead the direction of counting changes when 
the count value reaches 0 or the period value.

■ The CC condition is generated when count register value 
equals the compare register value. Upon this condition, 
the compare register and buffer compare register switch 
their values if enabled by the AUTO_RELOAD_CC bit-
field of the counter control (TCPWM_CNTx_CTRL) reg-
ister. This condition can be used to generate an interrupt 
request.

Figure 17-5 shows the timer operational mode of the counter
in four different counting modes. The period register con-
tains the maximum counter value. 

Table 17-7.  Counting Mode Configuration

Counting Modes
UP_DOWN_M
ODE[17:16]

Description

UP Counting Mode 00
Increments the counter until the period value is reached. A Terminal Count (TC) condition is 
generated when the period value is reached.

DOWN Counting Mode 01
Decrements the counter until the value 0 is reached. A TC condition is generated when the 
value ‘0’ is reached.

UP/DOWN Counting Mode 0 10
Increments the counter until the period value is reached, then decrements the counter until 
‘0’ is reached. A TC condition is generated when ‘0’ is reached but not when the period 
value is reached.

UP/DOWN Counting Mode 1 11
Similar to up/down counting mode 0 but a TC condition is generated when the counter 
reaches ‘0’ and when the counter value reaches the period value.

PERIOD

COUNTER

COMPARE

   BUFFER 
COMPARE

==

==

Reload

Start

Stop

Count

UN

OV

CC

TC

counter_clock



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 171

Timer, Counter, and PWM

■ In the up counting mode, a period value of A results in 
A+1 counter cycles (0 to A).

■ In the down counting mode, a period value of A results in 
A+1 counter cycles (A to 0).

■ In the two up/down counting modes (both modes 0 and 1 
both), a period value of A results in 2*A counter cycles (0 
to A and back to 0).

Figure 17-5.  Timing Diagram for Timer in Multiple Counting Modes 

Period

TC

Counter

Timer, down counting mode

0xFFFF

counter_clock

0xFFFF

0xFFFE

0xFFFD

0xFFFC

0x0001

0x0000

0x0002

0x0003

UN

OV

0xFFFF

0xFFFE

0xFFFD

0xFFFC

0x0001

0xFFFF

0xFFFE

Period

TC

Counter

Timer, up counting mode 

0xFFFF

0x0000

0xFFFE

0xFFFF

counter_clock

0x0003

0xFFFE

0xFFFF

0xFFFE

UN

OV

0x0001

0x0002

0x0003

0x0002

0x0001

0x0002

0x0001

0xFFFF

Period

TC

Counter

Timer, up/down counting mode 0

0xFFFF

counter_clock

UN

OV

0xFFFE

0xFFFF

0x0002

0x0001

0x0000

0x0003

0xFFFE

0xFFFE

0xFFFE

0x0001 0x0001

0xFFFE

0xFFFF

0x0002

0x0003

0xFFFF



172 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Timer, Counter, and PWM

17.3.1.3 Configuring Counter for Timer Mode

The steps to configure the counter 'x' for Timer mode of
operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to 
COUNTER_ENABLED[x] field of TCPWM_CTRL regis-
ter.

2. Select Timer mode by writing '000' to the MODE[26:24] 
field of the TCPWM_CNTx_CTRL register.

3. Set the required 16-bit period in the 
TCPWM_CNTx_PERIOD register.

4. Set the 16-bit compare value in the TCPWM_CNTx_CC 
register and the buffer compare value in the 
TCPWM_CNTx_CC_BUFF register. Set 
AUTO_RELOAD_CC field of counter control register, if 
required to switch values at every CC condition.

5. Set clock pre-scaling by writing to the GENERIC[10:8] 
field of the counter control (TCPWM_CNTx_CTRL) reg-
ister, as shown in Table 17-2.

6. Set the direction of counting by writing to the 
UP_DOWN_MODE[17:16] field of the 
TCPWM_CNTx_CTRL register, as shown in Table 17-7.

7. The timer can be configured to run either in continuous 
mode or one-shot mode by writing 0 or 1, respectively to 
the ONE_SHOT[18] field of the TCPWM_CNTx_CTRL 
register.

8. Set the TCPWM_CNTx_TR_CTRL0 register to select 
the trigger, which causes the event (Reload, Start, Stop, 
Capture, and Count).

9. Set the TCPWM_CNTx_TR_CTRL1 register to select 
the edge of the trigger, which causes the event (Reload, 
Start, Stop, Capture, and Count).

10. If required, set the interrupt upon TC or CC condition, as 
shown in Interrupts on page 168.

11. Enable the Counter by writing '1' to the 
COUNTER_ENABLED[x] field of TCPWM_CTRL regis-
ter.

17.3.2 Capture Mode

In the capture mode, the counter value can be captured at
any time either through a firmware write to command regis-
ter (TCPWM_CMD) or a capture trigger input. This mode is
used for period and pulse-width measurement.

17.3.2.1 Block Diagram

Figure 17-6.  Capture Mode Block Diagram

17.3.2.2 How it Works

The counter can be set to count in up, down, and up/down
counting modes by configuring the
UP_DOWN_MODE[17:16] bit-field of the counter control
register (TCPWM_CNTx_CTRL).

Operation in capture mode occurs as follows:

■ During a capture event, generated either by hardware 
(HW) or software (SW), the current count register value 
is copied to the capture register (TCPWM_CNTx_CC) 
and the capture register value is copied to the buffer 
capture register (TCPWM_CNTx_CC_BUFF).

■ A pulse on the CC output signal is generated when the 
counter value is copied to the capture register. This con-
dition can also be used to generate an interrupt request.

Period

TC

Counter

Timer, up/down counting mode 1

0xFFFF

0xFFFE

0xFFFF

counter_clock

UN

OV

0x0002

0x0001

0x0000

0x0003

0xFFFE

0xFFFD

0xFFFC

0xFFFE

0xFFFF

0x0002

0x0001

0x0003

0xFFFF

PERIOD

COUNTER

CAPTURE

    CAPTURE BUFFER 

==

Reload

Start

Stop

Count

UN

OV

CC

TC

counter_clock

Capture



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 173

Timer, Counter, and PWM

Figure 17-7 illustrates the capture behavior in the up counting mode. 

Figure 17-7.  Timing Diagram of Counter in Capture Mode, Up Counting Mode

In the figure, observe that:

■ The period register contains the maximum count register 
value.

■ Internal overflow (OV) and TC conditions are generated 
when the counter reaches the period value.

■ A capture event is only possible at the edges or through 
software. Trigger control register 1 should be configured 
for capture event on edges only.

■ Multiple capture events in a single clock cycle are han-
dled as:

❐ Even number of capture events - no event is 
observed

❐ Odd number of capture events - single event is 
observed

This happens when the capture signal frequency is greater
than counter_clock frequency.

17.3.2.3 Configuring Counter for Capture 
Mode

The steps to configure the counter 'x' for Counter mode
operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to 
COUNTER_ENABLED[x] field of TCPWM_CTRL regis-
ter.

2. Select Capture mode by writing '010' to the 
MODE[26:24] field of the TCPWM_CNTx_CTRL regis-
ter.

3. Set the required 16-bit period in the 
TCPWM_CNTx_PERIOD register.

4. Set clock pre-scaling by writing to the GENERIC[10:8] 
field of the TCPWM_CNTx_CTRL register, as shown in 
Table 17-2.

5. Set the direction of counting by writing to the 
UP_DOWN_MODE[17:16] field of 
TCPWM_CNTx_CTRL register, as shown in Table 17-7.

6. Counter can be configured to run either in continuous 
mode or one-shot mode by writing 0 or 1, respectively to 
the ONE_SHOT[18] field of TCPWM_CNTx_CTRL reg-
ister.

7. Set the TCPWM_CNTx_TR_CTRL0 register to select 
the trigger, which causes the event (Reload, Start, Stop, 
Capture, and Count).

8. Set the TCPWM_CNTx_TR_CTRL1 register to select 
the edge, which causes the event (Reload, Start, Stop, 
Capture, and Count).

9. If required, set the interrupt upon TC or CC condition, as 
shown in Interrupts on page 168.

10. Enable the Counter by writing '1' to 
COUNTER_ENABLED[x] field of TCPWM_CTRL regis-
ter.

Period

Counter

OV

UN

TC

Capture, up counting mode

capture

capture buffer

CC

counter_clock

0xFFFF

Capture trigger

0x0002

0x0002

0xFFFE

0xFFFE

0x0003

0xFFFE

0xFFFF

0x0002

0x0003

0x0000

0x0001

0xFFFE

0xFFFF

0x0002

0x0003

0x0001

0x0002

0x0001

0xFFFF



174 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Timer, Counter, and PWM

17.3.3 Quadrature Decoder Mode

Quadrature decoders are used to determine speed and position of a rotary device (such as servo motors, volume control
wheels, and PC mice). The quadrature encoder signals are used as inputs phiA and phiB to the decoder.

17.3.3.1 Block Diagram

Figure 17-8.  Quadrature Mode Block Diagram

17.3.3.2 How it Works

Quadrature decoding only runs on counter_clock. It can
operate in three sub-modes: X1, X2, and X4 quadrature
encoding modes. These can be controlled by
QUADRATURE_MODE[21:20] field of counter control regis-
ter (TCPWM_CNTx_CTRL). This mode uses double buff-
ered capture registers.

The Quadrature mode operation occurs as follows:

■ Quadrature phases phiA and phiB: Counting direction is 
determined by the phase relationship between phiA and 
phiB. These phases are selected by the count and start 
trigger inputs, respectively as hardware input signals to 
the decoder. 

■ Quadrature index event: This is selected by the reload 
signal as a hardware input signal. This event generates 
a TC condition, as shown in Figure 17-9.

On TC, the counter is set to 0x0000 (in the up counting 
mode) or to the period value (in the down counting 
mode).

Note The down counting mode is recommended to be 
used with a period value of 0x8000 (the mid-point value).

■ A pulse on CC output signal is generated when the count 
register value reaches 0x0000 or 0xFFFF. On a CC con-
dition, the count register is set to the period value 
(0x8000 in this case).

■ On TC or CC condition:

❐ Count register value is copied to the capture register

❐ Capture register value is copied to the buffer capture 
register

❐ This can be used to generate an interrupt request

■ The value in the capture register can be used to deter-
mine which condition caused the event and whether:

❐ A counter underflow occurred (value 0)

❐ A counter overflow occurred (value 0xFFFF)

❐ An index/TC event occurred (value is not equal to 
either 0 or 0xFFFF)

■ The DOWN bit field of counter status 
(TCPWM_CNTx_STATUS) register can be read to deter-
mine the current counting direction. Value '0' indicates a 
previous increment operation and value '1' indicates pre-
vious decrement operation. Figure 17-9 illustrates 
quadrature behavior in the X1 encoding mode. 

❐ A positive edge on phiA/count increments the coun-
ter when phiB/start is '0' and decrements the counter 
when phiB/start is '1'.

❐ The count register is initialized with the period value 
on an index/reload event.

❐ Terminal count is generated when the counter is ini-
tialized by index event. This event can be used to 
generate an interrupt.

❐ When the count register reaches 0xFFFF (the maxi-
mum count register value), the count register value is 
copied to the capture register and the count register 
is initialized with period value (0x8000).

PERIOD

COUNTER

CAPTURE

   BUFFER CAPTURE

==

index

phiA

Stop

phiB

CC

TC

counter_clock

0x0000
0xFFFF



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 175

Timer, Counter, and PWM

Figure 17-9.  Timing Diagram for Quadrature Mode, X1 Encoding

Because the quadrature phases are detected on
counter_clock, they should not change value more than
once, within a single counter_clock period.

The X2 and X4 quadrature encoding modes count twice and
four times as fast as the X1 quadrature encoding mode.

Figure 17-10 illustrates the quadrature mode behavior in the
X2 and X4 encoding modes.

Period

TC

CC

Quadrature, X1 encoding

0x8000

Y 0xFFFFcapture

buffer capture
X Y

0x8000 0x8001 0x8002 0x8000 0x7FFFcounter

phiA

phiB

index/reload 
event

0x8003

counter_clock

0xFFFF



176 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Timer, Counter, and PWM

Figure 17-10.  Timing Diagram for Quadrature Mode, X2 and X4 Encoding

17.3.3.3 Configuring Counter for Quadrature 
Mode

The steps to configure the counter 'x' for Quadrature mode
of operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to 
COUNTER_ENABLED[x] field of TCPWM_CTRL regis-
ter.

2. Select Quadrature mode by writing '011' to the 
MODE[26:24] field of the TCPWM_CNTx_CTRL regis-
ter.

3. Set the required 16-bit period in the 
TCPWM_CNTx_PERIOD register.

4. Set the required encoding mode by writing to the 
QUADRATURE_MODE[21:20] field of 
TCPWM_CNTx_CTRL register.

5. Set the TCPWM_CNTx_TR_CTRL0 register to select 
the trigger, which causes the event (Index and Stop).

6. Set the TCPWM_CNTx_TR_CTRL1 register to select 
the edge, which causes the event (Index and Stop).

7. If required, set the interrupt upon TC or CC condition, as 
shown in Interrupts on page 168.

8. Enable the Counter by writing '1' to 
COUNTER_ENABLED[x] field of TCPWM_CTRL regis-
ter.

Period

TC

Quadrature, X2 encoding

4

counter

phiA

phiB

index/reload 
event

counter_clock

4 5 6 7 8 7 6

Period

TC

Quadrature, X4 encoding

4

counter

phiA

phiB

index/reload 
event

counter_clock

4 5 6 7 8 9 10 11 12 11 10 9 8



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 177

Timer, Counter, and PWM

17.3.4 Pulse-Width Modulation Mode

PWM mode is also called the Comparator mode, because the comparison output is a PWM output with a varying duty cycle
and a varying period. The period depends on the Period register. The duty cycle depends on the compare value and period
value.

PWM Period = (Period Value × 1/Clock frequency)

17.3.4.1 Block Diagram

Figure 17-11.  PWM Mode Block Diagram

17.3.4.2 How it Works

This mode can be used in up, down, and up/down counting
modes by setting UP_DOWN_MODE [17:16] bits in
TCPWM_CNTx_CTRL register, as shown in Table 17-7.
These counting modes are used for left-aligned, right-
aligned, and center-aligned pulse-width modulation.

At the reload event, the count register is initialized and starts
counting in the appropriate mode. At every count, the count
register value is compared with compare register value. This
is used to toggle PWM output line or set it to '0' or '1'.

PWM output line is controlled by OV, UN, and CC condi-
tions. The conditions can toggle the output line or set it to '0'
or '1' by configuring the TCPWM_CNTx_TR_CTRL2 regis-
ter.

To modify the duty cycle:

■ The buffer period register and buffer compare register 
are updated with new values.

■ On TC, the period and compare registers are automati-
cally updated with the buffer period and buffer compare 
registers when there is an active switch event. 
AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD 
fields of counter control register are set to value ‘1’. 
When a switch event is detected, it is remembered until 
the next TC event. Pass through signal (selected during 
event detection setting) cannot trigger a switch event.

■ Updating buffer period register and buffer compare reg-
ister should be completed before the next TC with an 
active switch event; otherwise, switching does not reflect 
the register update, as shown in Figure 17-13.

The output line is set to '0' at Terminal Count and toggled at
the CC condition.

Figure 17-12 illustrates center aligned PWM with buffered
period and compare registers (up/down counting mode 0).

line_out_compl

PERIOD

COUNTER

COMPARE

   BUFFER COMPARE

==

reload

start

stop

switch

UN

OV

CC

TC

counter_clock

BUFFER PERIOD

PWM
line_out

count



178 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Timer, Counter, and PWM

Figure 17-12.  Timing Diagram for Center Aligned PWM

Figure 17-13 illustrates center-aligned PWM with software
generated switch events:

■ Software generates a switch event only after both the 
period buffer and compare buffer registers are updated.

■ Because the updates of the second PWM pulse come 
late (after the terminal count), the first PWM pulse is 
repeated.

■ Note that the switch event is automatically cleared by 
hardware at TC after the event takes effect.

PWM center aligned buffered

new period value B, new compare value N

A B

B

A

BA

M

M

N

N N

M

SW update of buffers

reload event

period buffer

period

compare

compare buffer

Counter

A

0

Switch at TC condition

B

M

N

TC

CC

line_out

counter_clock



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 179

Timer, Counter, and PWM

Figure 17-13.  Timing Diagram for Center Aligned PWM (software switch event)

17.3.4.3 Other Configurations

■ For asymmetric PWM, the up/down counting mode 1 
should be used. This causes a TC when the counter 
reaches either ‘0’ or the period value. To create an 
asymmetric PWM, the compare register is changed at 
every TC (when the counter reaches either ‘0’ or the 
period value), whereas the period register is only 
changed at every other TC (only when the counter 
reaches ‘0’).

■ For left-aligned PWM, use the up counting mode; config-
ure the OV condition to set output line to '1' and CC con-
dition to reset the output line to '0'. See Table 17-4.

■ For right-aligned PWM, use the down counting mode; 
configure UN condition to reset output line to '0' and CC 
condition to set the output line to '1'. See Table 17-4.

17.3.4.4 Kill Feature

Kill feature implies the ability to disable both output lines
immediately. This event can be programmed to stop the
counter by modifying the PWM_STOP_ON_KILL and
PWM_SYNC_KILL field of counter control register, as
shown in Table 17-8.

A kill event can be programmed to be asynchronous or syn-
chronous, as shown in Table 17-9. 

In synchronous kill, PWM cannot be started before the next
TC. To restart the PWM immediately after kill input is
removed, kill event should be asynchronous (see

A B

BA

M

M

N

N

Switch event

reload event

period buffer

period

compare

compare buffer

Counter

A

0

Switch at TC condition
B

M

N

TC

CC

line_out

M

A

PWM, center aligned, buffered (software switch event)

counter_clock

Table 17-8.  Field Setting for Stop on Kill Feature

PWM_STOP_ON_KILL 
Field

Comments

0
The kill trigger temporarily blocks the PWM 
output line but counter is still running.

1
The kill trigger temporarily blocks the PWM 
output line and counter is also stopped.

Table 17-9.  Field Setting for Synchronous/Asynchronous 
Kill

PWM_SYNC_KILL 
Field 

Comments

0
An asynchronous kill event lasts as long as 
it is present. This event requires pass 
through mode.

1
A synchronous kill event disables the out-
put lines until the next TC event. This 
event requires rising edge mode.



180 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Timer, Counter, and PWM

Table 17-9). The generated stop event disables both output
lines. In this case, the reload event can use the same trigger
input signal but should be used in falling edge detection
mode.

17.3.4.5 Configuring Counter for PWM Mode

The steps to configure the counter 'x' for PWM mode of
operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to 
COUNTER_ENABLED[x] field of TCPWM_CTRL regis-
ter.

2. Select PWM mode by writing '100' to the MODE[26:24] 
field of the TCPWM_CNTx_CTRL register.

3. Set clock pre-scaling by writing to the GENERIC[10:8] 
field of the TCPWM_CNTx_CTRL register, as shown in 
Table 17-2.

4. Set the required 16-bit period in the 
TCPWM_CNTx_PERIOD register and buffer period 
value in TCPWM_CNTx_PERIOD_BUFF register, if 
required to switch values.

5. Set the 16-bit compare value in TCPWM_CNTx_CC reg-
ister and buffer compare value in 
TCPWM_CNTx_CC_BUFF register, if required to switch 
values.

6. Set the direction of counting by writing to the 
UP_DOWN_MODE[17:16] field of 
TCPWM_CNTx_CTRL register to configure left-align, 
right align or center aligned PWM, as shown in 
Table 17-7.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL 
field of TCPWM_CNTx_CTRL register as required.

8. Set the TCPWM_CNTx_TR_CTRL0 register to select 
the trigger, which causes the event (Reload, Start, Kill, 
Switch, and Count).

9. Set the TCPWM_CNTx_TR_CTRL1 register to select 
the edge, which causes the event (Reload, Start, Kill, 
Switch, and Count).

10. line_out and line _out_compl can be controlled by 
TCPWM_CNTx_TR_CTRL2 register to set, reset, or 
invert upon CC, OV, UN conditions.

11. If required, set the interrupt upon TC or CC condition, as 
shown in Interrupts on page 168.

12. Enable the Counter by writing '1' to 
COUNTER_ENABLED[x] field of TCPWM_CTRL regis-
ter

17.3.5 Pulse-Width Modulation with Dead 
Time Mode

Dead time is used to delay the transitions of both "line_out"
and "line_out_compl". It separates the transition edges of
these two signals by a time interval. Two complementary
output lines 'dt_line' and 'dt_line_compl' are derived from
these two lines. During the dead band period, both compare
output and complement compare output are low for a fixed
period. The dead band feature allows generation of two
PWM pulses with non-overlapping outputs. Dead time of
maximum 255 clocks can be generated.

17.3.5.1 Block Diagram

Figure 17-14.  PWM-DT Mode Block Diagram

PERIOD

COUNTER

COMPARE

   BUFFER COMPARE

==

Reload

Start

Stop

Switch

CC

TC

counter_clock

BUFFER PERIOD

PWM
dt_line

Count
Dead Time

dt_line_compl



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 181

Timer, Counter, and PWM

17.3.5.2 How it Works

Operation in PWM with Dead Time mode occurs as follows:

■ On the rising edge of PWM line_out depending upon 
UN, OV, and CC conditions, the dead time block sets the 
dt_line to '0' for the dead band period.

■ The dead band period is loaded and counted for the 
period configured in the register.

■ When the dead band period has completed, dt_line is 
set to '1'.

■ On the falling edge of PWM line_out depending upon 
UN, OV, and CC conditions, the dead time block sets the 
dt_line_compl to '0' for the dead band period.

■ The dead band period is loaded and counted for the 
period configured in the register.

■ When the dead band period has completed, 
dt_line_compl_is set to '1'.

■ A dead band period of zero has no effect on the dt_line 
and is same as line_out.

■ When the duration of the dead time equals or exceeds 
the width of a pulse, the pulse is removed.

This mode follows PWM mode and supports the following
features available with that mode:

❐ Counting modes

❐ Asymmetric PWM

❐ Two complementary output lines, dt_line and 
dt_line_compl, derived from PWM "line_out" and 
"line _out_compl", respectively

❐ Stop/kill event with synchronous and asynchronous 
modes

❐ Conditional switch event for compare and buffer 
compare registers and period and buffer period reg-
isters

This mode does not support clock pre-scaling. 

Figure 17-15 illustrates how the complementary output lines
"dt_line" and "dt_line_compl" are generated from the PWM
output line "line_out".

Figure 17-15.  Timing Diagram for PWM, with and without Dead Time

17.3.5.3 Configuring Counter for PWM with 
Dead Time Mode

The steps to configure the counter 'x' for PWM with Dead
Time mode of operation and the affected register bits are as
follows.

1. Disable the counter by writing '0' to 
COUNTER_ENABLED[x] field of TCPWM_CTRL regis-
ter.

2. Select PWM with Dead Time mode by writing '101' to the 
MODE[26:24] field of the TCPWM_CNTx_CTRL regis-
ter.

3. Set the required Dead-Time by writing to the 
GENERIC[15:8] field of the TCPWM_CNTx_CTRL regis-
ter, as shown in Table 17-2.

4. Set the required 16-bit period in the 
TCPWM_CNTx_PERIOD register and buffer period 

value in TCPWM_CNTx_PERIOD_BUFF register, if 
required to switch values.

5. Set the 16-bit compare value in TCPWM_CNTx_CC reg-
ister and buffer compare value in 
TCPWM_CNTx_CC_BUFF register, if required to switch 
values.

6. Set the direction of counting by writing to the 
UP_DOWN_MODE[17:16] field of 
TCPWM_CNTx_CTRL register to configure left-align, 
right align or center aligned PWM, as shown in 
Table 17-7.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL 
field of TCPWM_CNTx_CTRL register as required, as 
shown in the Pulse-Width Modulation Mode on 
page 177.

PWM, Deadtime insertion

line_out

Dead time duration : 0

dt_line

dt_line_compl

Deadtime duration :

dt_line

dt_line_compl



182 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Timer, Counter, and PWM

8. Set the TCPWM_CNTx_TR_CTRL0 register to select 
the trigger, which causes the event (Reload, Start, Kill, 
Switch, and Count).

9. Set the TCPWM_CNTx_TR_CTRL1 register to select 
the edge, which causes the event (Reload, Start, Kill, 
Switch, and Count).

10. dt_line and dt_line_compl can be controlled by 
TCPWM_CNTx_TR_CTRL2 register to set, reset or 
invert upon CC, OV, UN conditions.

11. If required, set the interrupt upon TC or CC condition, as 
shown in Interrupts on page 168.

12. Enable the Counter by writing '1' to 
COUNTER_ENABLED[x] field of TCPWM_CTRL regis-
ter.

17.3.6 Pulse-Width Modulation Pseudo 
Random Mode

This mode uses linear feedback shift register (LFSR), which
is a shift register whose input bit is a linear function of its
previous state.

17.3.6.1 Block Diagram

Figure 17-16.  PWM-PR Mode Block Diagram

17.3.6.2 How it Works

The counter register is used to implement LFSR with the polynomial: x16+x14+x13+x11+1, as shown in Figure 17-17. It gen-
erates all the numbers in the range [1, 0xffff] in a pseudo-random sequence. Note that the counter register should be initial-
ized with a value different from 0.

Figure 17-17.  Pseudo Random Sequence Generation using Counter Register

PERIOD

LFSR / COUNTER

COMPARE

   BUFFER COMPARE

==

reload

start

stop

switch

CC

TC

counter_clock

BUFFER PERIOD

<
line_out

0

1 0 0 0 0 000 01 1 1 111 1



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 183

Timer, Counter, and PWM

The following steps describe the process:

■ PWM output line "line_out" is driven with '1' when the 
lower 15 bits of the counter register are smaller than the 
value in the compare register (counter[14:0] < com-
pare[15:0]). A compare value of "0x8000" or higher 
always results in a '1' on the PWM output line. A com-
pare value of ‘0’ always results in a '0' on the PWM out-
put line. 

■ A reload event behaves similar to a start event; it starts 
the counter. However, it does not initialize the counter.

■ Terminal count is generated when the counter equals the 
period value. LFSR generates a predictable pattern of 
counter values given a certain counter initialization. This 
predictability can be used to calculate the counter value 
after a certain amount of LFSR iterations ‘n’. This calcu-
lated counter value can be used as period value, and the 
TC is generated after n iterations.

■ At TC, a switch/capture event conditionally switches the 
compare and period register pairs (based on 
AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD 
field of counter control register).

■ A kill event can be programmed to stop the counter as 
shown earlier. 

■ One shot mode (configured by setting ONE_SHOT field 
of counter control register): At TC, the counter is stopped 
by hardware.

■ In this mode, there is neither underflow and overflow 
internal event nor trigger condition.

■ CC condition occurs when the counter is running and its 
value equals compare value. Figure 17-18 illustrates 
pseudo random noise behavior.

■ With a compare value of 0x4000, resulting in 50 percent 
duty cycle (only the lower 15 bits of the 16- bit counter 
are used to compare with the compare register value).

Figure 17-18.  Timing Diagram for Pseudo Random PWM

A capture/switch input signal may switch the values
between the compare and compare buffer registers and the
period and period buffer registers. This functionality can be
used to modulate between two different compare values
using a trigger input signal to control the modulation. 

Note Capture/switch input signal can only be triggered by
an edge (rising, falling, or both). This input signal is remem-
bered until the next Terminal Count.

17.3.6.3 Configuring Counter for Pseudo 
Random PWM Mode

The steps to configure the counter 'x' for Pseudo Random
PWM mode of operation and the affected register bits are as
follows.

1. Disable the counter by writing '0' to 
COUNTER_ENABLED[x] field of TCPWM_CTRL regis-
ter.

2. Select Pseudo Random PWM mode by writing '110' to 
the MODE[26:24] field of the TCPWM_CNTx_CTRL reg-
ister.

3. Set the required period (16 bit) in the 
TCPWM_CNTx_PERIOD register and buffer period 

value in TCPWM_CNTx_PERIOD_BUFF register, if 
required to switch values.

4. Set the 16-bit compare value in TCPWM_CNTx_CC reg-
ister and buffer compare value in 
TCPWM_CNTx_CC_BUFF register, to switch values.

5. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL 
field of TCPWM_CNTx_CTRL register as required.

6. Set the TCPWM_CNTx_TR_CTRL0 register to select 
the trigger, which causes the event (Reload, Start, Kill, 
and Switch).

7. Set the TCPWM_CNTx_TR_CTRL1 register to select 
the edge, which causes the event (Reload, Start, Kill, 
and Switch).

8. line_out and line_out_compl can be controlled by 
TCPWM_CNTx_TR_CTRL2 register to set, reset, or 
invert upon CC, OV, UN conditions.

9. If required, set the interrupt upon TC or CC condition, as 
shown in Interrupts on page 168.

10. Enable the Counter by writing '1' to 
COUNTER_ENABLED[x] field of TCPWM_CTRL regis-
ter.

Pseudo Random PWM

reload event

compare

period

counter

line_out

0x4000

0xACE1

0xACE1 0x5670 0xAB38 0x559C 0x2ACE 0x1567

counter_clock



184 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Timer, Counter, and PWM

17.4 TCPWM Registers

Table 17-10.  Block Registers

Register Comment Features

TCPWM_CTRL TCPWM Control Register Used to enable counter block

TCPWM_CMD TCPWM Command Register Used to generate software events

TCPWM_INTR_CAUSE TCPWM Counter Interrupt Cause Register To determine the source of combined interrupt signal

TCPWM_CNTx_CTRL Counter control register
Configures mode of counter, encoding modes, one shot 
mode, switching, kill feature, dead time, clock pre-scal-
ing, counting direction,

TCPWM_CNTx_STATUS Counter status register
Read the direction of counting, dead time duration, 
clock pre-scaling and to check if counter is running

TCPWM_CNTx_COUNTER Count register Contains the 16-bit counter value

TCPWM_CNTx_CC Counter compare/capture register
Captures the counter value or compare the value with 
counter value

TCPWM_CNTx_CC_BUFF Counter buffered compare/capture register
Buffer register for counter CC register, used for switch-
ing compare value

TCPWM_CNTx_PERIOD Counter period register Contains upper value of the counter

TCPWM_CNTx_PERIOD_BUFF Counter buffered period register
Buffer register for counter PERIOD register, used for 
switching compare value

TCPWM_CNTx_TR_CTRL0 Counter trigger control register 0 To select trigger for specific counter events

TCPWM_CNTx_TR_CTRL1 Counter trigger control register 1
To determine edge detection for specific counter input 
signals

TCPWM_CNTx_TR_CTRL2 Counter trigger control register 2
Used to control counter output lines upon CC, OV, UN 
conditions

TCPWM_CNTx_INTR Interrupt request register. Register bit is set when TC or CC condition is detected

TCPWM_CNTx_INTR_SET Interrupt set request register. 
Used to set corresponding bits in interrupt request reg-
ister

TCPWM_CNTx_INTR_MASK Interrupt mask register. Mask for interrupt request register

TCPWM_CNTx_INTR_MASKED Interrupt masked request register Bitwise AND of interrupt request and mask registers



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 185

Section F: Analog System

This section encompasses the following chapters:

■ Precision Reference chapter on page 187

■ SAR ADC chapter on page 191

■ Low-Power Comparator chapter on page 221

■ Continuous Time Block mini (CTBm) chapter on page 225

■ LCD Direct Drive chapter on page 231

■ CapSense chapter on page 243

■ Temperature Sensor chapter on page 251

Top Level Architecture

Analog System Block Diagram

SMX

2x OpAmp x1

CTBm

Programmable
Analog

x1

SAR
(12-bit)

Port Interface and Digital System 
Interconnect (DSI)

I/O Pins (Analog, Digital, Special, ESD)

2x
 L

P
 C

om
pa

ra
to

r

C
ap

S
en

se

LC
D

Peripheral Interconnect (MMIO)



186 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 187

18.   Precision Reference

A voltage or current reference with a value that is independent of supply voltage and temperature is an essential building

block of many analog circuits in PSoC® 4. For example, accurate biasing voltages are critical for many circuit schemes. In an
ADC, a reference voltage is required to quantify an input. In a VIDAC, the voltage or current reference is required to define the
output full-scale range.

18.1 Block Diagram

PSoC 4 has a precision reference block, which creates multiple precision reference bias currents and voltages for the whole
chip. Figure 18-1 illustrates the block diagram.

The precision reference is mainly composed of these blocks:

■ A precision bandgap block, which generates the precision voltage and current references

■ A trim buffer, which generates different output voltage references for various applications and trims the voltage magnitude 
of 1.024-V output

■ A group of fast low-power buffers and slow low-power buffers, which not only enhance the drive capability of various refer-
ence outputs, but also isolate the noise from one another

■ A group of fast leaf cells and slow leaf cells, which create multiple copies of current references in fast domain and slow 
domain, respectively

■ A V-CTAT block, which provides a temperature-dependent voltage reference for the flash system

■ A temperature trimmable current source, which generates the temperature-independent current reference for the IMO



188 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Precision Reference

Figure 18-1.  Voltage Reference Block Diagram

18.2 How it Works

The work principles of the main components are detailed in
this section.

18.2.1 Precision Bandgap

The principle of the bandgap circuit relies on two groups of
diode-connected bipolar junction transistors running at dif-
ferent emitter current densities. By canceling the negative
temperature dependence of the PN junctions in one group of
transistors with the positive temperature dependence from a
Proportional-to-Absolute-Temperature (PTAT) circuit (which
includes the other group of transistors), a DC voltage that
changes very little with variations in temperature is gener-
ated. In this block, the current reference is also provided.

18.2.2 Trim Buffer

The trim buffer is used to trim the voltage magnitude of the
1.024-V reference output. Besides, different output voltage
references are generated by this buffer for various applica-
tions.

18.2.3 Low-Power Buffers

Due to the high-impedance nature of the trim buffer outputs,
low-power buffers are used to drive each of the outputs to
the destination blocks. They also act as isolation cells
between various references.

Note that these low-power buffers are divided into fast buf-
fers and slow buffers, which drive fast domain and slow
domain in the chip, respectively. This design is to achieve
faster references settling time for the system. If all the volt-
age references driven by the low-power buffers remain in
the same domain, it causes high capacitive loads on the
bias lines due to large number of buffers, which in turn
increases the settling time. In practice, only a few blocks are
required to ensure the system start up (such as flash, volt-
age monitors, and power system), so a separate fast start
up domain is created for these voltage references who serve
these blocks. 

The fast domain starts up along with the bandgap and the
slow domain starts up following the fast one. 

Precision
BandGap

Voltage
Generator

Current
Generator

1.024 V

…

2.4 uA

…

FLASH

IMO

CSD

POR / LVD

BOD

LVD

CSD

SAR ADC

LDO

GND

resistor divider stack

2.4 uA

9.6 uA

2.4 uA

IMO

2.4 uA Analog Circuit

V-CTAT

Vref_V-CTAT

Vref_V-CTAT from Fast Buffers

2.4 uA Slow Buffer Bias

Fast Buffer Bias

Fast Buffers

Slow Buffers

Slow Leaf Cells

Fast Leaf Cells

IMO 
Reference 
Generator

IMO
Untrimmed I-CTAT and I-PTAT 

from BandGap

Fast Domain Slow Domain

0.8 V

1.2 V

1.024 V

Trim
Buffer

M
IR

R
O

RM
IR

R
O

R



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 189

Precision Reference

The fast buffers are directly driven by trim buffer; mean-
while, a second cascaded layer of voltage buffers (slow buf-
fers) are driven by the fast buffers. This topology also
ensures that the extra load due to the non-startup related
blocks in slow domain are completely isolated from fast
domain. 

18.2.4 Leaf Cells

Except for the voltage references, the bandgap provides a
unit current of 2.4 µA, which is also the second order curva-
ture corrected. The current reference goes through the leaf
cells where multiple current references are generated. Two
2.4-µA current references are through fast and slow buffer

bias module to generate bias voltage for fast buffers and
slow buffers, respectively.

The leaf cells are also divided into fast leaf cells and slow
leaf cells to achieve faster reference settling time. Through
the fast leaf cells, the unit current of 2.4 µA generates the
fast current references for the fast domain. One of the fast
current references is input into slow leaf cells to generate all
slow current references.

Settling time of fast references of voltage and current is
9 µs, which is the time to settle within 1 percent of the final
value. Settling time of slow references is 40 µs. All the gen-
erated voltage and current references in precision reference
block are summarized in Table 18-1.

18.2.5 V-CTAT Block

The V-CTAT block provides a temperature-dependent voltage reference to ensure flash reliability. Its output voltage is com-
plementary to ambient temperature (CTAT). Linear variation range of output voltage over the temperature range of –40 ºC to
150 ºC with reference to output voltage at 55 ºC is from ±0 to ±15 percent.

18.2.6 IMO Reference Generator

This generator produces a separate trimmable current reference for the internal main oscillator (IMO) block. It is implemented
to cancel the temperature drift of the clock frequency so as to achieve the ±2 percent accuracy. The CTAT and PTAT current
outputs of the bandgap block are used for this purpose. See Figure 18-1.

18.3 Configuration

During power-up, the precision reference block is initialized with default trim settings saved in nonvolatile latch (NVL) and
SFLASH. These settings are programmed during manufacturing and no field adjustment is needed.

Table 18-1.  Voltage and Current References

Voltage or Current References Accuracy Targets Potential Block Usage/Destination

1.2 V ±2% LVD – Low voltage detect on external supply

1.2 V ±2% Capsense reference

1.024 V ±1% SAR ADC

1.024 V ±2% Flash 

1.024 V ±2% BOD – To detect brownouts on internal voltages

1.024 V ±2% Capsense reference

0.8 V ±2% IMO – Comparator threshold in relaxation oscillator

0.8 V ±2% LDO – VCCD and VCCA regulator reference

2.4 µA ±2.5% Bias current for analog circuits

3 µA ±2.5% IREF for flash macro

9.6 µA ±5% IREF for IMO, with programmable tempco



190 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Precision Reference



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 191

19.   SAR ADC

The PSoC® 4 has one successive approximation register analog-to-digital convertor (SAR ADC). The SAR ADC is designed
for applications that require moderate resolution and high data rate. It consists of the following blocks (see Figure 19-1):

■ SARMUX

■ SAR ADC core

■ SARREF

■ SARSEQ 

The SAR ADC core is a fast 12-bit 1 Msps ADC with SAR architecture. Preceding the SAR ADC is the SARMUX, which can
route external pins and internal signals (AMUXBUS-A/-B, CTBm, temperature sensor output) to the eight internal channels of
SAR ADC. SARREF is used for multiple reference selection. The sequencer controller SARSEQ is used to control SARMUX
and SAR ADC to do an automatic scan on all enabled channels without CPU intervention and for pre-processing, such as
averaging the output data. 

The ninth channel is an injection channel that is used by firmware for infrequent and incidental sampling of pins and signals,
for example, the internal temperature sensor.

The result from each channel is double-buffered and a complete scan may be configured to generate an interrupt at the end
of the scan. Alternatively, the data can be routed to programmable digital blocks (UDBs) for further processing without CPU
intervention. The sequencer may also be configured to flag overflow, collision, and saturation errors that can be configured to
assert an interrupt.

For more flexibility, it is also possible to control most analog switches, including those in the SARMUX with the UDBs or firm-
ware. This makes it possible to implement an alternative sequencer with the UDBs or firmware. 

19.1 Features
■ Wide operation voltage range: 1.71 V to 5.5 V

■ Maximum 1 Msps sample rate

■ Eight individually configurable channels and one injection channel

■ Per channel 

❐ Input from external pin or internal signal (AMUXBUS/CTBm/temperature sensor)

❐ Up to four programmable acquisition times

❐ Default 12-bit resolution, selectable alternate resolution: either 8-bit or 10-bit 

❐ Single-ended or differential measurement

❐ Averaging

❐ Results are double-buffered

❐ Result may be left or right justified

■ Scan triggered by firmware, timer, pin, or UDB

❐ One shot–periodic or continuous mode

■ Hardware averaging support 

❐ First order accumulate

❐ Samples averaging from 2 to 256 (powers of 2)

■ Results represented in 6-bit sign extended values

■ Selectable voltage references



192 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

❐ Internal VDDA and VDDA/2 references

❐ Internal 1.024-V reference with buffer

❐ External reference

■ Interrupt generation

❐ Finished scan conversion

❐ Per channel saturation detect and over-range (configurable) detect 

❐ Scan results overflow

❐ Collision detect 

■ Configurable injection channel

❐ Triggered by firmware

❐ Can be interleaved between two scan sequences (tailgating)

❐ Selectable sample time, resolution, single-ended or differential, averaging

■ Option to process data in programmable digital blocks to off-load CPU

■ Option to control switches from programmable digital blocks

■ Option to control SAR ADC and switches from programmable digital blocks

❐ Implement an alternative SAR sequencer

❐ Able to achieve 1 Msps

■ Low-power modes

❐ ADC core and reference voltage has low-power mode separately

19.2 Block Diagram
Figure 19-1.  Block Diagram

AHB, DSI

SARADC

VPLUS

VMINUS

Sequencer

Configure 
Registers

SARSEQ

SARREF

P
2.

0 
- 

P
2.

7

Vrefs Ref-bypassCTBm, 
AMUXBUS

Data

Control

SARMUX
and Temp



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 193

SAR ADC

19.3 How it Works
This section includes the following contents: 

■ Introduction of each block: SAR ADC core, SARMUX, 
SARREF, and SARSEQ

■ SAR ADC system resource: Interrupt, low-power mode, 
and SAR ADC status

■ System operation mode

❐ Register mode

❐ DSI mode

■ Configuration examples

19.3.1 SAR ADC Core

PSoC 4 SAR ADC core is a 12-bit SAR ADC. Maximum
sample rate for this ADC is 1 Msps operating at 18-MHz
clock for PSoC 4200 and 806 ksps operating at 14.5 MHz
for PSoC 4100.

Features: 

■ Fully differential architecture; also supports single-ended 
mode

■ 12-bit resolution and a selectable alternate resolution: 
either 8-bit or 10-bit

■ Programmable acquisition time

■ Programmable power mode (full, one-half, one-quarter)

■ Supports single and continuous conversion mode

19.3.1.1 Single-ended and Differential Mode

PSoC 4 SAR ADC can operate in single-ended and differen-
tial mode. It is designed in a fully differential architecture,
optimized to provide 12-bit accuracy in the differential mode
of operation. It gives full range output (0 to 4095) for differ-
ential inputs in the range of –VREF to +VREF. SAR ADC can
be configured in single-ended mode by fixing the negative
input. Differential or single-ended mode can be configured
by channel configuration register, SAR_CHANx_CONFIG. 

The single-ended mode has six options of negative input:
VSSA, VREF, P2.1, P2.3, P2.5, and P2.7. It is configured by

the global configuration register SAR_CTRL. When Vminus
is connected to P2.1..P2.7, the single-ended mode is equiv-
alent to differential mode. Note that temperature sensor can
only be used in single-ended mode; it will override the
SAR_CTRL [11:9] to 0. The differential conversion is not
available for temperature sensors; the result is undefined.

19.3.1.2 Input Range

All inputs should be in the range of VSSA ~VDDA. Input volt-
age range is also limited by VREF. If voltage on negative
input is Vn, ADC reference is VREF, the positive input range
is Vn ± VREF. This criteria applies for both single-ended and
differential modes. 

Note that Vn ± VREF should be in the range of VSSA to VDDA.
For example, if negative input is connected to VSSA, positive
input range is 0 to VREF, not –VREF to VREF. This is because
the signal cannot go below VSSA. Only half of the ADC
range is usable because the positive input signal cannot
swing below VSS, which effectively only generates an 11-bit
result. 

19.3.1.3 Result Data Format

Result data format is configurable from two aspects: 

■ Singed/unsigned

■ Left/right alignment

When the result is considered signed, the most significant
bit of the conversion is used for sign extension to 16 bits
with ‘1’. For an unsigned conversion, the result is zero
extended to 16-bits. It can be configured by
SAR_SAMPLE_CTRL [3:2] for differential and single-ended
conversion, respectively.

The sample value can either be right-aligned or left-aligned
within the 16 bits of the result register. By default, data is
right-aligned in data[11:0], with sign extension to 16 bits, if
required. A lower resolution combined with left-alignment
will cause lower significant bits to be made zero.

Combined with signed and unsigned, and left and right
alignment for 12-, 10-, and 8-bit conversion, the result data
format can be shown as follows. 

Table 19-1.  Result Data Format

Alignment
Signed/

Unsigned
Resolution

Result Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Right Unsigned

12 – – – – 11 10 9 8 7 6 5 4 3 2 1 0

10 – – – – – – 9 8 7 6 5 4 3 2 1 0

8 – – – – – – – – 7 6 5 4 3 2 1 0

Right Signed

12 11 11 11 11 11 10 9 8 7 6 5 4 3 2 1 0

10 9 9 9 9 9 9 9 8 7 6 5 4 3 2 1 0

8 7 7 7 7 7 7 7 7 7 6 5 4 3 2 1 0

Left –

12 11 10 9 8 7 6 5 4 3 2 1 0 – – – –

10 9 8 7 6 5 4 3 2 1 0 – – – – – –

8 7 6 5 4 3 2 1 0 – – – – – – – –



194 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

19.3.1.4 Negative Input Selection

The negative input connection choice affects the voltage range, SNR, and effective resolution (see Table 19-2). In single-
ended mode, negative input of the SAR ADC can be connected to VSSA, VREF, or P2.1/P2.3/P2.5/P2.7.

To get a single-ended conversion with 12-bits, it is neces-
sary to connect VREF to the negative input of the SAR ADC;
then, the input range can be from 0 to 2 × VREF. 

Note that single-ended conversions with Vminus connected
to P2.1, P2.3, P2.5, or P2.7 are electrically equivalent to dif-
ferential mode. However, when the odd pin of each differen-
tial pair is connected to the common alternate ground, these
conversions are 11-bit, because measured signal value
(SARMUX.vplus) cannot go below ground. 

19.3.1.5 Resolution

PSoC 4 supports 12-bit resolution (default) and a selectable
alternate resolution: either 8-bit or 10-bit for each channel. 

Resolution affects conversion time:

Conversion time (sar_clk) = resolution (bit) + 2

Total acquisition and conversion time (sar_clk) = acquisi-
tion time + resolution (bit) + 2

For 12-bit conversion and acquisition time = 4, 18 sar_clk is
required. For example, if sar_clk is 18 MHz, 18 sar_clk is
required for conversion and you will get 1 Msps conversion

rate. Lower resolution results in higher conversion rate. 

19.3.1.6 Acquisition Time

Acquisition time is the time taken by sample and hold (S/H)
circuit inside SAR ADC to settle. After acquisition time, the
input signal source is disconnected from the SARADC core,
and the output of the S/H circuit will be used for conversion.
Each channel can select one from four acquisition time
options, from 4 to 1024 SAR clock cycles defined in global
configuration registers SAR_SAMPLE_TIME01 and
SAR_SAMPLE_TIME23. 

19.3.1.7 SAR ADC Clock

SAR ADC clock frequency must be between 1 MHz and
18 MHz for PSoC 4200 and 1 MHz to 14.5 MHz for PSoC
4100, which comes from the IMO via a clock divider. Note
that a fractional divider is not supported for SAR ADC. To
get a 1-Msps sample rate, an 18-MHz SAR ADC clock is
required. To achieve this, the system clock (IMO) must be
set to 36 MHz rather than 48 MHz. To get a 806-ksps sam-
ple rate for the PSoC 4100 device, IMO must be set to
29 MHz. A 12-bit ADC conversion with the default acquisi-

Table 19-2.  Negative Input Selection Comparison

Single-ended/
Differential

Signed/Unsigned
SARMUX 
Vminus

SARMUX
 Vplus Range

Result Register Maximum SNR

Single-ended N/Aa

a. For single-ended mode with Vminus connected to VSSA, conversions are effectively 11-bit because voltages cannot swing below VSSA on any PSoC 4 pin.
Because of this, the global configuration bit SINGLE_ENDED_SIGNED (SAR_SAMPLE_CTRL[2]) will be ignored and the result is always (0x000-0x7FF).

VSSA
+VREF

VSSA = 0

0x7FF

0x000
Better

Single-ended Unsigned VREF

+2 × VREF

VREF

VSSA = 0

0xFFF

0x800

0

Good

Single-ended Signed VREF

+2 × VREF

VREF

VSSA = 0

0x7FF

0x000

0x800

Good

Single-ended Unsigned Vx

Vx + VREF

Vx

Vx – VREF

0xFFF

0x800

0

Best

Single-ended Signed Vx

Vx + VREF

Vx

Vx – VREF

0x7FF

0x000

0x800

Best

differential Unsigned Vx

Vx + VREF

Vx

Vx – VREF

0xFFF

0x800

0

Best

differential Signed Vx

Vx + VREF

Vx

Vx – VREF

0x7FF

0x000

0x800

Best



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 195

SAR ADC

tion time of four clocks requires 18 clocks in which to com-
plete. A 10-bit and 8-bit conversion requires 16 and 14
clocks respectively.

19.3.1.8 SAR ADC Timing

Figure 19-2.  SAR ADC Timing

As the timing graph shows, there is a sar_clk delay before
raising start-of-conversion (SOC). A 12-bit resolution con-
version needs 14 clocks (one bit needs one sar_clk, plus
two excess sar_clk for G and F state). With acquisition time
equal to four sar_clk cycles by default, 18 clock sar_clk
cycles are required for total ADC acquisition and conver-
sion. After sample (acquisition), it will output the next pulse
(or dsi_sample_done), the SARMUX can route to other pin
and signal, it will be done automatically with sequencer con-
trol (see SARSEQ on page 203 for details).

19.3.2 SARMUX

SARMUX is an analog dedicated programmable multiplexer.
The main features of SARMUX are:

■ Switch on resistance: 600  (maximum)

■ Internal temperature sensor 

■ Controlled by sequencer controller block (SARSEQ), 
UDBs, or firmware.

■ Charge pump inside: 

❐ If VDDA < 4.0 V, charge pump should be turned on to 

reduce switch resistance

❐ If VDDA >= 4.0 V, charge pump is turned off and 

delivers VDDA as its output

■ Multiple inputs:

❐ Analog signals from pins (poort 2)

❐ Temperature sensor output

❐ CTBm output via sarbus0/1 (not fast enough to 
1 Msps) 

❐ AMUXBUS_A/_B (not fast enough to 1 Msps)

19.3.2.1 Analog Routing

SARMUX has many switches that may be controlled by
SARSEQ block (sequencer controller), firmware, or the DSI.
Sequencer and DSI are the hardware control method, which
can be masked by the hardware control bit in the register,
SAR_MUX_SWITCH_HW_CTRL. Different control meth-
ods have different control capability on the switches. See
Figure 19-3. 

F FSAMPLE SAMPLES1S2S3S4S5S6S7S8S9S10S11S12 S1S2S3S4S5S6

SOC

Data Data

S7S8S9S10G S11S12G* SAMPLE

SARADC CLK

DSI trigger

sample

State

EOC

Next

Data_out

18 sar_clk cycles



196 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

Figure 19-3.  SARMUX Switches and Control Capability

Sequencer control: The switches are controlled by the
sequencer in SARSEQ block. After configuring each chan-
nel's analog routing, it enables multi-channel automatic scan
in a round-robin fashion, without CPU intervention. Not
every switch can be controlled by the sequencer; see
Figure 19-3. The corresponding registers are:
SAR_CHANx_CONFIG, SAR_MUX_SWITCH0,
SAR_CTRL, and SAR_MUX_SWITCH_HW_CTRL. The
detailed configuration is available in register mode; see Set
SARMUX Analog Routing on page 214.

Firmware control: Programmable registers directly define
the VPLUS/VMINUS connection. It can control every switch
in SARMUX; see Figure 19-3. For example, in firmware con-
trol, it is possible to do a differential measurement between
any two pins or signals, not just two adjacent pins (as in
sequencer control). However, it needs CPU intervention for
multi-channel acquisition. The corresponding registers are:
SAR_MUX_SWITCH0, SAR_MUX_SWITCH_HW_CTRL.
and SAR_CTRL. The detailed configuration is available in
register mode; see Set SARMUX Analog Routing on
page 214.

DSI control: Switches are controlled by DSI signals from
the UDB, which can act as a secondary sequencer with a
customized logic design. DSI can control most switches,
except some design for test (DFT) switches. Thus, it can do
a differential measurement between any two pins and sig-

nals and firmware control. The detailed configuration is
available in DSI mode; see Set SARMUX Analog Routing on
page 211.

19.3.2.2 Analog Interconnection

PSoC 4 analog interconnection is very flexible. SAR ADC
can be connected to multiple inputs via SARMUX, including
both external pins (port 2) and internal signals. For example,
it can connect to a neighboring block such as CTBm through
a pair of wires, sarbus0 and sarbus1. It can also connect to
other pins except port 2 through AMUXBUS_A/_B, at the
expense of scanning performance (more parasitic coupling,
longer RC time to settle).

Several cases are discussed here to provide a better under-
standing of analog interconnection. 

P
0[

7
]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

P3[7]

P3[6]
P3[5]

P3[4]

P3[3]
P3[2]

P3[1]

P3[0]

P
2[

7]

P
2[

6]

P
2[

5]

P
2[

4]
P

2[
3]

P
2[

2]

P
2[

1]

P
2[

0]

P
1[

7]

P
1[

6]

P
1[

5]
P

1[
4]

P
1[

3]
P

1[
2]

P
1[

1]

P
1[

0]

P4[3]

P4[2]

P4[1]
P4[0]

LPCOMP0
vplus
vminux

LPCOMP1
vplus
vminux

CSIDAC1
iout

CSIDAC0
iout

SARADC0
vplus
vminus
ext_vref

CSD0
source
shield

csh

cmod

+-

~

1x 10
x

+ -

~

1x 10
x

Port0 Port1 Port2

P
ort3

P
ort4

CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

CAP
SENSE

Firmware Only

Firmware + DSI

Firmware + DSI + Seq

AMUXBUS_A
AMUXBUS_B

sarbus 0

sarbus 1



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 197

SAR ADC

Input from External Pins

Figure 19-4 shows how P2.0 and P2.1 are connected to SAR ADC as a differential pair (Vpuls/Vminus) via switches. These
two switches can be controlled by sequencer, firmware, or DSI. However, if P2.1 and P2.2 need to be used as differential
pair, sequencer does not work; use firmware or DSI. 

Figure 19-4.  Input from External Pins

P
0[

7
]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

P3[7]

P3[6]
P3[5]

P3[4]

P3[3]
P3[2]

P3[1]

P3[0]

P
2[

7]

P
2[

6]
P

2[
5]

P
2[

4]
P

2[
3]

P
2[

2]

P
2[

1]
P

2[
0]

P
1[

7]

P
1[

6]

P
1[

5]

P
1[

4]

P
1[

3]
P

1[
2]

P
1[

1]

P
1[

0]

P4[3]

P4[2]

P4[1]
P4[0]

LPCOMP0
vplus
vminux

LPCOMP1
vplus
vminux

CSIDAC1
iout

CSIDAC0
iout

SARADC0
vplus
vminus
ext_vref

CSD0
source
shield

csh

cmod

+-

~

1x 10
x

+ -

~

1x 10
x

Port0 Port1 Port2

P
ort3

P
ort4

CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

CAP
SENSE

AMUXBUS_A
AMUXBUS_B

sarbus 0

sarbus 1

Switch Closed 

Switch open or don’t care



198 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

Input from Analog Bus (AMUXBUS_A/_B)

Figure 19-5 shows how P0.0, P0.1 are connected to ADC as differential pair. Additional switches must connect P0.0 and P0.1
to two analog buses: AMUXBUS_A and AMUX-BUS_B, and then connect AMUXBUS_A and AMUXBUS_B to ADC. 

The additional switches reduce the scanning performance (more parasitic coupling, longer RC time to settle) – it is not fast
enough to 1 Msps. This is not recommended for external signals; use port 2, if possible. 

Figure 19-5.  Input from Analog Bus 

P
0[

7
]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

P3[7]

P3[6]
P3[5]

P3[4]

P3[3]
P3[2]

P3[1]

P3[0]

P
2[

7]

P
2[

6]
P

2[
5]

P
2[

4]
P

2[
3]

P
2[

2]

P
2[

1]
P

2[
0]

P
1[

7]

P
1[

6]

P
1[

5]

P
1[

4]

P
1[

3]
P

1[
2]

P
1[

1]

P
1[

0]

P4[3]

P4[2]

P4[1]
P4[0]

LPCOMP0
vplus
vminux

LPCOMP1
vplus
vminux

CSIDAC1
iout

CSIDAC0
iout

SARADC0
vplus
vminus
ext_vref

CSD0
source
shield

csh

cmod

+-

~

1x 10
x

+ -

~

1x 10
x

Port0 Port1 Port2

P
ort3

P
ort4

CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

CAP
SENSE

AMUXBUS_A
AMUXBUS_B

sarbus 0

sarbus 1

Switch Closed 

Switch open or don’t care



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 199

SAR ADC

Input from CTBm Output via sarbus

SAR ADC can be connected to CTBm output via sarbus 0/1. Figure 19-6 shows how to connect an opamp (configured as a
follower) output to a single-ended SAR ADC. Negative terminal is connected to VREF. Figure 19-7 shows how to connect two
opamp outputs to SAR ADC as a differential pair. It must connect opamp output to sarbus 0/1, then connect SAR ADC input
to sarbus 0/1. Because there are also additional switches, it is not fast enough to 1 Msps. However, two on-chip opamps add
value for many applications. 

Figure 19-6.  Input from CTBm Output via sarbus

P
0[

7
]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

P3[7]

P3[6]
P3[5]

P3[4]

P3[3]
P3[2]

P3[1]

P3[0]

P
2[

7]

P
2[

6]
P

2[
5]

P
2[

4]
P

2[
3]

P
2[

2]

P
2[

1]
P

2[
0]

P
1[

7]

P
1[

6]

P
1[

5]

P
1[

4]

P
1[

3]
P

1[
2]

P
1[

1]

P
1[

0]

P4[3]

P4[2]

P4[1]
P4[0]

LPCOMP0
vplus
vminux

LPCOMP1
vplus
vminux

CSIDAC1
iout

CSIDAC0
iout

SARADC0
vplus
vminus
ext_vref

CSD0
source
shield

csh

cmod

+-

~

1x 10
x

+ -

~

1x 10
x

Port0 Port1 Port2

P
ort3

P
ort4

CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

CAP
SENSE

AMUXBUS_A
AMUXBUS_B

sarbus 0

sarbus 1

Switch Closed 

Switch open or don’t care



200 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

Figure 19-7.  Inputs from CTBm Output via sarbus0 and sarbus1

P
0[

7
]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

P3[7]

P3[6]
P3[5]

P3[4]

P3[3]
P3[2]

P3[1]

P3[0]

P
2[

7]

P
2[

6]

P
2[

5]

P
2[

4]
P

2[
3]

P
2[

2]

P
2[

1]

P
2[

0]

P
1[

7]

P
1[

6]

P
1[

5]
P

1[
4]

P
1[

3]
P

1[
2]

P
1[

1]

P
1[

0]

P4[3]

P4[2]

P4[1]
P4[0]

LPCOMP0
vplus
vminux

LPCOMP1
vplus
vminux

CSIDAC1
iout

CSIDAC0
iout

SARADC0
vplus
vminus
ext_vref

CSD0
source
shield

csh

cmod

+-

~

1x 10
x

+ -

~

1x 10
x

Port0 Port1 Port2

CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

CAP
SENSE

AMUXBUS_A
AMUXBUS_B

sarbus 0

sarbus 1

Switch Closed 

Switch open or don’t care



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 201

SAR ADC

Input from Temperature Sensor

One on-chip temperature sensor is available for temperature sensing and temperature-based calibration. Note for tempera-
ture sensor, differential conversions are not available (conversion result is undefined), thus always use it in singled-ended
mode. Reference is from internal 1.024 V.

As Figure 19-8 shows, temperature sensor can be routed to positive input of SAR ADC via switch, which can be controlled by
sequencer, firmware, or DSI. Setting the MUX_FW_TEMP_VPLUS bit (SAR_MUX_SWITCH0[17]) can enable the tempera-
ture sensor and connect its output to VPLUS of SAR ADC; clearing this bit will disable temperature sensor by cutting its bias
current.

Figure 19-8.  Inputs from Temperature Sensor

P
0[

7
]

P
0[

6
]

P
0[

5
]

P
0[

4
]

P
0[

3
]

P
0[

2
]

P
0[

1
]

P
0[

0
]

P3[7]

P3[6]
P3[5]

P3[4]

P3[3]
P3[2]

P3[1]

P3[0]

P
2[

7]

P
2[

6]
P

2[
5]

P
2[

4]
P

2[
3]

P
2[

2]

P
2[

1]
P

2[
0]

P
1[

7]

P
1[

6]

P
1[

5]

P
1[

4]

P
1[

3]
P

1[
2]

P
1[

1]

P
1[

0]

P4[3]

P4[2]

P4[1]
P4[0]

LPCOMP0
vplus
vminux

LPCOMP1
vplus
vminux

CSIDAC1
iout

CSIDAC0
iout

SARADC0
vplus
vminus
ext_vref

CSD0
source
shield

csh

cmod

+-

~

1x 10
x

+ -

~

1x 10
x

Port0 Port1 Port2

P
ort3

P
ort4

CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

CAP
SENSE

AMUXBUS_A
AMUXBUS_B

sarbus 0

sarbus 1

Switch Closed 

Switch open or don’t care



202 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

19.3.3 SARREF

The main features of SARREF are: 

■ Reference options: VDDA, VDDA/2, 1.024-V bandgap (±1 percent), external reference

■ Reference buffer + bypass cap to enhance internal reference drive capability

Figure 19-9.  SARMUX Block Diagram

19.3.3.1 Reference Options

The reference voltage selection for the SAR ADC consists of
a reference mux and switches inside the SARREF. The
selection allows connecting VDDA, VDDA/2, and 1.024-V
internal reference from a bandgap or an external VREF con-
nected to a GPIO pin, P1.7. The control for the reference
mux in SARREF is in the global configuration register
SAR_CTRL [6:4].

19.3.3.2 Bypass Capacitors

The internal references, 1.024 V from bandgap, VDDA/2, or
VDDA are buffered with the reference buffer. This reference

may be routed to P1.7 where an external capacitor can be
used to filter internal noise that may exist on the reference
signal.

The SAR ADC sample rate cannot exceed 166 ksps without
an external reference bypass capacitor. For example, with-
out a bypass capacitor and with 1.024-V internal VREF, the
maximum SAR ADC clock frequency is 3 MHz. When using
an external reference, it is recommended that an external
capacitor is used. Bypass capacitors can be enabled by set-
ting SAR_CTRL [7].

Table 19-3 lists different reference modes and its maximum
frequency/sample rate for 12-bit continuous mode operation.

1.024-V internal VREF startup time varies with the different bypass capacitor size, Table 19-4 lists two common values for the
bypass capacitor and its startup time specification. If reference selection is changed between scans, make sure the 1.024-V
internal VREF is settled when SAR ADC starts sampling.

S
A

R
R

E
F

M
U

X

Reference 
buffer

Vref_ext / 
bypass cap

VDD

VDD/2B
an

d
g

a
p

Internal 1.024V Vref

SARREF

P1.7

Vref for 
SAR ADC 

core

Table 19-3.  Reference Modes

Reference Mode 
Reference 

SAR_CTRL [6:4]
Bypass Cap 

SAR_CTRL[7]
Buffer

Max 
Frequency

Max Sample 
Rate

1.024 V internal VREF without bypass cap 4 0 Yes 3 MHz 166 ksps

1.024 V internal VREF with bypass cap 4 1 Yes 18 MHz 1 Msps

External VREF 5 X No 18 MHz 1 Msps

VDDA/2 without bypass cap 6 0 Yes 3 MHz 166 ksps

VDDA/2 with bypass cap 6 1 Yes 18 MHz 1 Msps

VDDA 7 X Yes 18 MHz 1 Msps

Table 19-4.  Bypass Capacitor Values

Internal VREF Startup Time Maximum Specification

Startup time for reference with external capacitor (1 uF) 2 ms

Startup time for reference with external capacitor (100 nF) 200 µs



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 203

SAR ADC

19.3.3.3 Input Range versus Reference

All inputs should be in the range of VSSA to VDDA. Input volt-
age range is limited by VREF selection. If negative input is
Vn, ADC reference is VREF and the positive input range is
Vn ± VREF. This criteria applies for both single-ended and
differential modes as long as both negative and positive
inputs stay within VSS to VDD.

19.3.4 SARSEQ

SARSEQ is a dedicated sequencer controller that automati-
cally sequences the input mux from one channel to the next
while placing the result in an array of registers, one per
channel.

■ Control SARMUX analog routing automatically without 
CPU intervention

■ Control SAR ADC core (such as resolution, acquisition 
time, and reference)

■ Receive data from SAR ADC and pre-process (average, 
range detect)

■ Results are double-buffered so the CPU can safely read 
the results of the last scan while the next scan is in prog-
ress. 

The features of SARSEQ are:

■ Eight channels can be individually enabled as an auto-
matic scan without CPU intervention

■ A ninth channel (injection channel) for infrequent signal 
to insert in an automatic scan 

■ Per channel selectable

❐ Input from external pin or internal signal (AMUXBUS/
CTBm/temperature sensor)

❐ Up to four programmable acquisition time

❐ Default 12-bit resolution, selectable alternate resolu-
tion: either 8-bit or 10-bit 

❐ Single-ended or differential mode

❐ Result averaging 

■ Scan triggering

❐ One shot, periodic, or continuous mode

❐ Triggered by any digital signal or input from GPIO pin

❐ Triggered by internal UDB of fixed-function block

❐ Software triggered

■ Hardware averaging support 

❐ First order accumulate

❐ From 2 to 256 samples averaging (powers of 2)

❐ Results in 16-bit representation

■ Double buffering of output data

❐ Left or right adjusted results

❐ Results in working register and result register

■ Interrupt generation

❐ Finished scan conversion

❐ Per control mode, each channel saturation detect

❐ Per channel over range (configurable) detect 

❐ Scan results overflow

❐ Collision detect 

■ Configurable injection channel

❐ Triggered by firmware

❐ Can be interleaved between two scan sequences 
(tailgating)

❐ Selectable sample time, resolution, single ended, or 
differential, averaging



204 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

Figure 19-10.  SARSEQ Block Diagram

19.3.4.1 Averaging

The SARSEQ block has a 20-bit accumulator and shift reg-
ister to implement averaging. Averaging is after signed
extension. The global configuration SAR_SAMPLE_CTRL
register specifies the details of averaging. 

In register control mode, channel configuration
SAR_CHAN_CONFIG register has an enable bit (AVG_EN)
to enable averaging. In DSI control mode, average is
enabled by dsi_cfg_average signal.

In global configuration, AVG_CNT (SAR_SMAPLE_CTRL
[6:4]) specifies the number of samples (N) according to this
formula:

N=2^(AVG_CNT+1) N range = [2..256]

For example, if AVG_CNT (SAR_SMAPLE_CTRL [6:4]) = 3,
then N = 16.

AVG_SHIFT bit (SAR_SAMPLE_CTRL[7]) is used to shift
the result to get averaged; it is set if averaging is enabled.

If a channel is configured for averaging, the SARSEQ will
take N consecutive samples of the specified channel in
every scan. Because the conversion result is 12-bit and the
maximum value of N is 256 (left shift 8 bits), the 20-bit accu-
mulator will never overflow. 

If AVG_SHIFT in SAR_SAMPLE_CTRL register is set, the
accumulated result is shifted right AVG_CNT + 1 bits to get
averaged. If it is not, the result is forced to shift right to
ensure it fits in 16 bits. Right shift is done by maximum (0,
AVG_CNT-3) – if the number of samples is more than 16
(AVG_CNT >3), then the accumulation result is shifted right

AVG_CNT-3bits; it AVG_CNT<3, the result is not shifted.
Note in this case, the average result is bigger than expected;
it is recommended to set AVG_SHIFT.

After shifting, the result is stored in the 16-bit result register
after sign extended for sign conversion. Averaging always
uses the maximum resolution 12-bit and right-alignment –
the RESOLUTION and LEFT_ALIGN bits of the channel are
ignored. 

19.3.4.2 Range Detection

The SARSEQ supports range detection to allow automatic
detection of sample values compared to two programmable
thresholds without CPU involvement. Range detection is
defined by the SAR_RANGE_THRES register. The
RANGE_LOW field (SAR_RANGE_THRES [15:0]) value
defines the lower threshold and RANGE_HIGH field
(SAR_RANGE_THRES [31:16]) defines the upper threshold
of the range.

The SAR_RANGE_COND bits define the condition that trig-
gers a channel maskable range detect interrupt
(RANGE_INTR). The following conditions can be selected:

0: result < RANGE_LOW (below range)

1: RANGE_LOW  result < RANGE_HIGH (inside range)

2: RANGE_HIGH  result (above range)

3: result <RANGE_LOW || RANGE_HIGH <= result (outside
range)

See Range Detection Interrupts on page 207 for details.

Sequencer logic 
& state machine

CHAN_RESULT0

CHAN_RESULT7

INJ_CHAN_RESULT

STATUS

RANGE_COND

RANGE_THRES

S
A

R
M

U
X

P
O

R
T

 2
: 

 P
2.

0…
P

2.
7

?
?

?

AMUXBUS_A/_B

sarbus 0/1

Temperature Sensor

Accumulate/Average
/Align/Sign extended

INTR_MASK

INTR

SARADC

Saturation 
Detect

<
=
>

sa
r_

d
si

_d
at

a[
]

AHB BUS interface
SARSEQ

saturate_intr

ra
n

g
e_

in
tr

eo
s/

co
lli

si
o

n
/o

v
er

fl
o

w
_i

n
tr

sa
r_

in
te

rr
u

p
t

?
?
?

VPLUS

VMINUS
D

S
I i

n
p

u
t 

fr
o

m
 U

D
B

D
S

I o
u

tp
u

t 
to

 U
D

B

Configuration
Registers

Result Registers

SARREF

P1.7



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 205

SAR ADC

19.3.4.3 Double Buffer

Double buffering is used so that firmware can read the
results of a complete scan while the next scan is in prog-
ress. The SAR ADC results are written to a set of working
registers until the scan is complete, at which time the data is
copied to a second set of registers where the data can be
read by the user's application. Allow sufficient time for the
firmware to read the previous scan before the present scan
is completed. Failing to do so may result in corrupted data.
All input channels are double buffered with 16 registers,
except the injection channel. The injection channel is not
required to be doubled buffered because it is not normally
part of a normal channel scan.

19.3.4.4 Injection Channel

The injection channel is similar to the other channels, with
the exception that it is not part of a regular scan. The injec-
tion channel is used for incidental or rare conversions; for
example, sampling the temperature sensor every two sec-
onds. Note that if SAR is operating in continuous mode,
enabling the injection channel will change the sample rate.

The injection channel can only be controlled by the firmware
with a firmware trigger (one-shot). This means the injection
channel does not support continuous or DSI trigger. It also
does not support output of its data or interrupt to the DSI
bus. Because the only trigger is one-shot, there is no need
for double buffering or an overflow interrupt.

The conversions for the injection channel can be configured
in the same way as the regular channels by setting
SAR_INJ_CHAN_CONFIG register, it supports: 

■ Pin or signal selection

■ Single-ended or differential selection

■ Choice of resolution between 12-bit or the globally spec-
ified SUB_RESOLUTION

■ Sample time select from one of the four globally speci-
fied sample times

■ Averaging select

It supports the same interrupts as the regular channel
except the overflow interrupt. 

■ Maskable end-of-conversion interrupt INJ_EOC_INTR

■ Maskable range detect interrupt INJ_RANGE_INTR

■ Maskable saturation detect interrupt 
INJ_SATURATE_INTR

■ Maskable collision interrupt INJ_COLLISION_INTR

SAR_INTR, SAR_INTR_MASK, SAR_INTR_MASKED, and
SAR_INTR_SET are the corresponding registers. 

These features are described in detail in Set Global
SARSEQ Configuration on page 211, Set Channel Configu-
rations on page 212, and Interrupt on page 207. 

Tailgating

The injection channel conversion can be triggered by setting
the start or enable bit INJ_START_EN
(SAR_INJ_CHAN_CONFIG [31]). If there is an ongoing
scan, it is recommended to select tailgating by setting

INJ_TAILGATING=1 (SAR_INJ_CHAN_CONFIG [30]). The
injection channel will be scanned at the end of the ongoing
scan of regular channels without any collision. However, if
there is no ongoing scan or the SAR ADC is idle, and tailgat-
ing is selected, INJ_START_EN will enable the injection
channel to be scanned at the end of the next scan of regular
channels. In this case, tailgating is not necessary.

If tailgating is not selected, the injection channel will also be
scanned at the end of the ongoing scan of regular channels,
but it will cause a collision and generate a collision interrupt
(INJ_COLLISION_INTR). Another potential problem without
tailgating is that it can cause the next scan of the regular
channels to collide with the injection channel conversion
(FW/DSI_COLLISION_INTR is raised). The regular scan is
postponed until the injection scan is finished, thus causing
jitter on a regular scan. Note that continuous trigger and DSI
trigger level mode will never trigger a collision interrupt. 



206 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

Figure 19-11.  Injection Channel Flow Chart

The disadvantage of tailgating is that it may be a long time before the next trigger occurs. If there is no risk of colliding or
causing jitter on the regular channels, the injection channel can be used safely without tailgating.

After completing the conversion for the injection channel, the end-of conversion interrupt (INJ_EOC_INTR) is set and the
INJ_START_EN bit is cleared. The conversion data of the injection is put in the SAR_INJ_RESULT register. Similar to the
SAR_CHAN_RESULT, the registers contain mirror bits for "valid" (=INJ_EOC_INTR), range detect, saturation detect inter-
rupt, and a mirror bit of the collision interrupt (INJ_COLLISSION_INTR).

Figure 19-12 is an example when injection channel is enabled during a continuous scan (channel 1, 3, 5, and 7 are enabled),
and tailgating is enabled.

Note that the INJ_START_EN bit is immediately cleared when the SAR is disabled (but only if it was enabled before).

Figure 19-12.  Injection Channel Enabled with Tailgating

Ongoing 
scan? 

Trigger injection 
channel

Tailgating?

Ongoing 
scan?

Y

Scan injection channel  
after the ongoing scan

Scan injection 
channel

Generate interrupt 
(INJ_COLLISION_INTR)

Y N

N

Y

May collide with next scan of 
regular channels 

(FW/DSI_COLLISION_INT)

N

Scan injection channel  
after the ongoing scan

Regular Scan
Channel 1,3,5,7

Injection 
Channel 

CONTINUOUS
INJ_START_EN 

INJ_TAILGATING=1 

EOC_INJ_INTR=1

INJ_START_EN =0

Fill SAR_INJ_RESULT

Regular Scan
Channel 1,3,5,7

Regular Scan
Channel 1,3,5,7



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 207

SAR ADC

19.3.5 Interrupt

Each of the interrupts described in this section has an inter-
rupt mask in the SAR_INTR_MASK register. By making the
interrupt mask low, the corresponding interrupt source is
ignored. The SAR interrupt is generated if the interrupt flag
is high and the corresponding interrupt source is pending. 

When servicing an interrupt, the interrupt service routine
(ISR) clears the interrupt source by writing a ‘1’ to the inter-
rupt bit after reading the data. 

The SAR_INTR_MASKED register is the logical AND
between the interrupts sources and the interrupt mask. This
provides a convenient way for the firmware to determine the
source of the interrupt.

For verification and debug purposes, a set bit (such as
EOS_SET) is used to trigger each interrupt. This allows the
firmware to generate an interrupt without the actual event
occurring.

19.3.5.1 End-of-Scan Interrupt (EOS_INTR)

After completing a scan, the end-of-scan interrupt
(EOS_INTR) is raised. Firmware clears this interrupt after
picking up the data from the RESULT registers. 

Optionally, the EOS_INTR can also be sent out on the DSI
bus by setting the EOS_DSI_OUT_EN bit in
SAR_SAMPLE_CTRL [31]. The EOS_INTR signal is main-
tained on the DSI bus for two system clock cycles. These
cycles coincide with the data_valid signal for the last chan-
nel of the scan (if selected).

EOS_INTR can be masked by making the EOS_MASK bit 0
in the SAR_INTR_MASK register. EOS_MASKED bit of the
SAR_INTR_MASKED register is the logic AND of the inter-
rupt flags and the interrupt masks. Writing a ‘1’ to EOS_SET
bit in SAR_INTR_SET register can set the EOS_INTR,
which is intended for debug and verification.

19.3.5.2 Overflow Interrupt

If a new scan completes and the hardware tries to set the
EOS_INTR and EOS_INTR as high (firmware does not clear
it fast enough), then an overflow interrupt
(OVERFLOW_INTR) is generated by the hardware. This
usually means that the firmware is unable to read the previ-
ous results before the current scan completes. The old data
will be overwritten. 

OVERFLOW_INTR can be masked by making the
OVERFLOW_MASK bit 0 in SAR_INTR_MASK register.
OVERFLOW_MASKED bit of SAR_INTR_MASKED register
is the logic AND of the interrupt flags and the interrupt
masks, which is for firmware convenience. Writing a ‘1’ to
the OVERFLOW_SET bit in SAR_INTR_SET register can
set OVERFLOW_INTR, which is intended for debug and
verification.

19.3.5.3 Collision Interrupt

It is possible that a new trigger is generated while the
SARSEQ is still busy with the scan started by the previous
trigger. Therefore, the scan for the new trigger is delayed
until after the ongoing scan is completed. It is important to
notify the firmware that the new sample is invalid. This is

done through the collision interrupt, which is raised any time
a new trigger, other than the continuous trigger, is received.

There are three collision interrupts: for the firmware trigger
(FW_COLLISION_INTR), for the DSI trigger
(DSI_COLLISION_INTR), and for the injection channel
(INJ_COLLISION_INTR). This allows the firmware to iden-
tify which trigger collided with an ongoing scan.

When the DSI trigger is used in level mode, the
DSI_COLLISION_INTR will never be set. 

The three collision interrupts can be masked by making the
corresponding bit ‘0’ in the SAR_INTR_MASK register. The
corresponding bit in the SAR_INTR_MASKED register is the
logic AND of the interrupt flags and the interrupt masks.
Writing a ‘1’ to the corresponding bit in SAR_INTR_SET reg-
ister can set OVERFLOW_INTR, which is intended for
debug and verification.

19.3.5.4 Injection End-of-Conversion Interrupt 
(INJ_EOC_INTR)

After completing a conversion for the injection channel, the
injection end-of-conversion interrupt is raised
(INJ_EOC_INTR). The firmware clears this interrupt after
picking up the data from the INJ_RESULT register.

Note that if the injection channel is tailgating a scan, the
EOS_INTR is raised in parallel to starting the injection chan-
nel conversion. The injection channel is not considered part
of the scan.

INJ_EOC_INTR can be masked by making the
INJ_EOC_MASK bit ‘0’ in the SAR_INTR_MASK register.
The INJ_EOC_MASKED bit of SAR_INTR_MASKED regis-
ter is the logic AND of the interrupt flags and the interrupt
masks. Writing a ‘1’ to the INJ_EOC_SET bit in
SAR_INTR_SET register can set INJ_EOC_INTR, which is
intended for debug and verification. 

19.3.5.5 Range Detection Interrupts

Range detection interrupt flag can be set after averaging,
alignment, and sign extension (if applicable). This means it
is not required to wait for the entire scan to complete to
determine whether a channel conversion is over-range. The
threshold values need to have the same data format as the
result data.

Range detection interrupt for a specified channel can be
masked by setting the SAR_RANGE_INTR_MASK register
specified bit to ‘0’. Register SAR_RANGE_INTR_MASKED
reflects a bitwise AND between the interrupt request and
mask registers. If the value is not zero, then the SAR inter-
rupt signal to the NVIC is high. 

SAR_RANGE_INTR_SET can be used for debug/verifica-
tion. Write a '1' to set the corresponding bit in the interrupt
request register; when read, this register reflects the inter-
rupt request register.

There is a range detect interrupt for each channel
(RANGE_INTR and INJ_RANGE_INTR).

19.3.5.6 Saturate Detection Interrupts

The saturation detection is always applied to every conver-
sion. This feature detects if a sample value is equal to the



208 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

minimum or the maximum value for the specific resolution. If
it is, a maskable interrupt flag is set for the corresponding
channel. This allows the firmware to take action, such as
discarding the result, when the SAR ADC saturates. The
sample value is tested right after conversion, before averag-
ing. This means that the interrupt is set while the averaged
result in the data register is not equal to the minimum or
maximum.

When a 10-bit or 8-bit resolution is selected for the channel,
then the upper bits are ignored. 

Saturation interrupt flag is set immediately to enable a fast
response to saturation, before the full scan and averaging.
Saturation detection interrupt for specified channel can be
masked by setting the SAR_SATURATE_INTR_MASK reg-
ister specified bit to ‘0’. SAR_SATURATE_INTR_MASKED
register reflects a bit-wise AND between the interrupt
request and mask registers. If the value is not zero, then the
SAR interrupt signal to the NVIC is high.

SAR_SARTURATE_INTR_SET can be used for debug/veri-
fication. Write a '1' to set the corresponding bit in the inter-
rupt request register; when read, this register reflects the
interrupt request register.

19.3.5.7 Interrupt Cause Overview

INTR_CAUSE register contains an overview of all the pend-
ing SAR interrupts. It allows the ISR to determine the inter-
rupt cause by reading this register. The register consists of a
mirror copy of SAR_INTR_MASKED. In addition, it has two
bits that aggregate the range and saturate detection inter-
rupts of all channels. It includes a logical OR of all the bits in
RANGE_INTR_MASKED and SATURATE_INTR_MASKED
registers (does not include INJ_RANGE_INTR and
INJ_SATURATE_INTR).

19.3.6 Trigger

The three possible ways to trigger a scan are: 

■ A firmware or one-shot trigger is generated when the 
firmware writes to the FW_TRIGGER bit of the 
SAR_START_CTRL register. After the scan is com-
pleted, the SARSEQ clears the FW_TRIGGER bit and 
goes back to idle mode waiting for the next trigger. The 
FW_TRIGGER bit is cleared immediately after the SAR 
is disabled.

■ A periodic trigger comes in over the DSI connections 
(dsi_trigger). This trigger is connected to the output of a 
TCPWM; however, it can also be connected to any GPIO 
pin or a UDB. The UDB can implement a state machine 
looking for a certain sequence of events.

■ A continuous trigger is activated by setting the CONTIN-
UOUS bit in SAR_SAMPLE_CTRL register. In this 

mode, after completing a scan the SARSEQ starts the 
next scan immediately; therefore, the SARSEQ is 
always BUSY. As a result, all other triggers are essen-
tially ignored. Note that FW_TRIGGER will still get 
cleared by hardware on the next completion.

The three triggers are mutually exclusive, although there is
no hardware requirement. If a DSI trigger coincides with a
firmware trigger, the DSI trigger is handled first and a sepa-
rate scan is done for the firmware trigger (and a collision
interrupt is set). When a DSI trigger coincides with a continu-
ous trigger, both triggers are effectively handled at the same
time (a collision interrupt may be set for the DSI trigger).

For firmware or continuous trigger, it takes only one SAR
ADC clock cycle before the sequencer tells the SAR ADC to
start sampling (provided the sequencer is idle). For the DSI
trigger, it depends on the trigger configuration setting.

19.3.6.1 DSI Trigger Configuration

■ DSI Synchronization

The DSI interface of SARSEQ runs at the system clock fre-
quency (clk_sys); see Clocking System chapter on page 61
for details. If the incoming DSI trigger signal is not synchro-
nous to the AHB clock, the signal needs to be synchronized
by double flopping it (default). However, if the DSI trigger
signal is already synchronized with the AHB clock, then
these two flops can be bypassed. The configuration bit
DSI_SYNC_TRIGGER controls the double flop bypass.
DSI_SYNC_TRIGGER affects the trigger width (TW) and
trigger interval (TI) requirement of the DSI pulse trigger sig-
nal.

■ DSI Trigger Level

The DSI trigger can either be a pulse or a level; this is indi-
cated by the configuration bit DSI_TRIGGER_LEVEL. If it is
a level, then the SAR starts new scans for as long as the
DSI trigger signal remains high. When the DSI trigger signal
is a pulse input, a positive edge detected on the DSI trigger
signal triggers a new scan.

■ Transmission Time

After the 'dsi_trigger' is raised, it takes some transmission
time before the SAR ADC is told to start sampling. With dif-
ferent DSI_SYNC_TRIGGER and DSI_TRIGGER_LEVEL
configuration, the transmission time is different; Table 19-5
shows the maximum time. Two trigger pulse intervals should
be longer than the transmission time, otherwise, the second
trigger is ignored. 

When the SAR is disabled (ENABLED=0), the DSI trigger is
ignored.

Table 19-5.  DSI Trigger Maximum Time

Maximum DSI_TRIGGER Transmission Time
Bypass Sync 

DSI_SYNC_TRIGGER=0
Enable Sync 

DSI_SYNC_TRIGGER=1 (by default)

Pulse trigger: DSI_TRIGGER_LEVEL=0 (by default) 1 clk_sys+2 clk_sar 3 clk_sys+2 clk_sar

Level Trigger: DSI_TRIGGER_LEVEL=1 2 clk_sar 2 clk_sys+2 clk_sar



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 209

SAR ADC

19.3.7 SAR ADC Status

The current SAR status can be observed through the BUSY
and CUR_CHAN fields in the SAR_STATUS register. The
BUSY bit is high whenever the SAR is busy sampling or
converting a channel; the CUR_CHAN bits indicates the cur-
rent channel. SW_VREF_NEG bit indicates the current
switch status, including DSI and register controls, of the
switch in the SAR ADC that shorts NEG with VREF input.

CHAN_WORK_VALID register indicates the channel that is
sampled during the current scan. CHAN_RESULT_VALID
register indicates the channel that is sampled during the last
scan. When CHAN_RESULT_VALID is set, the correspond-
ing CHAN_WORK_VALID bit is cleared. The
CUR_AVG_ACCU and CUR_AVG_CNT fields in the
SAR_AVG_STAT register indicate the current averaging
accumulator contents and the current sample counter value

for averaging (counts down).

SAR_MUX_SWITCH_STATUS register gives the current
switch status of MUX_SWITCH0 register.

These status registers help to debug SAR behavior.

19.3.8 Low-Power Mode

The current consumption of the SAR ADC can be divided
into two parts: SAR ADC core and SARREF. There are sev-
eral methods to reduce the power consumption of the SAR
operation. The easiest way is to reduce the trigger fre-
quency; that is, reduce the number of conversions per sec-
ond.

The SAR ADC offers the ICONT_LV[1:0] configuration bits,
which control overall power of the SAR ADC. Maximum
clock rates for each power setting should be observed.

The VREF buffer (if in use) can be set to one of four power levels. It limits the maximum clock frequency if there is no bypass
capacitor for internal reference. If there is an external bypass capacitor or the reference is external, the maximum clock fre-
quency is 18 MHz. 

Finally, to reduce power, use a lower resolution on channels
that do not need high accuracy. This shortens the conver-
sion by up to four out of 18 cycles (for 8-bit resolution and
minimum sample time).

19.3.9 System Operation

After the SAR analog is enabled by setting the ENABLED bit
(SAR_CTRL [31]), follow these steps to start ADC conver-
sions with the SARSEQ:

1. Set SAR ADC control mode: 19.3.10 Register Mode or 
19.3.11 DSI Mode

2. Set SARMUX analog routing (pin/signal selection) via 
sequencer/firmware/DSI

3. Set the global SARSEQ conversion configurations

4. Configure each channel source (such as pin address)

5. Enable the channels

6. Set the trigger type

Table 19-6.  Trigger Signal Requirement

Trigger Spec Requirement

Trigger Width (TW)
TW should be greater enough so that a trigger can be locked. If DSI_SYNC_TRIGGER=1, TW >= 2 clk_sys 
cycle. If DSI_SYNC_TRIGGER=0, TW >= 1 SAR clock cycle.

Trigger interval (TI)
Trigger interval of the DSI pulse trigger signal should be longer than the transmission time (as specified in 
Table 19-5); otherwise, the second trigger pulse will be ignored. 

Table 19-7.  ICONT_LV for Low Power Consumption

ICONT_LV[1:0]
Relative Power of 

SAR ADC Core (%)
Maximum Frequency 

[MHz]
Minimum Sample Time 

[cycles]
Maximum Sample Speed (at 12-

bit) [ksps]

0 100 18 4 1000

1 50 9 3 529

2 133 18 4 1000

3 25 4.5 2 281

Table 19-8.  VREF Buffer

PWR_CTRL_VREF
Relative Power of 

SARREF (%)
Maximum Frequency without 

Bypass Capacitor [MHz]
Minimum Sample Time 

[cycles]
Maximum Sample 

Speed [ksps]

0 100 3 1 230

1 50 1.5 1 115

2 33 1 1 76

3 25 18a

a. For the lowest mode (1/4 power), the bypass capacitor is mandatory.

4 1000



210 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

7. Set interrupt masks

8. Start the trigger source

9. Retrieve data after each end of conversion interrupt

10. Do injection conversions if needed

Register mode means using registers to control the SAR-
MUX and SAR ADC conversion; DSI mode means using
DSI from UDB to control. The major difference between
these two control modes is shown in Table 19-9. DSI mode
can be enabled by setting DSI_MODE bit (SAR_CTRL [29]). 

Table 19-9.  Difference between Control Modes

Control Mode Register DSI 

DSI_MODE 0 1

SARMUX control

Sequencer control registers: 

SAR_CHANx_CONFIG, SAR_MUX_SWITCH0, 
SAR_MUX_HW_SWITCH_CTRL SAR_CTRL

Firmware control registers: 

SAR_MUX_SWITCH0, 
SAR_MUX_HW_SWITCH_CTRL, SAR_CTRL

DSI signal control signals: 

dsi_out, dsi_oe,dsi_swctrl, dsi_sw_negvref Firm-
ware control registers: SAR_MUX_SWITCH0, 
SAR_MUX_HW_SWITCH_CTRL, SAR_CTRL 

Global configuration

Global configure registers: 

SAR_CTRL, SAR_SAMPLE_CTRL, 
SAR_SAMPLE01, SAR_SAMPLE23, 
SAR_RANGE_THES, SAR_RANGE_COND

Global configure registers: 

SAR_CTRL, SAR_SAMPLE_CTRL, 
SAR_SAMPLE01, SAR_SAMPLE23, 
SAR_RANGE_THES, SAR_RANGE_COND

Channel configuration
Channel configure registers: 

CHAN_CONFIG, CHAN_EN, INJ_CHAN_CONFIG

By DSI signal: 

dsi_cfg_st_sel, dsi_cfg_average, 
dsi_cfg_resolution, dsi_cfg_differential 
(CHAN_CONFIG, CHAN_EN, INJ_CHAN_CONFIG 
are ignored)

Trigger

All Apply

Firmware trigger (SAR_START_CTRL[0]) 

DSI trigger (dsi_trigger) 

Continuous trigger (SAR_SAMPLE_CTRL [0])

All Apply 

Firmware trigger (SAR_START_CTRL[0]) 

DSI trigger (dsi_trigger) 

Continuous trigger (SAR_SAMPLE_CTRL [0])

Interrupt All Apply
All Apply 

(only EOS_INTR, RANGE_INTR, SATU-
RATE_INTR output on DSI signal)

DSI output Support Support

Result data
8 channel result registers 1 injection channel result 
register

Only channel0 result register is available 

Injection Support Not supported

Average Support average on one PIN/signal Support average on different PIN/signal



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 211

SAR ADC

19.3.10 Register Mode

Use registers to configure the SAR ADC; this is the most
common usage. Detailed register bit definition is available in
the PSoC 4 Registers TRM.

19.3.10.1 Set SARMUX Analog Routing

In register mode, there are two ways to control the SARMUX
analog routing: sequencer and firmware. 

Sequencer Control 

It is essential that the appropriate hardware control bits in
MUX_SWITCH_HW_CTRL register and the firmware con-
trol bits in MUX_SWITCH0 register are both set to ‘1’.
Ensure that SWITCH_DISABLE=0; setting
SWITCH_DISABLE disables sequencer control. 

With sequencer control, the pin or internal signal a channel
converts is specified by the combination of port and pin
address. The PORT_ADDR bits are SAR_CHANx_CONFIG
[6:4] and PIN_ADDR bits are SAR_CHANx_CONFIG [2:0].
Table 19-10 shows the PORT_ADDR and PIN_ADDR setup
with corresponding SARMUX selection. The unused port/
pins are reserved for other products in the PSoC 4 series.

For differential conversion, the negative terminal connection
is dependent on the positive terminal connection, which is
defined by PORT_ADDR and PIN_ADDR. By setting
DIFFERENTIAL_EN, the channel will do a differential con-
version on the even/odd pin pair specified by the pin
address with PIN_ADDR [0] ignored. P2.0/P2.1, P2.2/P2.3,
P2.4/P2.5, P2.6/P2.7 are valid differential pairs for
sequencer control. More flexible analog can be imple-
mented by firmware or DSI. 

For single-ended conversions, NEG_SEL (SAR_CTRL
[11:9]) is intended to decide which signal is connected to
negative input. In differential mode, these bits are ignored.
Negative input choice affects the input voltage range and
effective resolution. See Negative Input Selection on
page 194 for details. The options include: VSSA, VREF, or
P2.1, P2.3, P2.5, and P2.7. To connect negative input to
VREF, an additional bit, SAR_HW_CTRL_NEGVREF
(SAR_CTRL[13]) must be set, because the

MUX_SWITCH_HW_CTRL register does not have that
hardware control bit. 

Firmware Control 

By default, the SARMUX operates in firmware control.
VPLUS (positive) and VMINUS (negative) inputs of SAR
ADC can be controlled separately by setting the appropriate
bits in SAR_MUX_SWITCH0 [29:0]. Clear appropriate bits in
the hardware switch control register
(SAR_MUX_SWITCH_HW_CTR[n]=0). Otherwise, hard-
ware control method (sequencer/DSI) will control the SAR-
MUX analog routing.

SAR_CTRL register bit SWITCH_DISABLE is used to dis-
able SAR sequencer from enabling routing switches. Note
that firmware control mode can always close switches inde-
pendent of this bit value; however, it is recommended to set
it to ‘1’. 

NEG_SEL (SAR_CTRL [11:9]) decides which signal is con-
nected to the negative terminal (vminus) of SAR ADC in sin-
gle-ended mode. In differential mode, these bits are ignored.
In single-ended mode, when using sequencer control, you
must set these bits. When using firmware control, NEG_SEL
is ignored and SAR_MUX_SWITCH0 should be set to con-
trol the negative input. A special case is when
SAR_MUX_SWITCH0 does not connect internal VREF to
vminus; then, set NEG_SEL to ‘7’. Negative input choice
affects the input voltage range, SNR, and effective resolu-
tion. See Negative Input Selection on page 194 for details.

19.3.10.2 Set Global SARSEQ Configuration

A number of conversion options that apply to all channels
are configured globally. In several cases, the channel con-
figuration has bits to choose what parts of the global config-
uration to use. Global configuration is applied to both
register control and DSI control mode.

SAR_CTRL, SAR_SAMPLE_CTRL, SAR_SAMPLE01,
SAR_SAMPLE23, SAR_RANGE_THES, and
SAR_RANGE_COND are all global configuration registers. 

Typically, these configurations should not be modified while
a scan is in progress. If configuration settings that are in use
are changed, the results are undefined. Configuration set-
tings that are not currently in use can be changed without
affecting the ongoing scan.

Table 19-10.  PORT_ADDR and PIN_ADDR

PORT_ADDR PIN_ADDR Description

0 0..7
8 dedicated pins of the SARMUX 
(P2.0-P2.7)

1 X sarbus0a

a. sarbus0 and sarbus1 connect to the output of the CTBm block, which
contains opamp0/1. See the Continuous Time Block mini
(CTBm) chapter on page 225 for more information. When
PORT_ADDR=1, sarbus0 connects to positive terminal of SAR ADC re-
gardless of the value of PIN_ADDR; sarbus1 can only connect to the
negative terminal of SAR ADC when differential mode is enabled and
PORT_ADDR=1.

1 X sarbus1a

7 0 Temperature sensor

7 2 AMUXBUS-A

7 3 AMUXBUS-B



212 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

19.3.10.3 Set Channel Configurations

Channel configuration includes:

■ Differential or single-ended mode selection

■ Global configuration selection: sample time, resolution, averaging enable

■ DSI output enable

As a general rule, the channel configurations should only be updated between scans (same as global configurations). How-
ever, if a channel is not enabled for the ongoing scan, then the configuration for that channel can be changed freely without
affecting the ongoing scan. If this rule is violated, the results are undefined. The channels that enable themselves are the only
exception to this rule; enabled channels can be changed during the on-going scan, and it will be effective in the next scan.
Changing the enabled channels may change the sample rate.

SUB_RESOLUTION (SAR_SAMPLE_CTRL[0]) can choose
which alternate resolution will be used, either 8-bit or 10 bit.
Resolution (SAR_CHANx_CONFIG [9]) can determine
whether default resolution 12-bit or alternate resolution is
used. When averaging is enabled, the SUB_RESOLUTION
is ignored; the resolution will be fixed to the maximum 12-bit.

Set Channel Enables

A CHAN_EN register is available to individually enable each
channel. All enabled channels are scanned when the next
trigger happens. After a trigger, the channel enables can
immediately be updated to prepare for the next scan. This
does not affect the ongoing scan. Note that this is an excep-
tion to the rule; all other configurations (global or channel)
should not be changed while a scan is in progress.

19.3.10.4 Set Interrupt Masks

There are six interrupt sources; all have an interrupt mask:

■ End-of-scan interrupt 

■ Overflow interrupt 

■ Collision interrupt 

■ Injection end-of-conversion interrupt

■ Range detection interrupt

■ Saturate detection interrupt

Table 19-11.  Global Configuration Registers

Configurations Control Registers Detailed Reference

Reference selection SAR_CTRL[6:4] 19.3.3.1 Reference Options

Signed/unsigned selection SAR_SAMPLE_CTRL [3:2] 19.3.1.3 Result Data Format

Data left/right alignment SAR_SAMPLE_CTRL [1] 19.3.1.3 Result Data Format

Negative input selection in single-ended mode SAR_CTRL[11:9] 19.3.1.4 Negative Input Selection

Resolution SAR_SAMPLE_CTRL[0] 19.3.1.5 Resolution

Acquisition time
SAR_SAMPLE_TIME01 [25:0] 
SAR_SAMPLE_TIME32 [25:0]

19.3.1.6 Acquisition Time

Averaging count SAR_SAMPLE_CTRL[7:4] 19.3.4.1 Averaging

Range detection
SAR_RANGE_THRES [31:0] 
SAR_RANGE_COND [31:30]

19.3.4.2 Range Detection

Table 19-12.  Channel Configuration Registers

Configurations Registers Detailed Reference

Single-ended/differential SAR_CHANx_CONFIG [8] 19.3.1.1 Single-ended and Differential Mode

Acquisition time selection SAR_CHANx_CONFIG [13:12] 19.3.1.6 Acquisition Time

Resolution selection SAR_CHANx_CONFIG [9] 19.3.1.5 Resolution

Average enable SAR_CHANx_CONFIG [10] 19.3.4.1 Averaging

DSI output enable SAR_CHANx_CONFIG [30]  DSI Output Enable

Table 19-13.  Resolution 

Average SUB_RESOLUTION
Register Mode 

Resolution
Channel 

Resolution

OFF 0 1 8-bit

OFF 1 1 10-bit

OFF 0 0 12-bit

OFF 1 0 12-bit

ON X X 12-bit



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 213

SAR ADC

Each interrupt has an interrupt request register (INTR,
SATURATE_INTR, RANGE_INTR), a software interrupt set
register (INTR_SET, SATURATE_INTR_SET,
RANGE_INTR_SET), an interrupt mask register
(INTR_MASK, SATURATE_INTR_MASK,
RANGE_INTR_MASK), and an interrupt re-quest masked
result register (INTR_MASKED,
SATURATE_INTR_MASKED, RANGE_INTR_MASKED).
An interrupt cause register is also added to have an over-
view of all the currently pending SAR interrupts and allows
the ISR to determine the interrupt cause by just reading this
register. 

See 19.3.5 Interrupt for details. 

19.3.10.5 Trigger

The three ways to start an A/D conversion are: 

■ Firmware trigger: SAR_START_CTRL [0]

■ DSI trigger: dsi_trigger

■ Continuous trigger: SAR_SAMPLE_CTRL [16]

See 19.3.6 Trigger for details.

19.3.10.6 Retrieve Data after Each Interrupt

Make sure you read the data from the result register after
each scan; otherwise, the data may change because of the
next scan's configuration. 

The 16-bit data registers are used to implement double buff-
ering for up to eight channels (injection channel do not have
double buffer). Double buffering means that there is one
working register and one result register for each channel.
Data is written to the working register immediately after
sampling this channel. It is then copied to the result register
from the working register after all enabled channels in this
scan have been sampled. 

The CHAN_WORK_VALID bit is set after the corresponding
WORK data is valid, that is, it was already sampled during
the current scan. Corresponding CHAN_RESULT_VALID is

set after completed scan. When CHAN_RESULT_VALID is
set, the corresponding CHAN_WORK_VALID bit is cleared.

For firmware convenience, bit [31] in SAR_CHAN_WORK
register is the mirror bit of the corresponding bit in
SAR_CHAN_WORK_VALID register. Bit[29], bit [30],and
bit[31] in SAR_CHAN_RESULT are the mirror bits of the
corresponding bit in SAR_SATURATE_INTR,
SAR_RANGE_INTR, and SAR_CHAN_RESULT_VALID
registers. Note that the interrupt bits mirrored here are the
raw (unmasked) interrupt bits. It helps firmware to check if
the data is valid by just reading the data register. 

If DSI output is enabled, it allows the SARSEQ result data to
be processed by the UDBs and the channel number allows
the possibility of applying different processing to data of dif-
ferent channels. See  DSI Output Enable for detailed
description.

19.3.10.7 Injection Conversions

Injection channel can be triggered by setting the start bit
INJ_START_EN (INJ_CHAN_CONFIG [31]). To prevent the
collision of regular automatic scan, it is recommended to
enable tailgating by setting INJ_CHAN_CONFIG [30]. When
it is enabled, INJ_START_EN will enable the injection chan-
nel to be scanned at the end of next scan of regular chan-
nels. 

See 19.3.4.4 Injection Channel for details. 

19.3.11 DSI Mode

In DSI control mode, all of SAR ADC configuration can be
done by DSI signals from UDB except the global configura-
tion, such as interrupt masks, range detect settings, and
triggers. The major difference between DSI mode and regis-
ter mode is that the DSI mode allows hardware to dynami-
cally control the ADC configuration. Figure 19-13 is a subset
of the SAR ADC block diagram (Figure 19-1), which speci-
fies the DSI input and output signals.

Figure 19-13.  DSI Control Mode Block Diagram

The DSI control mode is selected by setting the DSI_MODE bit in the SAR_CTRL register. In this mode, the SARSEQ ignores
all channel configurations in CHAN_EN, CHAN_CONFIG, and INJ_CHAN_CONFIG. Instead, it uses the configuration com-
ing in via the DSI signal. 

SARADC
Sequencer Logic and 

State Machine

d
si

_t
ri

g
g

er
, d

si
_d

at
a_

h
ilo

_s
el

 d
si

_c
fg

 *
*

D
si

_o
u

t[
],

 d
si

_o
e[

],
 

d
si

_s
w

ct
rl

[]
,

 d
si

_s
w

_n
eg

ve
f,

sa
r_

d
si

_s
am

p
le

_d
o

n
e

sa
r_

d
si

_c
h

an
_i

d
[]

sa
r_

d
si

_d
at

a[
]

sa
r_

d
si

_e
o

s_
in

tr

UDB



214 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

The following DSI signals are used. 

19.3.11.1 Set SARMUX Analog Routing

In DSI mode, analog routing can be implemented by DSI
signals and firmware. Firmware control is always available
regardless of the register configuration and it is the same as
in register mode. See 19.3.11.1 Set SARMUX Analog Rout-
ing for firmware control details. 

DSI Control

DSI signals from UDB block are used to control SARMUX
switches. In DSI control mode, the SARSEQ does not output
any switch enables from the sequencer. Figure 19-3 shows
that DSI can control every switch, except the DFT (design

for test) switch. Thus, negative and positive input of SAR
ADC can be connected to any switches in DSI mode. 

Besides the DSI signals, appropriate hardware and firmware
control bits in registers should be set. These registers and
signals include SAR_MUX_SWITCH0 [n] = 1 and
SAR_MUX_SWITCH_HW_CTRL[n] = 1. When VREF is con-
nected to the negative input, set SAR_CTRL [11:9] = 7 (firm-
ware control field) and SAR_CTRL [13] = 1 (hardware
control bit) except DSI signals. 

DSI signals have control over the negative terminal of SAR
ADC through dsi_swctrl[0] and dsi_sw_neg vREF for single-
ended mode. If NEG_SEL (SAR_CTRL[11:9]) is set, only
NEG_SEL=7 is useful; the other value is ignored. 

Table 19-14.  DSI Signals

Signal Width Description

sar_dsi_sample_done 1
Pulse to indicate that SAR ADC sampling is done. Switches can be changed to the next signal that 
need to be converted (identical to SAR ADC next output)

sar_dsi_chan_id_valid 1 Valid signal for channel ID 

sar_dsi_chan_id 4

Regular mode: Channel ID, ID of the channel that is currently being converted (early) 

DSI control mode: 

[0]=saturation detect interrupt

[1]=range detect interrupt (valid together with data output)

sar_dsi_data_valid 1 Valid signal for data value 

sar_dsi_data 12

Result of converting (and averaging, if available) for one channel; the internal averaging result is 16-
bit wide. 

If dsi_data_hilo_sel=0 then sar_dsi_data[11:0]= sar_data[11:0]. 

If dsi_data_hilo_sel=1 then sar_dsi_data[7:0]= sar_data[15:8] and sar_dsi_data[11:8]=<undefined>.

sar_dsi_eos_intr 1 End-Of-Scan interrupt to indicate that SARSEQ just finished a scan of all enabled channels

dsi_out 8

dsi_out[0]=1, P2.0 connected to ADC

dsi_out[1]=1, P2.1 connected to ADC

…

dsi_out[7]=1, P2.7 connected to ADC 

Note MUX_SWITCH0 configuration determines whether the pin is connected to vplus or vminus.

dsi_oe 4

dsi_oe[0]=1, AMUXBUSA connected to ADC

dsi_oe[1]=1, AMUXBUSB connected to ADC

dsi_oe[2]=1, opamp0 output connected to ADC 

dsi_oe[3]=1, opamp1 output connected to ADC 

Note MUX_SWITCH0 configuration determines whether the signal is connected to vplus or vminus.

dsi_swctrl[0] 1 SARMUX analog switch control, connect vssa_kelvin to vminus

dsi_swctrl[1] 1 SARMUX analog switch control, connect temp_sens to vplus

dsi_sw_negvref 1 SAR ADC internal switch control, connect VREF input to NEG input

dsi_cfg_st_sel 2 Configuration control for DSI control mode: select 1 of 4 global sample times

dsi_cfg_average 1 Configuration control for DSI control mode: enable averaging

dsi_cfg_resolution 1
Configuration control for DSI control mode: 0=12-bit resolution 

1=use globally configure resolution (8 or 10 bit)

dsi_cfg_differential 1 Configuration control for DSI control mode: 0= single-ended, 1=differential 

dsi_trigger 1 Trigger to start SARSEQ scanning all enabled channels 

dsi_data_hilo_sel 1
Selects between high and low byte output for sar_dsi_data[7:0]. This signal is fully asynchronous 
(affects sar_dsi_data without any clock involved).



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 215

SAR ADC

Table 19-15 shows the DSI signals. 

19.3.11.2 Set Global SARSEQ Configuration

Global configuration applies to both register mode and DSI control mode. See 19.3.10.2 Set Global SARSEQ Configuration
for details.

19.3.11.3 Channel Configuration

For DSI control mode, only channel 0 is available. The channel 0 configuration can be done with DSI signals, as shown in
Table 19-16. CHAN_EN and channel configurations in CHAN_CONFIG and INJ_CHAN_CONFIG are ignored.

The dsi_cfg_* signals can optionally be synchronized to the SAR clock domain (actually clk_hf) by setting
DSI_SYNC_CONFIG. Bypassing synchronization may be required when running the SAR at a low frequency.

19.3.11.4 Interrupt 

For an introduction to the SAR ADC interrupt, see Set Inter-
rupt Masks on page 212. All interrupt masks work normally
in register control mode. Not all interrupts are sent on DSI;
SATURATE_INTR, RANGE_INTR, and EOS_INTR are sent
via the DSI signal. 

■ Along with the data, SATURATE_INTR is output on 
dsi_chan_id[0]; SATURATE_INTR[0] is set in DSI control 
mode because only channel 0 is valid in DSI mode.

■ Along with the data, RANGE_INTR is output on 
dsi_chan_id[1]; RANGE _INTR[0] is set in DSI control 
mode because only channel 0 is valid in DSI mode.

■ Channel enables are ignored; this means only one con-
version is done per trigger. An EOS_INTR is generated 
for each conversion.

■ EOS_INTR is always sent via the DSI signal 
sar_dsi_eos_intr (a copy of dsi_data_valid).

Table 19-15.  DSI Signal 

Signal Width Description

dsi_out 8

dsi_out[0]=1, P2.0 connected to ADC

dsi_out[1]=1, P2.1 connected to ADC

… 

dsi_out[7]=1, P2.7 connected to ADC

Note Whether the pin is connected to vplus or vminus is determined by MUX_SWITCH0 configuration.

dsi_oe 4

dsi_oe[0]=1, AMUXBUSA connected to ADC 

dsi_oe[1]=1, AMUXBUSB connected to ADC

dsi_oe[2]=1, sarbus0 output connected to ADC 

dsi_oe[3]=1, sarbus1 output connected to ADC 

Note Whether the signal is connected to vplus or vminus is determined by MUX_SWITCH0 configuration.

dsi_swctrl[0] 1 SARMUX analog switch control, connect VSSA to vminus

dsi_swctrl[1] 1 SARMUX analog switch control, connect temperature sensor to vplus

dsi_sw_negvref 1 SAR ADC internal switch control, connect VREF input to NEG input

Table 19-16.  Channel Configuration

Signal Width Config Description

dsi_cfg_st_sel 2 Acquisition time Configuration control for DSI control mode: select 1 of 4 global sample times

dsi_cfg_average 1 Average enable Configuration control for DSI control mode: enable averaging

dsi_cfg_resolution 1 Resolution

Configuration control for DSI control mode: 

0: 12-bit resolution 

1: use globally configure resolution bit SUB_RESOLUTION (8 or 10 bit)

dsi_cfg_differential 1 Differential/single-ended

Configuration control for DSI control mode: 

0: single-ended 

1: differential 



216 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

Table 19-17 lists the interrupts that are sent via DSI signals.

19.3.11.5 Trigger

Typically, DSI control mode is used along with the DSI trig-
ger. However, other trigger sources, such as firmware trig-
ger and continuous trigger are also supported. The trigger
configuration is the same as in the register control mode.
See Trigger on page 208 for details.

For DSI trigger, the configuration settings (dsi_cfg_*) and
switch settings should be stable no later than the cycle in
which the dsi_trigger is sent. They should remain stable until
the positive edge of the sar_dsi_sample_done.

19.3.11.6 Retrieve Data 

The result data and channel number are sent out on
sar_dsi_data. It is equivalent to dsi_out_en high in register
control mode. See  DSI Output Enable for details. After each
conversion, the data is also written to both CHAN_WORK0

and CHAN_RESULT0 registers.

DSI Output Enable

If the DSI_OUT_EN bit (SAR_CHANx_CONFIG[31]) is set,
the result data and channel number are also sent out on the
DSI bus (sar_dsi_data, sar_dsi_chan_id), next to being
stored in the regular result register. This allows for the
SARSEQ result data to be processed by the UDBs and the
channel number allows for the possibility to apply different
processing to data of different channels. 

The data sent out on the DSI bus is formatted in the same
way it is stored in the result register. However, by default
only the 12 LSBs are sent out; it is not recommended to use
left alignment unless more than 12 bits are required. To get
the upper eight LSBs, the dsi_data_hilo_sel input needs to
be set to ‘1’. To get the full 16-bit data from result register,
first set dsi_data_hilo_sel = 0 to get the lower 12-bit data
and then set dsi_data_hilo_sel = 1 to get the upper 8-bit
data. Additional data process is needed to deal with the data
overlap.

The channel number (sar_dsi_chan_id) will be sent out ear-
lier, after the SAR ADC has completed sampling that chan-
nel. The channel number by itself can trigger the UDBs to
drive some GPIO pins, which in turn can power up (or down)
some off-chip device. This drives an analog input pin that
will be scanned by one of the subsequent channels in the
same scan (a long sample time is useful here).

Note that the data is sent out one cycle after the conversion
is completed. Channel numbers, data, and their respective
valid signals are maintained for two system clock cycles on
the DSI bus.

19.3.12 Analog Routing Configuration Example

Table 19-19 shows some examples of pin and signal selection for sequencer control, firmware control, and DSI control. 

Table 19-17.  DSI Signal Interrupts

Signal Width Description

sar_dsi_chan_id 4

Register mode: Channel ID (ID of 
the channel that is currently being 
converted)

DSI control mode: 
[0]=saturation detect interrupt 
[1]=range detect interrupt (valid 
together with data output)

sar_dsi_eos_intr 1
End-of-scan interrupt to indicate 
that the SARSEQ has finished a 
scan of all enabled channels

Table 19-18.  DSI Output Signals

Signal Width Description

sar_dsi_sample_done 1
Pulse to indicate that SAR ADC sampling is done. Switches can be changed to the next signal that 
need to be converted (identical to SAR ADC next output)

sar_dsi_chan_id_valid 1 Valid signal for channel ID

sar_dsi_chan_id 4

Regular mode: Channel ID, ID of the channel that is currently being converted (early) 

DSI control mode: 

[0]=saturation detect interrupt

[1]=range detect interrupt (valid together with data output)

sar_dsi_data_valid 1 Valid signal for data value

sar_dsi_data 12

Result of converting (and averaging if there is) for one channel. The internal averaging result is 16-bit 
wide. 

If dsi_data_hilo_sel=0 then sar_dsi_data[11:0]= sar_data[11:0]

If dsi_data_hilo_sel=1 then sar_dsi_data[7:0]= sar_data[15:8] and sar_dsi_data[11:8]=<undefined>

sar_dsi_eos_intr 1 End-Of-Scan interrupt to indicate that SARSEQ just finished a scan of all enabled channels

dsi_data_hilo_sel 1
Selects between high and low byte output for sar_dsi_data[7:0]. This signal is fully asynchronous 
(affects sar_dsi_data without any clock involved)



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 217

SAR ADC

Table 19-19.  Analog Routing Configuration Example

Sequencer Control Firmware Control DSI Control

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 0 
(CHANx_CONFIG[6:4])

PIN_ADDR = 0

(CHANx_CONFIG[2:0])

NEG_SEL = 0 (CTRL [11:9])

MUX_SWITCH0[0] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[0] = 1

MUX_SWITCH_HW_CTRL[16]= 1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[0] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[0] = 0

MUX_SWITCH_HW_CTRL[16] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 0

dsi_out [0] =1

dsi_swctrl[0]=1

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0] = 1

MUX_SWITCH_HW_CTRL[16]=1

MUX_SWITCH0 [16] = 1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 0

(CHANx_CONFIG[6:4])

PIN_ADDR = 0

(CHANx_CONFIG[2:0])

NEG_SEL = 7 (CTRL [11:9])

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0]=1

HW_CTRL_NEGVREF =1 

(CTRL[13])

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0] =0

NEG_SEL = 7 (CTRL [11:9])

HW_CTRL_NEGVREF =0

(CTRL[13])

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 0

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0] = 1

dsi_out [0] =1

dsi_sw_negvref =1 

HW_CTRL_NEGVREF =1

(CTRL[13])

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 0

(CHANx_CONFIG[6:4])

PIN_ADDR = 0 or PIN_ADDR = 1

(CHANx_CONFIG[2:0])

MUX_SWITCH0[0] = 1

MUX_SWITCH0[9] = 1

MUX_SWITCH_HW_CTRL[0] = 1

MUX_SWITCH_HW_CTRL[1] = 1

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1

(CTRL[30])

MUX_SWITCH0[0] = 1

MUX_SWITCH0[9] = 1

MUX_SWITCH_HW_CTRL[0] = 0

MUX_SWITCH_HW_CTRL[1] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 1

dsi_out [0] =1

dsi_out [1] =1

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0] = 1

MUX_SWITCH0 [9] = 1

MUX_SWITCH_HW_CTRL[1]=1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 1

(CHANx_CONFIG[6:4])

NEG_SEL = 0 (CTRL [11:9])

MUX_SWITCH0[22] = 1 

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[22] =1

MUX_SWITCH_HW_CTRL[16] =1

Note Connecting sarbus1 to VPLUS is 
not supported for Port/Pin control

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[22] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[22] = 0

MUX_SWITCH_HW_CTRL[16] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 0

dsi_oe [2] =1

dsi_swctrl[0]=1

MUX_SWITCH0 [16] = 1

MUX_SWITCH0[22] = 1

MUX_SWITCH_HW_CTRL[16]=1

MUX_SWITCH_HW_CTRL[22] =1

VPLUS

VMINUS

SARADC

P2.0

VSSA

VPLUS

VMINUS

SARADC

P2.0

Vref

VPLUS

VMINUS

SARADC

P2.0

P2.1

VPLUS

VMINUS

SARADC

sarbus0

VSSA



218 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 1

(CHANx_CONFIG[6:4])

MUX_SWITCH0[22] = 1

MUX_SWITCH0[25] = 1

MUX_SWITCH_HW_CTRL[22]=1

MUX_SWITCH_HW_CTRL[23]=1

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[22] = 1

MUX_SWITCH0[25] = 1

MUX_SWITCH_HW_CTRL[22] = 0

MUX_SWITCH_HW_CTRL[23] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 1

dsi_oe [2] = 1

dsi_oe [3] = 1

MUX_SWITCH0[22] = 1

MUX_SWITCH0[25] = 1

MUX_SWITCH_HW_CTRL[22]=1

MUX_SWITCH_HW_CTRL[23]=1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 7

(CHANx_CONFIG[6:4])

PIN_ADDR = 2

(CHANx_CONFIG[2:0])

NEG_SEL = 0 (CTRL [11:9])

MUX_SWITCH0[18] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[18]= 1

MUX_SWITCH_HW_CTRL[16]= 1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[18] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[18]= 0

MUX_SWITCH_HW_CTRL[16]= 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 0

dsi_oe [0] = 1

dsi_swctrl[0]=1

MUX_SWITCH0[18] = 1

MUX_SWITCH_HW_CTRL[18]= 1

MUX_SWITCH_HW_CTRL[16]=1

MUX_SWITCH0 [16] = 1

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 7

(CHANx_CONFIG[6:4])

PIN_ADDR = 2 

(CHANx_CONFIG[2:0])

MUX_SWITCH0[18] = 1

MUX_SWITCH0[21] = 1

MUX_SWITCH_HW_CTRL[18]= 1

MUX_SWITCH_HW_CTRL[19]= 1

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[18] = 1

MUX_SWITCH0[21] = 1

MUX_SWITCH_HW_CTRL[18]= 0

MUX_SWITCH_HW_CTRL[19]= 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 1

dsi_oe [0] = 1

dsi_oe [1] = 1

MUX_SWITCH0[18] = 1

MUX_SWITCH0[21] = 1

MUX_SWITCH_HW_CTRL[18]= 1

MUX_SWITCH_HW_CTRL[19]= 1

Not supported. 

The differential pair is fixed for Port/Pin 
control

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[19] = 1

MUX_SWITCH0[20] = 1

MUX_SWITCH_HW_CTRL[18] =0

MUX_SWITCH_HW_CTRL[19] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 1

dsi_oe [0] = 1

dsi_oe [1] = 1

MUX_SWITCH0[19] = 1

MUX_SWITCH0[20] = 1

MUX_SWITCH_HW_CTRL[18] =1

MUX_SWITCH_HW_CTRL[19] = 1

Table 19-19.  Analog Routing Configuration Example<Italic> (continued)

Sequencer Control Firmware Control DSI Control
VPLUS

VMINUS

SARADC

sarbus0

sarbus1

VPLUS

VMINUS

SARADC

AMUXBUSA

VSSA

VPLUS

VMINUS

SARADC

AMUXBUSA

AMUXBUSB

VPLUS

VMINUS

SARADC
AMUXBUSA

AMUXBUSB



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 219

SAR ADC

19.3.13 Temperature Sensor Configuration

One on-chip temperature sensor is available for temperature sensing and temperature-based calibration. Differential conver-
sions are not available for temperature sensors (conversion result is undefined). Therefore, always use it in single-ended
mode. The reference is from internal 1.024 V.

A pin or signal can be routed to the SAR ADC in three ways. Table 19-20 lists the methods to route temperature sensors to
SAR ADC. Setting the MUX_FW_TEMP_VPLUS bit (SAR_MUX_SWITCH0[17]) can enable the temperature sensor and con-
nect its output to VPLUS of SAR ADC; clearing this bit disables temperature sensor by cutting its bias current.

Table 19-20.  Route Temperature to SAR ADC

Control Methods Setup

Sequencer

DIFFERENTIAL_EN = 0 (SAR_CHANx_CONFIG[8]) 

VREF_SEL = 0 (SAR_CTRL[6:4])

PORT_ADDR = 7 (SAR_CHANx_CONFIG[6:4]) 

PIN_ADDR = 0 (SAR_CHANx_CONFIG[2:0]) 

SWITCH_DISABLE = 0 (SAR_CTRL[30]) 

SAR_MUX_SWITCH0[16] = 1 

SAR_MUX_SWITCH0[17] = 1 

SAR_MUX_SWITCH_HW_CTRL[16]= 1 

SAR_MUX_SWITCH_HW_CTRL[17]= 1 

NEG_SEL = 0 (SAR_CTRL [11:9]) override to 0a

a. For temperature sensor, override NEL_SEG (SAR_CTRL [11:9]) to ‘0’.

Firmware

DIFFERENTIAL_EN = 0 (SAR_CHANx_CONFIG[8]) 

VREF_SEL = 0 (SAR_CTRL[6:4]) 

SWITCH_DISABLE = 1 (SAR_CTRL[30])

SAR_MUX_SWITCH0[16] = 1

SAR_MUX_SWITCH0[17] = 1 

SAR_MUX_SWITCH_HW_CTRL[16]= 0 

SAR_MUX_SWITCH_HW_CTRL[17]= 0 

NEG_SEL = 0 (SAR_CTRL [11:9]) override to 0a

DSI 

SWITCH_DISABLE = 1 (SAR_CTRL[30])

VREF_SEL = 0 (SAR_CTRL[6:4])

Set DSI Signals: 

dsi_cfg_differential=1

dsi_swctrl[1]=1

dsi_swctrl[0]=1

SAR_MUX_SWITCH0[16] = 1

SAR_MUX_SWITCH0[17] = 1

SAR_MUX_SWITCH_HW_CTRL[16]= 1

SAR_MUX_SWITCH_HW_CTRL[17]= 1

NEG_SEL = 0 (SAR_CTRL [11:9]) override to 0a



220 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

SAR ADC

19.4 Registers

Name Offset Qty. Width Description

SAR_CTRL 0x0000 1 32
Global configuration register 

Analog control register

SAR_SAMPLE_CTRL 0x0004 1 32
Global configuration register

Sample control register

SAR_SAMPLE_TIME01 0x0010 1 32
Global configuration register 

Sample time specification ST0 and ST1

SAR_SAMPLE_TIME23 0x0014 1 32
Global configuration register 

Sample time specification ST2 and ST3

SAR_RANGE_THRES 0x0018 1 32 Global range detect threshold register

SAR_RANGE_COND 0x001C 1 32 Global range detect mode register

SAR_CHAN_EN 0x0020 1 32 Enable bits for the channels

SAR_START_CTRL 0x0024 1 32 Start control register (firmware trigger)

SAR_CHAN_CONFIG 0x0080 8 32 Channel configuration register

SAR_CHAN_WORK 0x0100 8 32 Channel working data register

SAR_CHAN_RESULT 0x0180 8 32 Channel result data register

SAR_CHAN_WORK_VALID 0x0200 1 32 Channel working data register valid bits

SAR_CHAN_RESULT_VALID 0x0204 1 32 Channel result data register valid bits

SAR_STATUS 0x0208 1 32 Current status of internal SAR registers (for debug)

SAR_AVG_STAT 0x020C 1 32 Current averaging status (for debug)

SAR_INTR 0x0210 1 32 Interrupt request register

SAR_INTR_SET 0x0214 1 32 Interrupt set request register

SAR_INTR_MASK 0x0218 1 32 Interrupt mask register

SAR_INTR_MASKED 0x021C 1 32

Interrupt masked request register: If the value is not zero, then the 
SAR interrupt signal to the NVIC is high. When read, this register 
reflects a bit-wise AND between the interrupt request and mask 
registers

SAR_SATURATE_INTR 0x0220 1 32 Saturate interrupt request register

SAR_SATURATE_INTR_SET 0x0224 1 32 Saturate interrupt set request register

SAR_SATURATE_INTR_MASK 0x0228 1 32 Saturate interrupt mask register

SAR_SATURATE_INTR_MASKED 0x022C 1 32 Saturate interrupt masked request register

SAR_RANGE_INTR 0x0230 1 32 Range detect interrupt request register

SAR_RANGE_INTR_SET 0x0234 1 32 Range detect interrupt set request register

SAR_RANGE_INTR_MASK 0x0238 1 32 Range detect interrupt mask register

SAR_RANGE_INTR_MASKED 0x023C 1 32 Range interrupt masked request register

SASR_INTR_CAUSE 0x0240 1 32 Interrupt cause register

SAR_INJ_CHAN_CONFIG 0x0280 1 32 Injection channel configuration register

SAR_INJ_RESULT 0x0290 1 32 Injection channel result register

SAR_MUX_SWITCH0 0x0300 1 32 SARMUX firmware switch controls

SAR_MUX_SWITCH_CLEAR0 0x0304 1 32 SARMUX firmware switch control clear

SAR_MUX_SWITCH_HW_CTRL 0x0340 1 32 SARMUX switch hardware control

SAR_MUX_SWITCH_STATUS 0x0348 1 32 SARMUX switch status

SAR_PUMP_CTRL 0x0380 1 32 Switch pump control



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 221

20.   Low-Power Comparator

PSoC® 4 devices have two low-power comparators. These comparators are placed in the hibernate power domain, allowing
fast analog signal comparison in all system power modes except the Stop mode. The positive and negative inputs can be
connected to the dedicated GPIO pins or to AMUXBUS-A/AMUXBUS-B. The comparator output can be read by the CPU,
used as an interrupt or wakeup source, or fed to the DSI.

20.1 Features
PSoC 4 comparators have the following features:

■ Selectable input

■ Programmable power and speed

■ Low-power mode support

■ Optional 10-mV input hysteresis

■ Low-input offset voltage (<4 mV after trim)

■ Sleep/hibernate wakeup with comparator output

20.2 Block Diagram

Comparator 0

Comparator 1

Edge Detector

Edge Detector

MMIO Registers

AHB IF

CLK_ahb

AHB

I/0 pad
P0.0

I/0 pad
P0.1

I/0 pad
P0.2

I/0 pad
P0.3

dsi_comp1

dsi_comp2

comp_intr

In
tr
_c
lr

Active Power Domain

Hibernate Power Domain

Fa
ll
in
g,
 R
is
in
g,
 b
o
th

So
ft
w
a
re
‐s
e
t 
In
te
rr
u
p
t 
2

in
tr
_
co
m
p
1

in
tr
_
co
m
p
2

So
ft
w
ar
e‐
se
t 
In
te
rr
u
p
t 
1

A
M
U
X
B
U
S_
A

A
M
U
X
B
U
S_
B

Not part of Low  power  comparator
It is  in  GPIO  block

Each  GPIO  connects  to  AMUXBUS_A/_B



222 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Low-Power Comparator

20.3 How It Works
The following sections describe the operation of the PSoC 4
low-power comparator, including input configuration, power
and speed mode, output and interrupt configuration, hyster-
esis, wake up from hibernate, comparator clock, and offset
trim.

20.3.1 Input Configuration

Inputs to the comparators can be as follows:

■ Two voltages on external pins

■ A voltage from an external pin and an internally gener-
ated signal, both can be either on positive or negative 
input of the comparators. In this case, the internal signal 
is brought to the comparator using the AMUXBUS

■ Two voltages from internally generated signals through 
AMUXBUS-A/AMUXBUS-B

As the block diagram shows, P0.0, P0.1, P0.2, and P0.3 are
directly connected to the input of the low-power comparator.
The use of the comparator connection to the AMUXBUSes
consumes the input pins. See the I/O System chapter on
page 51 for more details on connecting the GPIO to AMUX-
BUS A/B.

20.3.2 Power Mode and Speed 
Configuration

The two comparators can operate in three power modes:
fast, slow, and ultra low-power. The power for Comparator 0
is configured in MODE1 bits [1:0] in the LPCOMP_CONFIG
register. The power for Comparator 1 is configured in
MODE2 bits [9:8] in the same register. Note that the output
of the comparator may glitch when the power mode is
changed.

Power modes differ in response time and power consump-
tion; power consumption is maximum in fast mode and mini-
mum in ultra-low-power mode. Specifications for power
consumption and response time are provided in the data-
sheet.

20.3.3 Output and Interrupt Configuration

The current output value of each comparator is stored in a
separate OUT bit in the LPCOMP_CONFIG register. Com-
parator 0 output value is stored in LPCOMP_CONFIG [6],
and comparator 1 output is stored in LPCOMP_CONFIG
[14]. The comparator output is connected to an edge detec-
tor block. This block determines the edge (disable/rising/fall-
ing/both) that triggers the IRQ by configuring the INTTYPE
bits in the LPCOMP_CONFIG register. Note that the direct
result of the comparator is not available as a hardware sig-
nal. The output is normally connected to an interrupt. During
compare events, the compare will output a pulse, which is
cleared by a software interrupt. If the interrupt is not cleared,
the next compare event cannot be detected. 

Each comparator can generate an interrupt request. How-
ever, the LPCOMP block only has a single common interrupt
to CPU NVIC, which is the logic OR of those two interrupt
requests. The LPCOMP interrupt (comp1_intr/comp2_intr) is

synchronous with clk_ahb. The LPCOMP DSI output
dsi_comp1/dsi_comp2 is asynchronous. Clearing
dsi_comp1/dis_comp2, and comp1_intr/comp2_intr are all
synchronous. In active and sleep modes, dsi_comp1/2 can
be routed to GPIO or other blocks through DSI routing in
UDB with or without synchronization; there is an optional
synchronizer on UDB DSI output. Note that in low-power
modes (deep-sleep and hibernate), this routing is unavail-
able because the UDB is powered off. For example, when
dsi_comp1/dis_comp2 is used as the kill signal of the PWM
block, whether it is asynchronous or synchronous can be
configured in a register, which will be specified in the UDB
block. If the dsi_comp1/dsi_comp2 is routed to UDB for fur-
ther processing, the timing depends on the user's algorithm
and synchronizer choice. The LPCOMP_INTR register bits
[1:0] show the interrupt request of comparator 0 and com-
parator 1. LPCOMP_INTR_SET register bits [1:0] can be
used to assert an interrupt for software debugging.

In low-power mode, the wakeup interrupt controller (WIC)
can be activated by a comparator switch event, which then
wakes up the CPU. Thus, the LPCOMP still has the capabil-
ity to monitor the specified signal in low-power mode.

20.3.4 Hysteresis

For applications that compare signals close to each other,
hysteresis helps to avoid excessive toggling of the compara-
tor output when the signals are noisy. 

The 10-mV hysteresis level is enabled by setting the hyster-
esis enable (HYST) bit in the LPCOMP_CONFIG register, 
LPCOMP_CONFIG [2] for comparator 0 and
LPCOMP_CONFIG [10] for comparator 1. 

20.3.5 Wakeup from Low-Power Modes

The comparator can run in low-power mode, including sleep,
deep-sleep, and hibernate modes. The comparator output
interrupt can wake up the device from sleep, deep-sleep,
and hibernate modes. No special setting is needed. In deep-
sleep or hibernate power mode, the edge of both Compara-
tor 0 and Comparator 1 output will generate an interrupt.
This behavior is unrelated to the settings of INTTYPE bit in
LPCOMP_CONFIG register.

20.3.6 Comparator Clock

The comparator uses the system main clock CLK_ahb as
the clock for interrupt synchronization.

20.3.7 Offset Trim

The comparator offset is trimmed at the factory to less than
4.0 mV. The trim is a two-step process, trimmed first at com-
mon mode voltage equal to 0.1 V, then at common mode
voltage equal to VDD–0.1 V. Offset voltage is guaranteed to
be less than 10.0 mV over the input operating range of 0.1 V
to VDD–0.1 V. For normal operation, further adjustment of
trim values is not recommended.

If tighter trim is required at a specific input common mode
voltage, trim the comparator at that voltage. The comparator
offset trim is performed in the LPCOMP_TRIM1/2/3/4 regis-
ters. LPCOMP_TRIM1 and LPCOMP_TRIM2 are for com-



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 223

Low-Power Comparator

parator 0. LPCOMP_TRIM3 and LPCOMP_TRIM4 are for
comparator 1. The bit fields that change the trim values are
TRIMA in LPCOMP_TRIM1 and LPCOMP_TRIM3, and
TRIMB in LPCOMP_TRIM2 and LPCOMP_TRIM4. If short-
ing of the inputs is required for offset calibration, the calibra-
tion enable field (cal_en) in the LPCOMP_DFT register
helps to achieve it. 

The trim procedure is as follows:

1. Short inputs using the calibration enable field (cal_en) in 
the LPCOMP_DFT register.

2. Set the two inputs 'inn' and 'inp' to the required value.

3. Change the trimA register settings:

a. Depending on the polarity of the offset measured, set 
or clear trimA[4] bit.

b. Increase the value of trimA[3:0] until offset measured 
is less than 1 mV.

4. If the polarity of the offset measured has changed, but 
the offset is still greater than 1 mV, use trimB[3:0] to fine 
tune the offset value. This is valid only for the slow mode 
of comparator operation.

5. If trimA[3:0] is 0Fh and the measured offset is still 
greater than 1 mV, set or clear trimB[3], depending on 
the polarity of offset. Increase the value of trimB[2:0] 
until the offset measured is less than 1 mV.

20.4 Register Summary 

Register Function

LPCOMP_ID Includes the information of LPCOMP controller ID and revision number

LPCOMP_CONFIG LPCOMP configuration register

LPCOMP_INTR LPCOMP interrupt register

LPCOMP_INTR_SET LPCOMP interrupt set register

LPCOMP_DFT LPCOMP DFT register

LPCOMP_TRIM1 Trim fields for comparator 0

LPCOMP_TRIM2 Trim fields for comparator 0

LPCOMP_TRIM3 Trim fields for comparator 1

LPCOMP_TRIM4 Trim fields for comparator 1



224 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Low-Power Comparator



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 225

21.   Continuous Time Block mini (CTBm)

The Continuous Time Block mini (CTBm) provides the continuous time functionality. It includes a switch matrix, two identical
operational amplifiers (opamps), which are also configurable as two comparators, one charge pump inside each opamp, and
a digital interface. Compared with the Continuous Time Block (CTB) found in other devices of the PSoC 4 family, the CTBm
has no resistors and has fewer switches. 

21.1 Features
■ Highly configurable opamp: power and speed, output driver, compensation

■ Each opamp can be configured as a follower with internal switch

■ Each opamp can be configured as comparator with 10-mV hysteresis

■ 10-mA output current drive capability

■ 4-MHz gain bandwidth for 20-pF load

■ Offset trimmed to less than 1 mV

■ Rail-to-rail within 0.2 V of VSS or VDDA for 1-mA load

■ Rail-to-rail within 0.5 V of VSS or VDDA for 10-mA load

■ Slew rate 4 V/µs for 50-pF load 



226 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Continuous Time Block mini (CTBm)

21.2 Block Diagram

21.3 How It Works

As the block diagram shows, CTBm is built up of two identi-
cal opamps and a switch routing matrix. Each opamp has
one input and three output stages, which can be selected
one at a time. The output stage consists of three drivers,
which can be operated as Class-A(1X), Class-AB(10X), or
comparator. The other configurable features are power and
speed, compensation, and switch routing control. 

To use the CTBm block, the first step is to set up external
components (such as resistors), if required. Then, enable
this block by setting CTBm_CTRL [31]. To have almost rail-
to-rail input range and minimal distortion common mode
input, there is one charge pump inside each opamp. The
charge pump can be enabled by setting bit
CTBm_OA_RES0_CTRL [11] for opamp0, and
CTBm_OA_RES1_CTRL [11] for opamp1. 

Then, follow these steps:

1. Configure power mode

2. Configure output strength

3. Configure compensation

4. Configure input switch

5. Configure output switch, especially when opamp output 
needs to be connected to SAR ADC

6. Configure comparator mode, if required

21.3.1 Power Mode Configuration

CTBm reduces power by reducing the reference currents
coming into the opamp. The opamp can operate in three
power modes – low, medium, and high. Power modes are
configured using the PWR_MODE bits
(CTBm_OA_RESx_CTRL[1:0]). The slew rate and gain
bandwidth are maximum in high-power mode and minimum
in low-power mode. Note that power mode configuration

10X

1X

P1.0

AMUXBUSA

P1.6

P1.1

sarbus0

P1.2

10X

1X

P1.5

AMUXBUSB

P1.7

P1.4

sarbus1

P1.3

OPAMP 0

OPAMP 1

sarbus0

Sync
Edge Detector

MUX

Ctbm_comp0_out

Ctbm_comp1_out

Clk_comp

Ctbm_dsi_comp0

Switch: CTBm Regsiter control Swtich: CTBm Regsiter + SARADC register+ DSI control

Interrupt Request

SW1

SW2

SW3

Note: 10X or 1X output driver cannot be on at the same time.

Sync
Edge Detector

MUX

Clk_comp

Ctbm_dsi_comp1

Interrupt Request



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 227

Continuous Time Block mini (CTBm)

also impacts the maximum output drive capability (IOUT) in

1X mode. See Table 21-1 for details. See the device data-
sheet for gain bandwidth, slew rate, and IOUT specifications

in various power modes.

21.3.2 Output Strength Configuration

The output driver of each opamp can be configured to inter-
nal driver (Class A/1X driver) or external driver (Class AB/
10X driver). 1X and 10X drivers are mutually exclusive –
they cannot be on at the same time. 1X output driver is
suited to drive smaller on-chip capacitive and resistive loads
at higher speeds. The 10X output driver is useful for driving
large off-chip capacitive and resistive loads. The 1X driver
output is routed to sarbus 0/1, and 10X driver output is
routed to an external pin. Each driver mode has a low,
medium, or high power mode, as shown in Table 21-1.

The CTB_OA_RESx_CTRL[2] bit is used to select between
the 10X and 1X output capability (0: 1X, 1: 10X). If the out-
put of the opamp is connected to the SAR ADC, it is recom-
mended to choose the 1X output driver; if the output of the
opamp is connected to an external pin, choose the 10X out-
put driver. In special instances, to connect the output to an
external pin with 1X output driver or an internal load (for
example, SAR ADC) with 10X output driver, set
CTBm_OAx_SW [21] to ‘1’. However, Cypress does not
guarantee performance in this case.

21.3.3 Compensation 

Each opamp also has a programmable compensation
capacitor block, which allows optimizing the opamp perfor-
mance based on output load. The compensation of each
opamp is controlled by the respective
CTBm_OAx_COMP_TRIM register. Note that all the GBW,
slew rate specifications in device datasheet are applied for
all compensation trim.

21.3.4 Switch Control

The CTBm has many switches to configure the opamp input
and output. Most of them are controlled by configuring
CTBm registers (CTBm_OA0_SW, CTBm_OA1_SW),
except three switches, which are used to connect the output
of opamps to SAR ADC through sarbus0 and sarbus1. They
must be controlled by SAR ADC registers, CTBm registers,
and DSI signals.

Switches can be closed by setting the corresponding bit in
register CTBm_OAx_SW; clearing them will cause the cor-
responding switches to open. Writing ‘1’ to
CTBm_OAx_SW_CLEAR can clear the corresponding bit in
CTBm_OAx_SW. 

21.3.4.1 Input Configuration

Positive and negative input to the operational amplifier can
be selected from several options through analog switches.
These switches serve to connect the opamp inputs from the
external pins, to form a local feedback loop (for buffer func-
tion). Each opamp has a switch connecting to one of the two
AMUXBUS line: Opamp0 connects to AMUXBUS-A and
Opamp1 connects to AMUXBUS-B. 

Note Make sure only one switch is closed for both positive
and negative input; otherwise, different input source may be
short together.

■ Positive input

Both opamp0 and opamp1 have three positive input 
options through analog switches: two external pins and 
one AMUXBUS line. See Table 21-3 for details. 

Table 21-1.  Output Driver versus Power Mode

Power Mode IOUT 

Drive Capability

CTBm_OA_RESx_CTRL[1:0]

00 
(disable)

01 
(low)

10 
(medium)

11 
(high)

External Driver (10X) Off 10 mA 10 mA 10 mA

Internal Driver (1X) Off 100 µA 400 µA 1 mA

Table 21-2.  Opamp 0 or Opamp 1 Compensation

CTBm_OAx_COMP
_TRIM[1:0]

Description

00
Minimum compensation, high speed, and 
low stability 

01
Medium compensation, balanced speed 
and stability

11
Maximum compensation, low speed, and 
high stability

Table 21-3.  Positive Input

Positive Input Switch Control Bit Description

Opamp0

AMUXBUSA CTBm_OA0_SW [0] 0: open 1: close switch

P1.0 CTBm_OA0_SW [2] 0: open 1: close switch

P1.6 CTBm_OA0_SW [3] 0: open 1: close switch

Opamp1

AMUXBUSB CTBm_OA1_SW [0] 0: open 1: close switch

P1. 5 CTBm_OA1_SW [1] 0: open 1: close switch

P1.7 CTBm_OA1_SW [4] 0: open 1: close switch



228 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Continuous Time Block mini (CTBm)

■ Negative input

Both opamp0 and opamp1 have two negative input options through analog switches: one external pin or output feedback, 
which is controlled by the CTBm_OAx_SW register. Table 21-4 shows the detailed control bits. 

21.3.4.2 Output Configuration

The opamp output is connected directly to a fixed pin; no
additional setup is needed. Optionally, it can be connected
to sarbus0 or sarbus1 through three switches (SW1/2/3).
Opamp0 output can be connected to sarbus0 and opamp1
can be connected to sarbus0 or sarbus1, which is intended
to connect opamp output to SAR ADC. These three
switches are controlled by the CTBm register, SAR ADC
register, and DSI signals together; the other switches can be
controlled only by CTBm register. 

The following truth tables show the control logic of the three
switches. PORT_ADDR, PIN_ADDR, and
DIFFERENTIAL_EN are from SAR_CHANx_CONFIG [6:4],
SAR_CHANx_CONFIG [2:0], and SAR_CHANx_CONFIG
[2:0], respectively. Either PORT_ADDR =0 or PIN_ADDR =
0 will set SW[n]=0. CTB_SW_HW_CTRL bit [2] or [3] should
be set when using the SAR register or a DSI signal to control
switches. CTB_OAx_SW[18]/[19] can mask the other control
bits – if CTB_OAx_SW[18]/[19] = 0, SW[n] = 0. 

Register CTBm_SW_STATUS [30:28] gives the current
switch status of SW1/2/3. 

Table 21-4.  Negative Input

Negative Input Switch Control Bit Description

Opamp0
P1.1 CTBm_OA0_SW [8] 0: open 1: close switch

Opamp0 output feedback through 1X output driver CTBm_OA0_SW [14] 0: open 1: close switch

Opamp1
P1.4 CTBm_OA1_SW [8] 0: open 1: close switch

Opamp1 output feedback through 1X output driver CTBm_OA1_SW [14] 0: open 1: close switch

Table 21-5.  Truth Table of SW1 Control Logic

PORT_ADDR PIN_ADDR CTB_SW_HW_CTRL[2] dsi_out[2] CTB_OA0_SW[18] SW1

X X X X 0 0

X 0 1 0 1 0

0 X 1 0 1 0

X X X 1 1 1

X X 0 X 1 1

1 2 X X 1 1

Table 21-6.  Truth Table of SW2 Control Logic

DIFFERENTIAL_
EN

PORT_ADDR PIN_ADDR CTB_SW_HW_CTRL[3] dsi_out[3] CTB_OA0_SW[18] SW2

X X X X X 0 0

X X 0 1 0 1 0

X 0 X 1 0 1 0

1 X X X 0 1 0

X X X 0 X 1 1

X X X X X 1 1

0 1 3 X X 1 1



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 229

Continuous Time Block mini (CTBm)

21.3.4.3 Comparator Mode

Each opamp can be configured as a comparator by setting
the respective CTBm_OA_RESx_CTRL[4] bit. Note that
enabling the comparator completely disables the compensa-
tion capacitors and shuts down the Class A (1X) and Class
AB (10X) output drivers. When configured as comparators,
they have the following features:

■ Optional 10-mV input hysteresis

■ Speed/power tradeoff 

■ Optional DSI output synchronization

■ Offset trimmed to less than 1 mV

■ Configurable edge detection (rising/falling/both/disable)

21.3.4.4 Comparator Configuration

The hysteresis of 10 mV ±5 percent can be enabled in one
direction (low to high). Input hysteresis can be enabled by
setting CTBm_OA_RESx_CTRL[5]. The two comparators
also have three power modes – low, medium, and high by
setting CTBm_OA_RESx_CTRL [1:0]). Power modes differ
in response time and power consumption; power consump-
tion is maximum in fast mode and minimum in ultra-low-
power mode. Exact specifications for power consumption
and response time are provided in the datasheet.

The comparator output is routed to the DSI with optional
synchronization. The synchronization with comparator clock
(system AHB clock) can be configured in
CTBm_OA_RESx_CTRL[6]. 

The output state of comparator0 and comparator1 are
stored in CTBm_COMP_STAT[0] and
CTBm_COMP_STAT[16], respectively.

21.3.4.5 Comparator Interrupt

The comparator output is connected to an edge detector
block, which is used to detect the edge (Disable/Rising/Fall-
ing/both) that generates interrupt. It can be configured by
the CTBm_OA_RESx_CTRL[9:8] bits. 

Each comparator has a separate IRQ. CTBm_INTR [0] is for
comparator0 IRQ, CTBm_INTR [1] is for comparator1 IRQ. 

Each of the interrupts has an interrupt mask bit in the
CTBm_INTR_MASK register. By setting the interrupt mask
low, the corresponding interrupt source is ignored. The
CTBm comparator interrupt to the NVIC will be raised if logic
AND of the interrupt flags in CTBm_INTR registers and the
corresponding interrupt masks in CTBm_INTR_MASK regis-
ter is 1. 

Writing a ‘1’ to the CTBm_INTR bit [1:0] can clear corre-
sponding interrupt.

For firmware convenience, the intersection (logic AND) of
the interrupt flags and the interrupt masks is also made
available in the CTBm_INTR_MASKED register.

For verification and debug purposes, a set bit is provided for
each interrupt in CTBm_INTR_SET register. This allows the
firmware to raise the interrupt without a real comparator
switch event. 

Table 21-7.  Truth Table of SW3 control logic

DIFFERENTIAL_
EN

PORT_ADDR PIN_ADDR CTB_SW_HW_CTRL[3] dsi_out[3] CTB_OA0_SW[18] SW3

X X X X X 0 0

X X 0 1 0 1 0

X 0 X 1 0 1 0

0 X X X 0 1 0

X X X 0 X 1 1

X X X X X 1 1

1 1 2 X X 1 1



230 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Continuous Time Block mini (CTBm)

21.4 Register Summary

Table 21-8.  Register Summary

Offset Width Name Description

0x0000 32 CTBm_CTRL Global CTBm block enable

0x0004 32 CTBm_OA_RES0_CTRL Opamp0 control register

0x0008 32 CTBm_OA_RES1_CTRL Opamp1 control register

0x000C 32 CTBm_COMP_STAT Comparator status

0x0020 32 CTBm_INTR Interrupt request register

0x0024 32 CTBm_INTR_SET Interrupt request set register

0x0028 32 CTBm_INTR_MASK Interrupt request mask

0x002C 32 CTBm_INTR_MASKED Interrupt request masked

0x0030 32 CTBm_DFT_CTRL Analog DFT controls

0x0080 32 CTBm_OA0_SW Opamp0 switch control

0x0084 32 CTBm_OA0_SW_CLEAR Opamp0 switch control clear

0x0088 32 CTBm_OA1_SW Opamp1 switch control

0x008C 32 CTBm_OA1_SW_CLEAR Opamp1 switch control clear

0x00C0 32 CTBm_SW_HW_CTRL CTBm hardware control enable

0x00C4 32 CTBm_SW_STATUS CTBm bus switch control status

0x0F00 32 CTBm_OA0_OFFSET_TRIM Opamp0 trim control

0x0F04 32 CTBm_OA0_SLOPE_OFFSET_TRIM Opamp0 trim control

0x0F08 32 CTBm_OA0_COMP_TRIM Opamp0 trim control

0x0F0C 32 CTBm_OA1_OFFSET_TRIM Opamp1 trim control

0x0F10 32 CTBm_OA1_SLOPE_OFFSET_TRIM Opamp1 trim control

0x0F14 32 CTBm_OA1_COMP_TRIM Opamp1 trim control



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 231

22.   LCD Direct Drive

The PSoC® 4 Liquid Crystal Display (LCD) drive system is a highly configurable peripheral that allows the PSoC device to
directly drive STN and TN segment LCDs.

22.1 Features
The PSoC 4 LCD segment drive function has these features:

■ Supports up to four commons (mux ration 1:4)

■ Supports Type A (standard) and Type B (low-power) drive waveforms

■ Any GPIO can be configured as a common or segment

■ Supports three drive methods: 

❐ Digital correlation 

❐ PWM at 1/2nd bias 

❐ PWM at 1/3rd bias 

■ Ability to drive 3-V displays from 1.8 V VDD in Digital Correlation mode

■ Operates in active, sleep, and deep-sleep modes 

■ Digital contrast control 

22.2 LCD Segment Drive Overview
A segmented LCD panel has the liquid crystal material between two sets of electrodes and various polarization and reflector
layers. The two electrodes of an individual segment are called commons (COM) or backplanes and segment electrodes
(SEG). From an electrical perspective, an LCD segment can be considered as a capacitive load; the COM/SEG electrodes
can be considered as the rows and columns in a matrix of segments. The opacity of an LCD segment is controlled by varying
the root-mean-square (RMS) voltage across the corresponding COM/SEG pair.

The following terms/voltages are used in this chapter to describe LCD drive:

■ VLO: The voltage that the LCD driver can realize on segments that are intended to be off.

■ VHI: The voltage that the LCD driver can realize on segments that are intended to be on.

■ Discrimination Ratio (D): The ratio of VHI and VLO that the LCD driver can realize. This depends on the type of wave-

forms applied to the LCD panel. Higher discrimination ratio results in higher contrast.

Liquid crystal material does not tolerate long term exposure to DC voltage. Therefore, any waveforms applied to the panel
must produce a 0-V DC component on every segment (on or off). Typically, LCD drivers apply waveforms to the COM and
SEG electrodes that are generated by switching between multiple voltages. The following terms are used to define these
waveforms:

■ Duty: A driver is said to operate in 1/Mth duty when it drives 'M' number of COM electrodes. Each COM electrode is effec-
tively driven 1/Mth of the time. PSoC 4 supports 1/2nd, 1/3rd, and 1/4th duties.

■ Bias: A driver is said to use 1/Bth bias when its waveforms use voltage steps of (1/B) × VDRV. VDRV is the highest drive 
voltage in the system (equals to VDD in PSoC 4). PSoC 4 supports 1/2nd and 1/3rd biases in PWM drive modes.

■ Frame: A frame is the length of time required to drive all the segments. During a frame, the driver cycles through the com-
mons in sequence. All segments receive 0-V DC (but non-zero RMS voltage) when measured over the entire frame.



232 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

LCD Direct Drive

PSoC 4 supports two different types of drive waveforms in
all drive modes. These are:

■ Type-A Waveform: In this type of waveform, the driver 
structures a frame into M sub-frames. 'M' is the number 
of COM electrodes. Each COM is addressed only once 
during a frame. For example, COM[i] is addressed in 
sub-frame i.

■ Type-B Waveform: The driver structures a frame into 
2M sub-frames. The two sub-frames are inverses of 
each other. Each COM is addressed twice during a 
frame. For example, COM[i] is addressed in sub-frames i 
and M+i. Type-B waveforms are slightly more power effi-
cient because it contains fewer transitions.

22.2.1 Drive Modes

PSoC 4 supports the following drive modes.

■ PWM Drive at 1/2nd bias

■ PWM Drive at 1/3rd bias

■ Digital correlation

22.2.1.1 PWM Drive

In PWM drive mode, multi-voltage drive signals are gener-
ated using a PWM output signal together with the intrinsic
resistance and capacitance of the LCD. Figure 22-1 illus-
trates this. 

Figure 22-1.  PWM Drive (at 1/3rd Bias)

The output waveform of the drive electronics is a PWM waveform. With the Indium Tin Oxide (ITO) panel resistance and the
segment capacitance to filter the PWM, the voltage across the LCD segment is an analog voltage, as shown in Figure 22-1.
This figure illustrates the generation of a 1/3rd bias waveform (four commons and voltage steps of VDD/3).

The PWM frequency is derived from either ILO (32 kHz) or IMO. The generated analog voltage typically runs at very low fre-
quency (~ 50 Hz) for segment LCD driving.

Figure 22-2 and Figure 22-3 illustrate the generated analog waveforms for COM and SEG electrodes for 1/2nd bias and 1/4th
duty. Only COM0/COM1 and SEG0/SEG1 are drawn. Similarly, Figure 22-4 and Figure 22-5 illustrate the analog waveforms
for COM and SEG electrodes for 1/3rd bias and 1/4th duty. 

PWM Generator

PWM Generator

SEG

COM

GPIO Output Impedance ITO Panel Resistance LCD Segment 
Capacitance

VPWM VLCD

Vddd

Vddd

2/3 Vddd

1/3 Vddd

0

0

t

t

VPWM

VLCD



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 233

LCD Direct Drive

Figure 22-2.  PWM1/2nd Type-A Waveform Example

VDD

0
COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.661 VDD

(VDC = 0)

Segment On:
VRMS = 0.661 VDD

Segment Off:
VRMS = 0.433 VDD

Segment Off:
VRMS = 0.433 VDD

Discrimination ratio:
D = 0.661/0.433 = 1.527Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

1/2 VDD

0

COM0

VDD

1/2 VDD

0

COM1

VDD

1/2 VDD

0

SEG0

VDD

1/2 VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type A Waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected



234 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

LCD Direct Drive

Figure 22-3.  PWM1/2nd Type-B Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.661 VDD

(VDC = 0)

Segment On:
VRMS = 0.661 VDD

Segment Off:
VRMS = 0.433 VDD

Segment Off:
VRMS = 0.433 VDD

Discrimination ratio:
D = 0.661/0.433 = 1.527Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

1/2 VDD

0

COM0

VDD

1/2 VDD

0

COM1

VDD

1/2 VDD

0

SEG0

VDD

1/2 VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type B Waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 235

LCD Direct Drive

Figure 22-4.  PWM1/3rd Type-A Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.577 VDD

(VDC = 0)

Segment On:
VRMS = 0.577 VDD

Segment Off:
VRMS = 0.333 VDD

Segment Off:
VRMS = 0.333 VDD

Discrimination ratio:
D = 0.577/0.333 = 1.732Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type A Waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected



236 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

LCD Direct Drive

Figure 22-5.  PWM1/3rd Type-B Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.577 VDD

(VDC = 0)

Segment On:
VRMS = 0.577 VDD

Segment Off:
VRMS = 0.333 VDD

Segment Off:
VRMS = 0.333 VDD

Discrimination ratio:
D = 0.577/0.333 = 1.732Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type B Waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 237

LCD Direct Drive

The effective RMS voltage for ON and OFF segments can
be calculated easily using these equations:

Equation 22-1

 Equation 22-2

Where B is the bias and M is the duty (number of COMs).

For example, if the number of COMs is 4, the resulting dis-
crimination ratios (D) for 1/2nd and 1/3rd biases are 1.528
and 1.732, respectively. 1/3rd bias offers better discrimina-
tion ratio in 2 and 3 COM drives also. Therefore, 1/3rd bias
offers better contrast than 1/2nd bias and is recommended
for most applications.

When the low-speed operation of LCD is used, the PWM
signal is derived from the 32-kHz ILO. To drive a low-capac-
itance display with acceptable ripple and rise/fall times using
a 32-kHz PWM, additional external series resistances of
100k-1M should be used. External resistors are not
required for PWM frequencies greater than ~1 MHz. The
ideal PWM frequency depends on the capacitance of the
display and the internal ITO resistance of the ITO routing
traces.

The 1/2nd bias mode has the advantage that PWM is only
required on the COM signals; the SEG signals use only logic
levels, as shown in Figure 22-2 and Figure 22-3. 

22.2.1.2 Digital Correlation

The digital correlation mode, instead of generating bias volt-
ages between the rails, takes advantage of the characteris-
tic of LCDs that the contrast of LCD segments is determined
by the RMS voltage across the segments. In this approach,
the correlation coefficient between any given pair of COM
and SEG signals determines whether the corresponding
LCD segment is on or off. Thus, by doubling the base drive
frequency of the COM signals in their inactive sub-frame
intervals, the phase relationship of the COM and SEG drive
signals can be varied to turn segments on and off. This is
different from varying the DC levels of the signals as in the
PWM drive approach. Figure 22-8 and Figure 22-9 are
example waveforms that illustrate the principles of opera-
tion.

V
RMS OFF  2 B 2– 2

2 M 1– +
2M

----------------------------------------------------= x VDRV B 

V
RMS ON  2B2 2 M 1– +

2M
--------------------------------------= x VDRV B 



238 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

LCD Direct Drive

Figure 22-6.  Digital Correlation Type-A Waveform

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.791 VDD

(VDC = 0)

Segment On:
VRMS = 0.791 VDD

Segment Off:
VRMS = 0.612 VDD

Segment Off:
VRMS = 0.612 VDD

Discrimination ratio:
D = 0.791/0.612 = 1.291Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

0

COM0

VDD

0

COM1

VDD

0

SEG0

VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type A Waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 239

LCD Direct Drive

Figure 22-7.  Digital Correlation Type-B Waveform 

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.791 VDD

(VDC = 0)

Segment On:
VRMS = 0.791 VDD

Segment Off:
VRMS = 0.612 VDD

Segment Off:
VRMS = 0.612 VDD

Discrimination ratio:
D = 0.791/0.612 = 1.291Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

0

COM0

VDD

0

COM1

VDD

0

SEG0

VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type B Waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected



240 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

LCD Direct Drive

The RMS voltage applied to on and off segments can be cal-
culated as follows:

Where B is the bias and M is the duty (number of COMs).
This leads to a discrimination ratio (D) of 1.291 for four
COMs. 

Digital correlation mode also has the ability to drive 3-V dis-
plays from 1.8 V VDD.

22.2.2 Recommended Usage of Drive 
Modes

The PWM drive mode has higher discrimination ratios com-
pared to the digital correlation mode, as explained in
22.2.1.1 PWM Drive and 22.2.1.2 Digital Correlation. There-
fore, the contrast in digital correlation method is lower than
PWM method but digital correlation has lower power con-
sumption because its waveforms toggle at low frequencies. 

The digital correlation mode creates reduced, but accept-
able contrast on TN displays, but no noticeable difference in
contrast or viewing angle on higher contrast STN displays. 

Because each mode has strengths and weaknesses, rec-
ommended usage is as follows.

22.2.3 Digital Contrast Control

In all drive modes, digital contrast control can be used to change the contrast level of the segments. This method reduces
contrast by reducing the driving time of the segments. This is done by inserting a ‘Dead-Time’ interval after each frame. Dur-
ing dead time, all COM and SEG signals are driven to a logic 1 state. The dead time can be controlled in fine resolution.
Figure 22-8 illustrates the dead-time contrast control method for 1/3 bias and 1/4 duty implementation.

Figure 22-8.  Dead-Time’ Contrast Control

V
RMS OFF  M 1– 

2M
-------------------= x VDD 

V
RMS ON  2 M 1– +

2M
----------------------------= x VDD 

Table 22-1.  Recommended Usage of Drive Modes

Display Type Deep-Sleep Mode Sleep/Active Mode Notes

TN Glass Digital Correlation PWM 1/3 Bias
Firmware must switch between LCD drive modes before going to deep sleep or 
waking up.

STN Glass Digital Correlation No contrast advantage for PWM drive with STN glass.

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

Two Frames of of Type A Waveform with Dead-time

(Example for 1/4th Duty and 1/3rd bias)

Dead-Time

t0 t1 t2dt dtt3



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 241

LCD Direct Drive

22.3 Block Diagram
Figure 22-9.  Block Diagram of LCD Direct Drive System

22.3.1 How it Works

The LCD controller block contains two generators; one with
a high-speed clock source HFCLK and the other with a low-
speed clock source (32 kHz) derived from the ILO. These
are called high-speed LCD master generator and low-speed
LCD master generator, respectively. Both the generators
support PWM and digital correlation drive modes. PWM
drive mode with low-speed generator requires external
resistors, as explained in PWM Drive on page 232. 

The multiplexer selects one of these two generator outputs
to drive LCD, as configured by the firmware. The LCD pin
logic block routes the COM and SEG outputs from the gen-
erators to the corresponding I/O matrices. Any GPIO can be
used as either COM or SEG. This configurable pin assign-
ment for COM or SEG is implemented in GPIO and I/O
matrix; see High-Speed I/O Matrix  on page 54. These two
generators share the same configuration registers. These
memory mapped I/O registers are connected to the system
bus (AHB) using an AHB interface.

The LCD controller works in three device power modes:
active, sleep, and deep-sleep. High-speed operation is sup-
ported in active and sleep modes. Low-speed operation is
supported in active, sleep, and deep-sleep modes. The LCD
controller is unpowered in hibernate and stop modes.

22.3.2 High-Speed and Low-Speed 
Master Generators

The high-speed and low-speed master generators are simi-
lar to each other. The only exception is that the high-speed
version has larger frequency dividers to generate the frame
and sub-frame periods. This is because the clock of the
high-speed block (HFCLK) is derived from the IMO, which is
typically at 30 to 100 times the frequency of the ILO (32 kHz)
clock fed to the low-speed block. The high-speed generator
is in the active power domain and the low-speed generator
is in the deep-sleep power domain. A single set of configura-
tion registers is provided to control both high-speed and low-
speed blocks. Each master generator has the following fea-
tures and characteristics:

■ Register bit configuring the block for either Type A or 
Type B drive waveforms (LCD_MODE bit in 
LCD_CONTROL register).

■ Register bits to select the number of COMs (COM_NUM 
field in LCD_CONTROL register). The available values 
are 2, 3, and 4.

■ Operating mode configuration bits enabled to select one 
of the following:

❐ Digital correlation

❐ PWM 1/2 bias

❐ PWM 1/3 bias

High Speed (HS) 
LCD Master 
Generator

AHB 
interface

AHB

Low 
Frequency 

Clock (32Khz)

Config&Control 
Registers

LCD Mode 
Select
(HS/LS)

Sub Frame
Data

Display 
Data

HSIO
Matrix

LCD com[0]

Display Data [0]

LCD
Pin

Logic

Display
Data

Registers

HSIO
Matrix

HSIO
Matrix

High Frequency 
Clock

LCD seg[0]

LCD com[1]

LCD seg[1]

LCD com[n]

LCD seg[n]

Active 
Power Domain 

DeepSleep 
Power Domain 

Low Speed (LS)
LCD Master 
Generator

Multiplexer

Display Data [1]

Display Data [n]

HS COM Signals

HS SEG Signals

LS COM Signals

LS SEG Signals

HS Sub Frame Data

LS Sub Frame Data

COM 
Signals

SEG 
Signals



242 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

LCD Direct Drive

❐ Off/disabled. Typically, one of the two generators will 
be configured to be Off

OP_MODE and BIAS fields in LCD_CONTROL bits 
select the drive mode.

■ A counter to generate the sub-frame timing. The 
SUBFR_DIV field in the LCD_DIVIDER register deter-
mines the duration of each sub-frame. If the divide value 
written into this counter is C, the sub-frame period is 4 × 
(C+1). The low-speed generator has an 8-bit counter. 
This generates a maximum half sub-frame period of 
8 ms from the 32-kHz ILO clock. The high-speed gener-
ator has a 16-bit counter.

■ A counter to generate the dead time period. These coun-
ters have the same number of bits as the sub-frame 
period counters and use the same clocks. DEAD_DIV 
field in the LCD_DIVIDER register controls the dead time 
period.

22.3.3 Multiplexer and LCD Pin Logic

The multiplexer selects the output signals of either high-

speed or low-speed master generator blocks and feeds it to
the LCD pin logic. This selection is controlled by the configu-
ration and control register. The LCD pin logic uses the sub-
frame signal from the multiplexer to choose the display data.
This pin logic will be replicated for each LCD pin.

22.3.4 Display Data Registers

Each LCD pin has its own display data register
(LCD_DATA0 to LCD_DATA3). If the pin is configured as
COM, the display data for COM pins must be configured as
follows, where the first listed value corresponds to the data
output in the first subframe:

COM 0 – 1, 0, 0, 0

COM 1 – 0, 1, 0, 0

COM 2 – 0, 0, 1, 0

COM 3 – 0, 0, 0, 1

If the pin is configured as SEG, the display data register is
programmed according to the display data of each sub-
frame. The display data registers are Memory Mapped I/O
(MMIO) and accessed through the AHB slave interface.

22.4 Register List 

Table 22-2.  LCD Direct Drive Register List

Register Name Description

LCD_DIVIDER This register controls the sub-frame and dead-time period

LCD_CONTROL This register is used to configure high-speed and low-speed generators

LCD_DATA0 LCD pin data register

LCD_DATA1 LCD pin data register

LCD_DATA2 LCD pin data register

LCD_DATA3 LCD pin data register



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 243

23.   CapSense

PSoC® 4 uses a capacitive touch sensing method known as CapSense® Sigma Delta (CSD). The CapSense Sigma Delta
touch sensing method provides the industry's best in class signal to noise ratio. CSD is a combination of hardware and firm-
ware techniques. This chapter explains how the CSD hardware is implemented in PSoC 4. See the PSoC 4 CapSense
Design Guide for more details on CSD operation, CapSense design tools, the PSoC Creator™ component, performance tun-
ing, and design considerations.

23.1 Features

PSoC 4 CapSense has the following features:

■ Robust sensing technology

■ CapSense Sigma Delta (CSD) operation provides best in class signal-to-noise ratio (SNR)

■ High-performance sensing across a variety of overlay materials and thicknesses

■ SmartSense™ auto-tuning technology

■ Supports as many as 35 sensors

■ High range proximity sensing

■ Water tolerant operation 

■ Low power consumption

■ Two IDAC operation to increase scan speed and SNR

■ Any GPIO pin can be used for sensing or shielding

■ Pseudo random sequence (PRS) clock source for lower electromagnetic interference (EMI)

■ GPIO precharge (supported on two dedicated pins) quickly initializes external tank capacitors 

23.2 Block Diagram

Figure 23-1 shows the CapSense Sigma Delta (CSD) system block diagram. 

http://www.cypress.com/go/an85951
http://www.cypress.com/go/an85951


244 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

CapSense

Figure 23-1.  CapSense Module Block Diagram

23.3 How It Works

With CSD, each GPIO has a switched capacitance circuit
that converts the sensor capacitance into an equivalent cur-
rent. An analog multiplexer then selects one of the currents
and feeds it into the current to digital converter. The current
to digital converter is similar to a Delta Sigma ADC.

The output count of the current to digital converter, known as
raw count, is a digital value that is proportional to the capac-
itance of the sensor CS:

Equation 23-1

Where GC is the capacitance to digital conversion gain of

CapSense.

When a finger touches the sensor, the sensor capacitance
increases; the raw count also increases proportionally. By
comparing the change in raw count to a predetermined
threshold, logic in firmware decides whether the sensor is
active (finger is present).

23.3.1 CapSense CSD Sensing

Figure 23-2 shows the block diagram of the PSoC 4
CapSense block, which scans the CapSense sensors.

Capacitance to 
current converter

GPIO Pin

GPIO Pin

GPIO Pin

CS1

CS2

CSN

Sensor 1

Sensor 2

Sensor N

Capacitance to 
current converter

Capacitance to 
current converter

Analog 
Multiplexer

Current to digital 
converter (sigma 

delta)

Firmware 
processing

IS1

IS2

ISN

raw count touch status

rawcount GCCS=



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 245

CapSense

Figure 23-2.  PSoC 4 CapSense CSD Sensing 

23.3.1.1 GPIO Cell Capacitance to Current 
Converter

In the CapSense CSD system, the GPIO cells are config-
ured as switched capacitance circuits that convert the sen-
sor capacitances to equivalent currents. Figure 23-3 shows
a simplified diagram of the PSoC 4 GPIO cell structure.

PSoC 4 has two analog multiplexer buses: AMUXBUS A is
used for CSD sensing and AMUXBUS B is used for CSD
shielding. The GPIO switched capacitance circuit has two
possible configurations: source current to AMUXBUS A or
sink current from AMUXBUS A. Figure 23-4 shows the
switched capacitance configuration for sourcing current to
AMUXBUS A. 

GPIO
Cell

GPIO
Cell

GPIO 
Cell

IDAC1
8 Bit

IDAC2
7 BitGPIO Pin

GPIO Pin

GPIO Pin

CMOD Pin

VREF

(1.2V)

Main
IDAC

Compensation
 IDAC

CS1

CS2

CSN

Integrating capacitor for 
Sigma-Delta Converter
CMOD

IO Cells configured as switched 
capacitance circuits for capacitance 
to current conversion

Raw 
counts

 Current to Digital Sigma-Delta Converter

AMUXBUS A forms an analog 
multiplexer for  the sensors

Modulation Clock Divider

Sigma-Delta
Converter

Sensor 1

Sensor 2

Sensor N

IDAC 
control

Converter Clock

Switching Clock Generator

High 
Frequency 

Clock
(HFCLK)FSW

Switching clock for GPIO 
switched capacitance circuits



246 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

CapSense

Figure 23-3.  PSoC 4 GPIO Cell

Figure 23-4.  Sourcing Current to AMUXBUS A

Two non-overlapping, out of phase clocks of frequency FSW

(see Figure 23-1) control the switches SW2 and SW3. The

continuous switching of SW2 and SW3 forms an equivalent

resistance RS, as Figure 23-3 shows. The value of the

equivalent resistance RS is:

Equation 23-2

Where:

CS = Sensor capacitance 

FSW = Frequency of the switching clock

The Sigma Delta converter maintains the voltage of AMUX-
BUS A at a constant VREF (this process is explained in

Sigma Delta Converter). Figure 23-5 shows the voltage
waveform across the sensor capacitance.

Figure 23-5.  Voltage Across Sensor Capacitance

Equation 23-3 gives the value of average current supplied to
AMUXBUS A.

Equation 23-3

GPIO 
Pin

VDDD

AMUXBUS
 A

AMUXBUS
B

SW1

SW2

SW3

SW4

CS

RS

AMUXBUS A
VDDD VDDD

SW2

SW3

AMUXBUS A

ISW
ISW

ISW

RS
1

CSF
SW

------------------=

V

t

VREF

(1.2V)

0

TSW = 1/FSW

VDDD

SW2 CLOSED
SW3 OPEN

SW2 OPEN
SW3 CLOSED

IS CSFSW VDDD V– REF =



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 247

CapSense

Figure 23-6 shows the switched capacitance configuration for sinking current from AMUXBUS A. Figure 23-7 shows the
resulting voltage waveform across CS.

Figure 23-6.  Sinking Current from AMUXBUS A

Figure 23-7.  Voltage Across Sensor Capacitance

Equation 23-4 gives the value of average current taken from
AMUXBUS A.

Equation 23-4

23.3.1.2 Switching Clock Generator

This block generates the switching clock FSW from the high-

frequency clock (HFCLK), as Figure 23-1 shows. The
switching clock is required for the GPIO cell switched capac-
itance circuits. The switching clock generator output has
three options: direct, 8-bit pseudo random sequence (PRS),
and 12-bit PRS. You can set the desired switching fre-
quency by selecting a clock divider parameter of the switch-
ing clock generator. This clock divider parameter is known
as the analog switch divider. If the "direct" output is selected,
the value of the generated switching clock frequency FSW is

Equation 23-5

You can also select one of the PRS outputs to lower the
Electro Magnetic Interference (EMI) effect - it averages the
switching frequency over a wide range. If PRS output is

selected, Equation 23-5 gives the average value of the aver-
age value of FSW. Equations 23-6 and 23-7 give the maxi-

mum and minimum frequencies.

Equation 23-6

Equation 23-7

Where m is the resolution of the PRS (8 or 12 bits).

23.3.1.3 Sigma Delta Converter

The Sigma Delta converter converts the input current to a
corresponding digital count. It consists of a Sigma Delta
converter, a clock generator, known as a modulation switch
divider, and two current sourcing/sinking digital-to-analog
converters (IDACs), as Figure 23-1 shows. The 8-bit IDAC1
is known as the main IDAC and the 7-bit IDAC2 is known as
the compensation IDAC. IDAC2 is not required for basic
CSD operation; it is used for improving CSD performance.
The Sigma Delta converter also requires an external inte-
grating capacitor CMOD, as Figure 23-1 shows. The recom-

mended value of CMOD is 2.2 nF.

The Sigma Delta modulator maintains the voltage across
CMOD at VREF. It works in one of the following modes:

■ IDAC sourcing mode: If the switched capacitor circuit 
sinks current from the AMUXBUS A, the IDACs then 
source current to AMUXBUS A to balance its voltage. 
The IDAC1 current is switched ON and OFF correspond-
ing to the small voltage variations across CMOD to main-

tain this voltage at VREF.

CS

RS

AMUXBUS A

SW1

SW3

AMUXBUS A

ISW

ISW

ISW

V

t

VREF

(1.2V)

0

TSW = 1/FSW

SW1 OPEN
SW3 CLOSED

SW1 CLOSED
SW3 OPEN

IS CSFSWVREF=

FSW
HFCLK

2Ana SwitchDividerlog
-------------------------------------------------------------=

FSW maximum  HFCLK
Ana SwitchDividerlog
----------------------------------------------------------=

FSW minimum  HFCLK
mAna SwitchDividerlog
---------------------------------------------------------------=



248 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

CapSense

■ IDAC sinking mode: In this mode, the IDACs sink current 
from CMOD, and the switched capacitor circuit sources 

current to CMOD. The IDAC1 current is switched ON and 

OFF corresponding to the small voltage variations 
across CMOD to maintain this voltage at VREF.

The Sigma Delta converter can operate from 8-bit to 16-bit
resolutions. If IDAC2 is not used, the raw count is propor-
tional to the sensor capacitance. If 'N' is the resolution of the
Sigma Delta converter and IDAC1 is the value of IDAC1 cur-
rent, the approximate value of raw count in IDAC sourcing
mode is given by Equation 23-8.

Equation 23-8

Similarly, the approximate value of raw count in IDAC sink-
ing mode is:

Equation 23-9

In both cases, the raw count is proportional to sensor capac-
itance CS. The raw count is then processed by the

CapSense firmware to detect touches.

You can use IDAC2 to increase the performance of
CapSense. When IDAC2 is used, the equation for the raw
count in IDAC sourcing mode is:

Equation 23-10

Where IDAC2 is the value of IDAC2 current, raw count in
IDAC sinking mode is given by equation 23-11.

Equation 23-11

23.3.1.4 Analog Multiplexer

The Sigma Delta converter scans one sensor at a time. An
analog multiplexer selects one of the GPIO cells and con-
nects it to the input of the Sigma Delta converter, as
Figure 23-1 shows. The AMUXBUS A and the GPIO cell
switches (see SW3 in Figure 23-3) form this analog multi-

plexer. AMUXBUS A connects to all GPIOs, so you can use
any PSoC 4 GPIO for CSD sensing. AMUXBUS A also con-
nects the integrating capacitor CMOD to the Sigma Delta

converter circuit.

23.3.2 CapSense CSD Shielding

PSoC 4 CapSense supports shield electrodes for water-
proofing and proximity sensing. For waterproofing, the
shield electrode is always kept at the same potential as the
sensors. PSoC 4 CapSense has a shielding circuit that
drives the shield electrode with a replica of the sensor
switching signal (see GPIO Cell Capacitance to Current
Converter) to nullify the potential difference between sen-
sors and shield electrode.

In the sensing circuit, the Sigma Delta converter keeps the
AMUXBUS A at VREF (see Sigma Delta Converter). The

GPIO cells generate the sensor waveforms by switching the
sensor between AMUXBUS A and a supply rail (either VDD

or ground, depending on the configuration). The shielding
circuit works in a similar way; AMUXBUS B is always kept at
VREF. The GPIO cell switches the shield between AMUX-

BUS B and a supply rail (either VDDD or ground, same con-

figuration as the sensor). This process generates a replica
of the sensor switching waveform on the shield electrode.

Depending on how AMUXBUS B is kept at VREF, two differ-

ent configurations are possible.

Shield driving using VREF buffer: In this configuration, a volt-

age buffer is used to drive AMUXBUS B to VREF, as

Figure 23-8 shows. An external CSH_TANK capacitor is rec-

ommended to reduce switching transients. See Chapter 3 in
the PSoC 4 CapSense Design Guide for details.

Rawcount 2
NVREFFSW

IDAC1
-------------------------CS=

Rawcount 2
N VDD VREF– FSW

IDAC1
-----------------------------------------------CS=

Rawcount 2
NVREFFSW

IDAC1
-------------------------CS 2

NIDAC2

IDAC1
---------------–=

Rawcount 2
N VDD VREF– FSW

IDAC1
-----------------------------------------------CS 2

NIDAC2

IDAC1
---------------–=

http://www.cypress.com/go/an85951


PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 249

CapSense

Figure 23-8.  Shield Driving Using VREF Buffer

Shield driving using GPIO cell precharge: This configuration requires an external CSH_TANK capacitor, as Figure 23-9 shows.

A special GPIO cell charges the CSH_TANK capacitor and hence the AMUXBUS B to VREF.

Figure 23-9.  Shield Driving Using GPIO Precharge

This GPIO cell precharge capability is available only on a
fixed CSH_TANK pin. See the device pinout in the PSoC 4

datasheet for details.

23.3.2.1 CMOD Precharge

When the CapSense hardware is enabled for the first time,
the voltage across CMOD starts at zero. Then the Sigma

Delta converter slowly charges the CMOD to VREF. The

charging current is supplied by the IDACs in the IDAC
sourcing mode and it is supplied by the sensor switched
capacitance circuit in IDAC sinking mode. However, this is a
slow process because CMOD is a relatively large capacitor.

Precharging of CMOD is the process of quickly initializing the

voltage across CMOD to VREF. Precharging is used to reduce

the time required for the Sigma Delta converter to start its
operation. There are two options for precharging CMOD.

■ Precharge using VREF buffer: When the shield is 

enabled, the VREF buffer output is always connected to 

AMUXBUS B (Figure 23-8). To precharge using the 
VREF buffer, CMOD is initially connected to AMUXBUS B. 

After the precharging process, CMOD is connected to 

AMUXBUS A for normal Sigma Delta operation. When 
the shield is disabled, the VREF buffer output is always 

connected to AMUXBUS A for precharging, and discon-
nected afterwards.

■ Precharge using GPIO cell: In this configuration, a spe-
cial GPIO cell charges the CMOD capacitor to VREF. This 

GPIO cell precharge capability is available only on a 
fixed CMOD pin. See the device pinout in the PSoC 4 

datasheet for details. Precharge using a GPIO cell is 
faster than using the VREF buffer. Therefore, GPIO pre-

charge is the recommended precharge configuration. 
However, if you do not need a fast initialization of 
CapSense, use VREF buffer precharge. In this mode, you 

can connect CMOD to any GPIO.

GPIO
Cell

GPIO Pin

GPIO Pin

VREF

Shield Tank
 Capacitor 
(optional)

Shield Electrode

(1.2V)

AMUXBUS B 
(Always kept at VREF)

VREF Buffer

CSH_TANK 

CSHIELD 

Shield 
electrode 

capacitance

GPIO
Cell

GPIO Pin

CSH_TANK Pin

Shield Tank
 Capacitor

Shield Electrode

CSH_TANK 

CSHIELD 

Shield 
electrode 

capacitance

AMUXBUS B 
(Always kept at VREF)

GPIO cell precharge



250 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

CapSense



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 251

24.   Temperature Sensor

PSoC® 4 has an on-chip temperature sensor that is used to measure the internal die temperature. The temperature sensor is
a transistor connected in diode configuration. The temperature dependence of the base-to-emitter voltage (Vbe) is the basis
for temperature measurement.

24.1 Features

The temperature sensor has these features:

■ ± 5° Celsius accuracy over temperature range –40 °C to +100 °C

■ 0.5° Celsius/LSB resolution

■ 10 µs setting (sampling) time

24.2 How it Works

The base-to-emitter voltage of a bipolar junction transistor (BJT) device has a strong dependence on temperature at a con-
stant collector current and zero collector-base voltage. The PSoC uses this property to calculate the die temperature by mea-
suring the base-emitter voltage (Vbe) using SARMUX channel and SAR ADC in 12-bit mode, single-ended, and unsigned
configuration, as shown in Figure 24-1.

Figure 24-1.  Temperature Sensing Mechanism

The digital output of SAR ADC is calibrated in firmware using the linear equation:

Equation 24-1

Temperature 
Sensor

SARMUX SARADC CPU

NEG

POS

Ibias = 2.5 µA

Vplus

Vminus

vssa_kelvin

Vb (Vc)

REF

Vref=1.024 V

Bandgap 
Current

Control signal 1

Control signal 2

Legend:
Control Signal 1: sarmux_temp_vplus 
Control Signal 2: sarmux_vssa_kelvin_vminus

Temp A Vbe B+=



252 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Temperature Sensor

Note A and B are 16-bit constants stored in flash during fac-
tory calibration. You will not be able to alter these values.

■ "A" is the 16-bit multiplier constant. The value of A is 
determined by the PSoC 4 family characterization data, 
and is a constant value for all die. It is stored in a 
PSoC Creator defined resistor 
CYREG_SFLASH_SAR_TEMP_MULTIPLIER at the 
location 0x0FFFF164. A and 16-bit Vbe are multiplied 
and the 32-bit product is stored in 16.16 fixed point for-
mat.

■ "B" is the 16-bit offset constant. The value of B is deter-
mined on a per die basis by taking care of all the process 
variations and the actual bias current (Ibias) present in 
the chip. It is stored in a PSoC Creator defined resistor 
CYREG_SFLASH_SAR_TEMP_OFFSET at the location 
0x0FFFF166. B is multiplied by 1024 to get the 32-bit 
product in 16.16 fixed point format.

■ “Temp" is the die temperature expressed in 16.16 fixed 
point format. The upper 16 bits represent the integer part 
of temperature and the lower 16 bits represent the deci-
mal part of temperature. The 32-bit Temp value is right 

shifted by 16-bit positions to get the integer part of tem-
perature in degree Celsius. For example, 0x1E5DFC = 
to 30.36713 °C; 0xFFFD09D2 = –2.96164 °C. 

24.3 Temperature Sensor 
Configuration

In Figure 24-2, the temperature sensor output is routed to
the positive input of SAR ADC via dedicated switches, which
can be controlled by sequencer, firmware or Digital System
Interconnect (DSI). The control signal for switch-17
(sarmux_temp_vplus) enables the temperature sensor by
passing bias current from bandgap and by routing the sen-
sor output to the positive input of SAR ADC. The control sig-
nal for switch-16 (sarmux_vssa_kelvin_vminus) connects
the negative input of SAR ADC to VSSA.

See Temperature Sensor Configuration on page 219 to
know how the sequencer, DSI, or firmware routes the tem-
perature sensor output to SAR ADC. 

Figure 24-2.  Routing Temperature Sensor Output to SAR ADC

SW17

SW16

S
A
R
M
U
X



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 253

Temperature Sensor

Note that for temperature sensor, the differential conversions are not available (conversion result is undefined). Therefore,
always use it in singled-ended mode. Reference is from internal 1.024 V.

24.4 Algorithm
1. Enable the SARMUX and SAR ADC.

2. Configure SAR ADC in single-ended mode with VNEG = VSS, VREF = 1.024 V, and 12-bit resolution. 

3. Enable the temperature sensor.

4. Get the digital output from the SAR ADC.

5. Fetch A value from CYREG_SFLASH_SAR_TEMP_MULTIPLIER and B from CYREG_SFLASH_SAR_TEMP_OFFSET.

6. Calculate the die temperature using the linear equation Temp = A × Vbe+ B

For example, let A = 0xBC4B and B = 0x65B4. Assume that the output of SAR ADC (Vbe) is 0x595 at a given tempera-
ture. 

Firmware does the following calculations:

a. Multiply A and Vbe: 0xBC4B × 0x595 = (–17333)10 × (1429)10 = (–24768857)10

b. Multiply B and 1024: 0x65B4 × 0x400 = (26036)10 × (1024)10 = (26660864)10

c. Add the result of step 1 and 2: (–24768857)10 + (26660864)10 = (1892007)10 = 0x1CDEA7

d. The integer part of temperature is the upper 16 bits = 0x001C = (28)10

e. The decimal part of temperature is the lower 16 bits = 0xDEA7 = (0.86974)10

f. Combining the result of step 4 and 5, Temp = 28.869740 °C



254 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Temperature Sensor



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 255

Section G: Program and Debug

This section encompasses the following chapters:

■ Program and Debug Interface chapter on page 257

■ Nonvolatile Memory Programming chapter on page 263

Top Level Architecture

Program and Debug Block Diagram

S
ys

te
m

 B
u

s 
 

PROGRAM AND DEBUG

Program

Debug and Trace



256 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 257

25.   Program and Debug Interface

The PSoC® 4 Program and Debug interface provides a communication gateway for an external device to perform program-
ming or debugging. The external device can be a Cypress supplied programmer and debugger, or a third-party device that
supports PSoC 4 programming and debugging. The serial wire debug (SWD) interface is used as the communication protocol
between the external device and PSoC 4.

25.1 Features

■ Programming and debugging through the SWD interface

■ Four hardware breakpoints and two hardware watchpoints while debugging

■ Read and write access to all memory and registers in the system while debugging, including the Cortex-M0 register bank 
when the core is running or halted

25.2 Functional Description

Figure 25-1 shows the block diagram of the program and debug interface in PSoC 4. The Cortex-M0 debug and access port
(DAP) acts as the program and debug interface. The external programmer or debugger, also known as the "host", communi-
cates with the DAP of the PSoC 4 "target" using the two pins of the SWD interface - the bidirectional data pin (SWDIO) and
the host-driven clock pin (SWDCK). The SWD physical port pins (SWDIO and SWDCK) communicate with the DAP through
the high-speed IO matrix (HSIOM). The HSIOM provides a flexible mapping between the GPIO pins and the different on-chip
peripherals that connect to the GPIO pins such as the LCD driver, DAP, and SAR ADC.

Figure 25-1.  PSoC 4 Program and Debug Interface 

The DAP communicates with the Cortex-M0 CPU using the ARM-specified advanced high-performance bus (AHB) interface.
AHB is the systems interconnect protocol used inside PSoC 4, which facilitates memory and peripheral register access by the
AHB master. PSoC 4 has two AHB masters – ARM CM0 CPU core and DAP. The external device can effectively take control
of the entire device through the DAP to perform programming and debugging operations.

H
S

IO
M

Cortex-M0 DAP

Debug Port (DP)

Access Port (AP)

AP Access

SWDCK

SWDIO

SWD

Cortex-M0 CPU

AHB DAP
AHB

ARM Cortex-M0 subsystem

AHB

SRAMSROM
Peripheral 
Modules

AHB

PSoC 4

Host Device

S
P

C
 In

te
rf

ac
e

Flash



258 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Program and Debug Interface

25.3 Serial Wire Debug (SWD) 
Interface

PSoC 4’s Cortex-M0 supports programming and debugging
through the SWD interface. The SWD protocol is a packet-
based serial transaction protocol. At the pin level, it uses a
single bidirectional data signal (SWDIO) and a unidirectional
clock signal (SWDCK). The host programmer always drives
the clock line, whereas either the host or the target drives
the data line. A complete data transfer (one SWD packet)
requires 46 clocks and consists of three phases:

■ Host Packet Request Phase – The host issues a 
request to the PSoC 4 target.

■ Target Acknowledge Response Phase – The PSoC 4 
target sends an acknowledgement to the host.

■ Data Transfer Phase – The host or target writes data to 
the bus, depending on the direction of the transfer.

When control of the SWDIO line passes from the host to the
target, or vice versa, there is a turnaround period (Trn)
where neither device drives the line and it floats in a high-
impedance (Hi-Z) state. This period is either one-half or one
and a half clock cycles, depending on the transition.

Figure 25-2 shows the timing diagrams of read and write
SWD packets.

Figure 25-2.  PSoC 4 SWD Write and Read Packet Timing Diagrams

The sequence to transmit SWD read and write packets are
as follows:

1. Host Packet Request Phase: SWDIO driven by the host

a. The start bit initiates a transfer; it is always a logical 
1.

b. The “AP not DP” (APnDP) bit determines whether 
the transfer is an AP access – 1b1 or a DP access – 
1b0.

c. The “Read not Write” bit (RnW) controls which direc-
tion the data transfer is in. 1b1 represents a ‘read 
from’ the target, or 1b0 for a ‘write to’ the target.

d. The Address bits (A[3:2]) are register select bits for 
AP or DP, depending on the APnDP bit value. See 
Table 25-3 and Table 25-4 for definitions. 
Note Address bits are transmitted with the LSB first.

e. The parity bit contains the parity of APnDP, RnW, and 
ADDR bits. It is an even parity bit; this means, when 
XORed with the other bits, the result will be 0.

If the parity bit is not correct, the header is ignored by 
PSoC 4; there is no ACK response (ACK = 3b111). 
The programming operation should be aborted and 
retried again by following a device reset.

f. The stop bit is always logic 0.

g. The park bit is always logic 1.

2. Target Acknowledge Response Phase: SWDIO driven 
by the target

a. The ACK[2:0] bits represent the target to host 
response, indicating failure or success, among other 
results. See Table 25-1 for definitions. Note  ACK 
bits are transmitted with the LSB first.

3. Data Transfer Phase: SWDIO driven by either target or 
host depending on direction

a. The data for read or write is written to the bus, LSB 
first.

S
ta

rt
 (

1)

A
P

nD
P

R
nW

 (
0)

A[2:3]

P
ar

ity

S
to

p 
(0

)

P
ar

k 
(1

)

T
rn

 (
H

i-Z
)

1

w
da

ta
[0

]

P
ar

ity

ACK[0:2]

0 0

w
da

ta
[1

]

w
da

ta
[3

1]

...

...

...

T
rn

 (
H

i-Z
)

Host Packet Request Phase Target ACK Phase Host Data Transfer Phase

SWD Write Packet

S
ta

rt
 (

1)

A
P

nD
P

R
nW

 (
1)

A[2:3]

P
ar

ity

S
to

p 
(0

)

P
ar

k 
(1

)

T
rn

 (
H

i-Z
)

1

rd
at

a[
0]

P
ar

ity
ACK[0:2]

0 0

rd
at

a[
1]

rd
at

a[
31

]

...

...

...

T
rn

 (
H

i-Z
)

Host Packet Request Phase Target ACK and Data Transfer Phases

SWD Read Packet

SWDCK

SWDIO

SWDCK

SWDIO



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 259

Program and Debug Interface

b. The data parity bit indicates the parity of the data 
read or written. It is an even parity; this means when 
XORed with the data bits, the result will be 0.

If the parity bit indicates a data error, corrective 
action should be taken. For a read packet, if the host 
detects a parity error, it must abort the programming 
operation and restart. For a write packet, if the target 
detects a parity error, it generates a FAULT ACK 
response in the next packet.

According to the SWD protocol, the host can generate any
number of SWDCK clock cycles between two packets with
SWDIO low. It is recommended to generate three or more
dummy clock cycles between two SWD packets if the clock
is not free-running or to make the clock free-running in IDLE
mode. 

The SWD interface can be reset by clocking the SWDCK
line for 50 or more cycles with SWDIO high. To return to the
idle state, clock the SWDIO low once.

25.3.1 SWD Timing Details

The SWDIO line is written to and read at different times
depending on the direction of communication. The host
drives the SWDIO line during the Host Packet Request
Phase and, if the host is writing data to the target, during the
Data Transfer phase as well. When the host is driving the
SWDIO line, each new bit is written by the host on falling
SWDCK edges, and read by the target on rising SWDCK
edges. The target drives the SWDIO line during the Target
Acknowledge Response Phase and, if the target is reading
out data, during the Data Transfer Phase as well. When the
target is driving the SWDIO line, each new bit is written by
the target on rising SWDCK edges, and read by the host on
falling SWDCK edges.

Table 25-1 and Figure 25-2 illustrate the timing of SWDIO
bit writes and reads.

25.3.2 ACK Details

The acknowledge (ACK) bit-field is used to communicate
the status of the previous transfer. OK ACK means that pre-
vious packet was successful. A WAIT response requires a
data phase. For a FAULT status, the programming opera-
tion should be aborted immediately. Table 25-2 shows the
ACK bit-field decoding details.

Details on WAIT and FAULT response behaviors are as fol-
lows:

■ For a WAIT response, if the transaction is a read, the 
host should ignore the data read in the data phase. The 
target does not drive the line and the host must not 
check the parity bit as well.

■ For a WAIT response, if the transaction is a write, the 
data phase is ignored by the PSoC 4. But, the host must 
still send the data to be written to complete the packet. 
The parity bit corresponding to the data should also be 
sent by the host.

■ For a WAIT response, it means that the PSoC 4 is pro-
cessing the previous transaction. The host can try for a 
maximum of four continuous WAIT responses to see if 
an OK response is received. If it fails, then the program-
ming operation should be aborted and retried again.

■ For a FAULT response, the programming operation 
should be aborted and retried again by doing a device 
reset.

25.3.3 Turnaround (Trn) Period Details

There is a turnaround period between the packet request
and the ACK phases, as well as between the ACK and the
data phases for host write transfers, as shown in
Figure 25-2. According to the SWD protocol, the Trn period
is used by both the host and target to change the drive
modes on their respective SWDIO lines. During the first Trn
period after the packet request, the target starts driving the
ACK data on the SWDIO line on the rising edge of SWDCK.
This ensures that the host can read the ACK data on the
next falling edge. Thus, the first Trn period lasts only one-
half cycle. The second Trn period of the SWD packet is one
and a half cycles. Neither the host nor PSoC 4 should drive
the SWDIO line during the Trn period.

25.4 Cortex-M0 Debug and 
Access Port (DAP)

The Cortex-M0 program and debug interface includes a
Debug Port (DP) and an Access Port (AP), which combine
to form the DAP. The debug port implements the state
machine for the SWD interface protocol that enables com-
munication with the host device. It also includes registers for
the configuration of access port, DAP identification code,
and so on. The access port contains registers that enable
the external device to access the Cortex-M0 DAP-AHB
interface. Typically, the DP registers are used for a one time

Table 25-1.  SWDIO Bit Write and Read Timing

SWD Packet Phase
SWDIO Edge

Falling Rising

Host Packet Request Host Write Target Read

Host Data Transfer

Target Ack Response Host Read Target Write

Target Data Transfer

Table 25-2.  SWD Transfer ACK Response Decoding

Response ACK[2:0]

OK 3b001

WAIT 3b010

FAULT 3b100

NO ACK 3b111



260 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Program and Debug Interface

configuration or for error detection purposes, and the AP
registers are used to perform the programming and debug-
ging operations. Complete architecture details of the DAP is
available in the ARM® Debug Interface v5 Architecture
Specification.

25.4.1 Debug Port (DP) Registers

Table 25-3 shows the Cortex-M0 DP registers used for pro-
gramming and debugging, along with the corresponding

SWD address bit selections. The APnDP bit is always zero
for DP register accesses. Two address bits (A[3:2]) are used
for selecting among the different DP registers. Note that for
the same address bits, different DP registers can be
accessed depending on whether it is a read or a write opera-
tion. See the ARM® Debug Interface v5 Architecture Speci-
fication for details on all of the DP registers.

25.4.2 Access Port (AP) Registers 

Table 25-4 lists the main Cortex-M0 AP registers that are used for programming and debugging, along with the corresponding
SWD address bit selections. The APnDP bit is always one for AP register accesses. Two address bits (A[3:2]) are used for
selecting the different AP registers. 

25.5 Programming the PSoC 4 
Device

PSoC 4 is programmed using the following sequence. Refer
to the PSoC 4 Device Programming Specifications for com-
plete details on the programming algorithm, timing specifica-
tions, and hardware configuration required for programming.

1. Acquire the SWD port in PSoC 4.

2. Enter the programming mode. 

3. Execute the device programming routines such as Sili-
con ID Check, Flash Programming, Flash Verification, 
and Checksum Verification.

25.5.1 SWD Port Acquisition

25.5.1.1 Primary and Secondary SWD Pin 
Pairs

The first step in device programming is to acquire the SWD
port in PSoC 4. PSoC 4 devices support the SWD interface
in two different physical pin locations – the primary pin pair
of P3[2] and P3[3], and the secondary pin pair of P3[6] and
P3[7]. Within those pairs, P3[2] and P3[6] are used for
SWDIO, and P3[3] and P3[7] are used for SWDCK. The pri-
mary SWD pin pair is supported on all device packages
while the secondary SWD pin pair is present only in the
higher pin count packages. Refer to the PSoC 4 device
datasheet for information on which device packages support
the secondary SWD pin pair.

Table 25-3.  Main Debug Port (DP) Registers

Register  APnDP
Address

A[3:2]
RnW Full Name Register Functionality

ABORT 0 (DP) 2b00 0 (W) AP Abort Register
This register is used to force a DAP abort and to clear the 
error and sticky flag conditions.

IDCODE 0 (DP) 2b00 1 (R)
Identification Code 
Register

This register holds the SWD ID of the Cortex-M0 CPU, which 
is 0x0BB11477.

CTRL/STAT 0 (DP) 2b01 X (R/W)
Control and Status 
Register

This register allows control of the DP and contains status 
information about the DP.

SELECT 0 (DP) 2b10 0 (W) AP Select Register
This register is used to select the current AP. In PSoC 4, there 
is only one AP, which interfaces with the DAP AHB.

RDBUFF 0 (DP) 2b11 1 (R) Read Buffer Register This register holds the result of the last AP read operation.

Table 25-4.  Main Access Port (AP) Registers

Register  APnDP
Address

A[3:2]
RnW Full Name Register Functionality

CSW 1 (AP) 2b00 X (R/W)
Control and Status 
Word Register 
(CSW)

This register configures and controls accesses through the 
memory access port to a connected memory system (which is 
the PSoC 4 Memory map)

TAR 1 (AP) 2b01 X (R/W)
Transfer Address 
Register

This register is used to specify the 32-bit memory address to 
be read from or written to

DRW 1 (AP) 2b11 X (R/W)
Data Read and Write 
Register

This register holds the 32-bit data read from or to be written to 
the address specified in the TAR register

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html


PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 261

Program and Debug Interface

The PSoC 4 SWD_CONFIG register in the supervisory flash
region is used to select between one of the two SWD pin
pairs that can be used for programming and debugging.
Note that only one of the SWD pin pairs can be used during
any programming or debugging session. The default selec-
tion for devices coming from the factory is the primary SWD
pin pair. To select the secondary SWD pin pair, it is neces-
sary to program the device using the primary pair with the
hex file that enables the secondary pin pair configuration.
Afterwards, the secondary SWD pin pair may be used. 

25.5.1.2  SWD Port Acquire Sequence

The first step in device programming is for the host to
acquire the target's SWD port. The host first performs a
device reset by asserting the external reset (XRES) pin.
After deasserting the XRES signal, the host must send an
SWD connect sequence within the acquire window to con-
nect to the SWD interface in the DAP. The pseudo code for
the sequence is given here.

Code 1. SWD Port Acquire Pseudocode

ToggleXRES(); // Toggle XRES pin to reset
device

//Execute ARM’s connection sequence to
acquire SWD-port
do
{

SWD_LineReset(); //perform a line reset
(50+ SWDCK clocks with SWDIO high)

ack = Read_DAP ( IDCODE, out ID); //Read
the IDCODE DP register

}while ((ack != OK) && time_elapsed < 1.5 ms);  /
/retry connection until OK ACK or timeout

if (time_elapsed >= 1.5 ms) return FAIL; //check
for acquire time out

if (ID != CM0_ID) return FAIL; //confirm SWD ID
of Cortex-M0 CPU. (0x0BB11477)

In this pseudocode, SWD_LineReset() is the standard ARM
command to reset the debug access port. It consists of more
than 49 SWDCK clock cycles with SWDIO high. The trans-
action must be completed by sending at least one SWDCK
clock cycle with SWDIO asserted LOW. This sequence syn-
chronizes the programmer and the chip. Read_DAP() refers
to the read of the IDCODE register in the debug port. The
sequence of line reset and IDCODE read should be
repeated until an OK ACK is received for the IDCODE read
or a timeout (1.5 ms) occurs. The SWD port is said to be in
the acquired state if an OK ACK is received within the time
window and the IDCODE read matches with that of the Cor-
tex-M0 DAP.

25.5.2 SWD Programming Mode Entry

After the SWD port is acquired, the host must enter the
device programming mode within a specific time window.
This is done by setting the TEST_MODE bit (bit 31) in the
test mode control register (MODE register). The debug port

should also be configured before entering the device pro-
gramming mode. Timing specifications and pseudocode for
entering the programming mode are shown in the device
programming specification.

25.5.3 SWD Programming Routines 
Executions

When the device is in programming mode, the external pro-
grammer can start sending the SWD packet sequence for
performing programming operations such as flash erase,
flash program, checksum verification, and so on. The pro-
gramming routines are explained in the Nonvolatile Memory
Programming chapter on page 263. The exact sequence of
calling the programming routines is given in the device pro-
gramming specifications document.

25.6 PSoC 4 SWD Debug 
Interface

Cortex-M0 DAP debugging features are classified into two
types: invasive debugging and noninvasive debugging.
Invasive debugging includes program halting and stepping,
breakpoints, and data watchpoints. Noninvasive debugging
includes instruction address profiling and device memory
access, which includes the flash memory, SRAM, and other
peripheral registers.

The DAP has three major debug subsystems:

■ Debug Control and Configuration registers

■ Breakpoint Unit (BPU) – provides breakpoint support

■ Debug Watchpoint (DWT) – provides watchpoint sup-
port. Trace is not supported in Cortex-M0 Debug.

See the ARMv6-M Architecture Reference Manual for com-
plete details on the debug architecture. 

25.6.1 Debug Control and Configuration 
Registers

The debug control and configuration registers are used to
execute firmware debugging. The registers and their key
functions are as follows. See the ARMv6-M Architecture
Reference Manual for complete bit level definitions of these
registers.

■ Debug Halting Control and Status Register (DHCSR) – 
This register contains the control bits to enable debug, 
halt the CPU, and perform a single-step operation. It 
also includes status bits for the debug state of the pro-
cessor.

■ Debug Fault Status Register (DFSR) – This register 
describes the reason a debug event has occurred. This 
includes debug events, which are caused by a CPU halt, 
breakpoint event, or watchpoint event.

■ Debug Core Register Selector Register (DCRSR) – This 
register is used to select the general-purpose register in 
the Cortex-M0 CPU to which a read or write operation 
must be performed by the external debugger.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html


262 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Program and Debug Interface

■ Debug Core Register Data Register (DCRDR) – This 
register is used to store the data to write to or read from 
the register selected in the DCRSR register.

■ Debug Exception and Monitor Control Register 
(DEMCR) – This register contains the enable bits for 
global debug watchpoint (DWT) block enable, reset vec-
tor catch, and hard fault exception catch.

25.6.2 Breakpoint Unit (BPU)

The BPU provides breakpoint functionality on instruction
fetches. The Cortex-M0 DAP in PSoC 4 supports up to four
hardware breakpoints. Along with the hardware breakpoints,
any number of software breakpoints can be created by using
the BKPT instruction in the Cortex-M0. The BPU has two
types of registers.

■ The breakpoint control register BP_CTRL is used to 
enable the BPU and store the number of hardware 
breakpoints supported by the debug system (four for 
CM0 DAP in PSoC 4).

■ Each hardware breakpoint has a Breakpoint Compare 
Register (BP_COMPx). It contains the enable bit for the 
breakpoint, the compare address value, and the match 
condition that will trigger a breakpoint debug event. The 
typical use case is that when an instruction fetch 
address matches the compare address of a breakpoint, 
a breakpoint event is generated and the processor is 
halted.

25.6.3 Data Watchpoint (DWT)

The DWT provides watchpoint support on a data address
access or a program counter (PC) instruction address.
Trace is not supported by the Cortex-M0 in PSoC 4. The
DWT supports two watchpoints. It also provides external
program counter sampling using a PC sample register,
which can be used for noninvasive coarse profiling of the
program counter. The most important registers in the DWT
are as follows.

■ The watchpoint compare (DWT_COMPx) registers store 
the compare values that are used by the watchpoint 
comparator for the generation of watchpoint events. 
Each watchpoint has an associated DWT_COMPx regis-
ter.

■ The watchpoint mask (DWT_MASKx) registers store the 
ignore masks applied to the address range matching in 
the associated watchpoints.

■ The watchpoint function (DWT_FUNCTIONx) registers 
store the conditions that trigger the watchpoint events. 
They may be program counter watchpoint event or data 
address read/write access watchpoint events. A status 
bit is also set when the associated watchpoint event has 
occurred.

■ The watchpoint comparator PC sample register 
(DWT_PCSR) stores the current value of the program 
counter. This register is used for coarse, non-invasive 
profiling of the program counter register.

25.6.4 Debugging the PSoC 4 Device

The host debugs the target PSoC 4 device by accessing the
debug control and configuration registers, registers in the
BPU, and registers in the DWT. All registers are accessed
through the SWD interface; the SWD debug port (SW-DP) in
the Cortex-M0 DAP converts the SWD packets to appropri-
ate register access through the DAP-AHB interface.

The first step in debugging the target PSoC 4 device is to
acquire the SWD port. The acquire sequence consists of a
SWD line reset sequence and read of the DAP SWDID
through the SWD interface. The SWD port is acquired when
the correct CM0 DAP SWDID is read from the target device.
For the debug transactions to occur on the SWD interface,
the corresponding pins should not be used for any other pur-
pose. The PORT_SEL3 register contains the bits to config-
ure the SWD port pins, allowing them to be used only for
SWD interface or for other functions such as LCD and
GPIO. If debugging is required, the SWD port pins should
not be repurposed. If only programming support is needed,
the SWD pins can be repurposed SWD programming and
SWD debugging differ in that after SWD programming, the
pins can be used for any purpose. But during SWD debug-
ging, the pins cannot be used for another purpose.

When the SWD port is acquired, the external debugger sets
the C_DEBUGEN bit in the DHCSR register to enable
debugging. Then, the different debugging operations such
as stepping, halting, breakpoint configuration, and watch-
point configuration are carried out by writing to the appropri-
ate registers in the debug system.

Debugging the target device is also affected by the overall
device protection setting, which is explained in the Device
Security chapter on page 87. Only the OPEN protected
mode supports device debugging. Also, the external debug-
ger loses connection to the target device when the device
enters either Hibernate or Stop modes. The connection must
be re-established after the device enters the Active mode
again. The external debugger and the target device connec-
tion is not lost for a device transition from Active mode to
either Sleep or Deep-Sleep modes. When the device enters
the Active mode from either Deep-Sleep or Sleep modes,
the debugger can resume its actions without initiating a con-
nect sequence again.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 263

26.   Nonvolatile Memory Programming

Nonvolatile memory programming refers to the programming of flash memory in the PSoC® 4 device. This chapter explains
the different functions that are part of device programming such as erase, write, program, and checksum calculation. These
functions can be used by Cypress supplied programmers and other third-party programmers to program the PSoC 4 device
with the data in an application hex file. They can also be used to perform bootload operations where a portion of flash mem-
ory will be updated by the CPU.

26.1 Features
■ Supports programming through the debug and access port (DAP) and Cortex-M0 CPU

■ Supports both blocking and non-blocking flash program and erase operations from the Cortex-M0 CPU

26.2 Functional Description
Flash programming operations are implemented as system calls. System calls are executed out of SROM in the privileged
mode of operation. The user has no access to read or modify the SROM code. The DAP or the CM0 CPU requests the sys-
tem call by writing the function opcode and parameters to the SPC input registers, and then requesting the SROM to execute
the function. Based on the function opcode, the SPC will execute the corresponding system call from SROM and update the
SPC status register. The DAP or the CPU should read this status register for the pass/fail result of the function execution. As
part of function execution, the code in SROM will interact with the SPC interface to do the actual flash programming opera-
tions.

PSoC 4 flash is programmed using a Program Erase Program (PEP) sequence. The flash cells are all programmed to a
known state, erased, and then the selected bits are programmed. This increases the life of the flash by balancing the stored
charge. When writing to flash the data is first copied to a page latch buffer. The flash write functions are then used to transfer
this data to flash.

External programmers program the flash memory in PSoC 4 using the SWD protocol by sending the commands to the Debug
and Access Port (DAP). The programming sequence for the PSoC 4 device with an external programmer is given in the
PSoC 4 Device Programming Specifications. Flash memory can also be programmed by the CM0 CPU by accessing the rel-
evant registers through the AHB interface. This type of programming is typically used to update a portion of the flash memory
as part of a bootload operation, or other application requirements such as updating a lookup table stored in the flash memory.
All write operations to flash memory, whether from the DAP or from the CPU, are done through the System Performance Con-
troller (SPC) interface.

26.3 System Call Implementation
A system call consists of the following items:

■ Opcode: A unique 8-bit opcode

■ Parameters: There are two 8-bit parameters that are mandatory for all system calls. These parameters are referred to as 
key1 and key2, and are defined as follows.

key1 = 0xB6

key2 = 0xD3 + Opcode

The two keys are passed to ensure that the user system call is not initiated by mistake. If the key1 and key2 parameters 
are not correct, the SROM does not execute the function, and returns an error code. Apart from these two parameters, 
there may be additional parameters required depending on the specific function being called. 

■ Return Values: Some system calls also return a value on completion of their execution, such as the silicon ID or a check-
sum.



264 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Nonvolatile Memory Programming

■ Completion Status: Each system call returns a 32 bit sta-
tus that the CPU or DAP can read to verify success or 
determine the reason for failure.

26.4 Blocking and Non-Blocking 
System Calls

System call functions can be categorized as blocking or
non-blocking based on the nature of their execution. Block-
ing system calls are those where the CPU cannot execute
any other task in parallel other than the execution of the sys-
tem call. When a blocking system call is called from a pro-
cess, the CPU jumps to the code corresponding in SROM.
When the execution is complete, the original thread execu-
tion resumes. Non-blocking system calls are those that allow
the CPU to execute some other code in parallel and commu-
nicate the completion of interim system call tasks to the CPU
through an interrupt. Non-blocking system calls are only
used when the system call is initiated by the CPU. The DAP
will only use system calls during programming mode and the
CPU is halted during this process. 

The three non-blocking system calls are Non-Blocking Write
Row, Non-Blocking Program Row, and Resume Non-Block-
ing, respectively. All other system calls are blocking. 

Because the CPU cannot execute code from flash while
doing an erase or program operation on the flash, the non-
blocking system calls can only be called from a code execut-
ing out of SRAM. If the non-blocking functions are called
from flash memory, the result is undefined and may return a
bus error and trigger a hard fault when the flash fetch opera-
tion is being done.

The System Performance Controller (SPC) is the block that
generates the properly sequenced high-voltage pulses
required for erase and program operations of the flash mem-
ory. When a non-blocking function is called from SRAM, the
SPC timer triggers its interrupt when each of the sub-opera-
tions in a write or program operation is complete. Call the
Resume Non-Blocking function from the SPC interrupt ser-
vice routine (ISR) to ensure the subsequent steps in the sys-
tem call are completed. Because the CPU can execute code
only from SRAM when a non-blocking write or program
operation is being done, the SPC ISR should also be located
in the SRAM. The SPC interrupt is triggered once in the
case of a non-blocking program function or thrice in a non-
blocking write operation. The Resume Non-Blocking func-
tion call done in the SPC ISR is called once in a non-block-
ing program operation and thrice in a non-blocking write
operation.

The pseudo code for using a non-blocking write system call
and executing user code out of SRAM is given later in this
chapter.

26.4.1 Performing a System Call

The steps to initiate a system call are as follows:

1. Set up the function parameters: The two possible meth-
ods for preparing the function parameters (key1, key2, 
additional parameters) are:

a. Write the function parameters to the 
CPUSS_SYSARG register: This method is used for 
functions that retrieve their parameters from the 
CPUSS_SYSARG register. The 32-bit 
CPUSS_SYSARG register must be written with the 
parameters in the sequence specified in the respec-
tive system call table. 

b. Write the function parameters to SRAM: This method 
is used for functions that retrieve their parameters 
from SRAM. The parameters should first be written in 
the specified sequence to consecutive SRAM loca-
tions. Then, the starting address of the SRAM, which 
is the address of the first parameter, should be writ-
ten to the CPUSS_SYSARG register. This starting 
address should always be a word-aligned (32-bit) 
address. The system call uses this address to fetch 
the parameters.

2. Specify the system call using its opcode and initiating the 
system call: The 8-bit opcode should be written to the 
SYSCALL_COMMAND bits ([15:0]) in the 
CPUSS_SYSREQ register. The opcode is placed in the 
lower eight bits [7:0] and 0x00 be written to the upper 
eight bits [15:8]. To initiate the system call, set the 
SYSCALL_REQ bit (31) in the CPUSS_SYSREG regis-
ter. Setting this bit triggers a non-maskable interrupt that 
jumps the CPU to the SROM code referenced by the 
opcode parameter.

3. Wait for the system call to finish executing: When the 
system call begins execution, it sets the PRIVILEGED bit 
in the CPUSS_SYSREQ register. This bit can be set 
only by the system call, not by the CPU or DAP. The 
DAP should poll the PRIVILEGED and SYSCALL_REQ 
bits in the CPUSS_SYSREG register continuously to 
check whether the system call is completed. Both these 
bits are cleared on completion of the system call. The 
maximum execution time is one second. If these two bits 
are not cleared after 1 second, the operation should be 
considered a failure and aborted without executing the 
following steps. Note that unlike the DAP, the CPU appli-
cation code cannot poll these bits during system call 
execution. This is because the CPU executes code out 
of SROM during the system call. The application code 
can check only the final function pass/fail status after the 
execution returns from SROM.

4. Check completion status: After the PRIVILEGED and 
SYSCALL_REQ bits are cleared to indicate completion 
of the system call, the CPUSS_SYSARG register should 
be read to check for the status of the system call. If the 
32-bit value read from the CPUSS_SYSARG register is 
0xAXXXXXXX (where ‘X’ denotes don’t care hex val-
ues), the system call was successfully executed. For a 
failed system call, the status code is 0xF00000YY where 
YY indicates the reason for failure. See Table 26-1 for 
the complete list of status codes and their description.

5. Retrieve the return values: For system calls that return 
values such as silicon ID and checksum, the CPU or 
DAP should read the CPUSS_SYSREG and 
CPUSS_SYSARG registers to fetch the values returned.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 265

Nonvolatile Memory Programming

26.5 System Calls
Table 26-1 lists all the system calls supported in PSoC 4 along with the function description and availability in device protec-
tion modes. See the Device Security chapter on page 87 for more information on the device protection settings. Note that
some system calls cannot be called by the CPU as given in the table. Detailed information on each of the system calls follows
the table.

26.5.1 Silicon ID

This function returns a 12-bit family ID, 16-bit silicon ID, and an 8-bit revision ID, and the current device protection mode.
These values are returned to the CPUSS_SYSARG and CPUSS_SYSREQ registers. Parameters are passed through the
CPUSS_SYSARG and CPUSS_SYSREQ registers.

Parameters

Table 26-1.  List of System Calls

System Call Description
DAP Access CPU 

AccessOpen Protected Kill

Silicon ID Returns the device Silicon ID, Family ID, and Revision ID ✔ ✔ ✔

Load Flash Bytes
Loads data to the page latch buffer to be programmed later into the 
flash row, in 1 byte granularity, for a row size of 128 bytes

✔ ✔

Write Row
Erases and then programs a row of flash with data in the page latch buf-
fer

✔ ✔

Program Row Programs a row of flash with data in the page latch buffer ✔ ✔

Erase All
Erases all user code in the flash array; the flash row-level protection 
data in the supervisory flash area

✔

Checksum
Calculates the checksum over the entire flash memory (user and super-
visory area) or checksums a single row of flash

✔ ✔ ✔

Write Protection
This programs both flash row-level protection settings and chip-level 
protection settings into the supervisory flash (row 0)

✔ ✔

Non-Blocking Write Row
Erases and then programs a row of flash with data in the page latch buf-
fer. During program/erase pulses, the user may execute code from 
SRAM. This function is meant only for CPU access

✔

Non-Blocking Program 
Row

Programs a row of flash with data in the page latch buffer. During pro-
gram/erase pulses, the user may execute code from SRAM. This func-
tion is meant only for CPU access

✔

Resume Non-Blocking
Resumes a non-blocking write row or non-blocking program row. This 
function is meant only for CPU access

✔

Address Value to be Written Description

CPUSS_SYSARG Register

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xD3 Key2

Bits [31:16] 0x0000 Not used

CPUSS_SYSREQ register

Bits [15:0] 0x0000 Silicon ID opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit



266 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Nonvolatile Memory Programming

Return

26.5.2 Load Flash Bytes

This function loads the page latch buffer with data to be programmed into a row of flash. Load size can range from 1-byte to
the maximum number of bytes in a flash row, which is 128 bytes. Data is loaded into the page latch buffer starting at the loca-
tion specified by the “Byte Addr” input parameter. Data loaded into the page latch buffer remains until a program operation is
performed, which clears the page latch contents. The parameters for this function, including the data to be loaded into the
page latch, are written to the SRAM; the starting address of the SRAM data is written to the CPUSS_SYSARG register. Note
that the starting parameter address should be a word-aligned address.

Parameters

Address Return Value Description

CPUSS_SYSARG register

Bits [7:0] Silicon ID Lo See the device datasheet for Silicon ID values for different 
part numbersBits [15:8] Silicon ID Hi

Bits [19:16] Minor Revision Id
See the device programming specification for these values

Bits [23:20] Major Revision Id

Bits [27:24] 0xXX Not used (don’t care)

Bits [31:28] 0xA Success status code 

CPUSS_SYSREQ register

Bits [11:0] Family ID Family ID is 0x093 for PSoC 4

Bits [15:12] Chip Protection Refer Device Security chapter

Bits [31:16] 0xXXXX Not used

Address Value to be Written Description

SRAM Address - 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xD7 Key2

Bits [23:16] Byte Addr

Start address of page latch buffer to write data.

0x00 – Byte 0 of latch buffer

0x80 – Byte 128 of latch buffer

Bits [31:24] Flash Macro Select

0x00 – Flash Macro 0

0x01 – Flash Macro 1

(Refer Device Memory chapter for number of flash macros in 
the device)

SRAM Address- 32’hYY + 0x04

Bits [7:0] Load Size

Number of bytes to be written to the page latch buffer.

0x00 – 1 byte

0x7F – 128 bytes

Bits [15:8] 0xXX Don’t care parameter

Bits [23:16] 0xXX Don’t care parameter

Bits [31:24] 0xXX Don’t care parameter

SRAM Address- From (32’hYY + 0x08) to (32’hYY + 0x08 + Load Size)

Byte 0 Data Byte [0] First data byte to be loaded

. . .

. . .

Byte (Load size –1) Data Byte [Load size –1] Last data byte to be loaded

CPUSS_SYSARG register



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 267

Nonvolatile Memory Programming

Return

26.5.3 Write Row

This function erases and then programs the addressed row of flash with the data in the page latch buffer. If all data in the
page latch buffer is 0, then the program is skipped. The parameters for this function are stored in SRAM. The start address of
the stored parameters is written to the CPUSS_SYSARG register. This function clears the page latch buffer contents after the
row is programmed. 

Usage Requirements: Call the Load Flash Bytes function before calling this function. This function can do a write operation
only if the corresponding flash row is not write protected.

Parameters

Return

26.5.4 Program Row

This function programs the addressed row of the flash, with data in the page latch buffer. If all data in the page latch buffer is
0, then the program is skipped. The row must be in an erased state before calling this function. This clears the page latch buf-
fer contents after the row is programmed. 

Usage Requirements: Call the Load Flash Bytes function before calling this function. The row must be in an erased state
before calling this function. This function can do a program operation only if the corresponding flash row is not write-pro-
tected.

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0004 Load Flash Bytes opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xD8 Key2

Bits [31:16] Row ID
Row number to write.

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that 
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0005 Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description



268 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Nonvolatile Memory Programming

Parameters

Return

26.5.5 Erase All

This function erases all the user code in the flash main arrays and the row-level protection data in supervisory flash row 0 of
each flash macro. 

Usage Requirements: This API can be called only from the DAP in programming mode and only if the chip protection mode is
OPEN. If the chip protection mode is PROTECTED, then the Write Protection API must be used by the DAP to change the
protection settings to OPEN. Changing the protection setting from PROTECTED to OPEN automatically does an erase all
operation. 

Parameters

Return

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xD9 Key2

Bits [31:16] Row ID
Row number to program.

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that 
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0006 Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDD Key2

Bits [31:16] 0xXXXX Don’t care

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that 
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x000A Erase All opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 269

Nonvolatile Memory Programming

26.5.6 Checksum

This function reads either the whole flash memory or a row of flash and returns the 24-bit sum of each byte read in that flash
region. When performing a checksum on the whole flash, the user code and supervisory flash regions are included. When
performing a checksum only on one row of flash, the flash row number is passed as a parameter. Bytes 2 and 3 of the param-
eters select whether the checksum is performed on the whole flash memory or a row of user code flash. 

Parameters

Return

26.5.7 Write Protection

This function programs both the flash row-level protection settings and the device protection settings in the supervisory flash
row. The flash row-level protection settings are programmed separately for each flash macro in the device. Each row has a
single protection bit. The total number of protection bytes is the number of flash rows divided by 8. The chip-level protection
settings (1-byte) are stored in flash macro zero in the last byte location in row zero of the supervisory flash. The size of the
supervisory flash row is the same as the user code flash row size.

The Load Flash Bytes function is used to load the flash protection bytes of a flash macro into the page latch buffer corre-
sponding to the macro. The starting address parameter for the load function should be zero. The flash macro number should
be one that needs to be programmed; the number of bytes to load is the number of flash protection bytes in that macro.

Then, the Write Protection function is called, which programs the flash protection bytes from the page latch to be the corre-
sponding flash macro’s supervisory row. In flash macro zero, which also stores the device protection settings, the device level
protection setting is passed as a parameter in the CPUSS_SYSARG register. 

Address Value to be Written Description

CPUSS_SYSARG register

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDE Key2

Bits [31:16] Row ID

Selects the flash row number on which the checksum operation is 
done.

Row number – 16 bit flash row number

or

0x8000 – Checksum is performed on entire flash memory

CPUSS_SYSREQ register

Bits [15:0] 0x000B Checksum opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:24] 0xX Not used (don’t care) 

Bits [23:0] Checksum 24-bit checksum value of the selected flash region



270 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Nonvolatile Memory Programming

Parameters

Return

26.5.8 Non-Blocking Write Row

This function is used when a flash row needs to be written by the CM0 CPU in a non-blocking manner, so that the CPU can
execute code from SRAM while the write operation is being done. The explanation of non-blocking system calls is explained
in Blocking and Non-Blocking System Calls on page 264. 

The non-blocking write row system call has three phases: Pre-program, Erase, Program. Pre-program is the step in which all
of the bits in the flash row are written a ‘1’ in preparation for an erase operation. The erase operation clears all of the bits in
the row, and the program operation writes the new data to the row.

While each phase is being executed, the CPU can execute code from SRAM. When the non-blocking write row system call is
initiated, the user cannot call any system call function other than the Resume Non-Blocking function, which is required for
completion of the non-blocking write operation. After the completion of each phase, the SPC triggers its interrupt. In this inter-
rupt, call the Resume Non-Blocking system call.

Usage Requirements: Call the Load Flash Bytes function before calling this function to load the data bytes that will be used for
programming the row. Also, the non-blocking write row function can be called only from SRAM. This is because the CM0 CPU
cannot execute code from flash while doing the flash erase program operations. If this function is called from flash memory,
the result is undefined, and may return a bus error and trigger a hard fault when the flash fetch operation is being done.

Parameters

Address Value to be Written Description

CPUSS_SYSARG register

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xE0 Key2

Bits [23:16] Device Protection Byte

Parameter applicable only for Flash Macro 0.

0x01 – OPEN mode

0x02 – PROTECTED mode

0x04 – KILL mode

Bits [31:24] Flash Macro Select
0x00 – Flash Macro 0

0x01 – Flash Macro 1

CPUSS_SYSREQ register

Bits [15:0] 0x000D Write Protection opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:24] 0xX Not used (don’t care) 

Bits [23:0] 0x000000

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDA Key2

Bits [31:16] Row ID
Row number to write.

0x0000 – Row 0



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 271

Nonvolatile Memory Programming

Return

26.5.9 Non-Blocking Program Row

This function is used when a flash row needs to be programmed by the CM0 CPU in a non-blocking manner, so that the CPU
can execute code from the SRAM when the program operation is being done. The explanation of non-blocking system calls is
explained in Blocking and Non-Blocking System Calls on page 264. While the program operation is being done, the CPU can
execute code from the SRAM. When the non-blocking program row system call is called, the user cannot call any other sys-
tem call function other than the Resume Non-Blocking function, which is required for the completion of the non-blocking write
operation. Unlike the Non-Blocking Write Row system call, the Program system call only has a single phase. So the Resume
Non-Blocking function only needs to be called once from the SPC interrupt when using the Non-Blocking Program Row sys-
tem call.

Usage Requirements: Call the Load Flash Bytes function before calling this function to load the data bytes that will be used
for programming the row. Also, the non-blocking program row function can be called only from SRAM. This is because the
CM0 CPU cannot execute code from flash while doing flash program operations. If this function is called from flash memory,
the result is undefined, and may return a bus error and trigger a hard fault when the flash fetch operation is being done.

Parameters

Return

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that 
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0007 “Non-Blocking Write Row” opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDB Key2

Bits [31:16] Row ID
Row number to write.

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores 
the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0008 Non-Blocking Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Address Value to be Written Description



272 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Nonvolatile Memory Programming

26.5.10 Resume Non-Blocking

This function completes the additional phases of erase and program that were started using the non-blocking write row and
non-blocking program row system calls. This function must be called thrice following a call to Non-Blocking Write Row or once
following a call to Non-Blocking Program Row from the SPC ISR. No other system calls can execute until all phases of the
program or erase operation are complete. More details on the procedure of using the non-blocking functions in explained in
Blocking and Non-Blocking System Calls on page 264.

Parameters

Return

26.6 System Call Status
At the end of every system call, a status code is written over the arguments in the CPUSS_SYSARG register. A success sta-
tus is 0xAXXXXXXX, where X indicates don’t care values or return data in the case of the system calls that return a value. A
failure status is indicated by 0xF00000XX, where XX is the failure code. 

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDC Key2

Bits [31:16] 0xXXXX Don’t care. Not used by SROM.

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores 
the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0009 Resume Non-Blocking opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Table 26-2.  System Call Status Codes

Status Code 
(32-bit value in 

CPUSS_SYSARG register)
Description

AXXXXXXXh
Success – The “X” denotes a don’t care value, which has a value of ‘0’ returned by the SROM, unless the 
API returns parameters directly to the CPUSS_SYSARG register. 

F0000001h Invalid Chip Protection Mode – This API is not available during the current chip protection mode.

F0000003h
Invalid Page Latch Address – The address within the page latch buffer is either out of bounds or the size pro-
vided is too large for the page address.

F0000004h Invalid Address – The row ID or byte address provided is outside of the available memory. 

F0000005h Row Protected – The row ID provided is a protected row.

F0000007h
Resume Completed – All non-blocking APIs have completed. The resume API cannot be called until the next 
non-blocking API. 

F0000008h
Pending Resume – A non-blocking API was initiated and must be completed by calling the resume API, 
before any other API’s may be called. 

F0000009h
System Call Still In Progress – A resume or non-blocking is still in progress. The SPC ISR must fire before 
attempting the next resume.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 273

Nonvolatile Memory Programming

26.7 Non-Blocking System Call Pseudo Code
This section contains pseudo code to demonstrate how to set up a non-blocking system call and execute code out of SRAM
during the flash programming operations.

#define REG(addr)(*((volatile uint32 *) (addr)))
#define CM0_ISER_REG REG( 0xE000E100 )
#define CPUSS_CONFIG_REGREG( 0x40100000 )
#define CPUSS_SYSREQ_REG REG( 0x40100004 )
#define CPUSS_SYSARG_REG REG( 0x40100008 )
#define ROW_SIZE              128

//Variable to keep track of how many times SPC ISR is triggered
__ram int iStatusInt = 0x00;

__flash int main(void)
{
   DoUserStuff();

   //CM0 interrupt enable bit for spc interrupt enable
   CM0_ISER_REG |= 0x00000040;

   //Set CPUSS_CONFIG.VECS_IN_RAM because SPC ISR should be in SRAM
   CPUSS_CONFIG_REG |= 0x00000001;
   //Call non-blocking write row API

   NonBlockingWriteRow();

   //End Program
   while(1);
}

__sram void SpcIntHandler(void)
{
   /* Call Resume API */

   // Write key1, key2 parameters to SRAM
   REG( 0x20000000 ) = 0x0000DCB6;

   //Write the address of key1 to the CPUSS_SYSARG reg
   CPUSS_SYSARG_REG = 0x20000000;

   //Write the API opcode = 0x09 to the CPUSS_SYSREQ.COMMAND
   //register and assert the sysreq bit
   CPUSS_SYSREQ_REG = 0x80000009;

   iStatusInt ++; // Number of times the ISR has triggered
}

__sram void NonBlockingWriteRow(void)
{

int iter;

/*Load the Flash page latch with data to write*/

//Write key1, key2, byte address, 

F000000Ah Checksum Zero Failed – The calculated checksum was not zero

F000000Bh Invalid Opcode – The opcode is not a valid API opcode

F000000Ch Key Opcode Mismatch – The opcode provided does not match key1 and key2. 

F000000Eh Invalid start address – The start address is greater than the end address provided. 

Table 26-2.  System Call Status Codes

Status Code 
(32-bit value in 

CPUSS_SYSARG register)
Description



274 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Nonvolatile Memory Programming

 //and macro sel parameters to SRAM
REG( 0x20000000 ) = 0x0000D7B6;

//Write load size param (128 bytes) to SRAM
REG( 0x20000004 ) = 0x0000007F;

for(i = 0; i < ROW_SIZE/4; i += 1);
{

REG( 0x20000008 + i*4 ) = 0xDADADADA;
}

//Write the address of the key1 param to CPUSS_SYSARG reg
CPUSS_SYSARG_REG = 0x20000000;

//Write the API opcode = 0x04 to CPUSS_SYSREQ.COMMAND
//register and assert the sysreq bit
CPUSS_SYSREQ_REG = 0x80000004;

/*Perform Non-Blocking Write Row on Row 200 as an example */

//Write key1, key2, row id to SRAM
//row id = 0xC8 -> which is row 200
REG( 0x20000000 ) = 0x00C8DAB6;

//Write the address of the key1 param to CPUSS_SYSARG reg
CPUSS_SYSARG_REG = 0x20000000;

//Write the API opcode = 0x07 to CPUSS_SYSREQ.COMMAND
//register and assert the sysreq bit
CPUSS_SYSREQ_REG = 0x80000007;

//Execute user code until iStatusInt equals 3 to signify
//3 SPC interrupts have happened. This should be 1 in case
// of non-blocking program System Call 
while( iStatusInt != 0x03 )
{

DoOtherUserStuff();
} 

//Get the success or failure status of System Call
syscall_status = CPUSS_SYSARG_REG;

}

In the code, the CM0 exception table is configured to be in SRAM by writing 0x01 to the CPUSS_CONFIG register. The
SRAM exception table should have the vector address of the SPC interrupt as the address of the SpcIntHandler() function,
which is also defined to be in SRAM. See the Interrupts chapter on page 37 for details on configuring the CM0 exception table
to be in SRAM. The pseudo code for a non-blocking program system call is also similar, except that the function opcode and
parameters will differ and the iStatusInt variable should be polled for 1 instead of 3. This is because the SPC ISR will be trig-
gered only once for a non-blocking program system call.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 275

Glossary

The Glossary section explains the terminology used in this technical reference manual. Glossary terms are characterized in
bold, italic font throughout the text of this manual.

A

accumulator In a CPU, a register in which intermediate results are stored. Without an accumulator, it is neces-
sary to write the result of each calculation (addition, subtraction, shift, and so on.) to main mem-
ory and read them back. Access to main memory is slower than access to the accumulator,
which usually has direct paths to and from the arithmetic and logic unit (ALU). 

active high 1. A logic signal having its asserted state as the logic 1 state.

2. A logic signal having the logic 1 state as the higher voltage of the two states.

active low 1. A logic signal having its asserted state as the logic 0 state.

2. A logic signal having its logic 1 state as the lower voltage of the two states: inverted logic.

address The label or number identifying the memory location (RAM, ROM, or register) where a unit of
information is stored.

algorithm A procedure for solving a mathematical problem in a finite number of steps that frequently
involve repetition of an operation.

ambient temperature The temperature of the air in a designated area, particularly the area surrounding the PSoC
device.

analog See analog signals.

analog blocks The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous
time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain
stages, and much more.

analog output An output that is capable of driving any voltage between the supply rails, instead of just a logic 1
or logic 0.

analog signals A signal represented in a continuous form with respect to continuous times, as contrasted with a
digital signal represented in a discrete (discontinuous) form in a sequence of time.

analog-to-digital (ADC) A device that changes an analog signal to a digital signal of corresponding magnitude. Typically,
an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs
the reverse operation.



276 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Glossary

AND See Boolean Algebra.

API (Application Pro-
gramming Interface)

A series of software routines that comprise an interface between a computer application and
lower-level services and functions (for example, user modules and libraries). APIs serve as build-
ing blocks for programmers that create software applications.

array An array, also known as a vector or list, is one of the simplest data structures in computer pro-
gramming. Arrays hold a fixed number of equally-sized data elements, generally of the same
data type. Individual elements are accessed by index using a consecutive range of integers, as
opposed to an associative array. Most high level programming languages have arrays as a built-
in data type. Some arrays are multi-dimensional, meaning they are indexed by a fixed number of
integers; for example, by a group of two integers. One- and two-dimensional arrays are the most
common. Also, an array can be a group of capacitors or resistors connected in some common
form.

assembly A symbolic representation of the machine language of a specific processor. Assembly language
is converted to machine code by an assembler. Usually, each line of assembly code produces
one machine instruction, though the use of macros is common. Assembly languages are consid-
ered low level languages; where as C is considered a high level language.

asynchronous A signal whose data is acknowledged or acted upon immediately, irrespective of any clock sig-
nal.

attenuation The decrease in intensity of a signal as a result of absorption of energy and of scattering out of
the path to the detector, but not including the reduction due to geometric spreading. Attenuation
is usually expressed in dB.

B

bandgap reference A stable voltage reference design that matches the positive temperature coefficient of VT with the
negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) refer-
ence.

bandwidth 1. The frequency range of a message or information processing system measured in hertz.

2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or 
loss); it is sometimes represented more specifically as, for example, full width at half maxi-
mum.

bias 1. A systematic deviation of a value from a reference value.

2. The amount by which the average of a set of values departs from a reference value.

3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a 
reference level to operate the device.

bias current The constant low level DC current that is used to produce a stable operation in amplifiers. This
current can sometimes be changed to alter the bandwidth of an amplifier.



Glossary

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 277

binary The name for the base 2 numbering system. The most common numbering system is the base
10 numbering system. The base of a numbering system indicates the number of values that may
exist for a particular positioning within a number for that system. For example, in base 2, binary,
each position may have one of two values (0 or 1). In the base 10, decimal, numbering system,
each position may have one of ten values (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9).

bit A single digit of a binary number. Therefore, a bit may only have a value of ‘0’ or ‘1’. A group of 8
bits is called a byte. Because the PSoC's M8CP is an 8-bit microcontroller, the PSoC devices's
native data chunk size is a byte.

bit rate (BR) The number of bits occurring per unit of time in a bit stream, usually expressed in bits per second
(bps). 

block 1. A functional unit that performs a single function, such as an oscillator.

2. A functional unit that may be configured to perform one of several functions, such as a digital 
PSoC block or an analog PSoC block.

Boolean Algebra In mathematics and computer science, Boolean algebras or Boolean lattices, are algebraic struc-
tures which "capture the essence" of the logical operations AND, OR and NOT as well as the set
theoretic operations union, intersection, and complement. Boolean algebra also defines a set of
theorems that describe how Boolean equations can be manipulated. For example, these theo-
rems are used to simplify Boolean equations, which will reduce the number of logic elements
needed to implement the equation.

The operators of Boolean algebra may be represented in various ways. Often they are simply
written as AND, OR, and NOT. In describing circuits, NAND (NOT AND), NOR (NOT OR), XNOR
(exclusive NOT OR), and XOR (exclusive OR) may also be used. Mathematicians often use +
(for example, A+B) for OR and for AND (for example, A*B) (in some ways those operations are
analogous to addition and multiplication in other algebraic structures) and represent NOT by a
line drawn above the expression being negated (for example, ~A, A_, !A). 

break-before-make The elements involved go through a disconnected state entering (‘break”) before the new con-
nected state (“make”).

broadcast net A signal that is routed throughout the microcontroller and is accessible by many blocks or sys-
tems.

buffer 1. A storage area for data that is used to compensate for a speed difference, when transferring 
data from one device to another. Usually refers to an area reserved for I/O operations, into 
which data is read, or from which data is written.

2. A portion of memory set aside to store data, often before it is sent to an external device or as 
it is received from an external device.

3. An amplifier used to lower the output impedance of a system.

bus 1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets 
with similar routing patterns.

2. A set of signals performing a common function and carrying similar data. Typically repre-
sented using vector notation; for example, address[7:0].

3. One or more conductors that serve as a common connection for a group of related devices.

byte A digital storage unit consisting of 8 bits.



278 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Glossary

C

C A high level programming language.

capacitance A measure of the ability of two adjacent conductors, separated by an insulator, to hold a charge
when a voltage differential is applied between them. Capacitance is measured in units of Farads.

capture To extract information automatically through the use of software or hardware, as opposed to
hand-entering of data into a computer file.

chaining Connecting two or more 8-bit digital blocks to form 16-, 24-, and even 32-bit functions. Chaining
allows certain signals such as Compare, Carry, Enable, Capture, and Gate to be produced from
one block to another.

checksum The checksum of a set of data is generated by adding the value of each data word to a sum. The
actual checksum can simply be the result sum or a value that must be added to the sum to gen-
erate a pre-determined value.

clear To force a bit/register to a value of logic ‘0’.

clock The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is
sometimes used to synchronize different logic blocks.

clock generator A circuit that is used to generate a clock signal.

CMOS The logic gates constructed using MOS transistors connected in a complementary manner.
CMOS is an acronym for complementary metal-oxide semiconductor.

comparator An electronic circuit that produces an output voltage or current whenever two input levels simul-
taneously satisfy predetermined amplitude requirements.

compiler A program that translates a high level language, such as C, into machine language.

configuration In a computer system, an arrangement of functional units according to their nature, number, and
chief characteristics. Configuration pertains to hardware, software, firmware, and documentation.
The configuration will affect system performance.

configuration space In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to
‘1’.

crowbar A type of over-voltage protection that rapidly places a low resistance shunt (typically an SCR)
from the signal to one of the power supply rails, when the output voltage exceeds a predeter-
mined value.

crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelec-
tric crystal is less sensitive to ambient temperature than other circuit components.

cyclic redundancy 
check (CRC)

A calculation used to detect errors in data communications, typically performed using a linear
feedback shift register. Similar calculations may be used for a variety of other purposes such as
data compression.



Glossary

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 279

D

data bus A bi-directional set of signals used by a computer to convey information from a memory location
to the central processing unit and vice versa. More generally, a set of signals used to convey
data between digital functions.

data stream A sequence of digitally encoded signals used to represent information in transmission.

data transmission The sending of data from one place to another by means of signals over a channel.

debugger A hardware and software system that allows the user to analyze the operation of the system
under development. A debugger usually allows the developer to step through the firmware one
step at a time, set break points, and analyze memory.

dead band A period of time when neither of two or more signals are in their active state or in transition.

decimal A base-10 numbering system, which uses the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 (called digits)
together with the decimal point and the sign symbols + (plus) and - (minus) to represent num-
bers.

default value Pertaining to the pre-defined initial, original, or specific setting, condition, value, or action a sys-
tem will assume, use, or take in the absence of instructions from the user.

device The device referred to in this manual is the PSoC device, unless otherwise specified.

die An non-packaged integrated circuit (IC), normally cut from a wafer.

digital A signal or function, the amplitude of which is characterized by one of two discrete values: ‘0’ or
‘1’.

digital blocks The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC gen-
erator, pseudo-random number generator, or SPI.

digital logic A methodology for dealing with expressions containing two-state variables that describe the
behavior of a circuit or system.

digital-to-analog (DAC) A device that changes a digital signal to an analog signal of corresponding magnitude. The ana-
log-to-digital (ADC) converter performs the reverse operation.

direct access The capability to obtain data from a storage device, or to enter data into a storage device, in a
sequence independent of their relative positions by means of addresses that indicate the physi-
cal location of the data. 

duty cycle The relationship of a clock period high time to its low time, expressed as a percent.



280 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Glossary

E

External Reset 
(XRES_N)

An active high signal that is driven into the PSoC device. It causes all operation of the CPU and
blocks to stop and return to a pre-defined state.

F

falling edge A transition from a logic 1 to a logic 0. Also known as a negative edge.

feedback The return of a portion of the output, or processed portion of the output, of a (usually active)
device to the input.

filter A device or process by which certain frequency components of a signal are attenuated.

firmware The software that is embedded in a hardware device and executed by the CPU. The software
may be executed by the end user, but it may not be modified.

flag Any of various types of indicators used for identification of a condition or event (for example, a
character that signals the termination of a transmission).

Flash An electrically programmable and erasable, volatile technology that provides users with the pro-
grammability and data storage of EPROMs, plus in-system erasability. Nonvolatile means that
the data is retained when power is off.

Flash bank A group of flash ROM blocks where flash block numbers always begin with ‘0’ in an individual
flash bank. A flash bank also has its own block level protection information.

Flash block The smallest amount of flash ROM space that may be programmed at one time and the smallest
amount of flash space that may be protected. A flash block holds 64 bytes.

flip-flop A device having two stable states and two input terminals (or types of input signals) each of
which corresponds with one of the two states. The circuit remains in either state until it is made to
change to the other state by application of the corresponding signal.

frequency The number of cycles or events per unit of time, for a periodic function.

G

gain The ratio of output current, voltage, or power to input current, voltage, or power, respectively.
Gain is usually expressed in dB.

gate 1. A device having one output channel and one or more input channels, such that the output 
channel state is completely determined by the input channel states, except during switching 
transients.

2. One of many types of combinational logic elements having at least two inputs (for example, 
AND, OR, NAND, and NOR (also see Boolean Algebra)). 



Glossary

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 281

ground 1. The electrical neutral line having the same potential as the surrounding earth.

2. The negative side of DC power supply.

3. The reference point for an electrical system.

4. The conducting paths between an electric circuit or equipment and the earth, or some con-
ducting body serving in place of the earth.

H

hardware A comprehensive term for all of the physical parts of a computer or embedded system, as distin-
guished from the data it contains or operates on, and the software that provides instructions for
the hardware to accomplish tasks. 

hardware reset A reset that is caused by a circuit, such as a POR, watchdog reset, or external reset. A hardware
reset restores the state of the device as it was when it was first powered up. Therefore, all regis-
ters are set to the POR value as indicated in register tables throughout this document.

hexadecimal A base 16 numeral system (often abbreviated and called hex), usually written using the symbols
0-9 and A-F. It is a useful system in computers because there is an easy mapping from four bits
to a single hex digit. Thus, one can represent every byte as two consecutive hexadecimal digits.
Compare the binary, hex, and decimal representations:

bin = hex = dec

0000b = 0x0 = 0

0001b = 0x1 = 1

0010b = 0x2 = 2

...

1001b = 0x9 = 9

1010b = 0xA = 10

1011b = 0xB = 11

...

1111b = 0xF = 15

So the decimal numeral 79 whose binary representation is 0100 1111b can be written as 4Fh in
hexadecimal (0x4F).

high time The amount of time the signal has a value of ‘1’ in one period, for a periodic digital signal.



282 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Glossary

I

I2C A two-wire serial computer bus by Phillips Semiconductors (now NXP Semiconductors). I2C is an
Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The
original system was created in the early 1980s as a battery control interface, but it was later used
as a simple internal bus system for building control electronics. I2C uses only two bidirectional
pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at 100
Kbps in standard mode and 400 Kbps in fast mode. 

idle state A condition that exists whenever user messages are not being transmitted, but the service is
immediately available for use.

impedance 1. The resistance to the flow of current caused by resistive, capacitive, or inductive devices in a 
circuit.

2. The total passive opposition offered to the flow of electric current. Note the impedance is 
determined by the particular combination of resistance, inductive reactance, and capacitive 
reactance in a given circuit.

input A point that accepts data, in a device, process, or channel.

input/output (I/O) A device that introduces data into or extracts data from a system.

instruction An expression that specifies one operation and identifies its operands, if any, in a programming
language such as C or assembly.

instruction mnemonics A set of acronyms that represent the opcodes for each of the assembly-language instructions, for
example, ADD, SUBB, MOV.

integrated circuit (IC) A device in which components such as resistors, capacitors, diodes, and transistors are formed
on the surface of a single piece of semiconductor.

interface The means by which two systems or devices are connected and interact with each other.

interrupt A suspension of a process, such as the execution of a computer program, caused by an event
external to that process, and performed in such a way that the process can be resumed.

interrupt service rou-
tine (ISR)

A block of code that normal code execution is diverted to when the M8CP receives a hardware
interrupt. Many interrupt sources may each exist with its own priority and individual ISR code
block. Each ISR code block ends with the RETI instruction, returning the device to the point in
the program where it left normal program execution.

J

jitter 1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption 
that occurs on serial data streams.

2. The abrupt and unwanted variations of one or more signal characteristics, such as the inter-
val between successive pulses, the amplitude of successive cycles, or the frequency or 
phase of successive cycles.



Glossary

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 283

L

latency The time or delay that it takes for a signal to pass through a given circuit or network.

least significant bit 
(LSb)

The binary digit, or bit, in a binary number that represents the least significant value (typically the
right-hand bit). The bit versus byte distinction is made by using a lower case “b” for bit in LSb.

least significant byte 
(LSB)

The byte in a multi-byte word that represents the least significant values (typically the right-hand
byte). The byte versus bit distinction is made by using an upper case “B” for byte in LSB.

Linear Feedback Shift 
Register (LFSR)

A shift register whose data input is generated as an XOR of two or more elements in the register
chain.

load The electrical demand of a process expressed as power (watts), current (amps), or resistance
(ohms).

logic function A mathematical function that performs a digital operation on digital data and returns a digital
value.

lookup table (LUT) A logic block that implements several logic functions. The logic function is selected by means of
select lines and is applied to the inputs of the block. For example: A 2 input LUT with 4 select
lines can be used to perform any one of 16 logic functions on the two inputs resulting in a single
logic output. The LUT is a combinational device; therefore, the input/output relationship is contin-
uous, that is, not sampled.

low time The amount of time the signal has a value of ‘0’ in one period, for a periodic digital signal.

low voltage detect 
(LVD)

A circuit that senses VDDD and provides an interrupt to the system when VDDD falls below a
selected threshold.

M

M8CP An 8-bit Harvard Architecture microprocessor. The microprocessor coordinates all activity inside
a PSoC device by interfacing to the flash, SRAM, and register space.

macro A programming language macro is an abstraction, whereby a certain textual pattern is replaced
according to a defined set of rules. The interpreter or compiler automatically replaces the macro
instance with the macro contents when an instance of the macro is encountered. Therefore, if a
macro is used five times and the macro definition required 10 bytes of code space, 50 bytes of
code space will be needed in total.

mask 1. To obscure, hide, or otherwise prevent information from being derived from a signal. It is usu-
ally the result of interaction with another signal, such as noise, static, jamming, or other forms 
of interference.

2. A pattern of bits that can be used to retain or suppress segments of another pattern of bits, in 
computing and data processing systems.



284 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Glossary

master device A device that controls the timing for data exchanges between two devices. Or when devices are
cascaded in width, the master device is the one that controls the timing for data exchanges
between the cascaded devices and an external interface. The controlled device is called the
slave device.

microcontroller An integrated circuit device that is designed primarily for control systems and products. In addi-
tion to a CPU, a microcontroller typically includes memory, timing circuits, and I/O circuitry. The
reason for this is to permit the realization of a controller with a minimal quantity of devices, thus
achieving maximal possible miniaturization. This in turn, will reduce the volume and the cost of
the controller. The microcontroller is normally not used for general-purpose computation as is a
microprocessor. 

mnemonic A tool intended to assist the memory. Mnemonics rely on not only repetition to remember facts,
but also on creating associations between easy-to-remember constructs and lists of data. A two
to four character string representing a microprocessor instruction.

mode A distinct method of operation for software or hardware. For example, the Digital PSoC block
may be in either counter mode or timer mode.

modulation A range of techniques for encoding information on a carrier signal, typically a sine-wave signal. A
device that performs modulation is known as a modulator.

Modulator A device that imposes a signal on a carrier.

MOS An acronym for metal-oxide semiconductor.

most significant bit 
(MSb)

The binary digit, or bit, in a binary number that represents the most significant value (typically the
left-hand bit). The bit versus byte distinction is made by using a lower case “b” for bit in MSb.

most significant byte 
(MSB)

The byte in a multi-byte word that represents the most significant values (typically the left-hand
byte). The byte versus bit distinction is made by using an upper case “B” for byte in MSB.

multiplexer (mux) 1. A logic function that uses a binary value, or address, to select between a number of inputs 
and conveys the data from the selected input to the output.

2. A technique which allows different input (or output) signals to use the same lines at different 
times, controlled by an external signal. Multiplexing is used to save on wiring and I/O ports.

N

NAND See Boolean Algebra.

negative edge A transition from a logic 1 to a logic 0. Also known as a falling edge.

net The routing between devices.

nibble A group of four bits, which is one-half of a byte.

noise 1. A disturbance that affects a signal and that may distort the information carried by the signal.

2. The random variations of one or more characteristics of any entity such as voltage, current, 
or data. 



Glossary

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 285

NOR See Boolean Algebra.

NOT See Boolean Algebra.

O

OR See Boolean Algebra.

oscillator A circuit that may be crystal controlled and is used to generate a clock frequency.

output The electrical signal or signals which are produced by an analog or digital block.

P

parallel The means of communication in which digital data is sent multiple bits at a time, with each simul-
taneous bit being sent over a separate line.

parameter Characteristics for a given block that have either been characterized or may be defined by the
designer.

parameter block A location in memory where parameters for the SSC instruction are placed prior to execution.

parity A technique for testing transmitting data. Typically, a binary digit is added to the data to make the
sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).

path 1. The logical sequence of instructions executed by a computer.

2. The flow of an electrical signal through a circuit.

pending interrupts An interrupt that is triggered but not serviced, either because the processor is busy servicing
another interrupt or global interrupts are disabled.

phase The relationship between two signals, usually the same frequency, that determines the delay
between them. This delay between signals is either measured by time or angle (degrees).

pin A terminal on a hardware component. Also called lead.

pinouts The pin number assignment: the relation between the logical inputs and outputs of the PSoC
device and their physical counterparts in the printed circuit board (PCB) package. Pinouts will
involve pin numbers as a link between schematic and PCB design (both being computer gener-
ated files) and may also involve pin names. 

port A group of pins, usually eight.

positive edge A transition from a logic 0 to a logic 1. Also known as a rising edge.

posted interrupts An interrupt that is detected by the hardware but may or may not be enabled by its mask bit.
Posted interrupts that are not masked become pending interrupts.



286 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Glossary

Power On Reset (POR) A circuit that forces the PSoC device to reset when the voltage is below a pre-set level. This is
one type of hardware reset.

program counter The instruction pointer (also called the program counter) is a register in a computer processor
that indicates where in memory the CPU is executing instructions. Depending on the details of
the particular machine, it holds either the address of the instruction being executed, or the
address of the next instruction to be executed. 

protocol A set of rules. Particularly the rules that govern networked communications.

PSoC® Cypress’s Programmable System-on-Chip (PSoC®) devices. 

PSoC blocks See analog blocks and digital blocks.

PSoC Creator™ The software for Cypress’s next generation Programmable System-on-Chip technology.

pulse A rapid change in some characteristic of a signal (for example, phase or frequency), from a base-
line value to a higher or lower value, followed by a rapid return to the baseline value.

pulse-width modulator 
(PWM)

An output in the form of duty cycle which varies as a function of the applied measure.

R

RAM An acronym for random access memory. A data-storage device from which data can be read out
and new data can be written in.

register A storage device with a specific capacity, such as a bit or byte.

reset A means of bringing a system back to a know state. See hardware reset and software reset.

resistance The resistance to the flow of electric current measured in ohms for a conductor.

revision ID A unique identifier of the PSoC device.

ripple divider An asynchronous ripple counter constructed of flip-flops. The clock is fed to the first stage of the
counter. An n-bit binary counter consisting of n flip-flops that can count in binary from 0 to 2n - 1.

rising edge See positive edge.

ROM An acronym for read only memory. A data-storage device from which data can be read out, but
new data cannot be written in.

routine A block of code, called by another block of code, that may have some general or frequent use.

routing Physically connecting objects in a design according to design rules set in the reference library.



Glossary

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 287

runt pulses In digital circuits, narrow pulses that, due to non-zero rise and fall times of the signal, do not
reach a valid high or low level. For example, a runt pulse may occur when switching between
asynchronous clocks or as the result of a race condition in which a signal takes two separate
paths through a circuit. These race conditions may have different delays and are then recom-
bined to form a glitch or when the output of a flip-flop becomes metastable.

S

sampling The process of converting an analog signal into a series of digital values or reversed.

schematic A diagram, drawing, or sketch that details the elements of a system, such as the elements of an
electrical circuit or the elements of a logic diagram for a computer.

seed value An initial value loaded into a linear feedback shift register or random number generator.

serial 1. Pertaining to a process in which all events occur one after the other.

2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a 
single device or channel. 

set To force a bit/register to a value of logic 1.

settling time The time it takes for an output signal or value to stabilize after the input has changed from one
value to another.

shift The movement of each bit in a word one position to either the left or right. For example, if the hex
value 0x24 is shifted one place to the left, it becomes 0x48. If the hex value 0x24 is shifted one
place to the right, it becomes 0x12.

shift register A memory storage device that sequentially shifts a word either left or right to output a stream of
serial data.

sign bit The most significant binary digit, or bit, of a signed binary number. If set to a logic 1, this bit rep-
resents a negative quantity.

signal A detectable transmitted energy that can be used to carry information. As applied to electronics,
any transmitted electrical impulse.

silicon ID A unique identifier of the PSoC silicon.

skew The difference in arrival time of bits transmitted at the same time, in parallel transmission.

slave device A device that allows another device to control the timing for data exchanges between two
devices. Or when devices are cascaded in width, the slave device is the one that allows another
device to control the timing of data exchanges between the cascaded devices and an external
interface. The controlling device is called the master device.

software A set of computer programs, procedures, and associated documentation about the operation of a
data processing system (for example, compilers, library routines, manuals, and circuit diagrams).
Software is often written first as source code, and then converted to a binary format that is spe-
cific to the device on which the code will be executed.



288 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Glossary

software reset A partial reset executed by software to bring part of the system back to a known state. A software
reset will restore the M8CP to a know state but not PSoC blocks, systems, peripherals, or regis-
ters. For a software reset, the CPU registers (CPU_A, CPU_F, CPU_PC, CPU_SP, and CPU_X)
are set to 0x00. Therefore, code execution will begin at flash address 0x0000.

SRAM An acronym for static random access memory. A memory device allowing users to store and
retrieve data at a high rate of speed. The term static is used because, when a value is loaded
into an SRAM cell, it will remain unchanged until it is explicitly altered or until power is removed
from the device.

SROM An acronym for supervisory read only memory. The SROM holds code that is used to boot the
device, calibrate circuitry, and perform flash operations. The functions of the SROM may be
accessed in normal user code, operating from flash.

stack A stack is a data structure that works on the principle of Last In First Out (LIFO). This means that
the last item put on the stack is the first item that can be taken off.

stack pointer A stack may be represented in a computer’s inside blocks of memory cells, with the bottom at a
fixed location and a variable stack pointer to the current top cell.

state machine The actual implementation (in hardware or software) of a function that can be considered to con-
sist of a set of states through which it sequences.

sticky A bit in a register that maintains its value past the time of the event that caused its transition, has
passed.

stop bit A signal following a character or block that prepares the receiving device to receive the next
character or block.

switching The controlling or routing of signals in circuits to execute logical or arithmetic operations, or to
transmit data between specific points in a network.

switch phasing The clock that controls a given switch, PHI1 or PHI2, in respect to the switch capacitor (SC)
blocks. The PSoC SC blocks have two groups of switches. One group of these switches is nor-
mally closed during PHI1 and open during PHI2. The other group is open during PHI1 and closed
during PHI2. These switches can be controlled in the normal operation, or in reverse mode if the
PHI1 and PHI2 clocks are reversed.

synchronous 1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock 
signal.

2. A system whose operation is synchronized by a clock signal.

T

tap The connection between two blocks of a device created by connecting several blocks/compo-
nents in a series, such as a shift register or resistive voltage divider.

terminal count The state at which a counter is counted down to zero.



Glossary

PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 289

threshold The minimum value of a signal that can be detected by the system or sensor under consider-
ation.

Thumb-2 The Thumb-2 instruction set is a highly efficient and powerful instruction set that delivers signifi-
cant benefits in terms of ease of use, code size, and performance. The Thumb-2 instruction set is
a superset of the previous 16-bit Thumb instruction set, with additional 16-bit instructions along-
side 32-bit instructions.

transistors The transistor is a solid-state semiconductor device used for amplification and switching, and
has three terminals: a small current or voltage applied to one terminal controls the current
through the other two. It is the key component in all modern electronics. In digital circuits, transis-
tors are used as very fast electrical switches, and arrangements of transistors can function as
logic gates, RAM-type memory, and other devices. In analog circuits, transistors are essentially
used as amplifiers.

tristate A function whose output can adopt three states: 0, 1, and Z (high impedance). The function does
not drive any value in the Z state and, in many respects, may be considered to be disconnected
from the rest of the circuit, allowing another output to drive the same net.

U

UART A UART or universal asynchronous receiver-transmitter translates between parallel bits of data
and serial bits. 

user The person using the PSoC device and reading this manual.

user modules Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and
configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high
level API (Application Programming Interface) for the peripheral function.

user space The bank 0 space of the register map. The registers in this bank are more likely to be modified
during normal program execution and not just during initialization. Registers in bank 1 are most
likely to be modified only during the initialization phase of the program.

V

VDDD A name for a power net meaning "voltage drain." The most positive power supply signal. Usually
5 or 3.3 volts.

volatile Not guaranteed to stay the same value or level when not in scope.

VSS A name for a power net meaning "voltage source." The most negative power supply signal.



290 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Glossary

W

watchdog timer A timer that must be serviced periodically. If it is not serviced, the CPU will reset after a specified
period of time.

waveform The representation of a signal as a plot of amplitude versus time.

X

XOR See Boolean Algebra.



PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A 291

Index

A
active mode

PSoC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
analog I/O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B
block diagram

GPIO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
port interrupt controller unit  . . . . . . . . . . . . . . . . . . 57
program and debug interface . . . . . . . . . . . . . . . . 257
watchdog timer circuit  . . . . . . . . . . . . . . . . . . . . . . 81

brownout reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C
clock distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
clock sources

distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
clocking system

introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Cortex-M0

features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

D
development kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
document

glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

E
exception

HardFault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
NMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
PendSV  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SVCall  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SysTick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

F
features

I/O system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
PHUB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
port interrupt controller unit  . . . . . . . . . . . . . . . . . . .57
watchdog timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

G
glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275
GPIO

block diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
GPIO pins in creation of buttons and sliders  . . . . . . . . .55

H
hibernate mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Hibernate wakeup reset  . . . . . . . . . . . . . . . . . . . . . . . . .86
high impedance analog drive mode  . . . . . . . . . . . . . . . .54
high impedance digital drive mode . . . . . . . . . . . . . . . . .54
how it works

watchdog timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

I
I/O drive mode

high impedance analog . . . . . . . . . . . . . . . . . . . . . .54
high impedance digital . . . . . . . . . . . . . . . . . . . . . . .54
open drain  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
resistive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
resistive pull up and pull down . . . . . . . . . . . . . . . . .54
strong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

I/O system
analog I/O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
CapSense  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
LCD drive capabilities  . . . . . . . . . . . . . . . . . . . . . . .55
open drain modes  . . . . . . . . . . . . . . . . . . . . . . . . . .54
port interrupt controller unit  . . . . . . . . . . . . . . . . . . .57
port interrupt controller unit pin configuration  . . . . .57
register summary . . . . . . . . . . . . . . . . . . . . . . . . . . .59
resistive modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
resistive pull up and pull down mode . . . . . . . . . . . .54
slew rate control  . . . . . . . . . . . . . . . . . . . . . . . . . . .54
strong drive mode  . . . . . . . . . . . . . . . . . . . . . . . . . .54



292 PSoC 4100/4200 Family PSoC 4 Architecture TRM, Document No. 001-85634 Rev. *A

Index

identifying reset sources . . . . . . . . . . . . . . . . . . . . . . . . . 86
internal low speed oscillator . . . . . . . . . . . . . . . . . . . . . . 62
internal main oscillator  . . . . . . . . . . . . . . . . . . . . . . . . . . 62
internal regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
introduction

clock generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
I/O system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
successive approximation register analog to digital con-

vertor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

L
LCD drive

I/O system capabilities  . . . . . . . . . . . . . . . . . . . . . . 55

O
oscillators

internal PSoC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
overview, document

revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

P
port interrupt controller

features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
port interrupt controller unit  . . . . . . . . . . . . . . . . . . . . . . 57

block diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
pin configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

power on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
program and debug

PSoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
protection fault reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
PSoC

active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
program and debug . . . . . . . . . . . . . . . . . . . . . . . . . 22

PSoC 4
major components  . . . . . . . . . . . . . . . . . . . . . . . . . 18

R
register summary

I/O system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
registers

Cortex-M0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
regulator

internal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
reset

identifying sources  . . . . . . . . . . . . . . . . . . . . . . . . . 86
introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

reset sources
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

S
SAR ADC

introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
sleep mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
slew rate control in I/O system  . . . . . . . . . . . . . . . . . . . 54
software initiated reset . . . . . . . . . . . . . . . . . . . . . . . . . . 85
stop wakeup reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
SWD interface

program and debug interface . . . . . . . . . . . . . . . . 258
system call

overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

U
upgrades  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

W
watchdog reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
watchdog timer

disabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
enabling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
how it works  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
interrupts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 82


	PSoC 4 TRM
	Contents Overview
	Contents
	Section A: Overview
	Document Revision History
	1. Introduction
	1.1 Top Level Architecture
	1.2 Features
	1.3 CPU System
	1.3.1 Processor
	1.3.2 Interrupt Controller

	1.4 Memory
	1.4.1 Flash
	1.4.2 SRAM

	1.5 System-Wide Resources
	1.5.1 Clocking System
	1.5.2 Power System
	1.5.3 GPIO

	1.6 Programmable Digital
	1.7 Fixed-Function Digital
	1.7.1 Timer/Counter/PWM Block
	1.7.2 Serial Communication Blocks

	1.8 Analog System
	1.8.1 SAR ADC
	1.8.2 Continuous Time Block mini (CTBm)
	1.8.3 Low-power Comparators

	1.9 Special Function Peripherals
	1.9.1 LCD Segment Drive
	1.9.2 CapSense

	1.10 Program and Debug

	2. Getting Started
	2.1 Support
	2.2 Product Upgrades
	2.3 Development Kits

	3. Document Construction
	3.1 Major Sections
	3.2 Documentation Conventions
	3.2.1 Register Conventions
	3.2.2 Numeric Naming
	3.2.3 Units of Measure
	3.2.4 Acronyms



	Section B: CPU System
	Top Level Architecture
	4. Cortex-M0 CPU
	4.1 Features
	4.2 Block Diagram
	4.3 How It Works
	4.3.1 Registers
	4.3.2 Operating Modes
	4.3.3 Instruction Set
	4.3.3.1 Address Alignment
	4.3.3.2 Memory Endianness

	4.3.4 Systick Timer
	4.3.5 Debug


	5. Interrupts
	5.1 Features
	5.2 How It Works
	5.3 Interrupts and Exceptions - Operation
	5.3.1 Interrupt/Exception Handling in PSoC 4
	5.3.2 Level and Pulse Interrupts
	5.3.3 Exception Vector Table

	5.4 Exception Sources
	5.4.1 Reset Exception
	5.4.2 Non-Maskable Interrupt (NMI) Exception
	5.4.3 HardFault Exception
	5.4.4 Supervisor Call (SVCall) Exception
	5.4.5 PendSV Exception
	5.4.6 SysTick Exception

	5.5 Interrupt Sources
	5.6 Enabling/Disabling Exceptions
	5.7 Exception States
	5.7.1 Pending Exceptions
	5.7.2 Exception Priority

	5.8 Stack Usage for Exceptions
	5.9 Interrupts and Low-Power Modes
	5.10 Exception - Initialization and Configuration
	5.11 Registers
	5.12 Associated Documents


	Section C: Memory System
	Top Level Architecture
	6. Memory Map
	6.1 Features
	6.2 How It Works


	Section D: System-Wide Resources
	Top Level Architecture
	7. I/O System
	7.1 Features
	7.2 Block Diagram
	7.3 I/O Drive Modes
	7.3.1 High-Impedance Analog
	7.3.2 High-Impedance Digital
	7.3.3 Resistive Pull-Up or Resistive Pull- Down
	7.3.4 Open Drain, Drives High, and Drives Low
	7.3.5 Strong Drive
	7.3.6 Resistive Pull-Up and Pull-Down

	7.4 Slew Rate Control
	7.5 CMOS LVTTL Level Control
	7.6 High-Speed I/O Matrix
	7.7 Analog I/O
	7.8 LCD Drive
	7.9 CapSense
	7.10 I/O Port Reconfiguration
	7.11 GPIO State on Power Up
	7.12 Sleep Mode Behavior
	7.13 Low-Power Behavior
	7.14 Port Interrupt Controller Unit
	7.14.1 Features
	7.14.2 Interrupt Controller Block Diagram
	7.14.3 Function and Configuration

	7.15 Input and Output Synchronization
	7.16 Pin Specific Sources
	7.17 Restrictions on Port 4
	7.18 Registers

	8. Clocking System
	8.1 Block Diagram
	8.2 Clock Sources
	8.2.1 Internal Main Oscillator
	8.2.1.1 Startup Behavior
	8.2.1.2 IMO Frequency Spread

	8.2.2 Internal Low-speed Oscillator
	8.2.3 External Clock

	8.3 Clock Distribution
	8.3.1 HFCLK Input Selection
	8.3.2 SYSCLK Prescaler Configuration
	8.3.3 Peripheral Clock Divider Configuration
	8.3.4 Peripheral Clock Configuration

	8.4 Low-Power Mode Operation

	9. Power Supply and Monitoring
	9.1 Block Diagram
	9.2 Power Supply Scenarios
	9.2.1 Single 1.8 V to 5.5 V Unregulated Supply
	9.2.2 Direct 1.71 V to 1.89 V Regulated Supply

	9.3 How It Works
	9.3.1 Regulator Summary
	9.3.1.1 Active Digital Regulator
	9.3.1.2 Quiet Regulator
	9.3.1.3 Deep-Sleep Regulator
	9.3.1.4 Hibernate Regulator

	9.3.2 Voltage Monitoring
	9.3.2.1 Power-On-Reset (POR)
	9.3.2.2 Brownout-Detect (BOD)
	9.3.2.3 Low-Voltage-Detect (LVD)


	9.4 Register List

	10. Chip Operational Modes
	10.1 Boot
	10.2 User
	10.3 Privileged
	10.4 Debug

	11. Power Modes
	11.1 Active Mode
	11.2 Sleep Mode
	11.3 Deep-Sleep Mode
	11.4 Hibernate Mode
	11.5 Stop Mode
	11.6 Enter and Exit Low-Power Modes
	11.7 Register List

	12. Watchdog Timer
	12.1 Features
	12.2 Block Diagram
	12.3 How It Works
	12.3.1 Enabling and Disabling WDT
	12.3.2 WDT Operating Modes
	12.3.3 WDT Interrupts and Low-Power Modes
	12.3.4 WDT Reset Mode

	12.4 Register List

	13. Reset System
	13.1 Reset Sources
	13.1.1 Power-on Reset
	13.1.2 Brownout Reset
	13.1.3 Watchdog Reset
	13.1.4 Software Initiated Reset
	13.1.5 External Reset
	13.1.6 Protection Fault Reset
	13.1.7 Hibernate Wakeup Reset
	13.1.8 Stop Wakeup Reset

	13.2 Identifying Reset Sources

	14. Device Security
	14.1 Features
	14.2 How It Works


	Section E: Digital System
	Top Level Architecture
	15. Serial Communications (SCB)
	15.1 Features
	15.2 Serial Peripheral Interface (SPI)
	15.2.1 Features
	15.2.2 General Description
	15.2.3 SPI Modes of Operation
	15.2.3.1 Motorola SPI
	15.2.3.2 Texas Instruments SPI
	15.2.3.3 National Semiconductors SPI

	15.2.4 Easy SPI (EZSPI) Protocol
	15.2.4.1 EZ Address Write
	15.2.4.2 Memory Array Write
	15.2.4.3 Memory Array Read
	15.2.4.4 Configuring SCB for EZSPI Mode

	15.2.5 SPI Registers
	15.2.6 SPI Interrupts
	15.2.7 Enabling and Initializing SPI
	15.2.8 Internally and Externally Clocked SPI Operations
	15.2.8.1 Non EZ Mode of Operation
	15.2.8.2 EZ Mode of Operation


	15.3 UART
	15.3.1 Features
	15.3.2 General Description
	15.3.3 UART Modes of Operation
	15.3.3.1 Standard Protocol
	15.3.3.2 SmartCard (ISO7816)
	15.3.3.3 IrDA

	15.3.4 UART Registers
	15.3.5 UART Interrupts
	15.3.6 Enabling and Initializing UART

	15.4 Inter Integrated Circuit (I2C)
	15.4.1 Features
	15.4.2 General Description
	15.4.3 I2C Modes of Operation
	15.4.3.1 Write Transfer
	15.4.3.2 Read Transfer

	15.4.4 Easy I2C (EZI2C) Protocol
	15.4.4.1 Memory Array Write
	15.4.4.2 Memory Array Read
	15.4.4.3 Configuring SCB for EZI2C Mode

	15.4.5 I2C Registers
	15.4.6 I2C Interrupts
	15.4.7 Enabling and Initializing I2C
	15.4.8 Internal and External Clock Operation in I2C
	15.4.8.1 Non-EZ Operation Mode
	15.4.8.2 EZ Operation Mode

	15.4.9 Wake up from Sleep
	15.4.10 Master Mode Transfer Examples
	15.4.10.1 Master Transmit
	15.4.10.2 Master Receive

	15.4.11 Slave Mode Transfer Examples
	15.4.11.1 Slave Transmit
	15.4.11.2 Slave Receive

	15.4.12 EZ Slave Mode Transfer Example
	15.4.12.1 EZ Slave Transmit
	15.4.12.2 EZ Slave Receive

	15.4.13 Multi-Master Mode Transfer Example
	15.4.13.1 Multi-Master - Slave Not Enabled
	15.4.13.2 Multi-Master - Slave Enabled



	16. Universal Digital Blocks (UDB)
	16.1 Features
	16.2 How It Works
	16.2.1 PLDs
	16.2.1.1 PLD Macrocells
	16.2.1.2 PLD Carry Chain
	16.2.1.3 PLD Configuration

	16.2.2 Datapath
	16.2.2.1 Overview
	16.2.2.2 Datapath FIFOs
	16.2.2.3 FIFO Status
	16.2.2.4 Datapath ALU
	16.2.2.5 Datapath Inputs and Multiplexing
	16.2.2.6 CRC/PRS Support
	16.2.2.7 Datapath Outputs and Multiplexing
	16.2.2.8 Datapath Parallel Inputs and Outputs
	16.2.2.9 Datapath Chaining
	16.2.2.10 Dynamic Configuration RAM

	16.2.3 Status and Control Module
	16.2.3.1 Status and Control Mode
	16.2.3.2 Control Register Operation
	16.2.3.3 Parallel Input/Output Mode
	16.2.3.4 Counter Mode
	16.2.3.5 Sync Mode
	16.2.3.6 Status and Control Clocking
	16.2.3.7 Auxiliary Control Register
	16.2.3.8 Status and Control Register Summary

	16.2.4 Reset and Clock Control Module
	16.2.4.1 Clock Control
	16.2.4.2 Reset Control
	16.2.4.3 UDB POR Initialization

	16.2.5 UDB Addressing
	16.2.6 System Bus Access Coherency
	16.2.6.1 Simultaneous System Bus Access
	16.2.6.2 Coherent Accumulator Access (Atomic Reads and Writes)


	16.3 Port Adapter Block
	16.3.1 PA Clock Multiplexer
	16.3.2 PA Reset Multiplexer
	16.3.3 PA Data Input Logic
	16.3.4 PA Data Output Logic
	16.3.5 PA Output Enable Logic
	16.3.6 PA Port Pin Clock Multiplexer Logic


	17. Timer, Counter, and PWM
	17.1 Features
	17.2 Block Diagram
	17.2.1 Enabling and Disabling Counters in TCPWM Block
	17.2.2 Clocking
	17.2.3 Events Based on Trigger Inputs
	17.2.4 Output Signals
	17.2.4.1 Signals upon Trigger Conditions
	17.2.4.2 Interrupts
	17.2.4.3 Outputs

	17.2.5 Power Modes

	17.3 Modes of Operation
	17.3.1 Timer Mode
	17.3.1.1 Block Diagram
	17.3.1.2 How it Works
	17.3.1.3 Configuring Counter for Timer Mode

	17.3.2 Capture Mode
	17.3.2.1 Block Diagram
	17.3.2.2 How it Works
	17.3.2.3 Configuring Counter for Capture Mode

	17.3.3 Quadrature Decoder Mode
	17.3.3.1 Block Diagram
	17.3.3.2 How it Works
	17.3.3.3 Configuring Counter for Quadrature Mode

	17.3.4 Pulse-Width Modulation Mode
	17.3.4.1 Block Diagram
	17.3.4.2 How it Works
	17.3.4.3 Other Configurations
	17.3.4.4 Kill Feature
	17.3.4.5 Configuring Counter for PWM Mode

	17.3.5 Pulse-Width Modulation with Dead Time Mode
	17.3.5.1 Block Diagram
	17.3.5.2 How it Works
	17.3.5.3 Configuring Counter for PWM with Dead Time Mode

	17.3.6 Pulse-Width Modulation Pseudo Random Mode
	17.3.6.1 Block Diagram
	17.3.6.2 How it Works
	17.3.6.3 Configuring Counter for Pseudo Random PWM Mode


	17.4 TCPWM Registers


	Section F: Analog System
	Top Level Architecture
	18. Precision Reference
	18.1 Block Diagram
	18.2 How it Works
	18.2.1 Precision Bandgap
	18.2.2 Trim Buffer
	18.2.3 Low-Power Buffers
	18.2.4 Leaf Cells
	18.2.5 V-CTAT Block
	18.2.6 IMO Reference Generator

	18.3 Configuration

	19. SAR ADC
	19.1 Features
	19.2 Block Diagram
	19.3 How it Works
	19.3.1 SAR ADC Core
	19.3.1.1 Single-ended and Differential Mode
	19.3.1.2 Input Range
	19.3.1.3 Result Data Format
	19.3.1.4 Negative Input Selection
	19.3.1.5 Resolution
	19.3.1.6 Acquisition Time
	19.3.1.7 SAR ADC Clock
	19.3.1.8 SAR ADC Timing

	19.3.2 SARMUX
	19.3.2.1 Analog Routing
	19.3.2.2 Analog Interconnection

	19.3.3 SARREF
	19.3.3.1 Reference Options
	19.3.3.2 Bypass Capacitors
	19.3.3.3 Input Range versus Reference

	19.3.4 SARSEQ
	19.3.4.1 Averaging
	19.3.4.2 Range Detection
	19.3.4.3 Double Buffer
	19.3.4.4 Injection Channel

	19.3.5 Interrupt
	19.3.5.1 End-of-Scan Interrupt (EOS_INTR)
	19.3.5.2 Overflow Interrupt
	19.3.5.3 Collision Interrupt
	19.3.5.4 Injection End-of-Conversion Interrupt (INJ_EOC_INTR)
	19.3.5.5 Range Detection Interrupts
	19.3.5.6 Saturate Detection Interrupts
	19.3.5.7 Interrupt Cause Overview

	19.3.6 Trigger
	19.3.6.1 DSI Trigger Configuration

	19.3.7 SAR ADC Status
	19.3.8 Low-Power Mode
	19.3.9 System Operation
	19.3.10 Register Mode
	19.3.10.1 Set SARMUX Analog Routing
	19.3.10.2 Set Global SARSEQ Configuration
	19.3.10.3 Set Channel Configurations
	19.3.10.4 Set Interrupt Masks
	19.3.10.5 Trigger
	19.3.10.6 Retrieve Data after Each Interrupt
	19.3.10.7 Injection Conversions

	19.3.11 DSI Mode
	19.3.11.1 Set SARMUX Analog Routing
	19.3.11.2 Set Global SARSEQ Configuration
	19.3.11.3 Channel Configuration
	19.3.11.4 Interrupt
	19.3.11.5 Trigger
	19.3.11.6 Retrieve Data

	19.3.12 Analog Routing Configuration Example
	19.3.13 Temperature Sensor Configuration

	19.4 Registers

	20. Low-Power Comparator
	20.1 Features
	20.2 Block Diagram
	20.3 How It Works
	20.3.1 Input Configuration
	20.3.2 Power Mode and Speed Configuration
	20.3.3 Output and Interrupt Configuration
	20.3.4 Hysteresis
	20.3.5 Wakeup from Low-Power Modes
	20.3.6 Comparator Clock
	20.3.7 Offset Trim

	20.4 Register Summary

	21. Continuous Time Block mini (CTBm)
	21.1 Features
	21.2 Block Diagram
	21.3 How It Works
	21.3.1 Power Mode Configuration
	21.3.2 Output Strength Configuration
	21.3.3 Compensation
	21.3.4 Switch Control
	21.3.4.1 Input Configuration
	21.3.4.2 Output Configuration
	21.3.4.3 Comparator Mode
	21.3.4.4 Comparator Configuration
	21.3.4.5 Comparator Interrupt


	21.4 Register Summary

	22. LCD Direct Drive
	22.1 Features
	22.2 LCD Segment Drive Overview
	22.2.1 Drive Modes
	22.2.1.1 PWM Drive
	22.2.1.2 Digital Correlation

	22.2.2 Recommended Usage of Drive Modes
	22.2.3 Digital Contrast Control

	22.3 Block Diagram
	22.3.1 How it Works
	22.3.2 High-Speed and Low-Speed Master Generators
	22.3.3 Multiplexer and LCD Pin Logic
	22.3.4 Display Data Registers

	22.4 Register List

	23. CapSense
	23.1 Features
	23.2 Block Diagram
	23.3 How It Works
	23.3.1 CapSense CSD Sensing
	23.3.1.1 GPIO Cell Capacitance to Current Converter
	23.3.1.2 Switching Clock Generator
	23.3.1.3 Sigma Delta Converter
	23.3.1.4 Analog Multiplexer

	23.3.2 CapSense CSD Shielding
	23.3.2.1 CMOD Precharge



	24. Temperature Sensor
	24.1 Features
	24.2 How it Works
	24.3 Temperature Sensor Configuration
	24.4 Algorithm


	Section G: Program and Debug
	Top Level Architecture
	25. Program and Debug Interface
	25.1 Features
	25.2 Functional Description
	25.3 Serial Wire Debug (SWD) Interface
	25.3.1 SWD Timing Details
	25.3.2 ACK Details
	25.3.3 Turnaround (Trn) Period Details

	25.4 Cortex-M0 Debug and Access Port (DAP)
	25.4.1 Debug Port (DP) Registers
	25.4.2 Access Port (AP) Registers

	25.5 Programming the PSoC 4 Device
	25.5.1 SWD Port Acquisition
	25.5.1.1 Primary and Secondary SWD Pin Pairs
	25.5.1.2 SWD Port Acquire Sequence

	25.5.2 SWD Programming Mode Entry
	25.5.3 SWD Programming Routines Executions

	25.6 PSoC 4 SWD Debug Interface
	25.6.1 Debug Control and Configuration Registers
	25.6.2 Breakpoint Unit (BPU)
	25.6.3 Data Watchpoint (DWT)
	25.6.4 Debugging the PSoC 4 Device


	26. Nonvolatile Memory Programming
	26.1 Features
	26.2 Functional Description
	26.3 System Call Implementation
	26.4 Blocking and Non-Blocking System Calls
	26.4.1 Performing a System Call

	26.5 System Calls
	26.5.1 Silicon ID
	26.5.2 Load Flash Bytes
	26.5.3 Write Row
	26.5.4 Program Row
	26.5.5 Erase All
	26.5.6 Checksum
	26.5.7 Write Protection
	26.5.8 Non-Blocking Write Row
	26.5.9 Non-Blocking Program Row
	26.5.10 Resume Non-Blocking

	26.6 System Call Status
	26.7 Non-Blocking System Call Pseudo Code


	Glossary
	Index

