

 PSoC® Creator™ Component Example Project

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Features

 Over-The-Air (OTA) firmware update

 Upgradable BLE Stack shared between two projects

 Independent BLE Component configuration in two projects

 Bonding data maintained across bootloading sessions

 HID keyboard

General Description

This example shows how to implement an upgradable Application project (HID keyboard) and
upgradable Stack project with the BLE Stack. In addition, the Application project uses the BLE
Stack from the Stack project.

The scheme of simplified memory organization is in Figure 1. The details are available in the
“Architecture” section.

Figure 1. OTA Shared Memory Workspace

Stack project with
BLE stack

Launcher project

HID keyboard project

BLE Upgradable Stack Example Projects
1.20

BLE Upgradable Stack Example Projects PSoC® Creator™ Component Example Project

Page 2 of 24

The three projects functions are as follows:

1. Launcher project

The purpose of the project is to:

 Start either the Stack or Application project image

 Copy the Stack project image from a temporary location to the persistent location
(just after the Launcher project image).

See “Launcher Project Configuration” for more detail.

2. Stack project (contains the BLE Stack)

The purpose of the project is to:

 Host the BLE Stack

 Upgrade the Application project image

 Upgrade the Stack project image itself

 Receive updates for the Stack project image itself or for the Application project
image

See “Stack Project Configuration” for more detail.

3. HID keyboard project (Application project)

This project demonstrates:

 Pressing the keyboard in the boot and protocol mode

 Handling a suspend event from the central device

 Entering the low-power mode when suspended in a form of an upgradable project

Note The Stack project is the bootloader for the HID keyboard project and the
bootloadable for the Launcher project.

See “HID Keyboard Project Configuration” for more detail.

Development Kit Configuration
This example project is designed to run on the Cypress CY8CKIT-042-BLE kit with the
CY8CKIT-143 PSoC 4 BLE 256KB Module. A description of the kit along with more example
programs and ordering information can be found at http://www.cypress.com/go/cy8ckit-042-ble
and http://www.cypress.com/documentation/development-kitsboards/cy8ckit-143-psoc-4-ble-
256kb-module.

The kit must be powered with 3.3 V (J16 is set to 1 and 2). No connection on the kit board is
required to use this example project. If you want to power the kit with the 5V supply, you should
modify the Operating Conditions in the *.cydwr files under the System tab for both bootloader
and bootloadable projects:

http://www.cypress.com/go/cy8ckit-042-ble
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-143-psoc-4-ble-256kb-module
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-143-psoc-4-ble-256kb-module

PSoC® Creator™ Component Example Project BLE Upgradable Stack Example Projects

 Page 3 of 24

Refer to the “Setup and Run Example Project” section of this document for instructions on how to
use this example project.

If the kit is powered with a different voltage, the project settings must be updated appropriately.

BLE Upgradable Stack Example Projects PSoC® Creator™ Component Example Project

Page 4 of 24

Architecture

General

Figure 2. Flash Memory Structure shows detailed organization of the flash memory.

Figure 2. Flash Memory Structure

Stack project

Stack project metadata

HID Keyboard project metadata

Launcher project

HID Keyboard project

0x0

Stack project data section

HID Keyboard project data section

This project images placement is unique for this use case. It is similar to the Dual-app
bootloader/bootloadables but contains a few key differences:

1. The Application project image (HID Keyboard) is placed after the Stack project image.

2. The Launcher project image has a bootloader component but does not have
communication for it.

3. The Stack project image contains both Bootloader and Bootloadable Components.

4. The Application project image references the Stack project image as its bootloader.

PSoC® Creator™ Component Example Project BLE Upgradable Stack Example Projects

 Page 5 of 24

Code Sharing

Code sharing is a new PSoC Creator feature that allows a bootloader to share its communication
component with the bootloadable project. This applies only to big communication components,
such as the BLE.

Code sharing includes two parts:

1. Exporting code: the compiler and/or linker configuration that will force the
compiler/linker to keep the communication component code even if its functionality is not
fully used in the bootloader project itself.

2. Extracting flash symbols placement in the shared communication component and
providing definitions of these symbols to the bootloadable project. The symbols here are
the functions or data arrays required for a particular communication component. In this
example - the BLE.

Checksum Excluding

During a bootloading process, a bootloader checks for the integrity of the application code
residing in the flash memory by calculating its checksum and verifying it against the originally
stored checksum. However, some configurations of the BLE Component require saving some
data (Bonding data) to a flash memory area, which is a part of the application. This bonding data
changes whenever PSoC BLE device is paired to other devices. When bonding data changes,
the stored check sum of the application image is no more valid. In this case, the bootloader will
halt application loading as soon as it detects mismatch in the calculated and original checksum
values.

To prevent changing the checksum of the application code, bonding data is placed in the
checksum excluded area of the flash memory (named "Stack project" and "Application project"
data sections in Figure 2. Flash Memory Structure).

Note In the Stack project configuration, saving bonding data is disabled by default.

The BLE component gives information about the checksum exclusion area size required for
bonding data to the Bootloadable component that adds this value to the value configured in the
component customizer. Because of that, the Bootloadable component customizer’s parameter
named "Checksum exclude section size (bytes)" does not include the size for bonding data.

More info about the bootloading process and checksum exclusion can be found in the
Bootloader or Bootloadable component's datasheet.

RAM Sharing

In the Stack project, the BLE Stack requires a bit of the RAM memory that must be allocated
statically. So, for the Application project, custom linker scripts are used providing some space
reserved for the BLE Stack operation. This results in reducing the amount of the RAM memory
available for the Application project. On average, the RAM size is reduced by 4K.

BLE Upgradable Stack Example Projects PSoC® Creator™ Component Example Project

Page 6 of 24

Updating Projects

Application project image update

The Application project image update procedure does not differ from the normal bootloadable
project image update: switching to the bootloader (Stack project image) and receiving a
bootloadable image. The only exception is that the “Application Project Data” section is not
replaced during this update.

Stack project image update

To update the Stack project image, different architecture is used: PSoC Creator converts a file
used for the update so that a new image will be placed into the temporary location: the
Application project image placement is used for this purpose. When receiving an updated image
is completed, the Stack project initiates the device software reset. After the software reset, the
Launcher project image is launched and it detects the image placed to the temporary location
and copies it to its appropriate place. After that the Stack project image is launched.

At this point, the Application project image is damaged, so it must be received as well.

Launcher Project Configuration

The Launcher project has simple configuration: the Bootloader component and UART for printing
information to the UART console.

It is required to make Launcher project’s image size as small as possible. Stack project’s image
size is limited and has to be optimized, so optimizing Launcher allows more space to be
available for the Stack project image.

Bootloader

The Bootloader component is configured for the Launcher mode with the copier functionality
enabled:

PSoC® Creator™ Component Example Project BLE Upgradable Stack Example Projects

 Page 7 of 24

Figure 3. Bootloader Component Configuration in Launcher Project

The Copier functionality allows copying the image from the temporary location.

Software Transmit UART

This component is used for printing debug information.

Compiler Settings

If ARM GCC compiler is used, then check that Optimization Level is set to Size (-Os) in both
Debug and Release builds:

1. Right-click the Stack project in Workspace Explorer.

2. Click Build Settings.

3. Select Configuration - Debug.

4. Expand Compiler under the selected compiler:

Check the values of the following options in the Optimization and Command line
section:

Section Option Value

Optimization Optimization Level Size

BLE Upgradable Stack Example Projects PSoC® Creator™ Component Example Project

Page 8 of 24

Export to IAR

In IAR IDE open Project options, C/C++ Compiler Category, Optimizations tab and set Level to
either Medium, or High/Size.

Stack Project Configuration

The Stack project combines both the Bootloader and Bootloadable Components. In addition, it
has the BLE Component with the Stack Only option enabled.

Stack project image size is limited and BLE component code takes most part of it, so this project
has to be optimized even in debug builds. With the new BLE component versions the
optimizations have to be even more aggressive, as this component adds new features which
may cause code size growth if not optimized out.

Compiler Settings

The same compiler optimization settings as for Launcher project are required for this project too,
see subsection Compiler Settings of the section Launcher Project Configuration.

Linker Settings

If ARM MDK Generic compiler is used, then check the correctness of the project linker settings:

1. Right-click the Stack project in Workspace Explorer.

2. Click Build Settings.

3. Expand Linker under the selected compiler:

Check the values of the following options in the General and Command line
section:

Section Option Value

General Use MicroLIB False

Note MicroLib has compilation limitations preventing the code sharing usage. So,
MircoLib cannot be used neither in the BLE OTA Stack nor in BLE OTA Application
projects, but can be used in the Launcher project as it does not use BLE OTA.

Bootloader Component

The Bootloader Component in this project is not involved in the “boot” process, it only for loading
data via a communication component:

PSoC® Creator™ Component Example Project BLE Upgradable Stack Example Projects

 Page 9 of 24

Figure 4. Bootloader Component Configuration in Stack Project

The BLE component is selected as a communication component.

Bootloadable Component

The Bootloadable component has the default setting, except for the Dependencies tab to be
configured to point to the Launcher project.

BLE Component

The BLE Component is configured to have the Stack-only mode:

BLE Upgradable Stack Example Projects PSoC® Creator™ Component Example Project

Page 10 of 24

Figure 5. BLE Component Configuration in Stack Project

Note The Stack-only mode requires additional heap memory. For the component configuration in
this example project, it is about 4.5K to be added to the system heap size. This addition causes
high system heap memory in the Stack project settings:

Figure 6. Stack Project Heap Settings

Do not reduce this value unless you know what you are doing.

The Stack-only mode of the BLE component provides only the bootloader service. To maximize
the transfer speed, an attribute MTU value is set to 300 bytes.

Note The Stack project image performs flash writes. Due to this, the maximum connection
interval value is set to 15 ms. Changing this parameter value to a smaller value might result in
disconnection during bootloading if a flash write lasts longer. A flash write takes about 10 ms

PSoC® Creator™ Component Example Project BLE Upgradable Stack Example Projects

 Page 11 of 24

(refer to the device datasheet), so this value cannot be smaller. If a device’s flash writes takes
more than 15 ms, this value should be changed.

Software Transmit UART

This component is used for printing debug information.

HID Keyboard Project Configuration

The Application project is a bootloadable project that has the BLE Component and Bootloadable
Component.

Linker Settings

If the ARM MDK Generic compiler is used, then check the correctness of the project linker
settings:

4. Right-click on the HID Keyboard project in Workspace Explorer.

5. Click Build Settings.

6. Expand Linker under the selected compiler:

Check the values of the following options in the General and Command line
section:

Section Option Value

General Use MicroLIB False

Note MicroLib has compilation limitations preventing the code sharing usage. So,
MircoLib cannot be used neither in BLE OTA Stack nor in BLE OTA Application
projects, but can be used in the Launcher project as it does not use BLE OTA.

Bootloadable Component

The Bootloadable Component has the default configuration. The bootloader dependency has to
be configured to point to the Stack project image – it is a bootloader for the Application project
image.

BLE Component

The BLE component is configured to use the code import. This mode is called “Profile Only” and
implies that the bootloader project referenced for this particular bootloadable has the BLE

BLE Upgradable Stack Example Projects PSoC® Creator™ Component Example Project

Page 12 of 24

Component in the Stack-only mode and the path to the *.cycsa file that was generated in the
bootloader project is referenced in the Component customizer:

Figure 7. BLE Component Configuration in Application Project

Other BLE component settings match the BLE HID keyboard example project.

Software Transmit UART

This component is used for printing debug information.

Custom Linker Script

The application project uses the custom linker scripts. For ARM GCC Compiler – file
.\LinkerScripts\cm0gcc.ld, for ARM MDK Compiler – file .\LinkerScripts\Cm0Mdk.scat and for
IAR ARM Compiler – file .\LinkerScripts\Cm0Iar.icf.

In these files, the checksum exclude section size (CY_CHECKSUM_EXCLUDE_SIZE) is defined
as a constant with some value. This value can be changed when a BLE component version or
configuration is changed, so the custom linker script must be updated when the BLE component
is updated.

To update the custom linker script:

PSoC® Creator™ Component Example Project BLE Upgradable Stack Example Projects

 Page 13 of 24

1. Find the generated linker script file with the same name in location:
.\Generated_Source\PSoC4\ , e.g. for ARM GCC Compiler this file is
.\Generated_Soucre\PSoC4\cm0gcc.ld .

2. Find the line with CY_CHECKSUM_EXCLUDE_SIZE defined in the generated linker
script file.

3. Copy that line to your custom linker script file, where CY_CHECKSUM_EXCLUDE_SIZE
is defined.

GCC compiler linker script

The GCC linker script has the only change compared to the generated script. At the start of the
RAM, there is a separate segment for the BLE stack static data:

Figure 8. GCC Linker Script Modifications

Note Make sure the lines where constant CY_CHECKSUM_EXCLUDE_SIZE is defined are
equal in both generated and custom linker scripts.

MDK compiler linker script

The MDK compiler linker script in this example project has the same modifications as the GCC
linker script, but in the MDK compiler, the start of RAM available for this project is moved further
from the physical start of RAM. This is done for the project compiled with the MDK compiler to
have a separate portion of RAM for the Stack static data.

Figure 9. MDK Linker Script Modifications

Note Make sure the lines where constant CY_CHECKSUM_EXCLUDE_SIZE is defined are
equal in both generated and custom linker scripts.

BLE Upgradable Stack Example Projects PSoC® Creator™ Component Example Project

Page 14 of 24

IAR compiler linker script

The IAR linker script has the same modifications. The difference is in line #55: you have to
manually set the size of RAM occupied by the Stack project without heap and stack.

Figure 10. IAR Linker Script Modifications

…

In most cases, the value set in the example projects is sufficient. Modify this value if the Stack
project has changed.

Note The value in Figure 10 might not match the one in the linker script.

Note Make sure the lines where constant CY_CHECKSUM_EXCLUDE_SIZE is defined are
equal in both generated and custom linker scripts.

PSoC® Creator™ Component Example Project BLE Upgradable Stack Example Projects

 Page 15 of 24

Custom linker scripts limitations

The biggest limitation is that changes to the system stack and heap sizes will have no effect on
the custom linker script. If the size of the system heap or stack is changed, the custom linker
scripts must be adjusted:

 GCC linker script

To change the system heap size, change line#265 of the GCC linker script:

Figure 11. GCC Linker Script System Heap Size

And the system stack size is configured in lines 69, 265, 272:

Figure 12. GCC Linker Script System Stack Size

The linker script is located in the LinkerScripts folder of the Application project.

 MDK linker script

In the MDK compiler, the size of the system heap is set in line124 of the custom linker
script:

Figure 13. MDK Compiler System Heap Size

The system stack size is configured in line 128 of the custom linker script:

Figure 14. MDK Compiler System Stack Size.\

 IAR linker script

BLE Upgradable Stack Example Projects PSoC® Creator™ Component Example Project

Page 16 of 24

For IAR system, the heap and/or stack size can be configured using IAR project settings.

Setup and Run Example Project

By default, the Launcher, Stack, and Application projects are expected to be located in the same
workspace. However, the user can save the projects in any location. This document describes
the case when all three projects are located in the same workspace.

The following steps are described for the GCC compiler shipped with PSoC Creator. These
steps are applicable for the ARM MDK compiler as well.

For more information on changing the compiler from a default one (GCC), refer to section
“Changing Projects Compiler”.

1. Build the Launcher project.

2. Add the BLE Upgradable stack example project to the workspace.

3. Change the path to the bootloader *.hex and *.elf files in the Bootloadable Component
customizer to point to the files generated when the Launcher project was compiled. This
file is located in the Launcher project folder: CortexM0\%compiler name%\%compilation
mode%\ (for example, in the GCC compiler: CortexM0\ARM_GCC_541\Debug\).

4. Build the Stack project.

Note At this point, when the Stack project is compiled, the resulting *.hex file contains the
Launcher project and the BLE Stack with the bootloader functionality. This means that if
this file is programmed, the device will be in the update mode waiting for the Application
project uploading.

5. Add the BLE Upgradable Stack HID Keyboard example project to the workspace.

6. Open the Bootloadable Component customizer and on the Dependency tab change the
dependency to the bootloader *.hex/*.elf by the path to the *.hex and *.elf file that was
generated after step #4.

7. Apply the changes and open the BLE component customizer. Make sure that the path to
the *.cycsa file is valid:

Figure 15. BLE Component Path to Code Sharing File

This file was generated during step #4 and is located in the Stack project folder:
Generated_Source\PSoC4\

PSoC® Creator™ Component Example Project BLE Upgradable Stack Example Projects

 Page 17 of 24

Note The compilers used for the Stack project compilation must match the compiler used
for the Application project.

8. Build the BLE Upgradable Stack HID Keyboard example project.

9. Program the BLE Upgradable Stack HID Keyboard example project and optionally,
connect to debug UART.

Changing Projects Compiler

Both The Stack project and Application project must be compiled with the same compiler. This
includes changes in the bootloadable component customizer of the Application project – an
appropriate bootloader must be selected.

Note Only GCC MDK and IAR compilers are supported.

Exporting projects to IAR Embedded Workbench

If you want to export projects to the IAR, there is a slight difference from the general project
export procedure:

1. Add the BLE_OTA_UpgradableStackExample_Launcher project to the workspace and
compile it.

2. (Optional) Export it to the IAR and compile it there. Configure the project properly, see
Compiler Settings.

3. Add to workspace BLE_OTA_UpgradableStackExample_Stack and configure
Bootloader Component paths to the bootloader: it should be either paths to images
compiler compiled by PSoC Creator or compiled by IAR depending on #2: if it was done
or not.

4. Export the Stack project to the IAR and compile it there. Configure the project properly,
see Compiler Settings.

5. Add to workspace BLE_OTA_UpgradableStack_HID_Keyboard.

6. Configure the Bootloadable component to use images that were compiled with the IAR in
Step #4.

7. Add a reference to the *.cycsa file from the Stack project.

8. Export the project to the IAR.

9. Change the linker script in the IAR to the one located in the
BLE_OTA_UpgradableStack_HID_Keyboard folder: \LinkerScripts\Cm0Iar.icf.

10. Compile the BLE_OTA_UpgradableStack_HID_Keyboard project in the IAR.

11. Program the *.hex file.

BLE Upgradable Stack Example Projects PSoC® Creator™ Component Example Project

Page 18 of 24

Note 1. It is necessary to have both Stack and Application projects compiled with the IAR.

2. If the Stack project was changed or if BLE component was updated, the RAM section
size highlighted on Figure 10 might need to be changed.

3. By default, IAR produces the Lp023 warning when the
BLE_OTA_UpgradableStack_HID_Keyboard project is imported. This is caused by fact
that its bootloader (BLE_OTA_UpgradableStackExample_Stack for this project)
overlaps with symbols that are imported to it from the bootloader project. Given that this is
intended implementation and it is not an issue here, the Lp023 warning is suppressed.

Exporting Projects to uVision

The steps to export projects to uVision:

Step 1. Export the Launcher project to the uVision:

a. Add the BLE_OTA_UpgradableStackExample_Launcher project to the PSoC
Creator workspace.

b. Open “Build Settings” of the Launcher project and change “Toolchain” to “ARM MDK
Generic”

c. Generate the Launcher application in the PSoC Creator (click “Build” -> “Generate
Application”)

d. Export the Launcher project to uVision (click “Project” -> “Export to IDE”).

e. Build the exported Launcher project in the uVision.

Step 2. Export the Stack project to uVision:

a. Add the BLE_OTA_UpgradableStackExample_Stack project to the PSoC Creator
workspace.

b. Open “Build Settings” of the Stack project and change “Toolchain” to “ARM MDK
Generic”.

c. Configure the Bootloadable component to use images that were compiled with
uVision in Step 1.e.

d. Generate the Stack application in the PSoC Creator (click “Build” -> “Generate
Application”).

e. Export the Stack project to uVision (click “Project” -> “Export to IDE”).

f. Add argument “--symdefs=exported_symbols.obj” to the Linker options in uVision:

- open BLE_OTA_UpgradableStackExample_Stack01.uvproj in uVision

- open the "Options for Target" window and select the Linker tab

- in the Misc controls field append "--symdefs=exported_symbols.obj" to the end of
the arguments list.

g. Build the exported Stack project in the uVision.

PSoC® Creator™ Component Example Project BLE Upgradable Stack Example Projects

 Page 19 of 24

Step 3. Export the HID_Keyboard project to uVision:

a. Add the BLE_OTA_UpgradableStack_HID_Keyboard project to the PSoC Creator
workspace.

b. Open “Build Settings” of the HID_Keyboard project and change “Toolchain” to “ARM
MDK Generic”

c. Configure the Bootloadable component to use images that were compiled with
uVision in Step 2.g.

d. Configure the BLE component. Make sure that the path to the *.cycsa file is refer to
*.cycsa file which was generated during step #2.g and is located in the Stack project
folder: Generated_Source\PSoC4\

e. Generate the HID_Keyboard application in the PSoC Creator (click “Build” ->
“Generate Application”).

f. Export the HID_Keyboard project to uVision (click “Project” -> “Export to IDE”).

For BLE component version 3.30 (or older), you must add an empty declaration of the
CyBle_BleSSInterruptHandler function in main.c to prevent a build linker error “Error:
L6218E: Undefined symbol CyBle_BleSSInterruptHandler (referred from
cyble_hal_int.o)” in the uVision:

void CyBle_BleSSInterruptHandler(void)
{
}

g. Build the exported HID_Keyboard project in uVision.

Upgrading Project images

To perform any application update, the Stack project image should be launched. If the current
running project image is the HID keyboard, rebooting to Stack project image can be done by a
long (>500ms) SW2 button press. While the device is running the Stack project image code, and
is ready to receive Stack or Application project image updates (*.cyacd files), the red LED has to
be lighting.

Note After any of project images are updated, the bootloader metadata rows are changed: the
information about project image’s bounding data is saved to the unused bytes of the metadata
row. This will result in the failure of the verification after the project is launched for the first time.

There is one software tool provided by Cypress that can send Stack or Application project image
updates to the device - CySmart. External software to be downloaded and installed separately.

There are two hardware Dongles that communicate with the BLE devices and can be used to
update the firmware:

 CY5670, with 128KB Flash chip, supports BLE 4.1.

 CY5677, with 256KB Flash chip, supports BLE 4.2. It supports higher transfer rates, up to
1Mbps.

BLE Upgradable Stack Example Projects PSoC® Creator™ Component Example Project

Page 20 of 24

Refer to the documentation that came with the dongle to figure out its type. Also it can be
received from CySmart.

Upgrade Project images with CySmart

More detailed information about the CySmart usage can be found in the CySmart User Guide
(Section 2.7 Updating Peripheral Device Firmware). You can download the CySmart tool and its
user guide from here http://cypress.com/cysmart.

To upgrade the device firmware OTA:

1. Make sure the OTA device is running a Stack project image, and is ready to receive
updates.

2. Connect the BLE Dongle.

3. Open the CySmart software, and select the BLE Dongle.

4. Press the Start Scan button to start scanning for the peripheral device.

5. When the device is listed in the Discovered Device list, stop scanning by clicking the
Stop Scan button.

6. Select the device from the Discovered Device list.

7. Click the Update Firmware button.

8. Select the firmware update type on the OTA firmware update window.

Firmware Update Type Description

Application and Stack
(Combined) update

The Application and Stack firmware co-exist in the same memory
location. This option updates complete firmware.

Application only update The Application and stack firmware exist in independent memory
locations. This option updates only the application firmware.

Application and Stack
update

The Application and Stack firmware exist in independent memory
locations. Select this option to update first the Stack firmware and
then the application firmware.

9. Click Next. In the next page, browse and select the new firmware image (*.cyacd) file.
It is located in the project folder ([project folder]\CortexM0\[compiler name]).

10. Click the Update button.

11. Wait for the device firmware to be updated.

Note If the update fails at authentication, then check if the security settings in CySmart match
the settings used in the BLE component of the Stack project. To change the security settings in
CySmart, click the Configure Master Settings button in the tool and go to the Security
parameters page.

http://cypress.com/cysmart

PSoC® Creator™ Component Example Project BLE Upgradable Stack Example Projects

 Page 21 of 24

HID keyboard Project image upgrade

Upgrade can be done by CySmart. The *.cyacd file that was generated for the HID keyboard
project (BLE Upgradable Stack Example HID keyboard) is used.

The bonding data might be maintained only if the HID keyboard project image has been updated
and if the CCCD data size is not changed.

Stack Project image upgrade

The Stack project image update procedure includes erasing the Application project image, thus
the new Application project image (BLE_Upgradable_Stack_Example_HID_Keyboard in this
example project) must be uploaded after the Stack project image update procedure.

The Stack project image similar to the Application project image can be updated using CySmart
application. The *.cyacd file that was generated during the Stack project compilation should be
used.

Expected Results

LED Behavior Description

Launcher project

Color State Description

Blue Static Project is active

The Launcher project image is intended to be active for a short period of time. If it is active for 5
seconds or more, it means that there are no valid applications on the device. The only exit from
this state is reprogramming the device.

Stack project

Color State Description

Red Static Waiting for an update or the update is in
process.

None None The low-power mode.

The Stack project implements only the Bootloading functionality. Thus, when the device is active,
it is waiting for bootloading connections. If no connection event occurs for ~40 seconds, the
Stack project image automatically switches to the Application project image if it is present and
valid.

BLE Upgradable Stack Example Projects PSoC® Creator™ Component Example Project

Page 22 of 24

Application project

Color State Description

Green Blinking The device is in an active state.

Cyan (Green+Blue) Static The low-power mode.

Yellow (Red+Green) Static Connected.

The Application project implements the BLE HID keyboard example with a key press and battery
level notifications simulation.

Bonding Data Retention

The Application project image supports saving bonding information after a new image has been
received. This means that after updating the Application project image, it is not required to repeat
a pairing procedure.

Bonding data is removed if:

1. The Stack project has been updated.

2. The number of CCCD descriptors has changed.

Using UART for Debugging

In this example projects, UART is used to print various debug information (enabled by default).

File options.h contains define “DEBUG_UART_ENABLED”. It is set to “YES” and it provides
extra debugging information in each of the bootloader or bootloadable projects. This slightly
decreases the projects performance and increases the code size, but it provides an extra
debugging output to the UART. If it is not required – set it to “NO”.

Also, file options.h contains define “DEBUG_UART_USE_PRINTF_FORMAT”. It is set to “NO” to

prevent using the printf function if it is prohibited, thus DBG_PRINTF(…) becomes

unavailable. This greatly reduces the code size (around 4 KB for GCC) but still allows printing
debug information.

A HyperTerminal program is required in the PC to receive debugging information. If you don’t
have a HyperTerminal program installed, download and install any serial port communication
program. Freeware such as Bray’s Terminal, Putty etc. are available on the web.

1. Connect the PC and kit with a USB cable.

2. Open the device manager program in your PC, find the COM port to which the kit is
connected, and note the port number.

3. Open the HyperTerminal program and select the COM port to which the kit is connected.

4. Configure Baud rate, Parity, Stop bits and Flow control information in the HyperTerminal
configuration window. By default, the settings are the following: Baud rate – 57600, Parity

PSoC® Creator™ Component Example Project BLE Upgradable Stack Example Projects

 Page 23 of 24

– None, Stop bits – 1 and Flow control – XON/XOFF. These settings must match the
configuration of the PSoC Creator UART component in the project.

5. Start communicating with the device as explained in the project description.

File debug.h contains macros used to print various types of data:

 DBG_PRINT_TEXT(a) - Prints a text string.

 DBG_PRINT_DEC(a) –Prints a decimal number of type uint32. Prints starting with
nonzero digit, e.g. 100 not 0000100

 DBG_PRINT_HEX(a) – Prints a hexadecimal number of type uint32. Prints starting with
nonzero digit, e.g. 1a0 not 000001a0

 DBG_PRINT_ARRAY(a,b) – Prints b first elements of array a.

 DBG_PRINTF(...) – Prints the function macro. Note that it is present only if
“DEBUG_UART_USE_PRINTF_FORMAT” is set to “YES”.

 DBG_PRINT_HEX_BYTE(a) – Prints only two least significant hexadecimal digits of the
uint32 number.

 DBG_PRINT_HEX_TEXT(uint32 hex, char *text) – Prints hexadecimal number hex with

the DBG_PRINT_HEX macro, then prints string text with the DBG_PRINT_TEXT macro.

A useful replacement for DBG_PRINTF(…) when it is unavailable.

 DBG_PRINT_DEC_TEXT(uint32 hex, char *text) – Prints decimal number hex with the

DBG_PRINT_DEC macro, then prints string text with the DBG_PRINT_TEXT macro. A

useful replacement for DBG_PRINTF(…) when it is unavailable.

These macros print information to UART only if DEBUG_UART_ENABLED define is set to
“YES”.

BLE Upgradable Stack Example Projects PSoC® Creator™ Component Example Project

Page 24 of 24

 © Cypress Semiconductor Corporation, 2017. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

