

 www.cypress.com Document No. 001-90799 Rev. *B 1

AN90799
PSoC® 4 Interrupts

Author: Rajiv Badiger
Associated Project: Code Examples

Associated Part Family: All PSoC 4 Parts
Software Version: PSoC Creator™ 3.3 or later

To get the latest version of this application note, please visit
http://www.cypress.com/AN90799.

AN90799 explains the interrupt architecture in PSoC 4 and its configuration in PSoC Creator™. This document serves
as a guide in developing interrupt-based projects. Advanced interrupt concepts such as latency, vector selection,
interrupt code optimization, and debug techniques are also explained.

Contents
1 Introduction ... 1
2 PSoC 4 Interrupt Architecture 2

2.1 Interrupt Sources ... 2
2.2 Level- and Edge-Triggered Interrupts 4

3 Interrupt Support in PSoC Creator 5
3.1 Interrupt Component Configuration 5
3.2 Interrupt Priority Configuration 7
3.3 Interrupt API Functions 8

4 Writing an Interrupt Service Routine (ISR) 10
4.1 Using Auto-Generated ISR 11
4.2 Creating a Custom ISR 12

5 Code Examples .. 13
6 Debugging Tips .. 13
7 Advanced Interrupt Topics 15

7.1 Exceptions ... 15

7.2 Interrupt Latency .. 15
7.3 Optimizing the Interrupt Code 16
7.4 Components with Inbuilt Interrupts 16
7.5 Forcing the Interrupt Vector Number 17
7.6 SysTick Timer .. 18
7.7 Nested Interrupts ... 19

8 Summary .. 19
A Appendix A – Interrupt Sources and

Vector Numbers in PSoC 4..................................... 20
Document History .. 22
Worldwide Sales and Design Support 23
Products .. 23
PSoC® Solutions ... 23

1 Introduction
Interrupts are an important part of any embedded application. They free the CPU from having to continuously poll for
the occurrence of a specific event; it notifies the CPU only when that event occurs. In system-on-chip (SoC)
architectures such as PSoC, interrupts are frequently used to communicate the status of on-chip peripherals to the
CPU.

Using this document

The document begins with the explanation on PSoC 4 interrupt architecture. If you want to learn about the interrupt
support in the PSoC Creator IDE, skip to the Interrupt Support in PSoC Creator. For sample code examples, see
Code Examples. If you are debugging the interrupt project, go to the Debugging Tips section, which provides a few
tips on finding and resolving interrupt issues. The Advanced Interrupt Topics section covers advanced topics on
interrupts.

This application note assumes that you are familiar with PSoC and the PSoC Creator IDE. If you are new to PSoC,
you can find an introduction in the Getting Started with PSoC application note AN79953 and visit the PSoC Creator
home page.

http://www.cypress.com/
http://www.cypress.com/AN90799
http://www.cypress.com/documentation/application-notes/an79953-getting-started-psoc-4
http://www.cypress.com/go/creator
http://www.cypress.com/go/creator

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 2

2 PSoC 4 Interrupt Architecture
Figure 1 shows a simplified block diagram of the interrupt architecture in PSoC 4:

Figure 1. PSoC 4 Interrupt Architecture

Interrupt
Sources { Nested Vectored

Interrupt Controller
(NVIC)

Cortex – M0
Processor Core

IRQ[0]
IRQ[1]
IRQ[2]

-
IRQ[31]

ARM® Cortex® M0

Wakeup Interrupt
Controller (WIC)

To Power Management System

-
-

-

There are 32 interrupt lines – IRQ[0] to IRQ[31] – each with four priority levels, 0 to 3. Each interrupt line is assigned
an interrupt vector address. The CPU branches to this address after receiving an interrupt request, where a special
function called an Interrupt Service Routine (ISR) is executed.

Interrupt signals are received by the Nested Vectored Interrupt Controller (NVIC). When an interrupt signal becomes
active, NVIC sends the interrupt vector address to the processor core along with the interrupt request signal. In
return, the processor core sends an acknowledgement when the ISR is entered and exited. The NVIC is responsible
for enabling/disabling of any interrupt based on the user configuration. It also resolves the interrupt priority when
multiple requests occur at the same time and supports nested interrupts to allow a higher-priority interrupt to be
serviced leaving a low-priority ISR.

The Wakeup Interrupt Controller (WIC) block allows the device to wake up from low-power modes – sleep, deep-
sleep, and hibernate – using interrupts. The WIC block remains active while the NVIC, processor core, and other
device peripherals shut down. When an interrupt triggers, the WIC activates the power management system, which
restores the NVIC and the processor core along with other peripherals. The NVIC then takes over and sends the
vector address to the processor core to execute the ISR. There are several sources in the PSoC 4 device that has
the capability to wake up the device. For example, Figure 1 shows IRQ[0] and IRQ[1] routed to the WIC along with
the NVIC. These are the interrupt lines from GPIOs.

PSoC 4 provides the following interrupt features:

 Configurable Interrupt Vector Address: The CPU execution can be directly branched to any ISR code when
the interrupt occurs, thus reducing the latency.

 Flexible Interrupt Sources: In traditional microcontrollers, the interrupt source is hard-wired to each interrupt
line. PSoC gives you the flexibility to choose the interrupt source for each interrupt line. This flexible architecture
enables any digital signal to be configured as an interrupt source.

2.1 Interrupt Sources
PSoC 4 interrupt sources are of two types:
1. Fixed-function interrupt sources: These are the predefined set of interrupt sources from on-chip peripherals.
2. Universal Digital Block (UDB) interrupt sources (available in PSoC 4200, PSoC 42x7_BLE, PSoC 4200M and

PSoC 4200L parts): UDBs are the basic building blocks for different digital functions such as Timer, PWM, UART,
SPI, and many more. It consists of programmable logic (PLDs), datapath, and flexible routing. In contrast to fixed-
function interrupt sources, any digital signal generated in a UDB can trigger an interrupt. The signals are routed to
the interrupt controller through the routing fabric known as Digital System Interconnect (DSI). See the PSoC 4
Technical Reference Manual for more information.

http://www.cypress.com/
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1297&f%5b2%5d=resource_meta_type%3A583
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1297&f%5b2%5d=resource_meta_type%3A583
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1297&f%5b2%5d=resource_meta_type%3A583

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 3

Table 1 shows the interrupt sources. Interrupt sources mentioned in the table are available in all PSoC 4 parts unless
noted otherwise. For details on each interrupt source, see the PSoC Creator Component datasheets listed in Table 1.
Appendix A shows the complete list of interrupt sources depending on the device.

Table 1. PSoC 4 Interrupt Sources

Interrupt Source Details

GPIOs

Each port consists of eight pins. Each pin can generate an interrupt, but the vector address is
common for all pins in a port. Firmware must identify the pin that caused the interrupt.
PSoC 4 enables interrupt trigger on the rising edge, falling edge, or both edges of the GPIO signal.
This interrupt can wake the device from sleep, deep-sleep, and hibernate modes.

Low Power Comparator
(LPCOMP) (1)

Like GPIOs, an interrupt can be triggered on the rising edge, falling edge, or both edges of the
comparator output signal. The LPCOMP can also wake the device from sleep, deep-sleep, and
hibernate modes.

WDT
The watchdog timer (WDT) is a timer that can reset the device or generate an interrupt. PSoC 4000
has a 16-bit free-running WDT, whereas other PSoC 4 parts have two 16-bit WDTs and one 32-bit
WDT. The WDT can wake the device from sleep and deep-sleep modes.

SCB

PSoC 4 has up to four serial communication blocks (SCB), which can be configured as I2C, SPI, or
UART.

I2C

The following events generate an interrupt: arbitration lost, slave address match,
start/stop detect, bus error, byte/word transfer complete, TX FIFO not full, TX/RX FIFO
empty, RX FIFO not empty, RX FIFO overrun, and RX FIFO full. The slave address
match event can wake the device from sleep and deep-sleep modes.

SPI
The following events generate an interrupt: transfer done, idle, TX FIFO not full, TX/RX
FIFO empty, byte/Word transfer complete, RX FIFO is not empty, attempt to write to a
full RX FIFO, and RX FIFO full.

UART
The following events generate an interrupt: transmission done, UART TX received a
NACK in SmartCard mode, UART arbitration lost in LIN or SmartCard mode, frame error,
parity error, LIN baud rate detection complete, and LIN successful break detection.

System Performance
Controller (SPC)

The SPC block controls flash write operations. It triggers an interrupt when the flash write operation is
complete.

SysTick
SysTick is a 24-bit timer built into the ARM® Cortex®-M0 processor. It is generally used by real-time
operating systems (RTOS) as a tick timer. However, it can be used as a general-purpose timer. See
the SysTick Timer section for more information.

Power Manager(1) This block generates a low-voltage detect (LVD) interrupt when the device supply voltage drops
below a threshold.

SAR ADC(1) The successive approximation register analog-to-digital converter (SAR ADC) can generate interrupts
on end of conversion, data overflow, scan collision, data saturation, and data over-range events.

CapSense (CSD) CSD, used for touch applications, generates an interrupt when the sensor scan is complete.

Timer, Counter and
Pulse Width Modulator
(TCPWM)

The TCPWM block can be configured to work as a 16-bit timer, counter, or PWM. It can generate
interrupts on terminal count, input capture signal, or a “compare true” event.

Controller Area Network
(CAN)

PSoC 4200M and PSoC 4200L devices have two CAN blocks, which can generate interrupts on
events such as message received, message sent, and various error events. See the CAN chapter of
the Technical Reference Manual for more information.

Direct Memory Access
(DMA)

PSoC 4100M/4200M and PSoC 4200L have DMA to transfer data between peripherals. An interrupt
can be generated when the data transfer is completed.

Universal Digital Block
(UDB)

UDB implementations such as timer, PWM, counter, UART, and so on can generate interrupts on
different events similar to their fixed-function counterparts. UDBs are available in PSoC 4200, PSoC
42x7_BLE, PSoC 4200M, and PSoC 4200L.

USB PSoC 4200L has USB with start-of-frame interrupt and interrupt on completion of the communication
over data endpoints.

(1) Not available in PSoC 4000 parts

http://www.cypress.com/
http://www.cypress.com/?rID=48513
http://www.cypress.com/?rID=78755
http://www.cypress.com/?rID=78755
http://www.cypress.com/?rID=69000
http://www.cypress.com/?rID=78826
http://www.cypress.com/?rID=69000
http://www.cypress.com/?rID=69000
http://www.cypress.com/?rID=69000
http://www.cypress.com/?rID=78748
http://www.cypress.com/?rID=78827
http://www.cypress.com/?rID=78825
http://www.cypress.com/?rID=78825
http://www.cypress.com/?rID=78825
http://www.cypress.com/?rID=46443
http://www.cypress.com/?rID=46443
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1297&f%5b2%5d=resource_meta_type%3A583
http://www.cypress.com/?rID=46450
http://www.cypress.com/?rID=46450
http://www.cypress.com/documentation/component-datasheets/full-speed-usb-usbfs

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 4

2.2 Level- and Edge-Triggered Interrupts
PSoC 4 supports level and edge triggering for interrupts. Figure 2 shows the logic to select the trigger type. This logic
is present for each interrupt line supported by NVIC. Note that the fixed-function interrupt can only be configured to
level, but for the DSI sources, which include the UDB, the interrupt can be rising-edge triggered as well as level-
triggered. The rising-edge detect block generates a pulse at every rising edge of the DSI interrupt signal. See the
timing diagrams (Figure 3 and Figure 4) to know how the NVIC responds to level- and edge-configured interrupts.

Figure 2. Level Trigger and Edge Trigger

DSI Interrupt
Source

Fixed Function Interrupt Source

Rising
Edge
Detect

0

1

IRQn
(n = 0 to 31)

Level

To NVIC

UDB_INT_ CFG
register

0

1

CPUSS_INTR_ SELECT
register

(irq_out[n])

Level

Figure 3. Level-Triggered Interrupts

int[x]

CPU
Execution

State main
ISR ISR

main
ISR

main

int[x] is still high

Figure 4. Edge-Triggered Interrupts

int[x]

CPU
Execution

State main
ISR

main
ISR

main
ISR

Note: The GPIO interrupt logic has additional circuitry to support interrupts on the rising edge, falling edge, and both
edges. See the PSoC 4 Technical Reference Manual for more information.

http://www.cypress.com/
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=field_related_products%3A1297&f%5b2%5d=resource_meta_type%3A583

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 5

3 Interrupt Support in PSoC Creator
The previous sections show that some properties of interrupts such as the level or edge trigger, vector address, and
interrupt priority must be configured. Configuration is facilitated by the PSoC Creator Interrupt Component. This
Component is available under the System tab in the Component Catalog window, as Figure 5 shows.

Each instance of the Interrupt Component uses one interrupt line out of the 32 lines that go to NVIC. In the example
shown in Figure 5, the end-of-conversion (eoc) signal from the SAR ADC is connected to the Interrupt Component
“isr_1.” The SAR ADC has an allotted vector line of the NVIC (see Appendix A). For example, in PSoC 4200, IRQ14
is allotted for SAR ADC interrupt. Thus, the Interrupt Component “isr_1” wires the eoc signal to the IRQ14 line
through the MUX logic shown in Figure 2.

Figure 5. PSoC Creator Interrupt Component

3.1 Interrupt Component Configuration
Figure 6 shows the Interrupt Component configuration dialog. There are three options in the Component: DERIVED,
RISING_EDGE, and LEVEL.

Figure 6. Interrupt Component Configuration

This setting configures the multiplexers shown in Figure 2. The selection of a particular option depends on the
interrupt source (fixed-function or UDB/DSI) and the application requirements.

http://www.cypress.com/

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 6

Fixed-Function Blocks: The interrupt line from the fixed-function block is always routed through the “dedicated
route” as shown by the red line in Figure 7. When configured to this path, the interrupt is level-triggered and the
vector number is determined based on the hardware block being used. The Interrupt Component (isr_1) connected to
the interrupt line can only be configured as level-triggered. Setting the interrupt to RISING_EDGE trigger results in a
build error. When configured to DERIVED, the tool selects Level interrupt only.

However, in the PSoC part that has DSI, other output signals from the fixed-function block can be routed for
interrupts. This allows the RISING_EDGE option as shown by the blue line in Figure 7 for the “line” output of a PWM
Component. The Interrupt Component (isr_2) connected to the output of the PWM can be configured to Level or
RISING_EDGE. When the DERIVED option is selected, the tool selects the level trigger configuration. Level trigger in
such cases is usually not useful as it causes the ISR to be repeatedly executed as long as signal is HIGH, and so in
most cases, RISING_EDGE is used.

Figure 7. Interrupt Routing for Fixed-Function Blocks

UDBs: For UDBs, the DSI is used to route the signal (from the interrupt line of the UDB Component or any output)
to the MUX logic as shown in Figure 8. Thus, both LEVEL and RISING_EDGE options are available for any signal
from the UDB. When the DERIVED option is selected in the Interrupt Component (isr_1 or isr_2), the RISING_EDGE
option is configured. This is in contrast to the case of the DSI signal routing for fixed-function block outputs.

Figure 8. Interrupt Routing for UDBs

Note: PSoC 4 BLE, PSoC 4 M, and PSoC 4 L parts have 8 DSI channels with each channel demultiplexed to 4 to
spread across 32 (8x4) interrupt lines for the ARM Cortex-M0 processor. Thus, the maximum number of DSI
interrupts is limited to 8 in a design.

http://www.cypress.com/

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 7

Table 2 provides the guidelines for setting the InterruptType parameter in the Interrupt Component.

Table 2. Interrupt Component Configuration

Interrupt Source Signal Interrupt Component Configuration

Fixed-Function
Interrupt Select LEVEL or DERIVED. RISING_EDGE is not allowed.

Block output Select RISING_EDGE; otherwise, the interrupt will be repeatedly triggered for the duration
of the logic HIGH signal state.

UDB Function
Interrupt Select RISING_EDGE or DERIVED.

Block output Select RISING_EDGE; selecting LEVEL causes the interrupt to be repeatedly triggered for
the duration of the logic HIGH signal state.

3 .1 .1 St icky Bits
An interrupt signal may be “sticky”, which means
that the interrupt line remains active (HIGH) until
it is read or cleared. In this case, if the Interrupt
Component is configured to RISING_EDGE, the
ISR is executed once. If the Interrupt Component
is configured to LEVEL, the ISR is executed
repeatedly. To handle this, clear the interrupt
source by using the API provided by the
Component. See the Component datasheet of
the interrupt source. You can also refer the
Writing an Interrupt Service Routine (ISR)
section, which provides an example using the
timer interrupt.

Note that when the output lines of a fixed-function
block or the UDB (for example, “pwm” line of a
PWM Component as shown in Figure 9) are
connected to the Interrupt Component instead of
the interrupt line, there is no need to clear the
interrupt. However, the ISR is repeatedly
executed as long as the signal is HIGH, if the
interrupt Component is configured to LEVEL.

Figure 9. Sticky Signal

3.2 Interrupt Priority Configuration

The design-wide resources window (project_name.cydwr) of the PSoC Creator project has an Interrupts tab, which
displays the Interrupt Component instance names, their priorities, and vector numbers, as Figure 10 shows. isr_1, isr_2,
and isr_3 are the Interrupt Components used in the design.

Figure 10. Interrupt Tab in cydwr Window

http://www.cypress.com/

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 8

Use the cydwr window to change the priority of an interrupt. Remember that 0 is the highest priority; and 3, the lowest
priority. The Cortex-M0 supports interrupt nesting; see Nested Interrupts for details.

The interrupt vector number for each Interrupt Component is automatically assigned by PSoC Creator when the
project is built, but can be manually changed. See Forcing the Interrupt Vector Number for details. Also, note that the
vector number is shown with an offset in the .cydwr window. Vector number of 0 corresponds to exception number 16
in Cortex-M0. See Exceptions for an overview of Cortex-M0 exceptions.

3.3 Interrupt API Functions
PSoC Creator generates an API –.c and .h files – for each Component in the project. These APIs include functions to
configure and use each Component. The following API functions are associated with an Interrupt Component:

 <instance_name> Start()and <instance_name>_Stop()

Start() enables the interrupt, sets its vector to the default ISR, and sets the interrupt priority.

Stop() disables the interrupt.

 <instance_name>_StartEx()

Similar to Start(); the only difference is that this function takes a vector address as an input, enabling you to
write a custom ISR rather than using the default ISR generated by the Component.

 <instance_name> Enable()and <instance_name>_Disable()

These functions are called internally by Start() and Stop() to enable and disable the interrupt. These
functions can be called to dynamically enable and disable an interrupt.

 <instance_name> SetVector()and <instance_name> SetPriority()

These functions are called internally by Start() and Stop() to set the interrupt vector address and the
interrupt priority. These functions can also be called to dynamically set the vector and the priority. Make sure that
the interrupt is disabled before calling these functions.

 <instance_name> SetPending()

Makes the interrupt pending without an interrupt request, i.e., under firmware control.

 <instance_name> ClearPending()
Clears the pending status of the interrupt so that it is not serviced. This function does not have any effect on the
interrupt source signal; it only clears the pending status bit of the interrupt line in the NVIC.

See the Interrupt Component Datasheet for a detailed explanation of the API.

3.3.1 Cri t ical Section Contro l Functions
PSoC Creator also provides a set of generic interrupt functions in the CyLib.h and CyLib.c files. These files are
generated when the project is built. The important ones are CyEnterCriticalSection and
CyExitCriticalSection. These two functions are used to avoid the corruption of firmware variables and
hardware registers. CyEnterCriticalSection disables interrupts and returns an interrupt state value.
CyExitCriticalSection restores the interrupt state.

To see how this works, consider an example of writing to a timer control register:

TCPWM_BLOCK_CONTROL_REG |= TCPWM_MASK;

The following sequence of operations occurs while executing the statement above:
1. The CPU reads the control register of the TCPWM and stores it in a temporary register.
2. The CPU executes a logical OR operation of the temporary register with its mask value.
3. The CPU loads the OR result back to the control register.

Between steps 1 and 2, an interrupt may occur, and its ISR may load a new value into the same control register. After
executing the ISR, when the CPU resumes executing step 2, it uses the stale control register value, which was in the
temporary register– this leads to data corruption.

http://www.cypress.com/
http://www.cypress.com/?rID=46451

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 9

To avoid this issue, add the following code:

InterruptState = CyEnterCriticalSection();

TCPWM_BLOCK_CONTROL_REG |= TCPWM_MASK;

CyExitCriticalSection(InterruptState);

The CyEnterCriticalSection and CyExitCriticalSection functions solve the problem by
disabling interrupts while the control register is being written. Use these functions when a shared variable or register
is being written.

For details on these functions, see the System Reference Guide (also available under the PSoC Creator menu
Help > Documentation).

http://www.cypress.com/
http://www.cypress.com/?rID=51972

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 10

4 Writing an Interrupt Service Routine (ISR)
To understand how to write an ISR, consider a timer interrupt as an example. The Interrupt Component “isr_1” is
connected to the interrupt terminal of Timer_1, as Figure 11 shows.

After building the project, PSoC Creator generates the files associated with all the Components as shown in
Figure 12. isr_1.c and isr_1.h are the files generated for the Interrupt Component isr_1. These files provide the API
for configuring and using the Component, including the ISR.

Figure 11. Timer Interrupt Example

Figure 12. Files Generated for Interrupt Components

There are two ways to write an ISR – using the PSoC Creator auto-generated ISR and creating a custom ISR
function.

http://www.cypress.com/

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 11

4.1 Using Auto-Generated ISR
The following is an ISR generated by default in isr_1.c. The ISR function name is in the format -
CY_ISR(<isr_name>_interrupt).

CY_ISR(isr_1_Interrupt)
{
 /* Place your Interrupt code here. */
 /* `#START isr_1_Interrupt` */

 /* `#END` */
}

You can write the code in this auto-generated ISR between the #START and #END markers. Note that code written
outside these markers is deleted when the project files are re-generated.

To enable the interrupt, start the isr Component. The following is the main.c code to start the interrupt source, that is,
the timer and the Interrupt Component.

int main()
{
 /* Start the timer component */
 Timer_1_Start();

 /* Start the interrupt component */
 isr_1_Start();

 /* Enable global interrupt */
 CyGlobalIntEnable;

 for(;;)
 {
 /* Place your application code here. */
 }
}

Note that in addition to enabling the Interrupt Component, you must enable the global interrupt using the
CyGlobalIntEnable macro. Inside the ISR, clear the interrupt as explained in Sticky Bits. In this example, the
Timer interrupt is cleared using the following API function:

void Timer_1_ClearInterrupt(uint32 interruptMask)

The interruptMask parameter can be the Timer Component’s terminal count interrupt mask or
compare/capture count interrupt mask – see the Timer Component datasheet or the timer_1.h file. See other
Component datasheets to know about the API and the interrupt mask that clears the interrupt from a particular
Component.

http://www.cypress.com/

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 12

4.2 Creating a Custom ISR
The ISR can be written in your own source file instead of inside the auto-generated code. To make your own function,
for example MyCustomISR, to be the ISR for an Interrupt Component isr_1, do the following:

1. Declare the custom function using the CY_ISR_PROTO macro:
CY_ISR_PROTO(MyCustomISR);

2. Define the custom function using the CY_ISR macro:

 CY_ISR(MyCustomISR)
{
 /* ISR code goes here */
}

3. In the startup code of your main.c file, add a call to the API function isr_1_StartEx() instead of

isr_1_Start(). The isr_1_StartEx() API function is similar to the isr_1_Start() API function except
that isr_1_StartEx() has a parameter for your ISR function: isr_1_StartEx(MyCustomISR);

 CY_ISR_PROTO(MyCustomISR);
/**
* Function Name: MyCustomISR

CY_ISR(MyCustomISR)
{
 /* Add code here */
}

int main()
{
 /* Start the timer component */
 Timer_1_Start();

 /* Set the custom ISR */
 isr_1_StartEx(MyCustomISR);

 /* Enable global interrupt */
 CyGlobalIntEnable;

 for(;;)
 {
 /* Place your application code here. */
 }
}

4.2.1 Signif icance of the Keyword CY_ISR
The interrupt source file defines the ISR function using the CY_ISR macro. This macro is defined in the auto-
generated cytypes.h file. It is used for compatibility and easy code porting to other PSoC device families such as
PSoC 3 or PSoC 5LP.

Similarly, the macro CY_ISR_PROTO declares an ISR function prototype. The declaration is in the header file of the
Interrupt Component. For example, the Interrupt Component isr_1 has the following function prototype declaration in
the header file isr_1.h:

CY_ISR_PROTO(isr_1_Interrupt);

http://www.cypress.com/
http://www.cypress.com/psoc3/?source=CY-ENG-HEADER
http://www.cypress.com/psoc5lp/?source=CY-ENG-HEADER

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 13

5 Code Examples
Table 3 provides the list of code examples that uses interrupt feature.

Table 3. Interrupt Code Examples

Code Example Interrupt Source

CE210557 – PSoC 4 Timer Interrupt Timer

CE210558 – PSoC 4 GPIO Interrupt GPIO

CE95915 – Implementing an RTC with PSoC® 4100/PSoC 4200 Devices TCPWM

CE95333 – Low Power Comparator with PSoC 4 LPCOMP

CE95321 – Hibernate and Stop Power Modes with PSoC 4 LPCOMP, GPIO

CE95400 – Watchdog Timer Reset and Interrupt for PSoC 41xx/42xx Devices WDT

CE95275 – Sequencing SAR ADC and Die temperature sensor with PSoC 4 SAR ADC

CE95298 – Switch Debouncer with PSoC 3/4/5LP GPIO, Debouncer

CE97089 – PSoC 4 ADC to Memory Buffer DMA Transfer DMA

6 Debugging Tips
This section provides tips on debugging the interrupt projects. The following are some of the frequently encountered
cases:

a. Interrupt is not getting triggered

• Ensure that the interrupt source and global interrupt is enabled.

• Check if the vector is set to the correct ISR. See Writing an Interrupt Service Routine (ISR) for more
details on how to write and assign the handler for an interrupt source.

• Check if there are other interrupt sources that are getting repeatedly triggered, thus consuming the
entire CPU bandwidth.

• Check if the interrupt is getting triggered only once. This happens if the Interrupt Component is
configured to rising edge and the interrupt source is not cleared.

b. Interrupt is triggered repeatedly

 This can happen in multiple cases:

• The interrupt line from the source Component is connected to the Interrupt Component configured to
level type. Clear the interrupt source to resolve this behavior.

• A digital output from the Component (not the interrupt line) is connected to the Interrupt Component
configured to level type. Configure the Interrupt Component to rising edge to get one interrupt per rising
edge.

See Sticky Bits for more details.

c. Interrupt is triggered only once

The interrupt line from the source Component is connected to the Interrupt Component configured to rising
edge type. Clear the interrupt source to allow interrupt to be triggered for every rising edge. See Sticky Bits
for more details.

d. Execution of the Interrupt service routine (ISR) is taking longer time than expected

This can happen if other high priority interrupts are being triggered during the execution of the ISR. Increase
the priority of the interrupt relative to other interrupt sources.

http://www.cypress.com/
http://www.cypress.com/documentation/code-examples/ce210557-psoc-4-timer-interrupt
http://www.cypress.com/documentation/code-examples/ce210558-psoc-4-gpio-interrupt
http://www.cypress.com/?rID=108856
http://www.cypress.com/?rid=105644
http://www.cypress.com/?rid=105784
http://www.cypress.com/documentation/code-examples/ce95400-watchdog-timer-reset-and-interrupt-psoc-41xx42xx-devices
http://www.cypress.com/?rid=105623
http://www.cypress.com/?rid=105711
http://www.cypress.com/documentation/code-examples/ce97089-psoc-4-adc-memory-buffer-dma-transfer

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 14

PSoC 4 devices have on-chip debug capability using the Serial Wire debug (SWD) interface. It allows you to add
breakpoints, evaluate and edit variables, view CPU registers, observe assembler instructions, and read and write
memory.

The debug mode is useful for checking interrupts as given below:

• To check if the interrupts are getting executed, add a breakpoint in one of the instructions of the ISR.

• Use the Call Stack window of the debugger to check at what moment a particular interrupt is getting executed.
You can also use it to check if a high-priority interrupt occurred during the execution of a low-priority ISR.

Use Breakpoint Hit Count to detect the number of times an interrupt is being triggered. This is particularly useful to
check if the interrupt signal has glitches causing the interrupt to trigger multiple times.

For more details on how to use the Debugger, see the “Using the Debugger” section in PSoC Creator Help. To
access the document, press F1 or use Help > Topics menu in PSoC Creator.

As an alternative to debugger, you can also bit bang a pin to do the following:

• Check if the CPU is entering the ISR.

• Measure the ISR execution time. This can be done by setting the pin in the beginning of the ISR and resetting
the pin at the end.

http://www.cypress.com/

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 15

7 Advanced Interrupt Topics
7.1 Exceptions

Exceptions are the events that cause the processor to suspend the currently executing code and branch to a handler.
Interrupts are a subset of exceptions. Besides interrupts, exceptions exist for operating system applications and fault
handling, as Table 4 shows.

Table 4. Exceptions in ARM Cortex M0

Exception Exception
Number

Interrupt
Priority

Description

Reset 1 –3 (Highest) This exception is triggered on power-on-reset or external reset.

Hard Fault 3 –1 It is the exception generated on fault conditions such as the detection
of undefined opcode.

SVCall (Supervisor call) 11 Programmable It is triggered on a supervisory call (execution of the SVC instruction).
It is normally used in operating system applications.

PendSV (Pendable
service call) 14 Programmable This is similar to SVCall, but the branching to the handler is done

only after all high priority tasks are completed.

SysTick 15 Programmable
SysTick is a 24-bit down-counting timer present in Cortex M0. It
generates periodic interrupts for use in operating system
applications.

IRQ0 to IRQ31 16 – 47 Programmable External (Pins) or internal peripheral interrupts

Reset 1 –3 (Highest) This exception is triggered on power-on-reset or external reset.

Note that the exception numbers are defined by ARM. The interrupt vector numbers, shown in the Interrupt tab of the
.cydwr window in the PSoC Creator project, include an exception offset. For example, interrupt vector 0 is exception
number 16 (IRQ0).

Reset is the highest-priority exception in the device followed by Hard Fault. These have a fixed priority, whereas
others have programmable priorities. PSoC Creator provides a default handler for all exceptions. For reset, the
default handler is Reset() in the Cm0Start.c file. This function is executed first on startup. For all other exceptions, the
IntDefaultHandler() function is the default handler provided in the Cm0Start.c file. However, vector addresses of the
used exceptions including interrupts (defined by the PSoC Creator Components or by the user) are loaded into the
vector table during program execution. Unused exceptions still use the default handler.

To identify which exception is currently being handled, read the Interrupt Program Status Register (IPSR). This is
particularly useful when the default handler is under execution.

For more details on exceptions, see http://infocenter.arm.com/help/index.jsp.

7.2 Interrupt Latency
Interrupt latency is defined as the time delay between the assertion of an interrupt and the execution of the first
instruction in its ISR. The ARM Cortex-M0 processor in the PSoC 4 device has a latency of 16 CPU clock cycles
(worst-case) with additional CPU cycles because of synchronizer between peripherals and the Cortex-M0 interrupt
lines. Table 5 provides the synchronizer CPU clock cycle delays in different PSoC 4 families for DSI and fixed-
function source interrupts.

Table 5. Synchronizer Clock Cycle Delays for DSI and Fixed-Function Source Interrupts

Device DSI Interrupt Fixed-Function Interrupt

PSoC 4000 NA

Depends on the peripheral:

 SCB-I2C, GPIO, WDT: 3 CPU cycles

 SPC, CSD, TCPWM: 0 CPU Cycles
PSoC 4200 / PSoC 4100 0 CPU cycles 3 CPU Cycles
PSoC 42x7 BLE / PSoC 41x7 BLE 3 CPU cycles Depends on the peripheral:

http://www.cypress.com/
http://infocenter.arm.com/help/index.jsp

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 16

Device DSI Interrupt Fixed-Function Interrupt

 SCB-I2C, GPIO, WDT, CTBm, LPCOMP, BLE, LVD: 3 CPU cycles

 SPC, CSD, TCPWM, SAR: 0 CPU cycles

PSoC 4200M / PSoC 4100M /
PSoC 4200L 3 CPU cycles

Depends on the peripheral:

 SCB-I2C, GPIO, WDT, CTBm, LPCOMP, LVD: 3 CPU cycles

 SPC, CSD, TCPWM, SAR, DMA, CAN, USB (only available in PSoC
4200L): 0 CPU cycles

During the 16-cycles latency in Cortex M0, the following actions take place:

1. The processor pushes the current Program Counter (PC), Link Register (LR), Program Status Register (PSR),
and some of the general-purpose registers to the stack.

2. The processor reads the vector address from the NVIC and updates it to the PC.
3. The processor updates the NVIC registers.
Thus, the latency differs from 16 cycles when an ISR is currently in execution or about to begin. To make the process
efficient, the Cortex-M0 processor implements the following two schemes:

1. Tail Chaining: If an interrupt is in the pending state while the processor is executing another interrupt handler, un-
stacking is skipped when the execution ends for the first interrupt and the handler for the pending interrupt is
immediately executed. This saves the time of restoring the registers from the stack and pushing the same
registers again to stack. This is useful for reducing the latency of low-priority interrupts.

2. Late Arrival: If a higher-priority interrupt occurs during the stacking process of a lower-priority interrupt, the
processor jumps to the higher-priority interrupt handler instead of a lower-priority one. The processor reads the
vector address of the higher-priority interrupt at the end of the stacking process. Once the higher-priority interrupt
handler execution is completed, the vector address for the pending lower-priority interrupt handler is fetched and
executed. This reduces the latency for a higher-priority interrupt by eliminating the delay caused by entering the
lower-priority ISR and pushing the register values to the stack.

Note that the current instruction in execution when the interrupt is triggered causes an additional delay in the
execution of the ISR. In the case of a device wake-up from an interrupt, an additional delay is caused by the voltage
stabilization after the power-up sequence. See the device datasheet for specifications.

7.3 Optimizing the Interrupt Code
One of the important performance requirements in interrupt-based applications is the ISR code execution time. In
some applications, the critical code in the ISR must be executed within a particular time of receiving the interrupt
request. Also, interrupt execution should not take too much time and stall the main code execution or other interrupts.
To meet these requirements, use the following guidelines:

 Avoid calls to the lengthy functions in the ISR. Functions such as Character LCD display routines takes long
time to execute thus blocking the execution of other low-priority interrupts.
The recommended technique is to move noncritical function calls to the main code and just set a flag variable in
the ISR. The main code periodically checks the flag and if set, clears it and calls the function.

 Assign proper priority to the interrupts. In applications with multiple interrupts, give a higher priority to more
time-critical interrupts.

7.4 Components with Inbuilt Interrupts
Many PSoC Creator Components have an Interrupt Component internally as part of their implementation. Examples
include CapSense, SAR ADC, EZI2C, and Segment LCD.

Similar to Interrupt Components, internal ISRs in these Components provide a placeholder region for writing user
code. See the respective Component datasheets and associated code examples provided in PSoC Creator to
understand the interrupt usage in these Components.

http://www.cypress.com/
http://www.cypress.com/?id=4976

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 17

7.5 Forcing the Interrupt Vector Number
PSoC Creator automatically assigns the vector numbers for the Interrupt Components in a project. After building the
project, you can view the assigned vector numbers in the Interrupts tab of the .cydwr window, as Figure 13 shows.
You can also select a particular vector number for an interrupt signal when it is routed through the DSI. This section
provides a step-by-step procedure to do this.

Figure 13. Interrupt Vector Numbers in cydwr Window

To override the vector numbers assigned by PSoC Creator and manually assign a vector number, a Control File is
used. Follow the steps given below:
1. Click the Components tab of the Workspace Explorer window.
2. Right-click the TopDesign Component and select Add Component Item…. The Add Component Item dialog

opens.
3. Scroll down to the Misc group, select Control File, and click Create New, as Figure 14 shows.

Figure 14. Adding the Control File

A TopDesign.ctl file is created and added to the Workspace Explorer window.

4. Double-click the TopDesign.ctl file to open it for editing. The attribute keyword is used in the control file to specify
the interrupt vector number for each Interrupt Component. The method of specifying the interrupt vector number
depends on whether the Interrupt Component has been placed by the user on the example schematic or the
Interrupt Component is used internally in a PSoC Creator Component in the schematic. The two methods are as
follows:
a) For the Interrupt Components placed by the user on the schematic, the syntax is:

attribute placement_force of instance_name : label is "Intr(0, DesiredVectorNumber)";

http://www.cypress.com/

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 18

Here, instance_name refers to the name of the Interrupt Component in the schematic and
DesiredVectorNumber is the vector number (0 to 31). For example, to assign vector 17 to the Interrupt
Component isr_1:

attribute placement_force of isr_1 : label is "Intr(0, 17)";

b) For Components that use interrupts internally such as EZI2C, the syntax is:

attribute placement_force of \top_instance_name : InternalInterruptName\: label is
"Intr(0, DesiredVectorNumber)";

Here, top_instance_name refers to the name of the Component that uses the interrupt internally.
InternalInterruptName refers to the name assigned for the internal interrupt in the Component. This
can be found from the Interrupts tab of the cydwr window, where the interrupt name is appended to the top
Component instance name. In Figure 13, SCB_IRQ is the internal interrupt name for the EZI2C Component
and the UART Component. The following statement assigns the vector for EZI2C Component to 11.

attribute placement_force of \EZI2C_1:SCB_IRQ\ : label is "Intr(0,11)"

After assigning the interrupt vector numbers, click Save to save the changes made to the control file.

5. Clean and Build the example for the new interrupt vector assignments to take effect. The Interrupts tab in the
cydwr window now shows the modified interrupt vector number assignments.

7.6 SysTick Timer
SysTick is a 24-bit down-counting timer. Its interrupt is generally used for task switching in a real-time system. It uses
the Cortex-M0 internal clock for counting. SysTick is configured using the APIs given below:

1. Setting interrupt handler

CyIntSetSysVector(SYSTICK_VECTOR_NUMBER, SysTick_ISR);

SYSTICK_VECTOR_NUMBER is the exception number for the SysTick interrupt, which is 15 for Cortex–M0.
SysTick_ISR is the interrupt handler.

2. Configuring interrupt period

(void)SysTick_Config(CLOCK_FREQ / INTERRUPT_FREQ);

CLOCK_FREQ is the CPU clock frequency. INTERRUPT_FREQ is the derived interrupt rate from SysTick.

Below is the code snippet for SysTick timer usage:

#define SYSTICK_INTERRUPT_VECTOR_NUMBER 15u /* Cortex-M0 hard vector */

/* clock and interrupt rates, in Hz */
#define CLOCK_FREQ 24000000u
#define INTERRUPT_FREQ 2u

void main()
{

/* Point the Systick vector to the ISR */
CyIntSetSysVector(SYSTICK_INTERRUPT_VECTOR_NUMBER, SysTick_ISR);

/* Set the number of ticks between interrupts */
(void)SysTick_Config(CLOCK_FREQ / INTERRUPT_FREQ);

/* Enable Global Interrupt */
CyGlobalIntEnable;

for(;;)
{
}

http://www.cypress.com/

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 19

}

CY_ISR(SysTick_ISR)
{

/* Interrupt Handler */
}

7.7 Nested Interrupts
NVIC automatically handles the nested interrupts without any software overhead. If a higher-priority interrupt is
asserted during the execution of a lower-priority interrupt handler, some of the general-purpose registers are pushed
to stack, processor core reads the vector address from NVIC and jumps to the higher-priority interrupt handler. After
the execution is completed, the processor restores the register values and execution resumes for the lower-priority
interrupt.

8 Summary
Interrupts are commonly used in embedded applications. For system-on-chip architectures such as PSoC 4,
interrupts play the critical role of communicating the status of on-chip peripherals to the CPU. This application note
has provided the information needed to understand the infrastructure available and create interrupt based projects.

About the Author
Name: Rajiv Badiger

Title: Applications Engineer Staff

Background BE Electronics and Communication

http://www.cypress.com/

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 20

A Appendix A – Interrupt Sources and Vector Numbers in PSoC 4
Table 6 lists the interrupt sources for the 32 interrupt vectors in PSoC 4.

Table 6. PSoC 4 Interrupt Sources (‘-‘ Indicates function not available)

Fixed Function Interrupt
Source

DSI Interrupt Source
(not for PSoC 4000)

Interrupt Vector

PSoC
4000

PSoC
4100/4200

PSoC 4 BLE PSoC 4 M PSoC 4 L

GPIO Interrupt – Port 0 DSI IRQ0 IRQ0 IRQ0 IRQ0 IRQ0

GPIO Interrupt – Port 1 DSI IRQ1 IRQ1 IRQ1 IRQ1 IRQ1

GPIO Interrupt – Port 2 DSI IRQ2 IRQ2 IRQ2 IRQ2 IRQ2

GPIO Interrupt – Port 3 DSI IRQ3 IRQ3 IRQ3 IRQ3 IRQ3

GPIO Interrupt – Port 4 DSI  IRQ4 IRQ4 IRQ4 IRQ4

GPIO Interrupt – Port 5 DSI   IRQ5  

GPIO Interrupt – Port 13
(USB Wake up)

DSI  
  IRQ5

GPIO Interrupt – All Port* DSI   IRQ6 IRQ5 IRQ6

 DSI  IRQ5   

 DSI  IRQ6   

 DSI  IRQ7   

LPCOMP (low-power
comparator)

DSI 
IRQ8 IRQ7 IRQ6 IRQ7

WDT (Watchdog timer) DSI IRQ4 IRQ9 IRQ8 IRQ7 IRQ8

SCB0 (Serial
Communication Block 0)

DSI IRQ5 IRQ10 IRQ9 IRQ8 IRQ9

SCB1 (Serial
Communication Block 1)

DSI 
IRQ11 IRQ10 IRQ9 IRQ10

SCB2 (Serial
Communication Block 2)

DSI   
IRQ10 IRQ11

SCB3 (Serial
Communication Block 3)

DSI   
IRQ11 IRQ12

CTBm Interrupt (all
CTBms)

DSI  
IRQ11 IRQ12 IRQ13

BLE Subsystem Interrupt DSI   IRQ12  

DMA Interrupt DSI    IRQ13 IRQ14

SPCIF Interrupt DSI IRQ6 IRQ12 IRQ13 IRQ14 IRQ15

SRSS LVD Interrupt DSI  IRQ13 IRQ14 IRQ15 IRQ16

SAR (Successive
Approximation ADC)

DSI 
IRQ14 IRQ15 IRQ16 IRQ17

CSD0 (CapSense) DSI IRQ7 IRQ15 IRQ16 IRQ17 IRQ18

CSD1 (CapSense) DSI    IRQ18 IRQ19

http://www.cypress.com/

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 21

Fixed Function Interrupt
Source

DSI Interrupt Source
(not for PSoC 4000)

Interrupt Vector

PSoC
4000

PSoC
4100/4200

PSoC 4 BLE PSoC 4 M PSoC 4 L

TCPWM0
(Timer/Counter/PWM 0)

DSI IRQ8 IRQ16 IRQ17 IRQ19 IRQ20

TCPWM1
(Timer/Counter/PWM 1)

DSI 
IRQ17 IRQ18 IRQ20 IRQ21

TCPWM2
(Timer/Counter/PWM 2)

DSI 
IRQ18 IRQ19 IRQ21 IRQ22

TCPWM3
(Timer/Counter/PWM 3)

DSI 
IRQ19 IRQ20 IRQ22 IRQ23

TCPWM4
(Timer/Counter/PWM 4)

DSI   
IRQ23 IRQ24

TCPWM5
(Timer/Counter/PWM 5)

DSI   
IRQ24 IRQ25

TCPWM6
(Timer/Counter/PWM 6)

DSI   
IRQ25 IRQ26

TCPWM7
(Timer/Counter/PWM 7)

DSI   
IRQ26 IRQ27

CAN0 Interrupt DSI    IRQ27 IRQ28

CAN1 Interrupt DSI    IRQ28 IRQ29

USB Start of Frame DSI     IRQ30

USB EP1-EP8 Data DSI     IRQ31

 DSI  IRQ20 IRQ21 IRQ29 

 DSI  IRQ21 IRQ22 IRQ30 

 DSI  IRQ22 IRQ23 IRQ31 

 DSI  IRQ23 IRQ24  

 DSI  IRQ24 IRQ25  

 DSI  IRQ25 IRQ26  

 DSI  IRQ26 IRQ27  

 DSI  IRQ27 IRQ28  

 DSI  IRQ28 IRQ29  

 DSI  IRQ29 IRQ30  

 DSI  IRQ30 IRQ31  

 DSI  IRQ31   

http://www.cypress.com/

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 22

Document History
Document Title: AN90799 – PSoC® 4 Interrupts

Document Number: 001-90799

Revision ECN Orig. of
Change

Submission
Date Description of Change

** 4371470 RJVB 05/22/2014 New Application Note

*A 4765616 RJVB 05/14/2015

Updated for PSoC 4 BLE and PSoC 4 M
Added section on Writing Interrupt Handlers
Added details on interrupts latency
Provided links for PSoC Creator code examples
Updated projects with PSoC Creator 3.2
Updated Appendix B with development kits
Added information on CyEnterCriticalSection and CyExitCriticalSection APIs
Updated template

*B 4968362 RJVB 02/02/2016

Updated for PSoC 4200L.
Added Exceptions and Debugging Tips.
Updated Introduction, PSoC 4 Interrupt Architecture and Interrupt Priority
Configuration.
Removed projects from the application note and moved to code examples
CE210557 and CE210558.

http://www.cypress.com/
http://www.cypress.com/documentation/code-examples/ce210557-psoc-4-timer-interrupt
http://www.cypress.com/documentation/code-examples/ce210558-psoc-4-gpio-interrupt

PSoC® 4 Interrupts

 www.cypress.com Document No. 001-90799 Rev. *B 23

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products
Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc

Memory cypress.com/go/memory

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions
psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community
Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

PSoC is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of
their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2014-2016. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/
http://www.cypress.com/go/locations
http://www.cypress.com/go/products
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=24
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/go/powerpsoc
http://www.cypress.com/?id=64
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=167
http://www.cypress.com/?id=10
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1573
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=4749&source=home_products
http://www.cypress.com/?id=4749&source=home_products
http://www.cypress.com/go/psoc5lp
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203
http://www.cypress.com/?app=forum
http://www.cypress.com/?id=2200
http://www.cypress.com/?id=2660
http://www.cypress.com/?id=1162
http://www.cypress.com/go/support
http://www.cypress.com/

	Introduction
	PSoC 4 Interrupt Architecture
	Interrupt Sources
	Level- and Edge-Triggered Interrupts

	Interrupt Support in PSoC Creator
	Interrupt Component Configuration
	Sticky Bits

	Interrupt Priority Configuration
	Interrupt API Functions
	Critical Section Control Functions

	Writing an Interrupt Service Routine (ISR)
	Using Auto-Generated ISR
	Creating a Custom ISR
	Significance of the Keyword CY_ISR

	Code Examples
	Debugging Tips
	Advanced Interrupt Topics
	Exceptions
	Interrupt Latency
	Optimizing the Interrupt Code
	Components with Inbuilt Interrupts
	Forcing the Interrupt Vector Number
	SysTick Timer
	Nested Interrupts

	Summary
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions

