W

=—=# CYPRESS

PERFORM USB Interrupt Transfer Example

— PSoC®3/PSoC5

Project Objective

This code example demonstrates how to perform “USB Interrupt Transfer” from a PC using the USB HID driver
and PSoC® 3 device.

Overview

USB interrupt transfer is a transfer type where in the USB host interrupts the USB device at regular interval and
performs an USB transfer. This interval is selected by the user and a guaranteed data transfer occurs during this
interval.

A full speed USB component in PSoC 3 / PSoC 5 is used in this project that enumerates as a generic HID class
device. This project transfers 64 or lesser number of bytes of data from the PC to the PSoC 3 / PSoC 5 device
using the USB interrupt ‘Out endpoint’. The sent data is modified by the PSoC 3/ PSoC 5 device and is sent back

to the PC using interrupt ‘In endpoint’.

A GUI is created using C# for sending data from the PC to the PSoC 3 / PSoC 5 device and to read back the
data from the PSoC 3 / PSoC 5 device. For other related USB Examples and resources scroll to the Section,
Error! Reference source not found., that is at the end.

Top Design

The following figure illustrates the components and their routing:

USE configured to use the Interrupt Loopback

USBFS
USBFS

-

The following figure shows pin placement (as in .cydwr file).

Aliaz Mame Fin Lock
ZWUSEFS:DmY | PLE[7] v
WUSEFS:Dpt, | F1S[6] v

The USB uses the fixed pins, P15 [6] and P15 [7]. After the USB is placed on the TopDesign, the pins are
automatically blocked.

Component Configuration

To configure a full speed USB component, right click on the component and select configure (or double click on
the component). This opens up a configuration wizard with various configurable parameters for USB as shown

from Figure 1 to Figure 6. The following figures show the component parameter settings for the USBFS
component used in the project.

Figure 1. Device Descriptor

Configure ‘USBFS*

Name: USBFS |
Device Descriptor] String Descriptor | HID Descriptar | Audio Descriptar |~ Advanced | Built-in q P
2 [l E3 | B3 add Configuration | 3 - ﬁ - |
= -~
{n Device attibutes
e .
= j J_r]terfaca Descriptor Vendor ID v [454 E
=] _ﬂ Altemate Setting 0
8l HID Class Descriptor Product ID Ox (2000 e
4l Endpoint Descriptor
£l Endpaint Descriptor Device Releaze Ox
Device Class Defined in Interfac
Device Subclass
Manufacturing String
Product String Intermupt_Transfer «
Serial Sting
Endpaint Memory Management
(&) Manual (default) (=) Static Alocation
() Dynamic &llocation
-

In the figure, the String Cypress and Interrupt Transfer Example added to the device Descriptor are
automatically updated in the String descriptor tab.

Figure 2. Configuration Descriptor

Configure 'USBFS'

Mame: [USBFS |

Device Descriptor } String Descriptor | HID Descripbor ~ Audio Descriptor |~ Adwanced - Built-in q b
& | Descriptor oot B3 | B3/ Add Interface add Audio Inkerface - | 5 - [- |
= E Device Descriptor
=] a iguration O i Configuration Attributes
=4l Interface Descrip ar Configuration sting UISE_Ewrample “
=] @ Alternate Setting 0
HID Class Descriptor Max Power [ma)] 400 =
Endpoint Descriptar o P
Endpaint Descriptor EvICE FOwer el Powersd i

Remote wakeup Disabled b

In the figure, the String USB_Example is automatically updated in the String descriptor tab.

Figure 3. Interface Descriptor

Configure 'LISBFS®

Name: [USBFS |

Device Descriptor] String Descriptor -~ HID Descriptor | Audio Descriptar | Advanced | Built-in 4 b
=N _J' Drescriptor Foot B | B3 Add Endpoint | 5 = ﬁ 5 ‘
= E Device Descriptor
= @ Configuration Descriptar Interface Attibutes

= a Interface Descriptor

Interface Sting USE Interrup Interfac
= a Alternate g 0

HID Class Descriptor Interface Mumber 1}
Endpoint Descriptar

8 Frelpcint Desciiptor Alternate Settings 1]

Class HID v

Subclass No subclass £'

In the figure, the String USB Interrupt Interface is automatically updated in the String descriptor tab.

Figure 4. HID Class Descriptor

Configure "USBFS*

Mame: [USBFS

Device Descriptor } String Descripkor

HID Descriptar Audio Descri

Endpoint Descriptor

Country Code

HID Report

ptor © Advanced - Builk-in 4 I
= | | Desciiptor oot] (x| ‘5 -E =
= Q Device Descriptar
= a Configuration Descriptor Device Attributes
= a Irterface Descriptor .

Mot Supported v
InteruptHIDReport

Apply

Cancel

The following sections describe the creation of a HID report.

In the figure, the HID Report InterruptHIDReport is created in the HID descriptor tab.

Figure 5. In Endpoint Descriptor

Configure ‘USBES*

Name: [LUSBFS

Device Descriptnr] String Descripror | HID Descripbor |~ Aodio Descriptor |~ Advanced |~ Built-in

= _.n. Descriptor Roat

= E Device Descriptar

= a Configuration Descriptar
=) @ Interface Descriptor
= @ Alternate Setting 0
HID Clasz Descriptor

Endp kor
Endpoint Descriptor

§

B5-H-
Endpoint &ttibutes
Endpaint Murmber
Direction

Tranzfer Type
Intereal

Max Packet Size

EP1

=
LA

INT v
10 s
64 s

Apply

Cancel

Figure 6. Out Endpoint Descriptor

MName: LISBFS

" Device Descriptor | String Descriptor | HID Descriptor © Audio Descriptor | Advanced -~ Built-in 4 I

= " Descriptar Root [x] | 5’ - ﬁ . |
= H Dievice Descriptar
= .‘ﬁ Configuration Descriptor Endpoint Attributes
=148l Interface Descriptor .
\?3 Alternate Setting 0 Endpoint Humber EF2 4
§ HID Class Descriptor Direction out v

£o Endpoint Descriptor
r Transfer Type INT

<

Endpaint Descriptor

Intereal 10

k(4

Max Packet Size B4

The PSoC 3 / PSoC 5 device is configured as a generic HID device with one Out Interrupt endpoint and one
In Interrupt endpoint, each having a data buffer size of 64 bytes (see Figure 5 and Figure 6). On every scanning
interval (10 ms as specified by the endpoint configuration) the host checks for any In or Out packet from or to the
HID device and performs an In or Out operation. When an Out data packet is sent to the device using the GUI, an
Out endpoint interrupt is raised at the PSoC 3 / PSoC 5 device. When the interrupt occurs, the received data
bytes are read and the same data is incremented and loaded back to the In Interrupt endpoint. This In Endpoint
data is read by the PC when the user performs data read operation from the GUI (The details of the GUI are
discussed in later section). The Usage page for the HID is defined as vendor specific.

The In and Out reports are defined in the HID descriptors; the logical minimum and logical maximum are fixed to O
and 255 respectively. The same values are also used for usage minimum and usage maximum. An In report and
an Out report, each having a data size of 64 bytes, are declared in the HID descriptor.

To create a HID report, HID Descriptor tab in the USBFS configuration page should be selected. The HID
descriptor is a set of HID Items. To add any items to the descriptor, select one of the HID items list (for example,
'USAGE’) and choose any required value from the ’item Value’ (for example, ’Pointer’). Then click Add to add this
item to the report. The complete report can be seen on the left pane.

Figure 7. HID Report Descriptor

Configure ‘USBFS*

Mame: [USBFS |
Device Descriptaor I/String Descriptor)/HID Descriptor]/.Qudio Descriptor]/Advancad }’ Built-in d4p
= £ H |83 SpHID Items List
[=] '{5; IntermuptHI DR epart | |USAGE A
1USAGE_PAGE [Vendor Defined P O5FF | |USAGE_PAGE E|
T j_f. s 2ge) USAGE_MINIMUM 8
I [Undefined] 03 00 UISAGE_ MAXIMUM
COLLECTIOM [&pplication] A1 01 DESIGHNATOR_INDEX
5 USAGE (Undsfined] 0300 DESIGHATOR_MINIMUM
=-5gg COLLECTION [Physical) 4100 DESIGNATOR_MAXIMUM v
- USAGE_MINIMUM [0 1500 STRING_INDEX -
USAGE_MaXIMUM [255] 29 FF
LOGICAL_MIMIMUM [@] 1500
LOGICAL MAXIMUM (255) 25 FF = | Item ¥alue (USAGE (Undefined) 09 00)
REPORT_SIZE (8] 7508 Undsfined
REPORT_COUNT [B4) 9540 ;]
Faint it}
QUTPUT par) 9102 onet !
USAGE_MINIMUKM [0) 1900 Mouse 002
USAGE_MaxIMUM [255] 29 FF Jepstick, w04
LOGICAL_MIMIMUM [@] 1500
LOGICAL_M&XIMUM [255) z5FF | | oome Pad D405
REPORT_SIZE (8] 7508 Keyboard k05
REPORT_COLINT [B4] 95 401 " . b/
2 NPT farl 8102 &
< il | = Add

Design Wide Resources

The clock tree for the project is shown in Figure 8. (The clock tree for a project can be reached by double clicking
on the design wide resource file (USB_Interrupt_Transfer_Example.cydwr file) in the workspace explorer and
clicking on the Clocks tab. The clocks configuration wizard can be opened by double clicking on the clocks listed
in the Clocks tab).

Figure 8. Clock Tree

Configure System Clocks

24.000 MHz v

() Digital Sigral

b
331
I Master Clock.
[PLL_OUT (46000 MHz) v
O Fieq (& Divider
48.000 MHz 1
=1
o (=3
Lo Z| =
| Busz Clock.
) 1kHz
O 33kHz 1M02 - 48,000 MHz () Freq (& Divider
(2 100 kHz [Divide by 2
k J ¥
MO ILO HTAL32kHz HTAL FLL_OUT MASTER_CLE ~ BUS_CLE(CPU)
oK I L Cancel]

The clock for the USB component is derived from IMO. The frequency of the IMO has to be 24 MHz. The D+ and
D- pins are also mapped to the corresponding pins using the design wide resources window. In the current code

example, USB is declared as self powered from a 3.3 V source. The USB bus voltage is not used for any
functionality. The other settings in the .cydwr file can be kept in the default state.

Operation
The main routine for this project is as follows.

The Global interrupts are enabled for USB operation

The USBFS user module is started at 3.3 V mode operation. (The USB can work from 3.3 Vto 5 V)

After the user module initialization, the code waits for USB enumeration operation to be completed

After the enumeration completes, the Interrupt OutEndpoint is enabled for receiving data from the PC
When the Out endpoint interrupt occurs, the received data from PC is incremented by one and the In
endpoint is filled with the incremented data

The Read request can be sent from the GUI by clicking on the Read button; the In endpoint data will be
sent to the PC on the read request

arONE

o

GUI

Figure 9 shows the complete implementation of the project, that includes the GUI on the PC and the PSoC3
interaction.

Figure 9. Implementation of the project

PC GUI PSoC Application

v w
C# APls- ReadFrom PSOC“, USB ComponentAMs-
WriteToPSoC(),FindFirstTouchDevice() USBFS LoadInEP(), USBFS ReadOutEP()
v v
DLL- PSoCFirstTouchUSBNetLib.dll Firmware, ISR
v v
Host USB Device Driver PSoC USB Hardware

USE BUS
OUT Report

For exchanging data between the PC and PSoC 3 / PSoC 5, a simple GUI is developed in C# that uses the
PSoCFirstTouchUSBNetLib.dll file, which in turn uses the CyUSB.sys driver for communicating to the PSoC 3 /
PSoC 5 device. The dll file, placed in folder \GUI\Interrupt Transfer Example\bin\Release, exposes
two simple APIs, ReadFromPSoC and WriteToPSOC, which send and receive data to the PSoC device.

e byte[]] ReadFromPSoC(): The APl ReadFromPSoC() returns a byte array containing the input report
from the PSoC HID device.

Example: PSoCDhata = gFirstTouchDevice.ReadFromPSoC () ;

e WriteToPSoC(byte[] PSoCData): The APl WriteToPSoC() sends a byte array as an OUT report to
the PSoC HID device.

Example: gFirstTouchDevice.WriteToPSoC (PSoCData) ;

The PSoC device is acquired by the GUI application depending on the VID and PID of the device by using the
method FindFirstTouchDevice ().

e FindFirstTouchDevice (int VendorId, int ProductId) : The API returns a handle to a
connected USB device with the Vendor ID and Product ID specified as its input arguments.

Example: gFirstTouchDevice = FirstTouchHidDevice.FindFirstTouchDevice (0x4b4,
O0xF100) ;

To open the GUI click on the Interrupt Transfer Example.exe file, placed in the folder \GUI\
Interrupt Transfer Example \bin\Release.

Figure 10. Snapshot of the GUI

i+ USB Interrupt Transfer Tool g@@

*) SendCustomData
) SendRandomD ata

DisConnected

When the USB device (PSoC 3 / PSoC 5) is programmed and connected to PC, the GUI task bar shows
Connected at the bottom left corner. When the device is not connected or when it is not working properly as a
USB device, the task bar shows as ‘disconnected’. Users can send custom data by clicking the
“SendCustomData” radio button. A predetermined sequence of 64 bytes can be sent by selecting the
“SendRandomData” button. When the “SendCustomData” option is selected, the data to be sent is entered in the
text box and when the Write button is clicked, 64 bytes of the data inside the text box (zero is inserted if all the
data is not present) is sent to the PSoC 3/ PSoC 5 (that is, the Out endpoint in PSoC 3 / PSoC 5 receives this
data). This operation triggers out endpoint interrupt inside the PSoC 3 / PSoC 5 device. This interrupt routes the
program to CY ISR(USBFS_EP 2 1SR) inside the USBFS_episr.c file.

In the ISR:

1. Aflag to indicate the occurrence of interrupt is set (USB_interruptFlag)
2. Inthe main code, when this flag is set, the function ProcessEP2Data is called
3. The function ProcessEP2Data does the following:
a. Reads how many bytes have been sent to the Out endpoint
b. Reads the bytes sent to the Out endpoint and stores to a local buffer
c. Increments the received data
d. Puts the incremented data to the In endpoint buffer so that when the Read button is clicked in the
GUI, the data from the In endpoint buffer is sent to PC

Figure 11. Snapshot of the Loopback Data

ig# USB Interrupt Transfer Tool

111111 (*) SendCustomD ata
() SendRandomD ata

Connected

Note The read operation must be performed only after the data is written to the device. This is because the
firmware is written to act in such a manner.

Once an OUT transfer is made by clicking the Write button, this data is received by PSoC, incremented and
loaded to the In Endpoint. The USB HID implementation in the PC checks every 10 ms to see if there is In
Endpoint data from PSoC. Once the In Endpoint is loaded with data, during the next request from the PC, this
data is read. This happens whether or not the Read button is pressed. Later when the Read Button is pressed the
data read during the previous successful In Endpoint transfer is displayed on the GUI.

Hardware Connections

® The project is tested with the PSoC Development Kit CY8CKIT-001

® The kit should be used with the default state of the jumpers. Refer CY8CKIT-001 PSoC Development Kit
Guide

® The DVK switch supply (SW3) should be setto 3.3V
® |f the USB should be run at 5 V, change the SW3 position to 5V

® |n the main.c, initialize the USB to run at 5 V. Use the APl USBFS_Start with parameter
USBFS_5V_OPERATION

® Connect a USB cable from the DVK USB port to PC USB port.

http://www.cypress.com/?docID=21441
http://www.cypress.com/?docID=21441

Output

® Build the project and program the chip.

Note The default device selection is PSoC 3 (CY8C3866AXI-040).To use this project with PSoC 5 family,
do the following:

® Goto Project - Device Selector = Select PSoC 5 device (CY8C5588AXI-060), build the project again
and program the PSoC 5 device as follows:

Figure 12. Device Selector

Select Device - [ADC_DMA_Memory, 16Bit - CYBC38664%]-040]

Devices Motices Log
L
=
£
Gl
FSoCh I | _ .
— Tw Z0-OF Uela wigma
. 1 12-hit SAR
CvECEREELTI-07 ? PSoCh [ARM CM3)| Industial | 80 B4| 16 2043 -o24) 1) 1B avf 1% 20-6it Dieka Sigma 4 4
: 1 12-bit SAR
CYaCsserax-os | 7 PSoCh [ARM CM3)| Industial| 80| 128| 32 2043 - 240 1) &6 \vf 1x 20-bit Deka Sigma 4 4
. 1 12-hit SAR
CvECEBERAXII0Z | 7 PSoCh [ARM CM3)| Industial | 80) 128 32 2043 -24) 1) 1B \vf 1% 20-bit Dieka Sigma 4 4
2 . 13 12-bit SAR
CvaCEaa7LTI-07a ! PSoCh [ARM CM3)| Industial| 80| 128| 32 2043 - 240 1) &6 \vf 1x 20-bit Deka Sigma 4 4
. 1 12-hit SAR
CvECEEERxI020 | 7 PSoCh [ARM CM3)| Industial | 80| 256 | B4 2043 -24) 1) 1B \vf 11 20-bit Dieka Sigma 4 4
. 1% 12-hit SAF
CYECERRRAXI-NZZ | 7 PSoCh [ARM CM3)| Industial| 80| 256| B4 2048 <24 1) w6 qrf 1% 20-0it Dieka Sigma 4 4
CvBCE5E8LTI-052 7 PSoCh [ARM CM3)| Industial| 80| 256| B4 2048 <24 1) w6 qrf 15 20_;; E)il?;t Ssg?w 4 4
. 2% 12-hit SAR .
CvACE588LTI114 ? PSoC5 [ARM CM3)| Industial| 80 256| 64 2048 - 240 1) 16 \vf 11 20-5it Dieka Sigma 4 4 3
68 of 347 devices found | Clear Filters
Start Auto Select [Ok J I Cancel

® Reset the device by pressing the SW4 (Reset Switch).

® The device enumerates and gets automatically bound to HID driver. (The PC pops up a window at the
Taskbar mentioning that '’A New Hardware was found and Is ready to use’

® Open the PC GUI software provided with this code example (located in the code example folder in
GUNInterrupt_Transfer_Example \bin\Release\ Interrupt_Transfer_Example.exe).

® Enter up to 64 byte of data in hexadecimal number format with or without spaces between the numbers
and click the Write button. The GUI parses the data and sends it accordingly.

Figure 13. USB Interrupt Transfer Tool — Write Operation.

“s USB Interrupt Transfer Tool Z El[‘5__<|

1234 67 04 4E F9 () SendCustomD ata
(#) SendRandomData

Connecked

The GUI sends 64 bytes of hexadecimal value to the target through USB port. The GUI will pop up saying
‘Data Sent’

It automatically appends Os if the user enters less than 64 bytes. The PSoC 3/ PSoC 5 device receives 64
bytes and increments the received values and keeps it ready for the PC to read through USB port.

Click the Read button, the 64 bytes of data read from PSoC 3 are displayed on the GUI. The read data
are write data incremented by 1 as shown below.

Figure 14. USB Interrupt Transfer Tool — Read Operation

& USB Interrupt Transfer Tool |Z||E|fz|

133 e8bdffa111 1111111111111 11111111111) SendCustomD ata
11111113111 111111131 11111111111
(*) SendRandomlata

Connecked

