

Voltage Detector Datasheet

Designed for voltage detector applications, the Cypress MB3761 is a dual comparator with a built-in high precision reference voltage generator. Outputs are open-collector outputs and enable use of the OR-connection between both channels. Both channels have hysteresis control outputs. Because of a wide power supply voltage range and a low power supply current, the MB3761 is suitable for power supply monitors and battery backup systems.

Features

- Wide power supply voltage range: 2.5 V to 40 V
- Low power and small voltage dependency supply current: 250 µA Typ
- Built-in stable low voltage generator: 1.20 V Typ
- Easy-to-add hysteresis characteristics.
- One type of package (SOP-8pin : 1 type)

Applications

Industrial Equipment, Arcade Amusement, and so on.

Contents

Pin Assignment	3
Absolute Maximum Ratings	3
Recommended Operating Conditions	3
Electrical Characteristics	4
Equivalent Circuit	5
Operational Definitions	6
Typical Performance Characteristics	7
Application Examples	8
Addition of Hysteresis	8
Voltage Detection for Alarm	8
Voltage Detection for Alarm	9
Programmable Zener	
Recovery Reset Circuit	9
Typical Characteristics	10
Notes on Use	

Ordering Information	11
RoHS Compliance Information	
of Lead (Pb) Free version	1 1
Marking Format (Lead Free version)	1 1
Labeling Sample (Lead Free version)	1 1
MB3761PF-□□□E1 Recommended Conditions	
of Moisture Sensitivity Level	12
Package Dimension	13
Document History	14
Sales, Solutions, and Legal Information	15
Worldwide Sales and Design Support	15
Products	15
PSoC® Solutions	
Cypress Developer Community	15
Technical Support	

1. Pin Assignment

2. Absolute Maximum Ratings

Parameter	Symbol	Ra	Rating		
Parameter		Min	Max	Unit	
Power Supply Voltage	V _{CC}	_	41	V	
Output Voltage	V _O	_	41	V	
Output Current	I _O	_	50	mA	
Input Voltage	V _{IN}	- 0.3	+ 6.5	V	
Power Dissipation	P _D	_	350 (T _A ≤ +70 °C)	mW	
Storage Temperature	T _{STG}	- 55	+ 125	°C	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

3. Recommended Operating Conditions

Parameter	Symbol	Va	Unit	
Parameter		Min	Max	Unit
Power Supply Voltage	V _{CC}	2.5	40	V
Operating Ambient Temperature	T _A	- 20	+ 75	°C
Output Current at pin 4	I _{O4}	_	4.5	mA
Output Current at pin 6	I ₀₆	_	3.0	mA

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their Cypress representatives beforehand.

Document Number: 002-08509 Rev. *B

4. Electrical Characteristics

 $(T_A = +25 \, ^{\circ}C, V_{CC} = 5 \, V)$

0	Conditions		Value		
Зушьы		Min	Тур	Max	Unit
I _{CCL}	V _{CC} = 40 V, V _{IL} = 1.0 V	_	250	400	μΑ
I _{CCH}	V _{CC} = 40 V, V _{IH} = 1.5 V	_	400	600	μΑ
V_{TH}	I _O = 2 mA, V _O = 1 V	1.15	1.20	1.25	V
ΔV_{TH1}	$2.5 \text{ V} \le \text{V}_{CC} \le 5.5 \text{ V}$	_	3	12	mV
ΔV_{TH2}	4.5 V ≤ V _{CC} ≤ 40 V	_	10	40	mV
V _{OOSA}	I_{OA} = 4.5 mA, V_{OA} = 2 V, I_{HA} = 20 μ A, V_{HA} = 3 V	_	2.0	_	mV
V _{OSSB}	I _{OB} = 3 mA, V _{OB} = 2 V, I _{HB} = 3 mA, V _{HB} = 2 V	_	2.0	_	mV
α	$-20^{\circ}\text{C} \le \text{T}_{A} \le +70^{\circ}\text{C}$	_	±0.05	_	mV/°C
ΔV_{THAB}	_	-10	_	+10	mV
I _{IL}	V _{IL} = 1.0 V	_	5	_	nA
I _{IH}	V _{IH} = 1.5 V	_	100	500	nA
I _{OH}	V _O = 40 V, V _{IL} = 1.0 V	_	_	1	μΑ
I _{HLA}	V _{CC} = 40 V, V _{HA} = 0 V, V _{IL} = 1.0 V	_	_	0.1	μА
I _{HHB}	V _{HB} = 40 V, V _{IH} = 1.5 V	_	_	1	μΑ
I _{OLA}	V _O = 1.0 V, V _{IH} = 1.5 V	6	12	_	mA
I _{OLB}	V _O = 1.0 V, V _{IH} = 1.5 V	4	10	_	mA
I _{HHA}	V _H = 0 V, V _{IH} = 1.5 V	40	80	_	μА
I _{HLB}	V _H = 1.0 V,V _{IL} = 1.0 V	4	10	_	mA
V _{OLA}	I _O = 4.5 mA, V _{IH} = 1.5 V	_	120	400	mV
V _{OLB}	I _O = 3.0 mA, V _{IH} = 1.5 V	_	120	400	mV
V_{HHA}	I _H = 20 μA, V _{IH} = 1.5 V	_	50	200	mV
V_{HLB}	I _H = 3.0 mA, V _{IL} = 1.0 V	_	120	400	mV
t _{PHL}	$R_L = 5 \text{ k}\Omega$	_	2	_	μs
t _{PLH}	$R_L = 5 \text{ k}\Omega$	_	3	_	μs
	I _{CCH} V _{TH} ΔV _{TH1} ΔV _{TH2} V _{OOSA} V _{OSSB} α ΔV _{THAB} I _{IL} I _{IH} I _{OH} I _{HLA} I _{HHB} I _{OLA} I _{OLB} I _{HHA} I _{HHB} V _{OLA} V _{OLB} V _{HHA} V _{HLB} I _{VHB} I _{VHLB} I _{VHLB}	$\begin{split} I_{CCL} & V_{CC} = 40 \text{ V}, V_{IL} = 1.0 \text{ V} \\ I_{CCH} & V_{CC} = 40 \text{ V}, V_{IH} = 1.5 \text{ V} \\ V_{TH} & I_{O} = 2 \text{ mA}, V_{O} = 1 \text{ V} \\ \Delta V_{TH1} & 2.5 \text{ V} \leq V_{CC} \leq 5.5 \text{ V} \\ \Delta V_{TH2} & 4.5 \text{ V} \leq V_{CC} \leq 40 \text{ V} \\ V_{OOSA} & I_{OA} = 4.5 \text{ mA}, V_{OA} = 2 \text{ V}, I_{HA} = 20 \text{ µA}, V_{HA} = 3 \text{ V} \\ V_{OSSB} & I_{OB} = 3 \text{ mA}, V_{OB} = 2 \text{ V}, I_{HB} = 3 \text{ mA}, V_{HB} = 2 \text{ V} \\ \alpha & -20^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C} \\ \Delta V_{THAB} & - \\ I_{IL} & V_{IL} = 1.0 \text{ V} \\ I_{OH} & V_{O} = 40 \text{ V}, V_{IL} = 1.0 \text{ V} \\ I_{HLA} & V_{IL} = 1.0 \text{ V} \\ I_{HLB} & V_{HB} = 40 \text{ V}, V_{HA} = 0 \text{ V}, V_{IL} = 1.5 \text{ V} \\ I_{OLA} & V_{O} = 1.0 \text{ V}, V_{IH} = 1.5 \text{ V} \\ I_{OLB} & V_{O} = 1.0 \text{ V}, V_{IH} = 1.5 \text{ V} \\ I_{HHA} & V_{H} = 0 \text{ V}, V_{IL} = 1.0 \text{ V} \\ V_{OLA} & I_{O} = 4.5 \text{ mA}, V_{IH} = 1.5 \text{ V} \\ V_{OLB} & I_{O} = 3.0 \text{ mA}, V_{IH} = 1.5 \text{ V} \\ V_{HHA} & I_{H} = 20 \text{ µA}, V_{IH} = 1.5 \text{ V} \\ V_{HHB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{H} = 1.5 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{H} = 1.5 \text{ V} \\ V_{HLB} & I_{H} = 3.0 \text{ mA}, $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c } \hline \textbf{Symbol} & \textbf{Conditions} & \hline \textbf{Min} & \textbf{Typ} \\ \hline & I_{CCL} & V_{CC} = 40 \text{ V}, V_{IL} = 1.0 \text{ V} & - & 250 \\ \hline & I_{CCH} & V_{CC} = 40 \text{ V}, V_{IH} = 1.5 \text{ V} & - & 400 \\ \hline & V_{TH} & I_0 = 2 \text{ mA}, V_0 = 1 \text{ V} & 1.15 & 1.20 \\ \hline & \Delta V_{TH1} & 2.5 \text{ V} \leq V_{CC} \leq 5.5 \text{ V} & - & 3 \\ \hline & \Delta V_{TH2} & 4.5 \text{ V} \leq V_{CC} \leq 40 \text{ V} & - & 10 \\ \hline & V_{OOSA} & I_{OA} = 4.5 \text{ mA}, V_{OA} = 2 \text{ V}, \\ I_{HA} = 20 \text{ µA}, V_{HA} = 3 \text{ V} & - & 2.0 \\ \hline & V_{OSSB} & I_{OB} = 3 \text{ mA}, V_{OB} = 2 \text{ V}, \\ I_{HB} = 3 \text{ mA}, V_{OB} = 2 \text{ V}, \\ I_{HB} = 3 \text{ mA}, V_{HB} = 2 \text{ V} & - & 2.0 \\ \hline & \alpha & -20^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C} & - & \pm 0.05 \\ \hline & \Delta V_{THAB} & - & -10 & - \\ \hline & I_{IL} & V_{IL} = 1.0 \text{ V} & - & 5 \\ \hline & I_{IH} & V_{IH} = 1.5 \text{ V} & - & 100 \\ \hline & I_{OH} & V_0 = 40 \text{ V}, V_{IL} = 1.0 \text{ V} & - & - \\ \hline & I_{HLA} & V_{CC} = 40 \text{ V}, V_{HA} = 0 \text{ V}, \\ \hline & V_{IL} = 1.0 \text{ V} & - & - \\ \hline & I_{OLA} & V_0 = 1.0 \text{ V}, V_{IH} = 1.5 \text{ V} & - & - \\ \hline & I_{OLB} & V_0 = 1.0 \text{ V}, V_{IH} = 1.5 \text{ V} & 40 & 80 \\ \hline & I_{HLB} & V_{H} = 0 \text{ V}, V_{IH} = 1.5 \text{ V} & - & 120 \\ \hline & V_{OLA} & I_0 = 4.5 \text{ mA}, V_{IH} = 1.5 \text{ V} & - & 120 \\ \hline & V_{OLB} & I_0 = 3.0 \text{ mA}, V_{IH} = 1.5 \text{ V} & - & 120 \\ \hline & V_{HLB} & I_{H} = 20 \text{ µA}, V_{IH} = 1.5 \text{ V} & - & 50 \\ \hline & V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} & - & 120 \\ \hline & V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} & - & 50 \\ \hline & V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} & - & 120 \\ \hline & V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} & - & 120 \\ \hline & V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} & - & 120 \\ \hline & V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} & - & 120 \\ \hline & V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} & - & 120 \\ \hline & V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} & - & 120 \\ \hline & V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} & - & 120 \\ \hline & V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} & - & 120 \\ \hline & V_{HLB} & I_{H} = 3.0 \text{ mA}, V_{IL} = 1.0 \text{ V} & - & 120 \\ \hline & V_{HLB} & I_{H} = 3.0 $	$ \begin{array}{ c c c c c c c } \hline \textbf{Symbol} & \textbf{Conditions} & \hline \textbf{Min} & \textbf{Typ} & \textbf{Max} \\ \hline & I_{CCL} & V_{CC} = 40 \text{ V, } V_{IL} = 1.0 \text{ V} & - & 250 & 400 \\ \hline & I_{CCH} & V_{CC} = 40 \text{ V, } V_{IH} = 1.5 \text{ V} & - & 400 & 600 \\ \hline & V_{TH} & I_{O} = 2 \text{ mA, } V_{O} = 1 \text{ V} & 1.15 & 1.20 & 1.25 \\ \hline & \Delta V_{TH1} & 2.5 \text{ V} \leq V_{CC} \leq 5.5 \text{ V} & - & 3 & 12 \\ \hline & \Delta V_{TH2} & 4.5 \text{ V} \leq V_{CC} \leq 40 \text{ V} & - & 10 & 40 \\ \hline & V_{OOSA} & I_{OA} = 4.5 \text{ mA, } V_{OA} = 2 \text{ V, } \\ I_{HA} = 20 \text{ µA, } V_{HA} = 3 \text{ V} & - & 2.0 & - \\ \hline & & & & & & & & & & & & & & & \\ \hline & & & &$

5. Equivalent Circuit

6. Operational Definitions

7. Typical Performance Characteristics

1.17-20

10 20 30 Power Supply Voltage V_{CC} (V)

1.17 0

+80

+40

+20

Operating Ambient Temperature Ta (°C)

8. Application Examples

8.1 Addition of Hysteresis

8.2 Voltage Detection for Alarm

8.3 Voltage Detection for Alarm

8.4 Programmable Zener

8.5 Recovery Reset Circuit

9. Typical Characteristics

Response Characteristics

 Voltage Threshold Levels (VccL and VccH) and Hysteresis Width can be changed by the resistors (R1 through R4).

$$V_{CCL} = \frac{R_1 + R_2 + R_3}{R_3} V_{TH}$$

$$V_{CCH} = V_{CCL} + \frac{R_1 (R_2 + R_3)}{R_3 R_4} V_{TH}$$

Power-On Reset Time is provided by the following approximate equation:

trst = -C1 R4 • In
$$\left\{1 - \frac{V_{TH}}{V_{CC}} \left(1 + \frac{R_1}{R_2 + R_3}\right)\right\}$$

- The recommended value of hFE of the external transistor is from 50 to 200.
- In the case of an instant power fail, the remaining charge in C1 effects trst.
- If necessary, the reversed output is provided on HYS terminal

10. Notes on Use

- Take account of common impedance when designing the earth line on a printed wiring board.
- Take measures against static electricity.
 - $\ensuremath{\square}$ For semiconductors, use antistatic or conductive containers.
 - □ When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container.
 - ☐ The work table, tools and measuring instruments must be grounded.
 - \Box The worker must put on a grounding device containing 250 k Ω to 1 M Ω resistors in series.
- Do not apply a negative voltage
 - □ Applying a negative voltage of −0.3 V or less to an LSI may generate a parasitic transistor, resulting in malfunction.

11. Ordering Information

Part number	Package	Remarks
MB3761PF-🗆 🗆	8-pin plastic SOP (FPT-8P-M01)	Conventional version
MB3761PF-QQE1	8-pin plastic SOP (FPT-8P-M01)	Lead Free version

12. RoHS Compliance Information of Lead (Pb) Free version

The LSI products of Cypress with "E1" are compliant with RoHS Directive, and has observed the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE).

The product that conforms to this standard is added "E1" at the end of the part number.

13. Marking Format (Lead Free version)

14. Labeling Sample (Lead Free version)

15. MB3761PF-□□□E1 Recommended Conditions of Moisture Sensitivity Level

Item	Condition			
Mounting Method	IR (infrared reflow) , Manual soldering (partial heating method)			
Mounting times	2 times			
Storage period	Before opening	Please use it within two years after Manufacture.		
	From opening to the 2nd reflow	Less than 8 days		
	When the storage period after opening was exceeded	Please processes within 8 days after baking (125 °C, 24H)		
Storage conditions	5 °C to 30 °C, 70%RH or less (the lowest possible humidity)			

[Temperature Profile for Cypress Standard IR Reflow]

1. IR (infrared reflow)

(b) Preliminary heating : Temperature 170 °C to 190 °C, 60s to 180s

(c) Temperature Increase gradient : Average 1 °C/s to 4 °C/s

(d) Actual heating : Temperature 260 °C Max; 255 ·C or more, 10s or less

(d') : Temperature 230 °C or more, 40s or less

or

Temperature 225 $^{\circ}\text{C}$ or more, 60s or less

or

Temperature 220 °C or more, 80s or less

(e) Cooling : Natural cooling or forced cooling

Note: Temperature: the top of the package body

2. Manual soldering (partial heating method)

Conditions: Temperature 400 °C Max

Times : 5 s max/pin

16. Package Dimension

Document History

Spansion Publication Number: DS04-27300-4E

Document Title: MB3761, Voltage Detector Datasheet Document Number: 002-08509					
Revision ECN Orig. of Change Date Description of Change		Description of Change			
**	-	TAOA	05/11/2006	Migrated to Cypress and assigned document number 002-08509. No change to document contents or format.	
*A	5544222	TAOA	12/07/2016	Migrated to Cypress template format.	
*B	5841630	MASG	08/02/2017	Adapted Cypress new logo.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/wireless

Products

Wireless/RF

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch **USB Controllers** cypress.com/usb

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 1994-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, hen Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.