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In-System Programming for Cypress SPI Flash on Altera® FPGA Board

AN98558 introduces an alternate method to in-system program the Cypress SP! flash by using Altera’s Nios® Il tool,
which works with all versions of the Quartus Il software.

1 Introduction

In an Active Serial (AS) configuration scheme, an SPI flash device can be used to configure the Altera FPGA that
acts as the configuration master while the SPI flash acts as a slave.

Altera recommends using their serial configuration devices (EPCS) in the Active Serial scheme, although users may
prefer to use Cypress SPI flash instead of EPCS devices. In such cases, users may not be able to use the built-in
Quartus Flash Programmer to program a JTAG Indirect File (*jic) to the Cypress SPI flash, because the FPGA
checks the EPCS Device ID before reading the configuration data. Users can disable EPCS ID check during the *.jic
file conversion. If such method works, there is no need to use the workaround described in this application note.

However, if the Quartus Programmer cannot properly detect the Cypress device, this application note introduces an
alternate method to in-system program the Cypress SPI flash by using Altera’s Nios® Il tool, which works with all
versions of Quartus software.

2 Background Information

The procedure introduced in this application note was verified on the Altera Cyclone IV and Cyclone V Development
Board, using Quartus Il 13.0spl Web Edition software, and updated with Quartus Prime 17.0. In general, the
procedure should apply to all other versions of Quartus software.

The document is written assuming the reader is familiar with Altera FPGA development, including the Nios Il Flash
Programmer User Guide.

3 Procedures

3.1 Create a Flash Programmer Target Design

Creating the flash programming target design is the most time-consuming step in this procedure; however, it only
needs to be performed once. After the target design to communicate to the SPI flash has been created, the resulting
*.sof file can be used for all future programming.

In this step, use of the Qsys tool (SOPC Builder in earlier versions Quartus software) is required to build a minimum
component set design required by the Nios Il tool. The Qsys System Design Tutorial provides an introduction to the
Qsys tool.

This procedure follows the steps outlined in the “Flash Programmer Target Design” section in Altera’s Nios Il Flash
Programmer User Guide. As stated in the User Guide, two components are required, at a minimum:

®  Nios Il processor, with JTAG debug module level 1 or greater
m  EPCS Serial Flash Controller

Do the following to build the design:
1. Open Quartus Il software (screenshot examples are based on rev. 13.0sp1l, or stated otherwise).

2. Under Tools menu, open Qsys.
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Figure 1. Launch Qsys
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3. Add the Nios Il Processor component. Use Nios Il/e core, which does not require a license. In the example,
this instance is named “cpu”.

a. Select Nios ll/e.
b. Select Absolute for Reset and Exception vector memory to avoid errors.
c. Select JTAG Level 1 debug.
Others can be just default values.
4. Add EPCS Serial Flash Controller. In the example, this instance is named “spansion_spi_flash”.

a. Ifusing Quartus 17 Prime, select “use dedicated active serial interface” to let the tool to automatically
complete the pin assignments.

5. Make connections as shown in Figure 2.

Figure 2. Quartus 13.1 sp1 Example
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Figure 3. Quartus Prime 17.0 Example
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7. Assign the Export pin names as shown in Figure 3.

8. Assign the Base Addresses as shown. Take note of the spansion_spi_flash base address. It is set to
0x120000 in this example. This value will be used later.

9. Save the Qsys design as SPIController.gsys.
10. In the Quartus software, open a new project using the New Project Wizard.

11. After the new project is created, go to Project > Add/Remove Files in Project.

Figure 4. Add Files in Project
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12. Add SPIController.gsys to the project. After adding the file, it should look like Figure 5:
Figure 5. Files Added to Project
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13. Select General: Choose SPIController as the top level entity from the General menu.

14. Use Assignments > Assignment Editor to assign pin connections. This will depend on your particular
FPGA design board. Figure 6 shows the pin assignments made with the Cyclone IV in this example.:

Figure 6. Assigned Pin Connections
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15. Make sure the pins are defined as “Use as regular 1/0” to prevent compilation errors. This can be done in the
Device and Pin Options Window as shown in Figure 7.
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3.2

3.3

Figure 7. Device and Pin Options
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16. Compile the new project. A *.sof file will be generated. In this example, it is named SPIController.sof.

A simple design has now been created to control the SPI flash.

Create an Override File for Nios 1l
This step is also done only once. Generate a text file called nios2-flash-override.txt with the following contents:

[EPCS-012018] # Cypress SPI Flash S25FL128S
sector size = 65536
sector count = 128

The “012018” suffix corresponds to the first three bytes returned by the RDID (opcode 9Fh) command. They are the
“Manufacturer ID”, “Device ID MSB”, and “Device ID LSB” respectively. In this example, the Cypress S25FL128S SPI
flash was used. The three byte values are “01h, 20h, 18h”.

These ID numbers, as well as the sector size and count numbers in the text file, may be altered based on the specific
flash used. For example, if S25FL256S SPI flash was used, the override file should look like:

[EPCS-012019] # Cypress SPI Flash S25FL256S
sector size = 65536
sector count = 256

Place this text file inside the installed nios Il bin directory. For example: c:\altera\13.0sp1\nios2eds\bin.

Verify the SPI Flash Can Be Accessed
Now check to see if the design generated can access the SPI flash.

Power up the FPGA board and connect the USB cable, assuming the built-in USB Blaster is used. Verify by using the
Quartus Programmer software that the FPGA can be auto detected.

If using the Cyclone IV Development board as in this example, verify the MAX Il Page Select Switch is set to EPCS.
This is realized by pressing the PGM SEL button until the EPCS LED (D19) is illuminated.

Open the nios2 shell from the Program > Altera installed package menu. For example: Program > Altera 13.0.1.232
Web Edition > Nios Il EDS 13.0.1.232 > Nios 11 13.0sp1 Command Shell.

Navigate to the directory where the SPIController.sof was generated during the first step. Execute the following
command:
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nios2-configure-sof SPIController.sof

Quartus Prime 17.0 Nios Il shell requires a device index for this command, for example:

nios2-configure-sof -d 2 SPIController.sof
The Quartus Il Programmer Running message should be visible. Execute the following command:

nios2-flash-programmer --epcs --base address=0x120000 --debug

Or for Quartus Prime 17.0 Nios Il shell:
nios2-flash-programmer --epcs -base 0x120000 --debug

Note: The base address is the one used in SPI Controller design generated as described in the Create a Flash
Programmer Target Design section. If a different base address is used, it should be used here. The EPCS Flash
Detection message should be visible, similar to below:

Reading override file "C:/altera/13.0spl/nios2eds/bin/nios2-flash-override.txt"
Using cable "USB-Blaster [USB-0]", device 1, instance 0x00

Resetting and pausing target processor: OK

Processor data bus width is 32 bits

Looking for EPCS registers at address 0x00120000 (with 32bit alignment)
Initial values: 0001703A 04C00074 9801483A 9CFFF804 983FFDIE 0000203A
Not here: reserved fields are non-zero

Looking for EPCS registers at address 0x00120100 (with 32bit alignment)
Initial values: 93000237 6300080C 603FFD26 90000335 A8000C26 03010004
Not here: reserved fields are non-zero

Looking for EPCS registers at address 0x00120200 (with 32bit alignment)
Initial values: 4A40100C 483FFD26 92C00135 92400237 4A40200C 483FFD26
Not here: reserved fields are non-zero

Looking for EPCS registers at address 0x00120300 (with 32bit alignment)
Initial values: 00000000 00000000 00000000 00000000 00000000 00000000
Not here: SPI SLAVE SEL has 0 valid bits (should be between 1 and 16)
Looking for EPCS registers at address 0x00120400 (with 32bit alignment)
Initial values: 00000000 00000000 00000260 00000000 00000000 00000001
Valid registers found

EPCS signature is 0x17

EPCS identifier is 0x012018

Using EPCS size information from section [EPCS-012018]

Device size is 8MByte (64Mbit)

Erase regions are:

offset 0: 128 x 64K

EPCS status is 0x00

Leaving target processor paused

The message shows that it finds the EPCS Flash (in this case, the Cypress SPI flash) at the address 0x120400. Take
note of this address as it will be used below.

3.4 Convert Your Own Design File (*.sof) to a Hex File (*.flash)

After building the design configuration file, use the nios2 tool to convert it to a hex file in preparation for programming
the SPI flash by executing the following command:

sof2flash --epcs --input=<your design file>.sof --output=<your design file>.flash

The message indicating the conversion is successful should be visible. The *.flash file is generated.

3.5 Program the .flash File to Cypress Flash

Now, program the configuration file to the Cypress flash by executing the following command:

nios2-flash-programmer --epcs --base address=0x120400 <your design file>.flash

The base address used here is the one discovered as described in the Verify the SPI Flash Can Be Accessed
section.
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For Quartus Prime 17.0 Nios Il shell, specify the override file as a command option:

nios2-flash-programmer --epcs -base 0x120400 --override nios2-flash-override.txt <your
design file>.flash

The message indicating Erasing and Programming the flash should be visible.
After this step, flash programming has now been completed. Reboot the FPGA and verify it is properly configured
from the SPI flash using the created FPGA design.

4 Conclusion

Although the built-in Quartus Il Flash Programmer may not work directly with Cypress SPI flash devices, it is possible
to use the Nios Il tool to in-system program Cypress SPI flash to configure Altera FPGAs. The complete procedure is
documented in this application note.

Contact Cypress Customer Support if any issues are encountered implementing this procedure with Cypress SPI
flash.
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