A

w CYPRESS

g@” EMBEDDED IN TOMORROW™

AN98558
In-System Programming for Cypress SPI Flash on Altera® FPGA Board

AN98558 introduces an alternate method to in-system program the Cypress SP! flash by using Altera’s Nios® Il tool,
which works with all versions of the Quartus Il software.

1 Introduction

In an Active Serial (AS) configuration scheme, an SPI flash device can be used to configure the Altera FPGA that
acts as the configuration master while the SPI flash acts as a slave.

Altera recommends using their serial configuration devices (EPCS) in the Active Serial scheme, although users may
prefer to use Cypress SPI flash instead of EPCS devices. In such cases, users may not be able to use the built-in
Quartus Flash Programmer to program a JTAG Indirect File (*jic) to the Cypress SPI flash, because the FPGA
checks the EPCS Device ID before reading the configuration data. Users can disable EPCS ID check during the *.jic
file conversion. If such method works, there is no need to use the workaround described in this application note.

However, if the Quartus Programmer cannot properly detect the Cypress device, this application note introduces an
alternate method to in-system program the Cypress SPI flash by using Altera’s Nios® Il tool, which works with all
versions of Quartus software.

2 Background Information

The procedure introduced in this application note was verified on the Altera Cyclone IV and Cyclone V Development
Board, using Quartus Il 13.0spl Web Edition software, and updated with Quartus Prime 17.0. In general, the
procedure should apply to all other versions of Quartus software.

The document is written assuming the reader is familiar with Altera FPGA development, including the Nios Il Flash
Programmer User Guide.

3 Procedures

3.1 Create a Flash Programmer Target Design

Creating the flash programming target design is the most time-consuming step in this procedure; however, it only
needs to be performed once. After the target design to communicate to the SPI flash has been created, the resulting
*.sof file can be used for all future programming.

In this step, use of the Qsys tool (SOPC Builder in earlier versions Quartus software) is required to build a minimum
component set design required by the Nios Il tool. The Qsys System Design Tutorial provides an introduction to the
Qsys tool.

This procedure follows the steps outlined in the “Flash Programmer Target Design” section in Altera’s Nios Il Flash
Programmer User Guide. As stated in the User Guide, two components are required, at a minimum:

®  Nios Il processor, with JTAG debug module level 1 or greater
m  EPCS Serial Flash Controller

Do the following to build the design:
1. Open Quartus Il software (screenshot examples are based on rev. 13.0sp1l, or stated otherwise).

2. Under Tools menu, open Qsys.

WWW.Cypress.com Document No. 001-98558 Rev. *C 1


http://www.cypress.com/
http://www.altera.com/products/devkits/altera/kit-cyclone-iv-gx.html
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/tt/tt_qsys_intro.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

EMBEDDED IN TOMORROW™

&2 CYPRESS

In-System Programming for Cypress SPI Flash on Altera® FPGA Board

Figure 1. Launch Qsys

Quartus 11 32-bit - U:Awork/altera/SPIController2/SPiController - SPIController
Edit &

File View Project Assignments Processing ‘Window  Help

= . E— imulati v B o 7 5 T =
DS @& DB[9 o fifecow  RunsmistonTod ' P9 € 0 r 00 @9 A0 9
2. Launch Simulation Library Compiler
Project Mavigator N\ Lot Dasiprispacs Explirer (ompilation Report - SPICantroller
Entity = = = L LE:) D EEE—————
Ay {Cyclone Tv Gx: EP4CGXISODF31C7 T TimeQuest Timing Analyzer | Flow Status Succossful Wod Oct 23 00:35:30 2013
o Eﬂ SPIController 5&! Advisors % Quartus II 32-bit Version 13.0.1 Build 232 06{12{2013 SP 1 51 Web Edition
Revision Name SPIController
& Chip Planner ult Global settings Top-level Entity Name: SPIController
7 = ime Farnily Cyclone IV GX.
48 Design Partiion Planner ary Device CP4CGX150DMA1CT
Netlist Viewers i Timing Models Final
) . . < Total logic elements 1,392 149,760 ( <1%)
i thes Total combinational functions 1,273 149,760 < 1% )
& In-System Memary Content Editor Dedicated logic registers 862/ 149,760 ( <1 %)
< =] Lugit Analycer Titerfave Editur = Total registers 062
A Hierarchy les | o Designlnits | “< IF [od] In-System Sources and Probes Editor  jed Messages Totalpins 6/508(1%)
S e e e SiialPrube Pites, Total virtual pins 1]
T sl;s & e Total memory bits 18,432 [ 6,635,520 ( < 1 % )
Tashs. |4 Programmer Pibiala Embedded Multiplier 9-bit elements 0720 0%
|Compilation b ITAG Cliaint Debugyer Tulal GB Reveiver Cliainel PCS 0/6(0%)
4% Transceiver Tookit Total GXB Receiver Channel PMA 0/8(0%)
Tk Total GXB Transmitter Channel PCS 0/8{0%)
otal ransmitter Channel fo
> S IE Externigl Memury Titerface Tuulkil T itter Channel PIA 080 %)
< ompile Design - X Total PLLs 0/8(0%)
Lo O P Analysis & Synthesis b xegaI\IN;zaf‘;d PIUQBII"I:' ?nalgef' Ecli
] Edt Settings ios II Software Build Tools for Eclipse
=] Vicw Report Lo
V4 P Analysis & Elaboration / Tel Scripts...
@ B Partition Merge
Customize. ..
£ Options... >
License Setup...
1 €4 Install Devices... | 5
&l
I

3. Add the Nios Il Processor component. Use Nios Il/e core, which does not require a license. In the example,
this instance is named “cpu”.

a. Select Nios ll/e.
b. Select Absolute for Reset and Exception vector memory to avoid errors.
c. Select JTAG Level 1 debug.
Others can be just default values.
4. Add EPCS Serial Flash Controller. In the example, this instance is named “spansion_spi_flash”.

a. Ifusing Quartus 17 Prime, select “use dedicated active serial interface” to let the tool to automatically
complete the pin assignments.

5. Make connections as shown in Figure 2.

Figure 2. Quartus 13.1 sp1 Example

roller2\SPIController.gsys)

File Edt System View Tools Help

Compenent Library | System Cortents | Adgress Map | Clock Seftings | stem Inspector | HDL Example | Generation|

Instance Parameters

Use  Connections Name Descrigtion Export

1 x || * Clock Base End IRQ  Opcode Name
== 8 ek (Clack Source
|Project A ,’i clk_in (Clack Input etk
i) I New Component.. A clk_in_reset Reset Input cpu_reset [ck_in]
bR = ok IClock Output ok
Library > — clk_reset Reset Output ok
@ Config-Bypass App Exarr B cpu INios Il Processar
Bridges v clk Clock Input clk
Bridges and Adapters =z B IReset Input o]
Clock and Reset data_master \walon Memory Mapped Master [ck] IRQ 0 IRQ 31
Configuration & Programming v r instruction_master (Avalan Memory Mapped Master [ck]
' jtag_dlebug_module_reset Reset Output o]
Embedded Processors ftag_debug_module \walon Memory Mapped Slave [ck] 0x0014_1000 0x0014_17££
Interface Protocols = custom_instruction_master Custom Instruction Master = =
Memaries and Memory Contro S mownslon At flash 2 c
Merlin Components ok A (Clack Input clk
Microcortroller Peripherals EED S [Reset Input -
Peripherais epcs_control_port Avalon Memory Mapped Slave [ck] 0x0012_0000 0x0012_07£f f
i external (Conclut lepcs_flash_controller_0
Qsys Interconnect
Merificatinn &
|
i +
[ 2
Messages |
Description Path
=@ 1 Info Message ‘

(D Dedicated AS interface is not supported, signals are exported to top level design. |system spansion_spi_tiash

WWW.CYpress.com Document No. 001-98558 Rev. *C 2


http://www.cypress.com/

wa & CYPRESS

EMBEDDED IN TOMORROW™

In-System Programming for Cypress SPI Flash on Altera® FPGA Board

Figure 3. Quartus Prime 17.0 Example

Users\zfeng\Desktop\temp\Altera\AN \SPIController.qsys) | il
Fie Edit System Generate View Tools Help
': Address Map %% | Interconnect Requirements &0 | - o
g il:l!l System: SPIController  Path: spansion_spi_flash
W
3 + | use Connections Name Description Export Clock Base End IRQ Tags
%’ %= 2 dk Clock Source
. b4 (=g clk_in Clock Input iclk exported
& =) — clk_in_reset Reset Input
= B — clk Clock Output clk
= — clk_reset Reset Output
“ = = cpu Hios II (Classic) Processor
- clk Clock Input clk
¥ reset_n Reset Input [clk]
— data_master \Avalon Memory Mapped Master [clk]
— instruction_master \Avalon Memory Mapped Master [clk]
d_irg Interrupt Receiver [clk] IRQ 0 IRQ 31
r—< jtag_debug_module_r... [Reset Qutput [clk]
jtag_debug_module \Avalon Memory Mapped Slave [clk] 0x0014_1000 0x0014_17£f
custom_instruction_m... |Custom Instruction Master
@ spansion_spi_flash il egacy EPCS/EPCQx1 Flas
l l clk Clock Input clkc
reset Reset Input [elk]
epcs_control_port \Avalon Memory Mapped Slave [clk] 0x0012_0000 0x0012_07ff
— irq Interrupt Sender [clk] 3
4 I i
]t W current filter:
H -cA
“n Type I Path Message ﬁl
T H
0 Errors, 1 Warning Generate HDL... Finish |

7. Assign the Export pin names as shown in Figure 3.

8. Assign the Base Addresses as shown. Take note of the spansion_spi_flash base address. It is set to
0x120000 in this example. This value will be used later.

9. Save the Qsys design as SPIController.gsys.
10. In the Quartus software, open a new project using the New Project Wizard.

11. After the new project is created, go to Project > Add/Remove Files in Project.

Figure 4. Add Files in Project

File  Edit

View Assignments  Processing Tools Window  Help

OE 4 a Add Current Tl to Project M > Q-J o) ‘{H ":X @ “‘“ A
Add/Remove Files ir Project... P
Projoct Navigator Compilation Report  SPIController
) j_}l Revisions... -
Copy Projact le of Contents L¥=]} Flow Summary
(i iCyclone I GX: E cl.::;‘ Pm’ ect’ N B Flow Simmary Flow Status Successful - Wed Oct 23 09:35:30 2013 |
@ 284 sprco Ject... Quartus IT 32-bit Yersion 13.0.1 Build 232 06122013 SP 1 51 Web Edition
®- ntrolle = Flow Settings i
Archive Project.., - ok bl ol Revision Name SPIController
Restore Archived Project Flow Norv-Default Global Settings Top-level Entity Name SPIController
B Fluw Elapsed Tine Family Cyclone Iv G
Import Database... = Flow 05 Summary Device EP4CGX1S0DF31C7
Export Database... ] Flow Log Timing Models Final
3 Analysis & Synth Total logic elements. 1,392 [149,760( <1 %)
Import Design Partition. . Nolyst & omEnests Total combinational functions 1,273 149,760 ( < 1% )
Export Design Partition. .. (3 Fitter Dedicated logic registers 862 149,760 ( <1 %)
Ll Getieralee Design Parlitivn Suripls. . -1 Flow Messages Trkal tngisters g
A; pr— 5 4 Flow Suppressed Messages Total pins 6/508(1%)
S teLaty Generate Tl File for Project... (3 Assomblor Total virtual pins 0
Tasks Generate PowerPlay Early Power Estimator File (B TimeQuest Tiing Analyzer Total memory bits 16,320 6020 Colie)
P Upgrade IP Comporents. .. Embedded Multiplier 9-bit elements ~ 0/720(0 %)
low: :Compilation Total GXB Receiver Channel PCS 0/8(0%)
S— Organize Quartus II Settings File Total GXB Receiver Channel PMA 0/8{0%)
. Total GXB Transmitter Channel PCS 0/8(0%)
S HardCopy Utiliies 4 Total GXB Transmitter Channel PMA  0/8(0 %)
- 2 = Iotal PLLs UfE(UY%)
7 : |
Hierarchy 4
EE VIS REOM T
L4 P analysis & Elaboration
# P Partition Merge v|
» < |l ~

WWW.CYpress.com Document No. 001-98558 Rev. *C 3


http://www.cypress.com/

o CYPRESS

~gg” EMBEDDED IN TOMORROW™ In-System Programming for Cypress SPI Flash on Altera® FPGA Board

12. Add SPIController.gsys to the project. After adding the file, it should look like Figure 5:
Figure 5. Files Added to Project

# Settings - SPIConiroller [Z]@[Z]

Files

- Libraries Select the design files you want to include in the project, Click Add All to add all design files in the project ‘

= Operating Settings and Conditions directory to the project. ‘

Voltage SRS B |
Temperature ; y ;

= Compilation Process Settings Eile name: ‘ |[Z] Add ‘

Early Timing Estimate - ” . : 1 ‘

Incremental Conpilation File Mame Type Library  Design EntryfSynthesis Tool HDL ‘

\

Physical Synthesis Optimizations SPIController.gsys : Qsys System File <hNone >
] CDA Tool Settings
Design Entry/Svnthesis
Simulation Up |
Formal Verification =
Board-Level s \
= Analysis & Synthesis Settings Dawn !

YHDL Input - ‘

Verilog HDL Input

Default Parameters
Fitter Settings

13. Select General: Choose SPIController as the top level entity from the General menu.

14. Use Assignments > Assignment Editor to assign pin connections. This will depend on your particular
FPGA design board. Figure 6 shows the pin assignments made with the Cyclone IV in this example.:

Figure 6. Assigned Pin Connections

ler - SPIController

Help 50 |Search altera, com @
N e e 2 b B a0 | A | e ok | a7 | ol o ik | ] W | en | =
_ V¥ %0 0 e 00 IR QP A e
= gt Comnpilatizn Repart - SPICantraller 8 | \’. Assignment Editor 8 |
Lanewss v Filter on node names: |* |Complation Repert - SPIContraler | v Catego'v:!nll v
£ zah. From To Assignment Mame Enabled Entity Comment Tag
=D in : .
1 [ - ck ck Location i—
z o 0 encs  datal | Lacation (PIN_AG \Yes |
3 o I 90t encs  delk | Lacation |PIN_E3 \Ves |
4 o I Ut oncs 0 sce  Lacation PIN_E4 \Ves [
5| [N - cncs_.0_sdo | Location PIN_G9 s [
6 LANEW = R =AM
=
el

15. Make sure the pins are defined as “Use as regular 1/0” to prevent compilation errors. This can be done in the
Device and Pin Options Window as shown in Figure 7.

WWW.CYpress.com Document No. 001-98558 Rev. *C 4


http://www.cypress.com/

A,

ws CYPRESS

> EMBEDDED IN TOMORROW™ In-System Programming for Cypress SPI Flash on Altera® FPGA Board

3.2

3.3

Figure 7. Device and Pin Options

& Device and Pin Options - SPIController

Cakeqgory:
General Dual-Purpose Pins
Configuration
Programming Files Specify how dual-purpose pins should be used after device configuration is complete, The default

LInused Pinz setkings For each pin depend on the current corfiguration scheme selected in the Configaration tab,
which is: Active Serial

Capacitive Loading
i Board Trace Model

Maote: For HardCopy, these settings apply to tha FPGA protokype device,

I Tirning
Yalkage Mal-nirpnses pins:
Fin Placernent I
Errar Detection CRC Hlame Yalug
CwP Settings DCLE Use as reqgular IO
Partial Reconfiguration Data[l] Use a5 regular IO
Dakal 1118500 |Jse a5 regular I
Datal?, 2] #s output driving an unspecified signal
FLASH niCEfnC30  Use as regular IO
n_ED Use as regular IrC

16. Compile the new project. A *.sof file will be generated. In this example, it is named SPIController.sof.

A simple design has now been created to control the SPI flash.

Create an Override File for Nios 1l
This step is also done only once. Generate a text file called nios2-flash-override.txt with the following contents:

[EPCS-012018] # Cypress SPI Flash S25FL128S
sector size = 65536
sector count = 128

The “012018” suffix corresponds to the first three bytes returned by the RDID (opcode 9Fh) command. They are the
“Manufacturer ID”, “Device ID MSB”, and “Device ID LSB” respectively. In this example, the Cypress S25FL128S SPI
flash was used. The three byte values are “01h, 20h, 18h”.

These ID numbers, as well as the sector size and count numbers in the text file, may be altered based on the specific
flash used. For example, if S25FL256S SPI flash was used, the override file should look like:

[EPCS-012019] # Cypress SPI Flash S25FL256S
sector size = 65536
sector count = 256

Place this text file inside the installed nios Il bin directory. For example: c:\altera\13.0sp1\nios2eds\bin.

Verify the SPI Flash Can Be Accessed
Now check to see if the design generated can access the SPI flash.

Power up the FPGA board and connect the USB cable, assuming the built-in USB Blaster is used. Verify by using the
Quartus Programmer software that the FPGA can be auto detected.

If using the Cyclone IV Development board as in this example, verify the MAX Il Page Select Switch is set to EPCS.
This is realized by pressing the PGM SEL button until the EPCS LED (D19) is illuminated.

Open the nios2 shell from the Program > Altera installed package menu. For example: Program > Altera 13.0.1.232
Web Edition > Nios Il EDS 13.0.1.232 > Nios 11 13.0sp1 Command Shell.

Navigate to the directory where the SPIController.sof was generated during the first step. Execute the following
command:

WWW.CYpress.com Document No. 001-98558 Rev. *C 5


http://www.cypress.com/

o CYPRESS

- EMBEDDED IN TOMORROW™

In-System Programming for Cypress SPI Flash on Altera® FPGA Board

nios2-configure-sof SPIController.sof

Quartus Prime 17.0 Nios Il shell requires a device index for this command, for example:

nios2-configure-sof -d 2 SPIController.sof
The Quartus Il Programmer Running message should be visible. Execute the following command:

nios2-flash-programmer --epcs --base address=0x120000 --debug

Or for Quartus Prime 17.0 Nios Il shell:
nios2-flash-programmer --epcs -base 0x120000 --debug

Note: The base address is the one used in SPI Controller design generated as described in the Create a Flash
Programmer Target Design section. If a different base address is used, it should be used here. The EPCS Flash
Detection message should be visible, similar to below:

Reading override file "C:/altera/13.0spl/nios2eds/bin/nios2-flash-override.txt"
Using cable "USB-Blaster [USB-0]", device 1, instance 0x00

Resetting and pausing target processor: OK

Processor data bus width is 32 bits

Looking for EPCS registers at address 0x00120000 (with 32bit alignment)
Initial values: 0001703A 04C00074 9801483A 9CFFF804 983FFDIE 0000203A
Not here: reserved fields are non-zero

Looking for EPCS registers at address 0x00120100 (with 32bit alignment)
Initial values: 93000237 6300080C 603FFD26 90000335 A8000C26 03010004
Not here: reserved fields are non-zero

Looking for EPCS registers at address 0x00120200 (with 32bit alignment)
Initial values: 4A40100C 483FFD26 92C00135 92400237 4A40200C 483FFD26
Not here: reserved fields are non-zero

Looking for EPCS registers at address 0x00120300 (with 32bit alignment)
Initial values: 00000000 00000000 00000000 00000000 00000000 00000000
Not here: SPI SLAVE SEL has 0 valid bits (should be between 1 and 16)
Looking for EPCS registers at address 0x00120400 (with 32bit alignment)
Initial values: 00000000 00000000 00000260 00000000 00000000 00000001
Valid registers found

EPCS signature is 0x17

EPCS identifier is 0x012018

Using EPCS size information from section [EPCS-012018]

Device size is 8MByte (64Mbit)

Erase regions are:

offset 0: 128 x 64K

EPCS status is 0x00

Leaving target processor paused

The message shows that it finds the EPCS Flash (in this case, the Cypress SPI flash) at the address 0x120400. Take
note of this address as it will be used below.

3.4 Convert Your Own Design File (*.sof) to a Hex File (*.flash)

After building the design configuration file, use the nios2 tool to convert it to a hex file in preparation for programming
the SPI flash by executing the following command:

sof2flash --epcs --input=<your design file>.sof --output=<your design file>.flash

The message indicating the conversion is successful should be visible. The *.flash file is generated.

3.5 Program the .flash File to Cypress Flash

Now, program the configuration file to the Cypress flash by executing the following command:

nios2-flash-programmer --epcs --base address=0x120400 <your design file>.flash

The base address used here is the one discovered as described in the Verify the SPI Flash Can Be Accessed
section.

WWW.CYpress.com Document No. 001-98558 Rev. *C 6


http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW™ In-System Programming for Cypress SPI Flash on Altera® FPGA Board

For Quartus Prime 17.0 Nios Il shell, specify the override file as a command option:

nios2-flash-programmer --epcs -base 0x120400 --override nios2-flash-override.txt <your
design file>.flash

The message indicating Erasing and Programming the flash should be visible.
After this step, flash programming has now been completed. Reboot the FPGA and verify it is properly configured
from the SPI flash using the created FPGA design.

4 Conclusion

Although the built-in Quartus Il Flash Programmer may not work directly with Cypress SPI flash devices, it is possible
to use the Nios Il tool to in-system program Cypress SPI flash to configure Altera FPGAs. The complete procedure is
documented in this application note.

Contact Cypress Customer Support if any issues are encountered implementing this procedure with Cypress SPI
flash.

WWW.CYpress.com Document No. 001-98558 Rev. *C 7


http://www.cypress.com/
http://www.spansion.com/Support/Pages/Support.aspx

o CYPRESS

> EMBEDDED IN TOMORROW™ In-System Programming for Cypress SPI Flash on Altera® FPGA Board

Document History
Document Title: AN98558 - In-System Programming for Cypress SPI Flash on Altera® FPGA Board
Document Number: 001-98558

Revision ECN Orig. of | Submission Description of Change
Change Date
b - ZHFE 11/25/2013 New Application Note
*A 4960725 SZ7ZX 10/20/2015 Updated in Cypress template
*B 5884969 ZHFE 09/18/2017 Updated logo and Copyright
*C 6111317 ZHFE 03/27/2018 Updated to include procedural changes with Quartus Prime 17.0
Updated template

WWW.CYpress.com Document No. 001-98558 Rev. *C 8


http://www.cypress.com/

o CYPRESS

> EMBEDDED IN TOMORROW™ In-System Programming for Cypress SPI Flash on Altera® FPGA Board

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products PSoC® Solutions
Arm® Cortex” Microcontrollers  cypress.com/arm PSoC 1 | PSoC 3| PSoC 4 | PSoC 5LP | PSoC 6 MCU
Automotive cypress.com/automotive -
w Cypress Developer Community
Clocks & Buffers cypress.com/clocks ] ) ) o
Community | Projects | Videos | Blogs | Training |
Interface cypress.com/interface Components
Internet of Things cypress.com/iot .
Technical Support
Memory cypress.com/memory
) cypress.com/support
Microcontrollers cypress.com/mcu
PSoC cypress.com/psoc
Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

A,

Cypress Semiconductor
'ﬁ CY P R E s S 198 Champion Court
San Jose, CA 95134-1709

- EMBEDDED IN TOMORROW™

© Cypress Semiconductor Corporation, 2013-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite
security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach,
such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or
errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress
reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of
any product or circuit described in this document. Any information provided in this document, including any sample design information or programming
code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality
and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

WWW.CYpress.com Document No. 001-98558 Rev. *C 9


http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Introduction
	Background Information
	Procedures
	Create a Flash Programmer Target Design
	Create an Override File for Nios II
	Verify the SPI Flash Can Be Accessed
	Convert Your Own Design File (*.sof) to a Hex File (*.flash)
	Program the .flash File to Cypress Flash

	Conclusion
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

