

CyMCUElfTool 1.0

User Guide

Document Number: 002-22934 Rev. *A

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
http://www.cypress.com

 Copyrights

CyMCUElfTool 1.0 User Guide, Document Number: 002-22934 Rev. *A 2

© Cypress Semiconductor Corporation, 2018. This document is the property of Cypress Semiconductor Corporation
and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware
included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and
treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and
treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and
you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its
copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the
Software solely for use with Cypress hardware products, only internally within your organization, and (b) to
distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and
distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that
are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the
Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or
compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING
HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right
to make changes to this document without further notice. Cypress does not assume any liability arising out of the
application or use of any product or circuit described in this document. Any information provided in this document,
including any sample design information or programming code, is provided only for reference purposes. It is the
responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or
authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including
resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other
uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended
Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable,
in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from
and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising
from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense,
EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other
countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be

claimed as property of their respective owners.

CyMCUElfTool 1.0 User Guide, Document Number: 002-22934 Rev. *A 3

Contents

1 Introduction .. 4

Installation .. 4

Product Upgrades .. 4

Support .. 4

Document Conventions ... 5

Revision History ... 5

2 CyMCUElfTool Overview ... 6

Command Line Options ... 6

ELF Symbols and Sections ... 7

Output Files Created ... 8

OpenSSL Use .. 8

Merge Rules (symbol order, renaming, and error conditions) ... 8

Hex and Patch File Creation Rules ... 8

3 Quick Start .. 10

Signing Non-Secure Applications .. 10

Digitally Signing Applications ... 11

Merging ELF Files for a Single Application Arm® Cortex®-M0+ and Cortex-M4 into a Single
ELF File ... 12

Merging ELF Files for Multiple Applications into a Single ELF File ... 13

Generating a Flash patch (.cyacd2) File for use with the Bootloader SDK 13

Generating an Encrypted Flash patch (.cyacd2) File .. 14

Generating a Code Sharing File .. 15

CyMCUElfTool 1.0 User Guide, Document Number: 002-22934 Rev. *A 4

1 Introduction

The CyMCUElfTool version 1.0 is a command line utility used in the build process of PSoC® 6 MCUs. This
utility provides facilities for signing important data structures, including generating digital signatures,
merging ELF files, and generating bootloadable data for use with the PSoC 6 MCU Bootloader SDK.

Installation

For PSoC Creator, the CyMCUElfTool is bundled with the Peripheral Driver Library (PDL) version 3.0.1 or
later, so you must install the PDL to use the tool. See Cypress Peripheral Driver Library v3.0 Quick Start
Guide for details.

For ModusToolbox, the CyMCUElfTool is bundled with the associated software, so you must install the
ModusToolbox software for the tool to be available.

Product Upgrades

Cypress provides scheduled upgrades and version enhancements for CyMCUElfTool, free-of-charge. You
can download upgrades directly from www.cypress.com under Support & Community > Software
Tools.

In addition, critical updates to system documentation are provided under Design Resources.

Support

Free support for the CyMCUElfTool is available online. You can find the version, build, and service pack
information from the command line using the --version option.

Visit http://www.cypress.com/support for online technical support. The resources include:

 Training Seminars

 Discussion Forums

 Application Notes

 Developer Community

 Knowledge Base

 Technical Support

You can also view and participate in discussion threads about a wide variety of device topics.

http://www.cypress.com/
http://www.cypress.com/support

Introduction

CyMCUElfTool 1.0 User Guide, Document Number: 002-22934 Rev. *A 5

Document Conventions

The following table lists the conventions used throughout this guide:

Convention Usage

Courier New Displays snippets of source code or command line options in procedures within the text.

Italics Displays file names, file locations. and reference documentation:

sourcefile.hex

Revision History

Document Title: CyMCUElfTool 1.0 User Guide

Document Number: 002-22934

Revision Date Description of Change

** 2/5/18 New document.

*A 10/27/18 Updated installation instructions.

Added a summary for command line options.

CyMCUElfTool 1.0 User Guide, Document Number: 002-22934 Rev. *A 6

2 CyMCUElfTool Overview

This section provides a general overview for the CyMCUElfTool.

Command Line Options

The CyMCUElfTool has various command line options. Use the --help option to see usage information.

The actions available include the following:

Table 2-1. Command Line Options

Action Command Line Option

Display Help cymcuelftool -h/--help

Display Version Information cymcuelftool -v/--version

Display Memory Allocation by
Type

cymcuelftool -A/--allocation <file.elf>

Merge ELF files cymcuelftool -M/--merge <complete_app1.elf>

<complete_app2.elf> ... [--output <merged.elf>]

[--hex <merged.hex>]

Sign ELF file, with option for
secure (encrypted) signature

cymcuelftool -S/--sign <unsigned.elf> [<SignScheme>]

[--output <signed.elf>] [--hex <signed.hex>]

<SignScheme> is only used for signing the user application. It must be ONE of:

 1) HMAC <Hash*> --key key.txt (*CRC not supported)

 2) CMAC-AES-XXX* --key key.txt (*XXX can be 128, 192, or 256)

 3) <Hash> [--encrypt <Cipher> --key key.txt [--iv iv.txt]]

<Hash>: CRC, SHA1, SHA224, SHA256, SHA384, SHA512

Generate Patch File

Note: RSAES-PKCS and
RSASSA-PKCS are not allowed
for this option.

cymcuelftool -P/--patch <file.elf>

[--encrypt <Cipher*> --key <key.txt> [--iv <iv.txt>]]

[--output <patch.cyacd2>]

• <Cipher> (requires key):

o Public-key: RSAES-PKCS, RSASSA-PKCS

o Symmetric: DES-ECB, TDES-ECB, AES-{128|192|256}-
{ECB|CBC|CFB}

• key.txt: ASCII text file containing key appropriate for chosen Cipher.
May be symmetric hex key or PEM format for RSA cipher variants

• iv.txt: ASCII text file containing initialization vector for certain
encryption algorithms

Create Code sharing file cymcuelftool -R/--codeshare <file.elf> <symbols.txt>

<GCC/ARMCC/IAR> [--output <shared.s>]

CyMCUElfTool Overview

CyMCUElfTool 1.0 User Guide, Document Number: 002-22934 Rev. *A 7

ELF Symbols and Sections

The CyMCUElfTool reads ELF files created by the linkers (GCC, MDK, or IAR) used in the PSoC 6 MCU
build process. In order to reduce the number of command line options and make the tool easier to use,
the CyMCUElfTool expects a number of symbols and sections to be defined in the elf file that it is
operating on.

It is expected that these symbols and sections will be provided by the linker script. Except where noted,
they will be populated with the correct values by the linker. The following tables show what are expected.
The {0} in some symbols and sections are expected to be replaced with an integer value.

Table 2-2. ELF Symbols

Symbols When Notes

__cy_memory_{0}_start Optional This symbol/s must be provided for each type of memory
used by an application core image. Its value must be the
start address of used memory.

__cy_memory_{0}_length Optional This symbol/s must be provided for each type of memory
used by an application core image. Its value must be the
number of bytes allocated for the core.

__cy_memory_{0}_row_size Optional This symbol/s must be provided for each type of memory
used by an application core image. Its value must be the

size of a programmable unit of memory.

__cy_app_verify_start Secure Boot flow When needed, this symbol provides the start address of an
area to be signed with secure hash

__cy_app_verify_length Secure Boot flow When needed, this symbol provides the size of an area to be
signed with secure hash

__cy_app_signature_addr Secure Boot flow When needed, this symbol provides the address where to
store the signature

__cy_app_id Bootload SDK This is required to generate a cyacd2 file and must be
present for the –P argument.

__cy_product_id Bootload SDK This is required to generate a cyacd2 file and must be
present for the –P argument.

__cy_boot_metadata_addr Bootload SDK These optional symbols are used by the –C, -M, -P
commands to determine whether bootload processing is
performed. Meta data is assumed to not exist if this is not
present.

__cy_boot_metadata_length

Table 2-3. ELF Sections

Sections When Notes

.cy_app_signature Secure boot flow or
Bootloader SDK

Used to store the application signature. It must be allocated with the
appropriate number of bytes to accommodate the cipher used.
(computed by CyMCUElfTool)

.cy_toc_part2 QSPI, Secure Boot,
and Bootloading

This section must conform to the Cypress format TOC requirements
and be fully populated (excluding the checksum which is computed
by cymcuelftool).

.cy_rtoc_part2 QSPI, Secure Boot,
and Bootloading

Redundant Table of Contents. Same as .cy_toc_part2

 CyMCUElfTool Overview

CyMCUElfTool 1.0 User Guide, Document Number: 002-22934 Rev. *A 8

Sections When Notes

.cy_efuse optional This section is purely optional based on the users design. If it is
included it will be passed to the hex file, if not then it will not exist in
the elf or hex.

.cymeta Always This section stores metadata about the ELF file itself, including the
silicon id and file checksum (computed by CyMCUElfTool)

.cychecksum Always Stores a checksum of the elf file itself (computed by CyMCUElfTool)

.cy_boot_metadata Optional Stores metadata for bootloader applications. Last 4 bytes reserved
for checksum (computed by CyMCUElfTool)

Output Files Created

By default, the CyMCUElfTool will place its output ELF file in the first ELF file found on its command line.
This behavior can be overwritten using the --output command line option. In addition, HEX files can be

generated from the output ELF file using the --hex command line option.

OpenSSL Use

To use the digital signing and encrypted patch features of CyMCUElfTool, the OpenSSL executable must
be in your path. Depending on your operating system and environment, this may already be the case. If
your system does not have OpenSSL already installed, you can download the source from
https://www.openssl.org/. CyMCUElfTool requires OpenSSL v1.0.2.

OpenSSL is only required when digitally signing an application or generating an encrypted patch file (see
Digitally Signing Applications and Generating an Encrypted Flash patch (.cyacd2) File). If your application
doesn’t require these features, OpenSSL is not required.

Merge Rules (symbol order, renaming, and error conditions)

When using the -M/--merge command line option to merge ELF files, the following rules are used:

 Only the debug symbols and sections from the first ELF file on the command line are retained in
the output file.

 Sections from ELF files beyond the first are converted into binary data and renamed to.mergedn,
where n starts at 0 and increments for each section merged to the output file.

 If the tool detects that two or more sections from the input ELF files have overlapping address
ranges with different data, an error occurs, and there is no merging.

Hex and Patch File Creation Rules

When creating .hex and patch (.cyacd2) files, the CyMCUElfTool uses a set of special linker symbols to
determine the sections from the ELF file that are copied to the target file. These symbols define the start,
length, and row size of the memories to be output. These symbols are named:

 __cy_memory_n_start

https://www.openssl.org/

CyMCUElfTool Overview

CyMCUElfTool 1.0 User Guide, Document Number: 002-22934 Rev. *A 9

 __cy_memory_n_length

 __cy_memory_n_row_size

The n in the symbol name is an integer equal to or greater than 0. CyMCUElfTool uses these symbols
and the following rules when generating .hex or patch files:

 Duplicate symbols are not allowed in an ELF file (that there can be only one instance of
__cy_memory_0_start, length, or row_size).

 Only the memory regions described by these symbols are copied to the target .hex or patch file.

 The tool starts looking for these symbols with n equal to 0 and increments by 1, stopping when a
value of n is not discovered in the ELF file. This means that if you defined
__cy_memory_0_start, length, or row_size and __cy_memory_2_start, length, or

row_size, the tool will ignore those memory regions defined in __cy_memory_2_start,

length, or row_size and subsequent regions with n greater than 2.

 When writing to the .hex and patch file, the output files are written in a lowest to highest device
address order. This means addresses in the range 0x1000xxxx are written before addresses in
the range 0x1060xxxx, even if the later was defined by a __cy_memory_n_xxx symbol set with

n lower than the former.

CyMCUElfTool 1.0 User Guide, Document Number: 002-22934 Rev. *A 10

3 Quick Start

This chapter describes how to use CyMCUElfTool for the most common use cases:

 Signing Non-Secure Applications

 Digitally Signing Applications

 Merging ELF Files for a Single Application Arm® Cortex®-M0+ and Cortex-M4 into a Single ELF
File

 Merging ELF Files for Multiple Applications into a Single ELF File

 Generating a Flash patch (.cyacd2) File for use with the Bootloader SDK

 Generating an Encrypted Flash patch (.cyacd2) File

 Generating a Code Sharing File

Signing Non-Secure Applications

The CyMCUElfTool --sign command modifies an ELF file by calculating signatures or checksums for

specific sections. Each of the sections is optional.

Table 3-1. Checksum or Signature Actions

Section Name Checksum or Signature Actions

.cychecksum A 2-byte, simple summation checksum of the Flash contents of the ELF file is
calculated and populated here.

.cymeta A custom checksum value used by PSoC Programmer is calculated and
populated here.

.cy_toc_part2/.cy_rtoc_part2 A CRC-16-CCITT checksum is calculated using a CRC poly=0x1021 and init
value=0xffff on the data in this section and populated in the last 4-bytes of the
section(s).

.cy_boot_metadata A CRC-32C is calculated for this section and populated in the final
4-bytes.

For each section, a message is printed to standard out indicating that the section was discovered or
created (if necessary), and an appropriate checksum or signature was calculated.

1. Generate your target ELF file using PSoC Creator™ or your preferred environment (e.g., Makefile,
uVision, IAR, etc.).

2. Run cymcuelftool.exe.

cymcuelftool.exe --sign unsigned.elf --output signed.elf --hex signed.hex

Quick Start

CyMCUElfTool 1.0 User Guide, Document Number: 002-22934 Rev. *A 11

Digitally Signing Applications

In addition to the sections that can have checksums populated by the --sign command, a signature can

be calculated to digitally sign an application. If a section named .cy_app_signature is present in the

ELF file and a signature scheme is provided on the command line, the .cy_app_signature section

will be filled with the calculated signature. The size of .cy_app_signature should be big enough to

contain the resulting digital signature:

/** Secure Image Digital signature (Populated by cymcuelftool) */

CY_SECTION(".cy_app_signature") __USED CY_ALIGN(4)

static const uint8_t appSignature[SECURE_DIGSIG_SIZE] = {0u};

Table 3-2. Required Symbols for Digital Signatures

Section/Symbol Name Description

.cy_app_signature The section where the digital signature will be written to

__cy_app_verify_start A symbol that defines the first address of the memory area whose digital
signature is being calculated.

__cy_app_verify_length A symbol that defines the length of the memory area whose digital signature is
being calculated.

1. Build your target ELF file in PSoC Creator or your preferred environment, ensuring that it includes the
.cy_app_signature section.

2. Run cymcuelftool.exe.

cymcuelftool.exe --sign unsigned.elf SHA256 --encrypt RSASSA-PKCS

--key key_2048.pem --output signed.elf –-hex

The algorithms listed in Table 3-3 and their associated command line options are supported. When more
than one byte length is supported for an algorithm, the command line is listed with the options delineated
by the ‘|’ character. Algorithms that have ‘xxx’ in their name can have different key or block lengths.
Provide only one of the available lengths when using the --sign command line option.

Some algorithms require a key passed to the command line. Keys are passed in as hex encoded ASCII
files except for the two RSA variants, which require keys in the Privacy Enhanced Memory (PEM) format.
Cypress does not generate or manage encryption keys. You should use one of the many available
toolsets to create and manage keys.

Table 3-3. Algorithms and Command Line Options

Algorithm Example Command Line Options

CMAC xxx cymcuelftool.exe --sign unsigned.elf CMAC --key key.txt AES-

{128|256}-CBC

HMAC SHAxxx cymcuelftool.exe --sign unsigned.elf HMAC

SHA{1|224|256|384|512} --key key.txt

SHAxxx cymcuelftool.exe --sign unsigned.elf SHA{1|224|256|384|512}

CRC cymcuelftool.exe --sign unsigned.elf CRC

SHA xxx encrypted with DES cymcuelftool.exe --sign unsigned.elf SHA{1|224|256|384|512}

--encrypt DES-ECB --key key.txt

 Quick Start

CyMCUElfTool 1.0 User Guide, Document Number: 002-22934 Rev. *A 12

Algorithm Example Command Line Options

SHA xxx encrypted with TDES cymcuelftool.exe --sign unsigned.elf SHA{1|224|256|384|512}

--encrypt TDES-ECB --key key.txt

SHA xxx encrypted with AES
CBC or CFB

cymcuelftool.exe --sign unsigned.elf SHA{1|224|256|384|512}

--encrypt AES-{128|192|256}-CBC --key key.txt --iv iv.txt [1]

cymcuelftool.exe --sign unsigned.elf SHA{1|224|256|384|512}

--encrypt AES-{128|192|256}-CFB --key key.txt --iv iv.txt [1]

SHA xxx encrypted with AES
ECB

cymcuelftool.exe --sign unsigned.elf SHA{1|224|256|384|512}

--encrypt AES-{128|192|256}-ECB --key key.txt

SHA256 encrypted with
RSASSA-PKCS

cymcuelftool.exe --sign unsigned.elf SHA256 --encrypt

RSASSA-PKCS --key rsa_key_1024/2048.pem [2]

SHA256 encrypted with
RSAES-PKCS

cymcuelftool.exe --sign unsigned.elf SHA256 --encrypt RSAES-

PKCS --key rsa_key_2048.pem [2]

Merging ELF Files for a Single Application Arm® Cortex®-M0+ and

Cortex-M4 into a Single ELF File

Follow these steps to create a single ELF file with both the CM0+ and CM4 in it:

1. Build your PSoC 6 MCU CM0+ ELF file.

2. Sign the CM0+ ELF file.

cymcuelftool.exe --sign unsigned_cm0p.elf --output signed_cm0p.elf

3. Build your PSoC 6 MCU CM4 ELF file.

4. Sign the CM4 ELF file.

cymcuelftool.exe --sign unsigned_cm4.elf --output signed_cm4.elf

5. Merge the signed ELF files.

cymcuelftool.exe --merge signed_cm4.elf signed_cm0p.elf --output merged.elf

Note PSoC Creator and projects exported from PSoC Creator use these steps by default.

1 --iv provides a text file containing an encryption initial vector, encoded in hex.

2 RSASSA-PCKS encrypted value size depends on the size of the key provided in the key file.

Quick Start

CyMCUElfTool 1.0 User Guide, Document Number: 002-22934 Rev. *A 13

Merging ELF Files for Multiple Applications into a Single ELF File

Follow these steps to create a single ELF file with both Application 0 and Application 1 in it:

1. Build your PSoC 6 MCU CM0+ ELF file for Application 0.

2. Sign the CM0+ ELF file.

cymcuelftool.exe --sign unsigned_app0_cm0p.elf --output signed_app0_cm0p.elf

3. Build your PSoC 6 MCU CM4 ELF file for Application 0.

4. Sign the CM4 ELF file.

cymcuelftool.exe --sign unsigned_app0_cm4.elf --output signed_app0_cm4.elf

5. Merge the signed ELF files.

cymcuelftool.exe --merge signed_app0_cm4.elf signed_app0_cm0p.elf --output

merged_app0.elf

6. Repeat steps 1 to 5 for Application 1.

7. Merge the ELF files of both applications.

cymcuelftool.exe --merge merged_app1.elf merged_app0.elf --output merged_apps.elf

--hex merged_apps.hex

Note These steps to merge can be extended for as many applications as you want by repeating steps 6
and 7 for each additional application. The --merge option accepts two or more ELF files in its command

line. This means step 7 can be done only once, and so use all single application ELF files, if desired.

Generating a Flash patch (.cyacd2) File for use with the Bootloader

SDK

To create a patch file, use cymcuelftool.exe on a project you wish to bootload and follow these steps:

1. Define the range of Flash memory to be patched using the __cy_memory_0_xxxx sections in your
linker script:

__cy_memory_0_start = 0x10001000;

__cy_memory_0_length = 0x00100000;

__cy_memory_0_row_size = 0x200;

Note Multiple memory areas can be defined and written to the patch file. See Hex and Patch File
Creation Rules.

2. Build your application using digitally signed build flow.

3. Generate the patch file:

cymcuelftool.exe -P patch.elf --output patch.cyacd2

 Quick Start

CyMCUElfTool 1.0 User Guide, Document Number: 002-22934 Rev. *A 14

Generating an Encrypted Flash patch (.cyacd2) File

Patch files can be generated with encrypted content intended to be decrypted by the bootloader running
in the target device and then written to Flash. The algorithms and their associated command line options
listed in Table 3-4 are supported. When more than one byte length is supported for an algorithm, the
command line is listed in Table 3-4 with the options delineated by the ‘|’ character.

Table 3-4. Algorithms and Command Line Options

Algorithm Example Command Line Option

DES cymcuelftool.exe -P patch.elf --encrypt DES-ECB --key key.txt --

output patch.cyacd2

TDES cymcuelftool.exe -P patch.elf --encrypt TDES-ECB --key key.txt --

output patch.cyacd2

AES CBC or CFB cymcuelftool.exe -P patch.elf --encrypt AES-{128|192|256}-CBC --key

key.txt --iv iv.txt [3]

--output patch.cyacd2

cymcuelftool.exe -P patch.elf --encrypt AES-{128|192|256}-CFB --key

key.txt --iv iv.txt [3] --output patch.cyacd2

AES ECB cymcuelftool.exe -P patch.elf --encrypt AES-{128|192|256}-ECB --key

key.txt --output patch.cyacd2

RSASSA-PKCS cymcuelftool.exe -P patch.elf --encrypt RSASSA-PKCS --key

rsa_key_1024/2048.pem [4] --output patch.cyacd2

RSAES-PKCS cymcuelftool.exe -P patch.elf --encrypt RSAES-PKCS --key

rsa_key_2048.pem [4] --output patch.cyacd2

Keys are passed as hex-encoded ASCII files except for the two RSA variants, which require keys in the
PEM format. Cypress does not generate or manage encryption keys. You should use one of the many
available toolsets to create and manage keys.

3 --iv provides a text file containing an encryption initial vector, encoded in hex.

4 RSASSA-PCKS encrypted value size depends on the size of the key provided in the key file.

Quick Start

CyMCUElfTool 1.0 User Guide, Document Number: 002-22934 Rev. *A 15

Generating a Code Sharing File

CyMCUElfTool can be used to generate a file that can be used to share linker symbols from one ELF file
to another. This is useful when you want to save memory by defining a variable or function once in one
ELF file, but use that variable or function in another.

Note When sharing API symbols between ELF files, never share a function defined in a CM4 ELF file with
a CM0+ ELF file as not all CM4 instructions are compatible with the CM0+ instructions and will cause
CM0+ to fail.

1. Create a text file named symbols.txt containing one symbol per line:

SharedFunction

SharedVariable

2. Pass the file created in step 1 to cymcuelftool.exe, specifying the compiler you want to share with
(GCC, ARMCC, or IAR):

3. cymcuelftool.exe -R source.elf symbols.txt GCC --output shared_gcc.s

4. Add the shared_gcc.s file to your destination project, assembling it, and linking it to the destination
ELF file.

5. Call the shared functions and reference the shared variables as desired in the C/assembly source
file(s) linked in your destination ELF file.

	Contents
	1 Introduction
	Installation
	Product Upgrades
	Support
	Document Conventions
	Revision History

	2 CyMCUElfTool Overview
	Command Line Options
	ELF Symbols and Sections
	Output Files Created
	OpenSSL Use
	Merge Rules (symbol order, renaming, and error conditions)
	Hex and Patch File Creation Rules

	3 Quick Start
	Signing Non-Secure Applications
	Digitally Signing Applications
	Merging ELF Files for a Single Application Arm® Cortex®-M0+ and Cortex-M4 into a Single ELF File
	Merging ELF Files for Multiple Applications into a Single ELF File
	Generating a Flash patch (.cyacd2) File for use with the Bootloader SDK
	Generating an Encrypted Flash patch (.cyacd2) File
	Generating a Code Sharing File

