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More code examples? We heard you. 

For a consolidated list of USB HighSpeed Code Examples, visit here. 

AN61345 provides a sample project to interface an FX2LP
™

 with FPGA using Slave FIFO interface. The interface, 

described in the sample implementation, adds High-Speed USB connectivity to applications such as data acquisition, 

industrial control and monitoring, and image processing. The project provided with this application note is 

implemented and tested with Xilinx
®
 Spartan

®
 6 FPGA. 
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1 Introduction 

The Cypress EZ-USB FX2LP is a flexible USB 2.0 peripheral controller designed to handle maximum USB 2.0 
bandwidth. To take full advantage of the USB 2.0 480 Megabits per second signaling rate, FX2LP contains 
specialized hardware to buffer the USB data and connect seamlessly to a variety of high-bandwidth external devices 
such as MCUs, ASICs, and FPGAs. 

An FX2LP-FPGA interface is implemented to add High-Speed USB connectivity for FPGA based applications, such 
as data acquisition, industrial control and monitoring, and image processing. The FX2LP functions in synchronous 
Slave FIFO mode and the FPGA acts as the master. This application note also provides a sample FX2LP firmware 
for Slave FIFO implementation and a sample VHDL and Verilog project for FPGA implementation. 

http://www.cypress.com/
http://www.cypress.com/?id=193
http://www.cypress.com/?rID=48371
http://www.cypress.com/?rID=46029
http://www.cypress.com/documentation/code-examples/usb-hi-speed-code-examples?source=search&keywords=hi-speed%20code%20examples
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Figure 1. FX2LP-FPGA System 
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The FX2LP can be interfaced with FPGA over two different modes. They are general programmable interface (GPIF) 
mode and Slave FIFO mode. 

 GPIF Mode: In this mode, FX2LP acts as a master to an external system and generates all the necessary control 

signals to read and write data from the external system. GPIF mode is usually preferred when the external 
system is not intelligent enough to act as a master to FX2LP (for example, USB camera application where image 
sensor is interfaced to FX2LP). In this case, most of the complexity of the interface implementation resides in the 
FX2LP firmware. 

 Slave FIFO Mode: In this mode, the external system interfaced to FX2LP is intelligent enough to generate the 

necessary read and write control signals, and it can act as a master to FX2LP. Here in this application note, 
FX2LP is configured to operate in the Slave FIFO mode. 

This application note describes the implementation of synchronous 16-bit Slave FIFO on FX2LP, and includes Verilog 
and VHDL sample projects that show how to interface an external FPGA to FX2LP‟s Slave FIFO interface. 

Note: Sample projects are implemented and tested on Xilinx Spartan 6 FPGAs. But codes provided with this 

application note are standard Verilog/VHDL codes. Hence, you can use these files as a reference for implementation 
on any FPGA. You need to select the correct FPGA device while synthesizing and implementing the project. 

It is assumed that you are familiar with the Slave FIFO interface, Verilog/VHDL coding, FPGA synthesis and 
implementation tools. Please refer to chapter 9 (Slave FIFOs) of the EZ-USB Technical Reference Manual.  

2 Hardware Connections 

The following figure illustrates the hardware connections required for interfacing the FX2LP to the FPGA. 

Figure 2. Hardware Connections Diagram 
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Table 1 describes the Slave FIFO interface signals as shown in Figure 2. 

http://www.cypress.com/
http://www.cypress.com/?rID=38232
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Table 1. Interface signals between FX2LP and FPGA 

Pin Name Description 

SLRD SLRD pin should be asserted by the master to read data from the FIFO. 

SLWR SLWR pin should be asserted by the master to write data to the FIFO. 

SLOE This is the enable signal for the FIFO‟s output driver. 

FIFOADR[1:0] These signals select the active endpoint. 

FD[15:0] 16-bit data bus.  

FLAGA/FLAGB/ 

FLAGC/FLAGD 

These flags are used by the FIFO to indicate status (Full, Empty, and Programmable). 

IFCLK The clock for the synchronous Slave FIFO interface.  In the design attached to this application note, this clock 
is configured to 48 MHz and it is generated by the FPGA interfaced to FX2LP. 

CLKOUT FX2LP has a CLKOUT pin which can supply 12-, 24-, or 48-MHz clock. 

3 Firmware Implementation 

The FX2LP firmware was developed using Keil uVision 2.0 IDE, the evaluation version of the IDE is present in the 
FX2LP DVK (CY3684) contents. This section describes the configuration required for implementing the Slave FIFO 
interface on the slave (FX2LP) and the master side (FPGA). 

3.1 FX2LP Code Architecture 

The firmware configures auto mode for both the IN and OUT endpoint FIFOs. This means that the packets are 
committed automatically from the external peripheral  to the USB domain for IN transfers and vice versa for OUT 
transfers. The 8051 CPU is not involved in committing packets.  Refer Slave FIFOs chapter in EZ-USB Technical 
Reference Manual to get more details on configuration of endpoint FIFOs in auto or manual mode. As bulk transfers 
are being used in this application, you need to configure the endpoints as Bulk. But based on the end application you 
can configure endpoint type as Interrupt, Control, or Isochronous in the USB descriptor file. 

Because the slave works in AUTO mode, no code is required for data transfer to and from the master, except for the 
initialization of the following registers (shown in Table 2). 

Table 2. Slave FIFO Configuration Registers 

Register Name Register Description 

IFCONFIG Configure the IFCONFIG register to place FX2LP in Slave FIFO mode  

PINFLAGSAB/ 

PINFLAGSCD 

Configure the FIFO Flags. FIFO Flags can be configured either to act in fixed mode or indexed mode. 
In indexed mode, FLAGA, FLAGB, and FLAGC are automatically configured as the Empty, Full, and 
Programmable flags respectively, for whichever endpoint the FIFOADR [1:0] lines are pointing at a 
particular instant. In fixed mode, each of the four flags can be configured to act as Empty, Full, or 
Programmable for any of the endpoints by writing into the programmable flag registers. Here in this 
design, FLAGA is configured as empty flag for EP2 OUT FIFO and FLAGD is configured as full flag for 
EP6 IN FIFO. 

EP2CFG/  

EP6CFG 

Configure EP2 as OUT, 512 bytes, quad-buffered endpoint and EP6 as IN, 512 bytes, quad-buffered 
endpoint. 

EP2FIFOCFG/  

EP6FIFOCFG 

Configure the FIFO as byte wide and operating in AUTO mode 

EP6AUTOINLENH/ 

EP6AUTOINLENL 

When the number of bytes in the EP6 FIFO becomes equal to the value specified by these registers, 
the packet gets auto-committed. The value specified should be less than or equal to the maximum 
packet size specified in the endpoint descriptor. 

 

http://www.cypress.com/
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=38232
http://www.cypress.com/?rID=38232
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4 FPGA Code Architecture 

The main function of the FPGA code is to monitor the Full and Empty flags of the Slave FIFO, and then read and 
write into the FIFOs accordingly. 

The interface clock (IFCLK) coming from the FPGA is shifted by 180 degrees to meet the setup time requirements of 
the Slave FIFO interface of FX2LP. 

Both Verilog and VHDL projects are implemented to show how to configure an FPGA to act as a master to an FX2LP 
Slave FIFO. Xilinx ISE Design Suite is used for code development. 

4.1 Data Loopback 

Any data written into the EP2 FIFO of FX2LP is read by the FPGA, and written into the EP6 FIFO. The associated 
project folder, Loopback (attached with this application note) contains this project. 

Figure 3. Loop Back State Diagram 
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State loop_back_idle is the idle state in which the SLRD, SLOE, and SLWR signals are high (de-asserted).The state 
machine moves to loop_back_read state when EP2 FIFO Empty flag (FLAGA) becomes High. In loop_back_read, 
FPGA reads data by asserting both SLRD and SLOE. State machine moves to loop_back_wait_flagd state when EP2 
FIFO Empty flag becomes Low. During this transition SLRD and SLOE signals are de-asserted.  In 
loop_back_wait_flagd state, FIFO address lines are driven to address EP6. It stays in this state till EP6 Full flag 
(FLAGD) is Low. State machine moves to loop_back_write state when FLAGD becomes high. In this state, FPGA 
writes same data to EP6 FIFO by asserting SLWR signal. 

4.2 Stream IN Transfers 

The FPGA monitors the Full flag of EP6 (FLAGD) and Sync (PC0 of FX2LP) signal. FPGA continuously writes 
incrementing data into the FIFO when both FLAGD and Sync signals are high. While writing data into the EP6 FIFO, 
the FPGA pauses the writing as soon as the Full flag gets asserted, and resumes the writing when the flag gets de-
asserted. The associated project folder, Stream IN contains this project. 

 

 

http://www.cypress.com/
http://www.xilinx.com/ise_eval/index.htm
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Figure 4. Data Stream IN State Diagram 
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There are two distinct states in this state machine: stream_in_idle and stream_in_write. stream_in_idle is the idle 
state, where SLWR stays high. As long as the EP6 Full flag (FLAGD) stays low (asserted), the state machine remains 
in stream_in_idle. After the Full flag and Sync (PC0 of FX2LP) signal goes high, there is a transition from state 
stream_in_idle to stream_in_write. In state stream_in_write, FPGA continuously writes incremental data to EP6 FIFO. 
State machine goes back to stream_in_idle state when FLAGD becomes Low. SLWR signal is de-asserted during 
this transition. 

4.3 Stream OUT Transfers 

Figure 5. Stream OUT State Diagram 
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There are two distinct states in this state machine: stream_out_idle and stream_out_read. stream_out_idle is the idle 
state, where SLRD and SLOE stays high. As long as the EP2 Empty flag (FLAGA) stays low (asserted), the state 
machine remains in stream_out_idle. After the EP2 Empty flag goes high, there is a transition from state 
stream_out_idle to stream_out_read. In state stream_out_read, FPGA continuously reads data from EP2 FIFO. State 
machine goes back to stream_in_idle state when FLAGA becomes Low. SLRD and SLOE signals are de-asserted 
during this transition. The associated project folder, Stream OUT contains this project. 

  

http://www.cypress.com/
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5 Simulation Waveforms 

This section shows you the simulation waveforms of Slave FIFO interface signals under different modes (Stream IN 
and Stream OUT). These waveforms are captured using Xilinx ISim tool. 

Figure 6. Data Stream IN – Waveform Front Beginning of Burst Write 

 

Figure 6 shows the SLWR assertion when FLAGD, or the Full flag is de-asserted. 

Figure 7. Data Stream IN End of Burst Write

 
 
After the Full flag gets asserted, SLWR gets de-asserted as shown in Figure 7. 

Figure 8. Data Stream OUT Beginning of Burst Read 

 

Figure 8 shows the SLRD assertion when FLAGA (EP2 EF) is de-asserted. 

http://www.cypress.com/
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Figure 9. Data Stream OUT End of Burst Read 

As soon as the FLAGA is asserted, the SLRD signal is deasserted as shown in Figure 9. 

6 Design Example  

This section provides a complete design example in which, a Xilinx Spartan 6 FPGA is connected to FX2LP over the 
synchronous Slave FIFO interface.  

A Spartan-6 compatible example is provided along with this application note. The example implements stream IN, 
stream OUT and loopback transfers. The behavior of the FPGA bit files are explained in the section FPGA Code 
Architecture. 

The hardware, firmware, and software components that were used to implement this design are discussed in the 
following sections: 

6.1 ZTEX Hardware Setup 

The ZTEX FX2LP - FPGA Module1.11 (shown in Figure 11) is used along with Experimental Board 1.3 (shown in 
Figure 12). The experimental board needs a power supply and a JTAG cable (to configure the FPGA). CON1 (on 
Experimental Board 1.3) is a standard DC power jack with 2.1-mm center pin (+) diameter and 5.5-mm barrel (-) 
diameter for a supply voltage of 4.5 V to 16 V. CON9 (on Experimental Board 1.3) is a 14-pin, 2.0-mm pitch JTAG 
connector standardized by Xilinx. The Polarization Key(hole) named „1‟ is present on both the module and the 
experimental board. ZTEX FX2LP - FPGA Module1.11 has to be mounted on Experimental Board 1.3 such that the 
polarization, on both, lie on the same corner. To identify the polarization holes on both the boards, refer to the layout 
diagrams available at the above links. 

Mount the FPGA Module 1.11 on Experimental Board 1.3 as shown in Figure 13. Power up the board with 5V or 12V 
power supply and connect to a host PC using a mini USB cable. 

Platform USB Cable II (JTAG adapter) is used to configure the Xilinx Spartan-6 FPGA present on the ZTEX FX2LP - 
FPGA Module1.11. „Chipscope Pro‟ (described in the following step) is the software compatible with this JTAG 
adapter. 

The hardware connection diagram is shown in Figure 10: 

http://www.cypress.com/
http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.e.html
http://www.ztex.de/usb-fpga-1/exp-1.3.e.html
http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.e.html
http://www.ztex.de/usb-fpga-1/exp-1.3.e.html
http://www.xilinx.com/products/boards-and-kits/HW-USB-II-G.htm
http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.e.html
http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.e.html
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Figure 10. Hardware Connections (Ztex board) 
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Figure 11. Ztex FX2LP – FPGA module 1.11 

 

http://www.cypress.com/


 

Designing with EZ-USB® FX2LP™ Slave FIFO Interface 

www.cypress.com Document No. 001-61345 Rev. *L 9 

Figure 12. Ztex Experimental Board 1.3 

 

Figure 13. Ztex FX2LP-FPGA Module on Top of Experimental Board 

 

   

  

http://www.cypress.com/
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6.2 Firmware and Software Components  

6.2.1  FX2LP F irmware 

Figure 14 shows how the FX2LP firmware modules fit together. 

Figure 14. FX2LP Firmware for Slave FIFO Interface 

main() {

TD_init();

Enable Interrupts

while(1)

  {

  if(GotSUD)

  TD_Poll();

  }}

fw.c

Descriptors

Handle

EP0
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GET_DESCRIPTOR

Slave.c

BOOL DR_SetConfiguration(void)

BOOL DR_GetConfiguration(void)

BOOL DR_Set_Interface(void)

BOOL DR_Get_Interface(void)

TD_Init()

{….}

TD_Poll()

{....}

void ISR_EP2inout(void) 

void ISR_EP6inout(void) 

void ISR_Sof(void) 

 

The Fw.c file contains the main function. It performs much of the USB maintenance such as enumeration, and calls 

specifically-named external functions in the application code (Slave.c) whenever customization is required. The Fw.c 
file mostly does not require your modification. After performing various housekeeping steps, it calls an external 
function called TD_init, which you provide in Slave.c. (The prefix TD stands for “Task Dispatcher”.) Then it enters an 
endless loop that checks for arrival of SETUP packets over CONTROL endpoint 0. The loop also checks for the USB 
suspend event, but this is not used by the Slave FIFO application. Every time through the loop, it calls the external 
TD_Poll function which you provide in the Slave.c file. In this application, the TD_Poll function takes care of the 
synchronization of data transfers between FPGA and the FX2LP. This function does nothing once the data transfers 
are started as endpoint FIFOs are configured in auto mode. 

Every USB peripheral receives two types of requests over its CONTROL endpoint: enumeration and operational.  

Enumeration 

When a USB device is attached, the host PC sends multiple GET_DESCRIPTOR requests to discover the device 
type and its requirements as part of a process called enumeration. The fw.c code intercepts these requests and 
handles them using the values stored in the dscr.a51 file. 

An advantage of using USB Frameworks is that the code has been tested and verified to pass USB “Chapter 9” 
requirements. Chapter 9 refers to the chapter in the USB Specification that deals with device requests (over EP0) and 
their proper responses.  

Operational 

Wherever user code is needed, fw.c calls a specifically-named external function with the DR prefix (Device Request) 
that you provide in the Slave.c file. For a simple application like Slave FIFO, there is only one configuration and one 

interface, so the two DR_Set-Get function pairs in Figure 14 simply store the Set values sent by the host and echo 
them back when the host issues the Get requests.  For more complex configurations, you can use these DR calls 
(“hooks”) to do things such as changing camera resolutions or routing requests to two different interfaces.  

The remainder of this section describes the three portions of this file that require user code to implement the Slave 
FIFO application. 

http://www.cypress.com/


 

Designing with EZ-USB® FX2LP™ Slave FIFO Interface 

www.cypress.com Document No. 001-61345 Rev. *L 11 

TD_Init 

This function does the following: 

 Sets the 8051 clock to 48 MHz. 

 Configures the Slave FIFO interface to use internal 48-MHz clock. 

IFCONFIG = 0xE3; //Internal clock, 48 MHz, Slave FIFO interface 

SYNCDELAY; 

 

 Configures EP2 as a BULK-OUT endpoint and EP6 as a BULK-IN endpoint. Both are quad-buffered and use 
512-byte FIFOs. EP4 and EP8 are deactivated as they are not used in this design. 

EP2CFG = 0xA0; //out 512 bytes, 4x, bulk 

SYNCDELAY;                     

EP6CFG = 0xE0; //in 512 bytes, 4x, bulk 

SYNCDELAY;               

EP4CFG = 0x02; //clear valid bit 

SYNCDELAY;                      

EP8CFG = 0x02; //clear valid bit 

SYNCDELAY;    

 

 Resets FIFOs. 

 Configures endpoint 2 FIFO in auto OUT mode with 16-bit interface and configures endpoint 6 in auto IN mode 
with 16-bit interface. 

EP2FIFOCFG = 0x00;// AUTOOUT=0, WORDWIDE=1 

// core needs to see AUTOOUT=0 to AUTOOUT=1 switch to arm endpoints 

SYNCDELAY;                     

EP2FIFOCFG = 0x11;// AUTOOUT=1, WORDWIDE=1 

SYNCDELAY;                     

EP6FIFOCFG = 0x0D;// AUTOIN=1, ZEROLENIN=1, WORDWIDE=1 

SYNCDELAY; 

 

 Configure FIFO flag outputs. FLAGA is configured as empty flag for EP2 OUT FIFO and FLAGD is configured as 
full flag for EP6 IN FIFO. 

PINFLAGSAB = 0x08; // FLAGA - EP2EF 

SYNCDELAY; 

PINFLAGSCD = 0xE0; // FLAGD - EP6FF 

SYNCDELAY; 

 

 Sets the PA1 pin (connected to PROG_B pin of FPGA) to high. This is required to enable the JTAG configuration 
of the FPGA.  If a new FX2LP firmware is being used with the ZTEX hardware setup, make sure to set the PA1 
pin of FX2LP high. 

OEA|=0x02; //Declare PA.1 as output 

SYNCDELAY; 

IOA|=0x02; //output 1 on PA.1 

SYNCDELAY; 

 

 Configures PC0 pin as output and PC1 as input. PC0 is used for synchronizing the data transfers between the 
FPGA and FX2LP. PC1 is used to know the readiness of FPGA to supply the Slave FIFO interface clock (IFCLK). 

OEC|=0x01; //PC.0 as output (SYNC signal) 

SYNCDELAY; 

IOC|=0x00; //output 0 on PC.0...SYNC signal is LOW  

SYNCDELAY; 

http://www.cypress.com/
http://wiki.ztex.de/doku.php?id=en:ztex_boards:ztex_fpga_boards:jtag
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OEC&=0xFD; //PC.1 as input (Clock changing signal) 

SYNCDELAY; 

 

TD_Poll 

TD_Poll is called in an infinite loop residing in the fw.c file (Figure 14). In this Slave FIFO design, TD_Poll is used to 

just change the interface clock (IFCLK) source. 

The example projects attached to this application note are designed to take the interface clock (IFCLK) from the 
FPGA. If you are using the ZTEX hardware board, then the FX2LP needs to be programmed first to set PROG_B pin 
(which is connected to PA1) of FPGA to HIGH to configure it. But the FX2LP firmware cannot configure the 
IFCONFIG register to work with external clock before configuring the FPGA to supply the interface clock (Note that 
the external IFCLK source must be present before the firmware sets IFCONFIG.7 = 0 (IFCLK is provided by external 
device)). So to meet this condition, initially IFCONFIG register is configured to use internal IFCLK and then 
IFCONFIG.7 is modified to take IFCLK from the FPGA once FPGA is up and running with the bit-stream. PC1 of 
FX2LP is used to do this change. PC0 of FX2LP is used as a Sync signal between FX2LP and FPGA. The following 
code is used to change the clock source from internal to external. 

if(!(IOC & 0x02)) 

  { 

  done_frm_fpga = 1; 

  } 

if((done_frm_fpga) && (IOC & 0x02)) 

  { 

  IFCONFIG = 0x03; //external clock input, Slave FIFO interface 

  SYNCDELAY; 

   

  IOC|=0x01; //output 1 on PC.0...SYNC signal is HIGH  

  SYNCDELAY; 

  done_frm_fpga = 0; 

  } 

 

FX2LP firmware is there as part of an attachment to this application note. Build it and download into FX2LP using the 
Control Center utility before you download bitstream into the FPGA. These steps are explained in the section 
Operating Procedure. 

6.2.2  Control  Center ut i l i t y  

Use the Cypress Control Center utility to download firmware and perform BULK transfers to FX2LP. The Control 
Center utility is available by installing the SuiteUSB development tools available from Cypress.  

6.2.3  Chipscope Pro  

„ChipScope Pro‟ software (provided along with Xilinx ISE Design Suite 14.1) is used to configure the Xilinx Spartan-6) 
FPGA. The evaluation version of Xilinx ISE Design Suite 14.1 could be used without license for 30 days. Or any other 
suitable way of configuring Xilinx Spartan-6 FPGA could be adopted. The steps to configure Xilinx Spartan-6 FPGA 
using Chipscope Pro are discussed in the following section. 

If any other version of „Chipscope Pro‟ software is being used, make sure it supports Xilinx Spartan-6 FPGA. 

 

  

http://www.cypress.com/
http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=34870
http://www.xilinx.com/tools/cspro.htm
http://www.xilinx.com/ise_eval/index.htm
http://www.xilinx.com/ise_eval/index.htm
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6.3 Operating Procedure 

6.3.1  Assigning CYUSB driver  

After the ZTEX FPGA module is connected to a host through USB, check the VID and PID of the device. This will be 
0x04b4 and 0x8613 if no firmware is flashed in the EEPROM that is on the board. This can be 0x2214 and 0x0100 if 
the firmware built with the ZTEX SDK is flashed. Make sure to add these VID and PID values in the CYUSB.inf file. 
Assign „CYUSB.sys‟ driver to this device. This is required for the device to show up in the Control Center utility.  

Please refer to the document CyUSB.pdf for more details about assigning CYUSB.sys for device with custom VID 
and PID. When you install the SuiteUSB development tools available from Cypress, CyUSB.pdf is available in the 
path: C:\Cypress\Cypress Suite USB 3.4.7\Driver (may vary with the installation path). 

6.3.2  Downloading FX2LP f i rmware 

Open the Control Center utility and download the FX2LP firmware (Click Program>FX2>RAM and navigate to 
slave.hex file in the associate project folder). 

Figure 15. Downloading Firmware Image into FX2LP RAM 

 

You need to press the button shown in the following figure to reconnect the device after you download slave.hex, if 
the default VID and PID of your device is 0x2214 and 0x0100. 

Figure 16. Reconnect Button on Control Center 

 

FX2LP enumerates as shown in Figure 17. Endpoint 2 is configured as Bulk OUT endpoint and Endpoint 6 is 
configured as Bulk IN endpoint. 

http://www.cypress.com/
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Figure 17. FX2LP Device View on Control Center After Downloading slave.hex 

 
 

6.3.3  Downloading FPGA bit -stream 

Connect the JTAG cable to the JTAG connector provided on the ZTEX Experimental board 1.3. After the previous 
step, the PROG_B pin of FPGA (connected to the PA1 pin of FX2LP) will be high, which is required to enable the 
JTAG configuration of FPGA. Now, configure the FPGA with the Spartan-6 compatible bit-stream (Stream IN or 
Stream OUT or Loopback bit-streams provided with this application note) as shown in the following figures. 

Figure 18. ChipScope Pro 
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Figure 19. Configuring FPGA Using ChipScope Pro 

 

 

Figure 20. Configuring FPGA Using ChipScope Pro 
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Figure 21. Configuring FPGA Using ChipScope Pro 

6.3.4  Veri fying the result  for  Loopback b it -s tream 

If FPGA is configured with Loopback bit-stream (in step 3), it implements a loopback on endpoints EP2OUT and 
EP6IN. Data sent from host to EP2 is read by the FPGA, and written to the EP6 endpoint FIFO.  

For verifying loopback operation, in the Control Center window choose Bulk Out Endpoint (0x02), then click the 
Transfer File-OUT button and browse 512_count.hex (provided with the attachment) to perform the data transfer. 
Now read the EP6IN buffer by clicking Transfer Data-IN to verify the data written into it. The steps are shown in the 

following figures. 
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Figure 22. Transferring a File to OUT Endpoint 2 
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Figure 23. Reading the Same Data From IN Endpoint 6 
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6.3.5  Veri fying the result  for  Stream  IN bit -stream 

If the FPGA is configured with Stream IN bit-stream (in step 4), it puts the FPGA in master mode. The FPGA then 
sends incremental data to endpoint 6 IN of FX2LP. For verifying the Stream IN operation, choose Bulk in endpoint 
(0x86) in the Control Center window and then click the Transfer Data-IN button. You can view the data as shown in 

the following figure: 

Figure 24. Reading Data From IN Endpoint 6  

 

 

6.3.6  Veri fying the result  for  Stream OUT bi t -st ream 

If the FPGA is configured with Stream OUT bit-stream (in step 4), it puts the FPGA in master mode. The FPGA then 
reads data from the OUT endpoint 2 of FX2LP. You can perform any number of OUT transfers to the endpoint 2 
using USB Control Center or you can run a streamer application to verify the OUT transfers on endpoint 2. FPGA 
reads data from the OUT endpoint 2 based on the flags coming from the FX2LP. FPGA simply ignores the received 
data and waits for more data from the OUT endpoint 2 of FX2LP. 
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6.4 Throughput Measurement 

The FPGA is configured with the code for data streaming and the interface throughput is measured with Cypress 
Streamer application, which is included in SuiteUSB 3.4.  A throughput of around 39 MB/s is measured on an Intel 7 
series/c216 chipset family running Windows 7, 64-bit, with the device bound to CyUSB.sys driver (version 3.4.7). 
More information about the throughput evaluation of a streaming device is available in the application note AN4053 - 
Streaming Data Through Isochronous/Bulk Endpoints on EZ-USB FX2™ and EZ-USB FX2LP™. 

Figure 25. Throughput Measured for Stream IN Transfers 

 

Figure 26. Throughput Measured for Stream OUT Transfers 

 
 

Note: These throughput numbers are measured by selecting 256 “Packets per Xfer” and 64 “Xfers to Queue”, in 

the streamer application. 
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7 Associated Project Files 

Table 3 describes the files attached with this application note.  

Table 3. Description of Application Note Files  

File/Folder Name Description 

FX2LP firmware FX2LP firmware project source files 

FPGA Source 
Code_Verilog  

Loopback FPGA Verilog source code to perform data loopback.  

Stream IN FPGA Verilog source code to perform stream IN data transfers. 

Stream OUT FPGA Verilog source code to perform stream OUT data transfers. 

FPGA Source 
Code_VHDL 

Loopback FPGA VHDL source code to perform data loopback. 

Stream IN FPGA VHDL source code to perform stream IN data transfers. 

Stream OUT FPGA VHDL source code to perform stream OUT data transfers. 

512_count.hex 512 bytes of data to perform file transfers. 

Firmware_SDCC FX2LP firmware project source files to be built using SDCC compiler. 

Firmware_SDCC/Release Files generated after building FX2LP firmware project using SDCC compiler. 

Readme_SDCC.pdf Document explaining the procedure to build the project using SDCC compiler. 

Sdccman.pdf The SDCC manual explaining about SDCC compiler. 

8 How to Port This Design to Work With Altera® FPGA 

You need to take care of the following steps while porting this design to work with Altera FPGA: 

1. Primitives to be generated using Altera tools: 

 PLL for clock generation 

 DDR to provide the interface clock to FX2LP 

2. Pin mapping of FX2LP Slave FIFO interface signals to FPGA. 

9 Summary 

This application note describes how to set up an FPGA-FX2LP interface with FX2LP configured in the Slave FIFO 
mode. The associated projects contain the firmware for initializing FX2LP in Slave FIFO mode and Verilog, HDL code 
for configuring an FPGA to act as master to FX2LP. 

About the Author 
Name: Rama Sai Krishna V 

Title: Applications Engineer Staff. 
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