

www.cypress.com Document No. 001-61345 Rev. *L 1

AN61345

Designing with EZ-USB® FX2LP™ Slave FIFO Interface
Author: Rama Sai Krishna V

Associated Project: Yes
Associated Part Family: CY7C68013A/CY7C68014A/CY7C68015A

Software Version: None
Related Application Notes: AN65209, AN63620

More code examples? We heard you.

For a consolidated list of USB HighSpeed Code Examples, visit here.

AN61345 provides a sample project to interface an FX2LP
™

 with FPGA using Slave FIFO interface. The interface,

described in the sample implementation, adds High-Speed USB connectivity to applications such as data acquisition,

industrial control and monitoring, and image processing. The project provided with this application note is

implemented and tested with Xilinx
®
 Spartan

®
 6 FPGA.

Contents

1 Introduction .. 1
2 Hardware Connections .. 2
3 Firmware Implementation .. 3

3.1 FX2LP Code Architecture 3
4 FPGA Code Architecture ... 4

4.1 Data Loopback .. 4
4.2 Stream IN Transfers .. 4
4.3 Stream OUT Transfers .. 5

5 Simulation Waveforms ... 6

6 Design Example .. 7
6.1 ZTEX Hardware Setup .. 7
6.2 Firmware and Software Components................ 10
6.3 Operating Procedure... 13
6.4 Throughput Measurement 20

7 Associated Project Files .. 21
8 How to Port This Design to Work
 With Altera

®
 FPGA .. 21

9 Summary ... 21

1 Introduction

The Cypress EZ-USB FX2LP is a flexible USB 2.0 peripheral controller designed to handle maximum USB 2.0
bandwidth. To take full advantage of the USB 2.0 480 Megabits per second signaling rate, FX2LP contains
specialized hardware to buffer the USB data and connect seamlessly to a variety of high-bandwidth external devices
such as MCUs, ASICs, and FPGAs.

An FX2LP-FPGA interface is implemented to add High-Speed USB connectivity for FPGA based applications, such
as data acquisition, industrial control and monitoring, and image processing. The FX2LP functions in synchronous
Slave FIFO mode and the FPGA acts as the master. This application note also provides a sample FX2LP firmware
for Slave FIFO implementation and a sample VHDL and Verilog project for FPGA implementation.

http://www.cypress.com/
http://www.cypress.com/?id=193
http://www.cypress.com/?rID=48371
http://www.cypress.com/?rID=46029
http://www.cypress.com/documentation/code-examples/usb-hi-speed-code-examples?source=search&keywords=hi-speed%20code%20examples

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 2

Figure 1. FX2LP-FPGA System

USB
Host

FPGA

FIFO
controller

User
Logic

Application
Cypress
FX2LP

16-bit
data

Control
Signals

U
S
B

The FX2LP can be interfaced with FPGA over two different modes. They are general programmable interface (GPIF)
mode and Slave FIFO mode.

 GPIF Mode: In this mode, FX2LP acts as a master to an external system and generates all the necessary control

signals to read and write data from the external system. GPIF mode is usually preferred when the external
system is not intelligent enough to act as a master to FX2LP (for example, USB camera application where image
sensor is interfaced to FX2LP). In this case, most of the complexity of the interface implementation resides in the
FX2LP firmware.

 Slave FIFO Mode: In this mode, the external system interfaced to FX2LP is intelligent enough to generate the

necessary read and write control signals, and it can act as a master to FX2LP. Here in this application note,
FX2LP is configured to operate in the Slave FIFO mode.

This application note describes the implementation of synchronous 16-bit Slave FIFO on FX2LP, and includes Verilog
and VHDL sample projects that show how to interface an external FPGA to FX2LP‟s Slave FIFO interface.

Note: Sample projects are implemented and tested on Xilinx Spartan 6 FPGAs. But codes provided with this

application note are standard Verilog/VHDL codes. Hence, you can use these files as a reference for implementation
on any FPGA. You need to select the correct FPGA device while synthesizing and implementing the project.

It is assumed that you are familiar with the Slave FIFO interface, Verilog/VHDL coding, FPGA synthesis and
implementation tools. Please refer to chapter 9 (Slave FIFOs) of the EZ-USB Technical Reference Manual.

2 Hardware Connections

The following figure illustrates the hardware connections required for interfacing the FX2LP to the FPGA.

Figure 2. Hardware Connections Diagram

Cypress FX2LP
Xilinx Spartan 6

FPGA

CLKOUT

FLAGA

SLOE

IFCLK

SLRD

SLWR

FIFOADR[1:0]

FD[15:0]

FLAGD

Table 1 describes the Slave FIFO interface signals as shown in Figure 2.

http://www.cypress.com/
http://www.cypress.com/?rID=38232

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 3

Table 1. Interface signals between FX2LP and FPGA

Pin Name Description

SLRD SLRD pin should be asserted by the master to read data from the FIFO.

SLWR SLWR pin should be asserted by the master to write data to the FIFO.

SLOE This is the enable signal for the FIFO‟s output driver.

FIFOADR[1:0] These signals select the active endpoint.

FD[15:0] 16-bit data bus.

FLAGA/FLAGB/

FLAGC/FLAGD

These flags are used by the FIFO to indicate status (Full, Empty, and Programmable).

IFCLK The clock for the synchronous Slave FIFO interface. In the design attached to this application note, this clock
is configured to 48 MHz and it is generated by the FPGA interfaced to FX2LP.

CLKOUT FX2LP has a CLKOUT pin which can supply 12-, 24-, or 48-MHz clock.

3 Firmware Implementation

The FX2LP firmware was developed using Keil uVision 2.0 IDE, the evaluation version of the IDE is present in the
FX2LP DVK (CY3684) contents. This section describes the configuration required for implementing the Slave FIFO
interface on the slave (FX2LP) and the master side (FPGA).

3.1 FX2LP Code Architecture

The firmware configures auto mode for both the IN and OUT endpoint FIFOs. This means that the packets are
committed automatically from the external peripheral to the USB domain for IN transfers and vice versa for OUT
transfers. The 8051 CPU is not involved in committing packets. Refer Slave FIFOs chapter in EZ-USB Technical
Reference Manual to get more details on configuration of endpoint FIFOs in auto or manual mode. As bulk transfers
are being used in this application, you need to configure the endpoints as Bulk. But based on the end application you
can configure endpoint type as Interrupt, Control, or Isochronous in the USB descriptor file.

Because the slave works in AUTO mode, no code is required for data transfer to and from the master, except for the
initialization of the following registers (shown in Table 2).

Table 2. Slave FIFO Configuration Registers

Register Name Register Description

IFCONFIG Configure the IFCONFIG register to place FX2LP in Slave FIFO mode

PINFLAGSAB/

PINFLAGSCD

Configure the FIFO Flags. FIFO Flags can be configured either to act in fixed mode or indexed mode.
In indexed mode, FLAGA, FLAGB, and FLAGC are automatically configured as the Empty, Full, and
Programmable flags respectively, for whichever endpoint the FIFOADR [1:0] lines are pointing at a
particular instant. In fixed mode, each of the four flags can be configured to act as Empty, Full, or
Programmable for any of the endpoints by writing into the programmable flag registers. Here in this
design, FLAGA is configured as empty flag for EP2 OUT FIFO and FLAGD is configured as full flag for
EP6 IN FIFO.

EP2CFG/

EP6CFG

Configure EP2 as OUT, 512 bytes, quad-buffered endpoint and EP6 as IN, 512 bytes, quad-buffered
endpoint.

EP2FIFOCFG/

EP6FIFOCFG

Configure the FIFO as byte wide and operating in AUTO mode

EP6AUTOINLENH/

EP6AUTOINLENL

When the number of bytes in the EP6 FIFO becomes equal to the value specified by these registers,
the packet gets auto-committed. The value specified should be less than or equal to the maximum
packet size specified in the endpoint descriptor.

http://www.cypress.com/
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=38232
http://www.cypress.com/?rID=38232

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 4

4 FPGA Code Architecture

The main function of the FPGA code is to monitor the Full and Empty flags of the Slave FIFO, and then read and
write into the FIFOs accordingly.

The interface clock (IFCLK) coming from the FPGA is shifted by 180 degrees to meet the setup time requirements of
the Slave FIFO interface of FX2LP.

Both Verilog and VHDL projects are implemented to show how to configure an FPGA to act as a master to an FX2LP
Slave FIFO. Xilinx ISE Design Suite is used for code development.

4.1 Data Loopback

Any data written into the EP2 FIFO of FX2LP is read by the FPGA, and written into the EP6 FIFO. The associated
project folder, Loopback (attached with this application note) contains this project.

Figure 3. Loop Back State Diagram

loop_back_idle

slrd = 1

sloe = 1

slwr = 1

faddr = 00

loop_back_read

slrd = 0

sloe = 0

slwr = 1

faddr = 00

loop_back_wait_

flagd

slrd = 1

sloe = 1

slwr = 1

faddr = 10

loop_back_write

slrd = 1

sloe = 1

slwr = 0

faddr = 10

flaga == 1

Flaga == 0
Flagd == 1

Flagd == 0 or fifo_empty == 1

slrd = 1, sloe = 1

slwr = 1

State loop_back_idle is the idle state in which the SLRD, SLOE, and SLWR signals are high (de-asserted).The state
machine moves to loop_back_read state when EP2 FIFO Empty flag (FLAGA) becomes High. In loop_back_read,
FPGA reads data by asserting both SLRD and SLOE. State machine moves to loop_back_wait_flagd state when EP2
FIFO Empty flag becomes Low. During this transition SLRD and SLOE signals are de-asserted. In
loop_back_wait_flagd state, FIFO address lines are driven to address EP6. It stays in this state till EP6 Full flag
(FLAGD) is Low. State machine moves to loop_back_write state when FLAGD becomes high. In this state, FPGA
writes same data to EP6 FIFO by asserting SLWR signal.

4.2 Stream IN Transfers

The FPGA monitors the Full flag of EP6 (FLAGD) and Sync (PC0 of FX2LP) signal. FPGA continuously writes
incrementing data into the FIFO when both FLAGD and Sync signals are high. While writing data into the EP6 FIFO,
the FPGA pauses the writing as soon as the Full flag gets asserted, and resumes the writing when the flag gets de-
asserted. The associated project folder, Stream IN contains this project.

http://www.cypress.com/
http://www.xilinx.com/ise_eval/index.htm

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 5

Figure 4. Data Stream IN State Diagram

stream_in_idle

slwr = 1

slrd = 1

sloe = 1

faddr = 10

stream_in_write

slwr = 0

slrd = 1

sloe = 1

faddr = 10

flagd == 1 and sync == 1

flagd == 0
slwr = 1

There are two distinct states in this state machine: stream_in_idle and stream_in_write. stream_in_idle is the idle
state, where SLWR stays high. As long as the EP6 Full flag (FLAGD) stays low (asserted), the state machine remains
in stream_in_idle. After the Full flag and Sync (PC0 of FX2LP) signal goes high, there is a transition from state
stream_in_idle to stream_in_write. In state stream_in_write, FPGA continuously writes incremental data to EP6 FIFO.
State machine goes back to stream_in_idle state when FLAGD becomes Low. SLWR signal is de-asserted during
this transition.

4.3 Stream OUT Transfers

Figure 5. Stream OUT State Diagram

stream_out_idle

slrd = 1

sloe = 1

slwr = 1

faddr = 00

stream_out_read

slrd = 0

sloe = 0

slwr = 1

faddr = 00

Flaga == 1

flaga == 0 slrd = 1, sloe = 1

There are two distinct states in this state machine: stream_out_idle and stream_out_read. stream_out_idle is the idle
state, where SLRD and SLOE stays high. As long as the EP2 Empty flag (FLAGA) stays low (asserted), the state
machine remains in stream_out_idle. After the EP2 Empty flag goes high, there is a transition from state
stream_out_idle to stream_out_read. In state stream_out_read, FPGA continuously reads data from EP2 FIFO. State
machine goes back to stream_in_idle state when FLAGA becomes Low. SLRD and SLOE signals are de-asserted
during this transition. The associated project folder, Stream OUT contains this project.

http://www.cypress.com/

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 6

5 Simulation Waveforms

This section shows you the simulation waveforms of Slave FIFO interface signals under different modes (Stream IN
and Stream OUT). These waveforms are captured using Xilinx ISim tool.

Figure 6. Data Stream IN – Waveform Front Beginning of Burst Write

Figure 6 shows the SLWR assertion when FLAGD, or the Full flag is de-asserted.

Figure 7. Data Stream IN End of Burst Write

After the Full flag gets asserted, SLWR gets de-asserted as shown in Figure 7.

Figure 8. Data Stream OUT Beginning of Burst Read

Figure 8 shows the SLRD assertion when FLAGA (EP2 EF) is de-asserted.

http://www.cypress.com/

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 7

Figure 9. Data Stream OUT End of Burst Read

As soon as the FLAGA is asserted, the SLRD signal is deasserted as shown in Figure 9.

6 Design Example

This section provides a complete design example in which, a Xilinx Spartan 6 FPGA is connected to FX2LP over the
synchronous Slave FIFO interface.

A Spartan-6 compatible example is provided along with this application note. The example implements stream IN,
stream OUT and loopback transfers. The behavior of the FPGA bit files are explained in the section FPGA Code
Architecture.

The hardware, firmware, and software components that were used to implement this design are discussed in the
following sections:

6.1 ZTEX Hardware Setup

The ZTEX FX2LP - FPGA Module1.11 (shown in Figure 11) is used along with Experimental Board 1.3 (shown in
Figure 12). The experimental board needs a power supply and a JTAG cable (to configure the FPGA). CON1 (on
Experimental Board 1.3) is a standard DC power jack with 2.1-mm center pin (+) diameter and 5.5-mm barrel (-)
diameter for a supply voltage of 4.5 V to 16 V. CON9 (on Experimental Board 1.3) is a 14-pin, 2.0-mm pitch JTAG
connector standardized by Xilinx. The Polarization Key(hole) named „1‟ is present on both the module and the
experimental board. ZTEX FX2LP - FPGA Module1.11 has to be mounted on Experimental Board 1.3 such that the
polarization, on both, lie on the same corner. To identify the polarization holes on both the boards, refer to the layout
diagrams available at the above links.

Mount the FPGA Module 1.11 on Experimental Board 1.3 as shown in Figure 13. Power up the board with 5V or 12V
power supply and connect to a host PC using a mini USB cable.

Platform USB Cable II (JTAG adapter) is used to configure the Xilinx Spartan-6 FPGA present on the ZTEX FX2LP -
FPGA Module1.11. „Chipscope Pro‟ (described in the following step) is the software compatible with this JTAG
adapter.

The hardware connection diagram is shown in Figure 10:

http://www.cypress.com/
http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.e.html
http://www.ztex.de/usb-fpga-1/exp-1.3.e.html
http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.e.html
http://www.ztex.de/usb-fpga-1/exp-1.3.e.html
http://www.xilinx.com/products/boards-and-kits/HW-USB-II-G.htm
http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.e.html
http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.e.html

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 8

Figure 10. Hardware Connections (Ztex board)

Cypress FX2LP
Xilinx Spartan 6

FPGA

CLKOUT

FLAG A

SLOE

IFCLK

SLRD

SLWR

FIFOADR[1:0]

FD[15:0]

FLAG D

PA1

PC0

PC1

Sync signal

Figure 11. Ztex FX2LP – FPGA module 1.11

http://www.cypress.com/

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 9

Figure 12. Ztex Experimental Board 1.3

Figure 13. Ztex FX2LP-FPGA Module on Top of Experimental Board

http://www.cypress.com/

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 10

6.2 Firmware and Software Components

6.2.1 FX2LP F irmware

Figure 14 shows how the FX2LP firmware modules fit together.

Figure 14. FX2LP Firmware for Slave FIFO Interface

main() {

TD_init();

Enable Interrupts

while(1)

 {

 if(GotSUD)

 TD_Poll();

 }}

fw.c

Descriptors

Handle

EP0

dscr.a51

GET_DESCRIPTOR

Slave.c

BOOL DR_SetConfiguration(void)

BOOL DR_GetConfiguration(void)

BOOL DR_Set_Interface(void)

BOOL DR_Get_Interface(void)

TD_Init()

{….}

TD_Poll()

{....}

void ISR_EP2inout(void)

void ISR_EP6inout(void)

void ISR_Sof(void)

The Fw.c file contains the main function. It performs much of the USB maintenance such as enumeration, and calls

specifically-named external functions in the application code (Slave.c) whenever customization is required. The Fw.c
file mostly does not require your modification. After performing various housekeeping steps, it calls an external
function called TD_init, which you provide in Slave.c. (The prefix TD stands for “Task Dispatcher”.) Then it enters an
endless loop that checks for arrival of SETUP packets over CONTROL endpoint 0. The loop also checks for the USB
suspend event, but this is not used by the Slave FIFO application. Every time through the loop, it calls the external
TD_Poll function which you provide in the Slave.c file. In this application, the TD_Poll function takes care of the
synchronization of data transfers between FPGA and the FX2LP. This function does nothing once the data transfers
are started as endpoint FIFOs are configured in auto mode.

Every USB peripheral receives two types of requests over its CONTROL endpoint: enumeration and operational.

Enumeration

When a USB device is attached, the host PC sends multiple GET_DESCRIPTOR requests to discover the device
type and its requirements as part of a process called enumeration. The fw.c code intercepts these requests and
handles them using the values stored in the dscr.a51 file.

An advantage of using USB Frameworks is that the code has been tested and verified to pass USB “Chapter 9”
requirements. Chapter 9 refers to the chapter in the USB Specification that deals with device requests (over EP0) and
their proper responses.

Operational

Wherever user code is needed, fw.c calls a specifically-named external function with the DR prefix (Device Request)
that you provide in the Slave.c file. For a simple application like Slave FIFO, there is only one configuration and one

interface, so the two DR_Set-Get function pairs in Figure 14 simply store the Set values sent by the host and echo
them back when the host issues the Get requests. For more complex configurations, you can use these DR calls
(“hooks”) to do things such as changing camera resolutions or routing requests to two different interfaces.

The remainder of this section describes the three portions of this file that require user code to implement the Slave
FIFO application.

http://www.cypress.com/

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 11

TD_Init

This function does the following:

 Sets the 8051 clock to 48 MHz.

 Configures the Slave FIFO interface to use internal 48-MHz clock.

IFCONFIG = 0xE3; //Internal clock, 48 MHz, Slave FIFO interface

SYNCDELAY;

 Configures EP2 as a BULK-OUT endpoint and EP6 as a BULK-IN endpoint. Both are quad-buffered and use
512-byte FIFOs. EP4 and EP8 are deactivated as they are not used in this design.

EP2CFG = 0xA0; //out 512 bytes, 4x, bulk

SYNCDELAY;

EP6CFG = 0xE0; //in 512 bytes, 4x, bulk

SYNCDELAY;

EP4CFG = 0x02; //clear valid bit

SYNCDELAY;

EP8CFG = 0x02; //clear valid bit

SYNCDELAY;

 Resets FIFOs.

 Configures endpoint 2 FIFO in auto OUT mode with 16-bit interface and configures endpoint 6 in auto IN mode
with 16-bit interface.

EP2FIFOCFG = 0x00;// AUTOOUT=0, WORDWIDE=1

// core needs to see AUTOOUT=0 to AUTOOUT=1 switch to arm endpoints

SYNCDELAY;

EP2FIFOCFG = 0x11;// AUTOOUT=1, WORDWIDE=1

SYNCDELAY;

EP6FIFOCFG = 0x0D;// AUTOIN=1, ZEROLENIN=1, WORDWIDE=1

SYNCDELAY;

 Configure FIFO flag outputs. FLAGA is configured as empty flag for EP2 OUT FIFO and FLAGD is configured as
full flag for EP6 IN FIFO.

PINFLAGSAB = 0x08; // FLAGA - EP2EF

SYNCDELAY;

PINFLAGSCD = 0xE0; // FLAGD - EP6FF

SYNCDELAY;

 Sets the PA1 pin (connected to PROG_B pin of FPGA) to high. This is required to enable the JTAG configuration
of the FPGA. If a new FX2LP firmware is being used with the ZTEX hardware setup, make sure to set the PA1
pin of FX2LP high.

OEA|=0x02; //Declare PA.1 as output

SYNCDELAY;

IOA|=0x02; //output 1 on PA.1

SYNCDELAY;

 Configures PC0 pin as output and PC1 as input. PC0 is used for synchronizing the data transfers between the
FPGA and FX2LP. PC1 is used to know the readiness of FPGA to supply the Slave FIFO interface clock (IFCLK).

OEC|=0x01; //PC.0 as output (SYNC signal)

SYNCDELAY;

IOC|=0x00; //output 0 on PC.0...SYNC signal is LOW

SYNCDELAY;

http://www.cypress.com/
http://wiki.ztex.de/doku.php?id=en:ztex_boards:ztex_fpga_boards:jtag

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 12

OEC&=0xFD; //PC.1 as input (Clock changing signal)

SYNCDELAY;

TD_Poll

TD_Poll is called in an infinite loop residing in the fw.c file (Figure 14). In this Slave FIFO design, TD_Poll is used to

just change the interface clock (IFCLK) source.

The example projects attached to this application note are designed to take the interface clock (IFCLK) from the
FPGA. If you are using the ZTEX hardware board, then the FX2LP needs to be programmed first to set PROG_B pin
(which is connected to PA1) of FPGA to HIGH to configure it. But the FX2LP firmware cannot configure the
IFCONFIG register to work with external clock before configuring the FPGA to supply the interface clock (Note that
the external IFCLK source must be present before the firmware sets IFCONFIG.7 = 0 (IFCLK is provided by external
device)). So to meet this condition, initially IFCONFIG register is configured to use internal IFCLK and then
IFCONFIG.7 is modified to take IFCLK from the FPGA once FPGA is up and running with the bit-stream. PC1 of
FX2LP is used to do this change. PC0 of FX2LP is used as a Sync signal between FX2LP and FPGA. The following
code is used to change the clock source from internal to external.

if(!(IOC & 0x02))

 {

 done_frm_fpga = 1;

 }

if((done_frm_fpga) && (IOC & 0x02))

 {

 IFCONFIG = 0x03; //external clock input, Slave FIFO interface

 SYNCDELAY;

 IOC|=0x01; //output 1 on PC.0...SYNC signal is HIGH

 SYNCDELAY;

 done_frm_fpga = 0;

 }

FX2LP firmware is there as part of an attachment to this application note. Build it and download into FX2LP using the
Control Center utility before you download bitstream into the FPGA. These steps are explained in the section
Operating Procedure.

6.2.2 Control Center ut i l i t y

Use the Cypress Control Center utility to download firmware and perform BULK transfers to FX2LP. The Control
Center utility is available by installing the SuiteUSB development tools available from Cypress.

6.2.3 Chipscope Pro

„ChipScope Pro‟ software (provided along with Xilinx ISE Design Suite 14.1) is used to configure the Xilinx Spartan-6)
FPGA. The evaluation version of Xilinx ISE Design Suite 14.1 could be used without license for 30 days. Or any other
suitable way of configuring Xilinx Spartan-6 FPGA could be adopted. The steps to configure Xilinx Spartan-6 FPGA
using Chipscope Pro are discussed in the following section.

If any other version of „Chipscope Pro‟ software is being used, make sure it supports Xilinx Spartan-6 FPGA.

http://www.cypress.com/
http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=34870
http://www.xilinx.com/tools/cspro.htm
http://www.xilinx.com/ise_eval/index.htm
http://www.xilinx.com/ise_eval/index.htm

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 13

6.3 Operating Procedure

6.3.1 Assigning CYUSB driver

After the ZTEX FPGA module is connected to a host through USB, check the VID and PID of the device. This will be
0x04b4 and 0x8613 if no firmware is flashed in the EEPROM that is on the board. This can be 0x2214 and 0x0100 if
the firmware built with the ZTEX SDK is flashed. Make sure to add these VID and PID values in the CYUSB.inf file.
Assign „CYUSB.sys‟ driver to this device. This is required for the device to show up in the Control Center utility.

Please refer to the document CyUSB.pdf for more details about assigning CYUSB.sys for device with custom VID
and PID. When you install the SuiteUSB development tools available from Cypress, CyUSB.pdf is available in the
path: C:\Cypress\Cypress Suite USB 3.4.7\Driver (may vary with the installation path).

6.3.2 Downloading FX2LP f i rmware

Open the Control Center utility and download the FX2LP firmware (Click Program>FX2>RAM and navigate to
slave.hex file in the associate project folder).

Figure 15. Downloading Firmware Image into FX2LP RAM

You need to press the button shown in the following figure to reconnect the device after you download slave.hex, if
the default VID and PID of your device is 0x2214 and 0x0100.

Figure 16. Reconnect Button on Control Center

FX2LP enumerates as shown in Figure 17. Endpoint 2 is configured as Bulk OUT endpoint and Endpoint 6 is
configured as Bulk IN endpoint.

http://www.cypress.com/
http://www.cypress.com/?rID=34870

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 14

Figure 17. FX2LP Device View on Control Center After Downloading slave.hex

6.3.3 Downloading FPGA bit -stream

Connect the JTAG cable to the JTAG connector provided on the ZTEX Experimental board 1.3. After the previous
step, the PROG_B pin of FPGA (connected to the PA1 pin of FX2LP) will be high, which is required to enable the
JTAG configuration of FPGA. Now, configure the FPGA with the Spartan-6 compatible bit-stream (Stream IN or
Stream OUT or Loopback bit-streams provided with this application note) as shown in the following figures.

Figure 18. ChipScope Pro

http://www.cypress.com/

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 15

Figure 19. Configuring FPGA Using ChipScope Pro

Figure 20. Configuring FPGA Using ChipScope Pro

http://www.cypress.com/

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 16

Figure 21. Configuring FPGA Using ChipScope Pro

6.3.4 Veri fying the result for Loopback b it -s tream

If FPGA is configured with Loopback bit-stream (in step 3), it implements a loopback on endpoints EP2OUT and
EP6IN. Data sent from host to EP2 is read by the FPGA, and written to the EP6 endpoint FIFO.

For verifying loopback operation, in the Control Center window choose Bulk Out Endpoint (0x02), then click the
Transfer File-OUT button and browse 512_count.hex (provided with the attachment) to perform the data transfer.
Now read the EP6IN buffer by clicking Transfer Data-IN to verify the data written into it. The steps are shown in the

following figures.

http://www.cypress.com/

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 17

Figure 22. Transferring a File to OUT Endpoint 2

http://www.cypress.com/

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 18

Figure 23. Reading the Same Data From IN Endpoint 6

http://www.cypress.com/

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 19

6.3.5 Veri fying the result for Stream IN bit -stream

If the FPGA is configured with Stream IN bit-stream (in step 4), it puts the FPGA in master mode. The FPGA then
sends incremental data to endpoint 6 IN of FX2LP. For verifying the Stream IN operation, choose Bulk in endpoint
(0x86) in the Control Center window and then click the Transfer Data-IN button. You can view the data as shown in

the following figure:

Figure 24. Reading Data From IN Endpoint 6

6.3.6 Veri fying the result for Stream OUT bi t -st ream

If the FPGA is configured with Stream OUT bit-stream (in step 4), it puts the FPGA in master mode. The FPGA then
reads data from the OUT endpoint 2 of FX2LP. You can perform any number of OUT transfers to the endpoint 2
using USB Control Center or you can run a streamer application to verify the OUT transfers on endpoint 2. FPGA
reads data from the OUT endpoint 2 based on the flags coming from the FX2LP. FPGA simply ignores the received
data and waits for more data from the OUT endpoint 2 of FX2LP.

http://www.cypress.com/

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 20

6.4 Throughput Measurement

The FPGA is configured with the code for data streaming and the interface throughput is measured with Cypress
Streamer application, which is included in SuiteUSB 3.4. A throughput of around 39 MB/s is measured on an Intel 7
series/c216 chipset family running Windows 7, 64-bit, with the device bound to CyUSB.sys driver (version 3.4.7).
More information about the throughput evaluation of a streaming device is available in the application note AN4053 -
Streaming Data Through Isochronous/Bulk Endpoints on EZ-USB FX2™ and EZ-USB FX2LP™.

Figure 25. Throughput Measured for Stream IN Transfers

Figure 26. Throughput Measured for Stream OUT Transfers

Note: These throughput numbers are measured by selecting 256 “Packets per Xfer” and 64 “Xfers to Queue”, in

the streamer application.

http://www.cypress.com/
http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=12967
http://www.cypress.com/?rID=12967

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 21

7 Associated Project Files

Table 3 describes the files attached with this application note.

Table 3. Description of Application Note Files

File/Folder Name Description

FX2LP firmware FX2LP firmware project source files

FPGA Source
Code_Verilog

Loopback FPGA Verilog source code to perform data loopback.

Stream IN FPGA Verilog source code to perform stream IN data transfers.

Stream OUT FPGA Verilog source code to perform stream OUT data transfers.

FPGA Source
Code_VHDL

Loopback FPGA VHDL source code to perform data loopback.

Stream IN FPGA VHDL source code to perform stream IN data transfers.

Stream OUT FPGA VHDL source code to perform stream OUT data transfers.

512_count.hex 512 bytes of data to perform file transfers.

Firmware_SDCC FX2LP firmware project source files to be built using SDCC compiler.

Firmware_SDCC/Release Files generated after building FX2LP firmware project using SDCC compiler.

Readme_SDCC.pdf Document explaining the procedure to build the project using SDCC compiler.

Sdccman.pdf The SDCC manual explaining about SDCC compiler.

8 How to Port This Design to Work With Altera® FPGA

You need to take care of the following steps while porting this design to work with Altera FPGA:

1. Primitives to be generated using Altera tools:

 PLL for clock generation

 DDR to provide the interface clock to FX2LP

2. Pin mapping of FX2LP Slave FIFO interface signals to FPGA.

9 Summary

This application note describes how to set up an FPGA-FX2LP interface with FX2LP configured in the Slave FIFO
mode. The associated projects contain the firmware for initializing FX2LP in Slave FIFO mode and Verilog, HDL code
for configuring an FPGA to act as master to FX2LP.

About the Author
Name: Rama Sai Krishna V

Title: Applications Engineer Staff.

http://www.cypress.com/

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 22

Document History

Document Title: AN61345 - Designing with EZ-USB
®
 FX2LP™ Slave FIFO Interface

Document Number: 001-61345

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 2896051 HRID 04/30/10 New Application note.

*A 3028509 HRID 09/13/10 Details on the PC specification on which the throughput measurement screenshot
was captured.

Link added to the application note detailing throughput measurement AN4053
Streaming Data Through Isochronous/Bulk Endpoints on EZ-USB FX2™ and EZ-
USB FX2LP.

Addition of FPGA details which were used for the project implementation in
abstract.

*B 3049785 HRID 10/06/10 Post to external web.

*C 3187032 HRID 03/03/2011 Included details of software tools used and the associated projects.

*D 3539468 PRJI 03/01/2012 Updated the document with Virtex5 FPGA.

Updated template. Modified abstract and major rewrite.

*E 3697826 PRJI 08/01/2012 Updated the document with verilog code for 22partan-3E FPGA.

*F 3732422 PRJI 09/03/2012 Updated the associated project files.

*G 3871103 PRJI 01/15/2013 Added a section on “Design Example” with a Spartan 6 compatible FPGA
example

Added a note regarding timing constraints of the examples other than the Spartan
6 example

*H 3938845 RSKV 03/27/2013 Details of Virtex 3 and 5 are removed.

Design is modified so that FX2LP accepts clock from FPGA.

Design is modified to support 16-bit interface.

Design is changed to support burst transfers.

Ztex hardware board pictures are added and major rewrite.

*I 4209055 RSKV 12/03/2013 Updated attachments in attached Associated Project:

FX2LP firmware source files that can be built with SDCC compiler are added in
the attachment.

Readme_SDCC.pdf is also provided with the attachment. This has the instructions
to build the FX2LP firmware project with SDCC compiler.

Updated Associated Project Files:

Updated Table 3 (To include the changes done to the attachment).

Updated in new template.

*J 4314060 RSKV 03/19/2014 Description of FX2LP firmware is added

*K 5194427 NIKL 03/29/2016 Added link to code examples

Updated template

*L 5705702 BENV 04/21/2017 Updated logo and copyright

http://www.cypress.com/
http://www.cypress.com/?rID=12967
http://www.cypress.com/?rID=12967
http://www.cypress.com/?rID=12967
http://www.cypress.com/?rID=12967

Designing with EZ-USB® FX2LP™ Slave FIFO Interface

www.cypress.com Document No. 001-61345 Rev. *L 23

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer‟s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2010-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress‟s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	Introduction
	Hardware Connections
	Firmware Implementation
	FX2LP Code Architecture

	FPGA Code Architecture
	Data Loopback
	Stream IN Transfers
	Stream OUT Transfers

	Simulation Waveforms
	Design Example
	ZTEX Hardware Setup
	Firmware and Software Components
	FX2LP Firmware
	Control Center utility
	Chipscope Pro

	Operating Procedure
	Assigning CYUSB driver
	Downloading FX2LP firmware
	Downloading FPGA bit-stream
	Verifying the result for Loopback bit-stream
	Verifying the result for Stream IN bit-stream
	Verifying the result for Stream OUT bit-stream

	Throughput Measurement

	Associated Project Files
	How to Port This Design to Work With Altera® FPGA
	Summary
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

