

 V1.0 1 2015-07

About this document

Scope and purpose

This Application Note describes the usage of the General Purpose Direct Memory Access (GPDMA) in the

XMC4000 microcontroller series.

Various transfer modes of the GPDMA are described, showing how to use the GPDMA to transfer data to and

from several peripherals.

Applicable Products

 XMC4000 Microcontrollers Family

References

Infineon: Example code: http://www.infineon.com/XMC4000 Tab: Documents

Infineon: XMC Lib, http://www.infineon.com/DAVE

Infineon: DAVE™, http://www.infineon.com/DAVE

Infineon: XMC Reference Manual, http://www.infineon.com/XMC4000 Tab: Documents

Infineon: XMC Data Sheet, http://www.infineon.com/XMC4000 Tab: Documents

 XMC4000
32-bit Microcontroller Series for Industrial Applications

General Pu rp oses Direct Memory Access

(GPDMA)
AP32290

 Application Note

http://www.infineon.com/XMC4000
http://www.infineon.com/DAVE
http://www.infineon.com/DAVE
http://www.infineon.com/XMC4000
http://www.infineon.com/XMC4000

General Purposes Direct Memory Access (GPDMA)

AP32290

Table of Contents

Application Note 2 V1.0, 2015-07

Table of Contents

Table of Contents .. 2

1 GPDMA Overview .. 3

1.1 Block diagram of GPDMA .. 3

1.2 GPDMA Terminology ... 4

2 Flow control and Handshaking Interface ... 5

2.1 Hardware handshaking ... 5

2.1.1 Enable of Hardware handshake ... 6

2.1.2 Routing service request signal to DMA channel ... 6

2.2 Software handshaking .. 7

3 DMA transfer block size ... 8

4 Source and Destination addressing .. 9

4.1 Address increment or decrement ... 9

4.2 Gather transfer (Source) ... 10

4.3 Scatter transfer (Destination) ... 11

5 Block transfer types .. 12

5.1 Auto reloading of channel register ... 12

5.2 Contiguous address between blocks.. 12

5.3 Block chaining using linked lists ... 13

6 Service Request Generation ... 14

7 Multi block transfer of VADC result registers to RAM for motor control 15

7.1 PWM period match interrupt to trigger ADC conversion ... 16

7.2 GPDMA configuration for multiple block transfer .. 18

7.2.1 Setting the transfer flow and priority ... 18

7.2.2 Enable the Hardware handshaking .. 18

7.2.3 Selecting the service request via the DMA Line Router ... 19

7.2.4 Source configuration .. 19

7.2.5 Destination configuration ... 20

7.2.6 Configure the block transfer type ... 20

7.2.7 Block transfer complete Interrupt .. 20

8 Single block transfer CRC checking ... 21

8.1 Setting up FCE for CRC checking .. 22

8.2 GPDMA configuration for Single block transfer ... 22

8.2.1 Setting the transfer flow and priority ... 23

8.2.2 Source configuration .. 23

8.2.3 Destination configuration ... 23

8.2.4 Configure the block transfer type ... 23

8.2.5 Block transfer complete Interrupt .. 23

9 Revision History .. 25

General Purposes Direct Memory Access (GPDMA)

AP32290

GPDMA Overview

Application Note 3 V1.0, 2015-07

1 GPDMA Overview
The General Purposes Direct Memory Access (GPDMA) is a module within the XMC4000 series to transfer data

without any CPU interference. When a DMA transfer request is generated, the GPDMA transfers data stored

at the source address to the destination address.

1.1 Block diagram of GPDMA

Channel 7
Channel ….

Channel 1
Channel 0

GPDMA Channels

Arbiter

DLR Line to Channel Selection

GPDMA0

Channel 3
Channel ….

Channel 1
Channel 0

GPDMA Channels

Arbiter

DLR Line to Channel Selection

GPDMA1

SRAMPeripherals
DMA Line Router

(DLR)

For Hardware trigger Source & Destination transfer

Figure 1 GPDMA Block Diagram

Note: Please note that the number of DMA channels is different for XCM4500, XMC4400, XMC4200 and

XMC4100.

Figure 1 shows the block diagram of the GPDMA as implemented in XMC4000 series:

 GPDMA channels: up to 12

 Arbiter

 Single AHB master interface for data transfer

 Single AHB slave interface for register configuration

 DMA Line Router (DLR)

One channel of the GPDMA is required for each source/destination pair. The master interface reads the data

from a source peripheral and writes it to a destination peripheral. Two physical transfers which consist of

Source to FIFO and FIFO to Destination are therefore required for each DMA transaction.

General Purposes Direct Memory Access (GPDMA)

AP32290

GPDMA Overview

Application Note 4 V1.0, 2015-07

1.2 GPDMA Terminology

Service partners terms

 The Source peripheral is the device from which the GPDMA reads data and stores the data in the

channel FIFO. The source peripheral teams up with a destination peripheral to form a channel.

 The Destination peripheral is the device to which the GPDMA writes the stored data from the FIFO

(previously read from the source peripheral).

The GPDMA0 channels 0 and 1 provide a FIFO size of 32 Bytes. These channels can be used to execute burst

transfers up to a fixed length burst size of 8. The remaining channels FIFO size is 8 Bytes.

GPDMA

FIFO
Source Destination

Figure 2 Source and Destination definition

Transfer terms

 A Single transaction is made up of a data width size of 8/16/32 bit.

 A Burst transaction can be composed of 1, 4 or 8 transaction.

 A Block transfer shall transfer the number of transaction specified by the block transfer size.

Data 00

Data 01

Data 02

Data 03

Data 16

Data 17

Data 18

Data 19

Data width

(8/16/32 bit)

Burst Transaction

size (1/4/8)

Block Transfer

Transaction 1

Transaction 2

Transaction 3

Transaction 4

Transaction 17

Transaction 18

Transaction 19

Transaction 20

Burst 1

Burst 5

Figure 3 GPDMA transfer definition

General Purposes Direct Memory Access (GPDMA)

AP32290

Flow control and Handshaking Interface

Application Note 5 V1.0, 2015-07

2 Flow control and Handshaking Interface
The device that controls the length of a block is known as the flow controller. The GPDMA, the source

peripheral, or the destination peripheral can be assigned as the flow controller depends on the selection of

the transfer flow in register CTLL.TT_FC. Typically if the block size is known, then the GPDMA must be

assigned as the flow controller.

Lastly the operation of the handshaking interface depends on whether the peripheral or the GPDMA is the

flow controller. The peripheral uses the handshaking interface to indicate to the GPDMA that it is ready to

transfer data over the AHB bus. A peripheral can request a DMA transaction through the GPDMA using the

Hardware or Software handshaking interface.

Table 1 Transfer flow, Flow Control and Handshake combination

Transfer flow Flow controller Handshaking

Memory to Memory GPDMA Not required

Memory to Peripheral GPDMA Hardware or Software

Peripheral to Memory GPDMA Hardware or Software

Peripheral to Peripheral GPDMA Hardware or Software

Peripheral to Memory Peripheral Software

Peripheral to Peripheral Source peripheral Software

Memory to Peripheral Peripheral Software

Peripheral to Peripheral Destination peripheral Software

2.1 Hardware handshaking

Hardware handshaking means to use the peripheral service request signal (eg. VADC.G0SR0, ERU0.SR0,

CCU40.SR0 etc) to request for a DMA transfer via a DMA Line Router (DLR). Before the transfer can begin the

GPDMA and DLR units must be set up according to the application requirements.

DLR Peripheral

Channel 0

FIFOSource Destination

GPDMA0

Service

Request

DMA

trigger

signal

Source hardware

handshaking

Destination hardware

handshaking

CFGL.HS_SEL_SRC = 0 CFGL.HS_SEL_DST = 0

DLR_SRSEL0/1

DLR_LNEN

CFGH.DEST_PER CFGH.SRC_PER

Figure 4 Hardware handshaking interface

General Purposes Direct Memory Access (GPDMA)

AP32290

Flow control and Handshaking Interface

Application Note 6 V1.0, 2015-07

2.1.1 Enable of Hardware handshake

The hardware handshake are available for both source and destination of a particular channel which can be

enabled by setting the register CFGL.HS_SEL_SRC = 0 and CFGL.HS_SEL_DST = 0 respectively. And the

accepted polarity of the service request signal by the GPDMA is by default active high. However the polarity

of the signal can be change if necessary by setting CFGL.SRC_HS_POL or CFGL.DST_HS_POL.

2.1.2 Routing service request signal to DMA channel

The DMA Line Router (DLR) is used to route a required service request signal from a peripheral to a

particular GPDMA channel. There are a total of 12 DMA lines (RS0 to RS11) and each DMA line offers selection

to certain service request source which can be configured using register DLR_SRSEL0/1. (See table 4-5 of

reference manual for DMA request source selection)

Then the DLR_LNEN register is used to enable selected DLR line and to reset a previously stored and

pending service request. Finally individual GPDMA channel configuration register CFGH.SRC_PER or

CFGH.DEST_PER can select the assigned DLR line.

DLR_SRSEL1

LN0

LN1

LN2

LN3

LN4

LN5

LN6

LN7

LN8

LN9

LN10

LN11

DLR_LNEN

RS0

RS1

RS2

RS3

RS4

RS5

RS6

RS7

RS8

RS9

RS10

RS11

DLR_SRSEL0

Table 4-5

DLR0

DLR1

DLR2

DRL3

DLR4

DLR5

DRL6

DLR7

DRL8

DLR9

DLR10

DLR11

GPDMA0_CHx_CFGH.

SRC_PER

GPDMA0_CHx_CFGH.

DEST_PER

DMA Line Router GPDMA

Channel

x

Figure 5 DLR Line to channel selection

General Purposes Direct Memory Access (GPDMA)

AP32290

Flow control and Handshaking Interface

Application Note 7 V1.0, 2015-07

2.2 Software handshaking

Additionally the user can trigger a DMA channel using a software trigger. Usually this is done in the ISR

responding to a peripheral service request, for example the peripheral being ready to accept new data.

Before the transfer can begin the GPDMA and NVIC units must be set up according to the application

requirements. Once the peripheral (source or destination) is ready for a transaction it sends a service

request to the CPU. The interrupt service routine then uses the GPDMA software registers, to initiate and

control a DMA transaction.

Table 2 Software handshake configuration

Software handshake request Enable software handshake Register setting

Source Software Transaction Request CFGL.HS_SEL_SRC = 1 REQSRCREG.CHx = 1

REQSRCREG.CHx = 1

Destination Software Transaction Request CFGL.HS_SEL_DST = 1 REQDSTREG.CHx = 1

REQDSTREG.CHx = 1

By setting the software register CFGL.HS_SEL_SRC = 1 and/or CFGL.HS_SEL_DST = 1 enables software

handshaking on the source and/or destination of channel x.

To start software handshaking to perform a block transfer from source to FIFO on channel 0 simply set

REQSRCREG.CH0 = 1 and REQSRCREG.WE_CH0 = 1.

The same process can be done for software handshaking from FIFO to destination by setting

REQDSTREG.CH0 = 1 and REQDSTREG.WE_CH0 = 1.

Software

Channel 0

FIFOSource Destination

GPDMA0

Source software

handshaking
Destination software

handshaking

Source request

REQSRCREG.CHx = 1

REQSRCREG.WE_CHx = 1

CFGL.HS_SEL_DST = 1 CFGL.HS_SEL_SRC = 1

Destination request

REQDSTREG.CHx = 1

REQDSTREG.WE_CHx =1

Figure 6 Software handshaking interface

General Purposes Direct Memory Access (GPDMA)

AP32290

DMA transfer block size

Application Note 8 V1.0, 2015-07

3 DMA transfer block size
Both the source and destination are required to configure the width (8/16/32 bit) of the data by

programming the source transfer width CTLL.SRC_TR_WIDTH and destination transfer width

CTLL.DST_TR_WIDTH of the CTLL register respectively. And the total number of data required for a transfer

block can be configured in the register CTLH.BLOCK_TS.

Figure 7 Block size configuration

Data 00

Data 01

Data 02

Data 9

8bit

CTLL.SRC_TR_WIDTH

= 00 (8bit)

CTLH.BLOCK_TS

= 10
Data 00

Data 01

Data 02

Data 9

Source Destination

CTLL.DST_TR_WIDTH

= 00 (8bit)

8bit

SAR+1

SAR+0

SAR+2

SAR+9

DAR+1

DAR+0

DAR+2

DAR+9

Data Width Data Width
B

lo
c

k
 s

iz
e

B
lo

c
k

 s
iz

e

General Purposes Direct Memory Access (GPDMA)

AP32290

Source and Destination addressing

Application Note 9 V1.0, 2015-07

4 Source and Destination addressing
The GPDMA module needs to know the start address of the source and destination before it can begin any

transfer. Therefore the source and destination base address have to be programmed into the Source

Address register SAR and the Destination Address register DAR respectively.

4.1 Address increment or decrement

For every next DMA transaction, the source and destination address can be increment or decrement by

setting the Source Address Increment CTLL.SINC or Destination Address Increment CTLL.DINC. However by

default the SINC and DINC is set to incremental mode.

OR

Source

SAR+1

SAR+0

SAR+2

SAR-1

SAR-2

Destination

DAR+1

DAR+0

DAR+2

DAR-1

DAR-2

CTLL.SINC =

Increment

CTLL.SINC =

Decrement

OR

CTLL.DINC =

Increment

CTLL.DINC =

Decrement

Base address for source

Eg. SAR = 0x08040000

Base address for

Destination

Eg. DAR = 0x20000400

Figure 8 Source and Destination address configuration

General Purposes Direct Memory Access (GPDMA)

AP32290

Source and Destination addressing

Application Note 10 V1.0, 2015-07

4.2 Gather transfer (Source)

Note: Only for GPDMA0 channel 0 to 1.

Gather transfer is relevant to source transfers within a block; we can program the GPDMA to have an interval

within a sequential address increment or decrement. This is known as the Gather transfer.

The Gather transfer works by incrementing or decrementing the source address by a programmed amount

specified in the Source Gather Count (SGRx.SGC) of the SGR register, which is also know as the “Gather

boundary “. When the Gather boundary is reached, the source address is then offset by the value stored in

the source gather interval (SGRx.SGI) field.

Data 00

Data 01

Data 02

Source

SAR+1

SAR+0

SAR+2

Data 03

Data 04

Data 05

SAR+4

SAR+3

SAR+5

Data 06

Data 07

Data 08

SAR+7

SAR+6

SAR+8

Data 09

Data 10

Data 11

SAR+10

SAR+9

SAR+11

Data 12SAR+12

Data 13

Data 14

Data 15

SAR+14

SAR+13

SAR+15

Data 00

Data 01

Data 03

Data 04

Data 06

Data 07

Data 09

Data 10

Data 12

Data 13

CTL.BLOCK_TS

= 10

Gather Interval

CHx_SGR.SGI = 1

Gather count / Boundary

CHx_SGR.SGC = 2
Block

transfer #1

GPDMA0_CHx_CTLL (x=0-1)

.SRC_GATHER_EN = 1

Figure 9 Example of Gather transfer

General Purposes Direct Memory Access (GPDMA)

AP32290

Source and Destination addressing

Application Note 11 V1.0, 2015-07

4.3 Scatter transfer (Destination)

Note: Only for GPDMA0 channel 0 to 1.

Scatter transfer is relevant to destination transfers within a block; we can program the GPDMA to have an

interval within a sequential address increment or decrement. This is known as the Scatter transfer.

The Scatter transfer works by incrementing or decrementing the source address by a programmed amount

specified in the Destination Scatter Count (DSRx.DSC) of the DSR register, which is also know as the “Scatter

boundary “. When the Scatter boundary is reached, the destination address is then offset by the value stored

in the destination scatter interval (DSRx.DSI) field.

Destination

DAR+1

DAR+0

DAR+2

DAR+4

DAR+3

DAR+5

DAR+7

DAR+6

DAR+8

DAR+10

DAR+9

DAR+11

DAR+12

DAR+14

DAR+13

DAR+15

Data 00

Data 01

Data 04

Data 03

Data 06

Data 07

Data 09

Data 10

Data 12

Data 13

CTL.BLOCK_TS

= 10

Scatter Interval

CHx_DSR.DSI = 3

Scatter count / Boundary

CHx_DSR.DSC = 2

DAR+16

DAR+18

DAR+17

DAR+19

DAR+20

DAR+21

Data 00

Data 01

Data 03

Data 04

Data 06

Data 07

Data 09

Data 10

Data 12

Data 13

Block

transfer #1

GPDMA0_CHx_CTLL (x=0-1)

.DST_SCATTER_EN = 1

Figure 10 Example of Scatter transfer

General Purposes Direct Memory Access (GPDMA)

AP32290

Block transfer types

Application Note 12 V1.0, 2015-07

5 Block transfer types
The types of DMA block transfer from source to destination are achievable by using the combinations of

Auto Reload method, Contiguous method or Linked List method.

1

Source Destination

0. Single block transfer

1

Source Destination

1. Source Contiguous and Destination reload

2

1

Source Destination

2. Source Reload and Destination Contiguous

2

1

Source Destination

3. Source Reload and Destination Reload

2

1

Source Destination

4. Source Contiguous and Destination Linked List

2

1

Source Destination

6. Source Linked List and Destination Contiguous

Source Destination

5. Source Reload and Destination Linked List

2

1

Source Destination

7. Source Linked List and Destination Reload

2

1

Source Destination

8. Source Linked List and Destination Linked List

2

3

3 3

2

1

Single block transfer

Multiple Block Reload/Contiguous and Linked List transfer

33

Interval

Multiple Block Reload/Contiguous transfer

Interval

Interval

Interval

Interval Interval

Figure 11 Types of block transfer

5.1 Auto reloading of channel register

For Auto reload method, means that the GPDMA channel registers SAR, DAR and CTL are reloaded with their

initial values at the completion of each block; hence there is no change in the source and destination

address. To configure for auto reload mode set CFGL.RELOAD_SRC = 1 and/or CFGL.RELOAD_DST = 1

5.2 Contiguous address between blocks

In this case the address between successive blocks is selected as a continuation from the end of the previous

block. To configure for contiguous method set CFGL.RELOAD_SRC = 0 or CFGL.RELOAD_DST = 0. Please

note that either the source or destination can be contiguous. However if register is set as

CFGL.RELOAD_SRC = 0 and CFGL.RELOAD_DST = 0 will result to a single block transfer method.

General Purposes Direct Memory Access (GPDMA)

AP32290

Block transfer types

Application Note 13 V1.0, 2015-07

5.3 Block chaining using linked lists

To extend the flexibility of multi block transfer, we can reuse the concept of reloading the SAR, DAR, CTLH

and CTLL registers through the use of linked list. A chain of linked lists is pre programmed into the XMC flash

memory before the start of DMA transfer and each linked list contains the configuration of the CTLH, CTLL,

LLP, DAR and SAR. During the process of multi block transfer, the GPDMA will reprogram the channel

registers (CTLH, CTLL, LLP, DAR and SAR) according to the value stated in the linked list for that block prior

to the start of each block transfer. For the next block transfer, the GPDMA will reference the LLP register

which points to the next linked list.

Hence linked list transfer offers a very flexible way of DMA block transfer from different locations of the

source and destination.

Note: Linked list are only available on channels 0 and 1 of GPDMA0

SAR = S0

DAR = D0

LLP

CTLL

Source Address: SAR

Destination Address: DAR

Control Register High: CTLH CTLH

Control Register Low: CTLL

SAR = S1

DAR = D1

LLP

CTLL

CTLH

SAR =S2

DAR = D2

LLP =
0x0000

CTLL

CTLH

Linked List 0 Linked List 1 Linked List 3

Block 1

Block 2

Block 0
S0

S1

S2

Block 0

Block 1

Block 2
D2

D0

D1

Source Destination

Note:

S0, S1, S2 are the base address for source

D0, D1, D2 are the base address for destination

1

2

3

Channel0 register

Link List Pointer: LLP

Linked list

created for

Block 0

transfer

Linked list

created for

Block 1

transfer

Linked list

created for

Block 2

transfer

Point to the next

Linked list

Point to the next

Linked list

Channel register value is

reloaded from the Linked list

GPDMA0 Flash Memory

Figure 12 Multi block transfer using Linked List method

General Purposes Direct Memory Access (GPDMA)

AP32290

Service Request Generation

Application Note 14 V1.0, 2015-07

6 Service Request Generation
The following DMA Events can be generated for each channel due to DMA activity Block Transfer Complete

Interrupt

 DMA Transfer Complete Interrupt

 Destination Transaction Complete Interrupt

 Source Transaction Complete Interrupt.

 Error Interrupt.

Each DMA Event for each channel is directly stored in the according “RAW Status” bit.The user software can

control the processing by writing to the according “Mask” and “Clear” bits. Once the event is forwarded to

the “Status” bit its occurrence is registered in the Combined Interrupt Status Register and a service request

is triggered to the NVIC which is linked to the interrupt nodes of GPDMA0.SR0 or GPDMA1.SR0.

Figure 13 DMA Event to Service Request Flow

General Purposes Direct Memory Access (GPDMA)

AP32290

Multi block transfer of VADC result registers to RAM for motor control

Application Note 15 V1.0, 2015-07

7 Multi block transfer of VADC result registers to RAM for

motor control
The CCU8 is used to generate the center align PWM for IGBT switching. [1] Hence during CCU8 period match

interrupt, CCU80.SR2 signal will be used to trigger VADC queue source conversion to measure the line

current and back EMF. [2] After completion of the ADC conversion, the result interrupt VADC.G0SR2 is

generated to trigger the GPDMA channel 0 via the DLR. [3] Once the assigned channel received the hardware

handshaking signal, the GPDMA shall then transfer the values from the VADC result register (Source) to a

designated RAM array (Destination). [4] Finally a block transfer complete interrupt will be generated by the

GPDMA to indicate an update of the ADC result value in the RAM array has been done and ready for futher

processing.

GPDMA
Channel 0

DLR Line to
Channel
Selection

GPDMA0

DMA Line Router
(DLR)

For Hardware

handshake

Source to Destination

DMA transfer

CCU80.SR2

VADC.

G0SR2

VADC_G0_RES0Result
Interrupt

VADC_G0

Period match
interrupt

CCU8

PWM center
aligned

Block transfer
interrupt

1

3

2

4

VADC_G0_RES1

VADC_G0_RES7

Queue
Source

Period

Match

interrupt

SRAM

DMA_RES0

DMA_RES1

DMA_RES7

BEMF_U

BEMF_V

BEMF_W

Current_U

Current_V

Current_W

XMC4500Software

GPDMA_VADC_Res_Update

Hardware signals

Figure 14 Block diagram for fast VADC result update

Therefore for this use case, we shall make the following configuration for GPDMA channel 0.

 Hardware handshake interface: VADC result interrupt signal

 Block transfer size = 8 and Width = 16bit

 Source: VADC result registers [0-7] VADC_G0_RES0 and Destination: RAM

 Gather transfer is used as we only want to extracted 16bit result from the 32bit VADC result register

 Block Transfer type: Source reload and Destination reload

 GPDMA interrupt: Block complete interrupt

General Purposes Direct Memory Access (GPDMA)

AP32290

Multi block transfer of VADC result registers to RAM for motor control

Application Note 16 V1.0, 2015-07

7.1 PWM period match interrupt to trigger ADC conversion

Setting up for CCU8 PWM period match interrupt

From “Table 19-13 Digital Connections in the XMC4500” of the reference manual, we understand that the

VADC module can be triggered by CCU8 via signals from CCU80.SR2 or CCU80.SR3.

Figure 15 Table 19-13 Digital Connections in the XMC4500

Therefore for this case we shall configure the CCU8 period match event to be linked to service request node

CCU80.SR2 as the triggering signal for VADC conversion.

XMC_CCU8_SLICE_EnableEvent(PWM_SLICE_PTR, XMC_CCU8_SLICE_IRQ_ID_PERIOD_MATCH);
XMC_CCU8_SLICE_SetInterruptNode(PWM_SLICE_PTR, XMC_CCU8_SLICE_IRQ_ID_PERIOD_MATCH,
XMC_CCU8_SLICE_SR_ID_2);
NVIC_SetPriority(CCU80_2_IRQn, 3U);

NVIC_EnableIRQ(CCU80_2_IRQn);

Setting up for Queue source AD conversion upon external trigger request

This is to enable the ADC for external trigger of XMC_CCU_80_SR2 at the rising edge.

XMC_VADC_QUEUE_CONFIG_t g_queue_handle =
{
 .req_src_priority = (uint8_t)3,
 .conv_start_mode = XMC_VADC_STARTMODE_WFS,
 .external_trigger = (bool) true,
 .trigger_signal = XMC_CCU_80_SR2,
 .trigger_edge = XMC_VADC_TRIGGER_EDGE_RISING,
 .gate_signal = XMC_VADC_REQ_GT_A,
 .timer_mode = (bool) false,

};

The below configuration for Queue entry 0, means that it will start AD conversion on channel number 0 upon

receiving an external trigger request.

XMC_VADC_QUEUE_ENTRY_t g_queue_entry[VADC_QUEUE_MAX] =
{
 //Queue 0
 {
 .channel_num = 0,
 .refill_needed = true,
 .generate_interrupt = false,
 .external_trigger = true

 },

General Purposes Direct Memory Access (GPDMA)

AP32290

Multi block transfer of VADC result registers to RAM for motor control

Application Note 17 V1.0, 2015-07

}

Setting up ADC result event to trigger GPDMA transfer

Next we need to enable the Result Event of the last AD conversion channel in the queue. This is to indicate

that the conversion has completed for all channels and the results are ready. Hence we can then route this

signal to trigger the GPDMA for transfer.

XMC_VADC_RESULT_CONFIG_t g_result_handle[VADC_RES_MAX] =
{

// Result register 7
 {
 .post_processing_mode = XMC_VADC_DMM_REDUCTION_MODE,
 .data_reduction_control = 0,
 .part_of_fifo = false,/* No FIFO */
 .wait_for_read_mode = true, /* WFS */
 .event_gen_enable = true /* Result event */
 },

}

For this ADC Result Event, we shall link it to service request node VADC.G0SR2.

XMC_VADC_GROUP_SetResultInterruptNode(VADC_G0, 7, XMC_VADC_SR_GROUP_SR2);
NVIC_SetPriority(VADC0_G0_2_IRQn, VADC0_G0_2_IRQn_10);

NVIC_EnableIRQ(VADC0_G0_2_IRQn);

General Purposes Direct Memory Access (GPDMA)

AP32290

Multi block transfer of VADC result registers to RAM for motor control

Application Note 18 V1.0, 2015-07

7.2 GPDMA configuration for multiple block transfer

To begin the GPDMA configuration we had to create a channel configuration structure as shown below. After

that the initialization parameters of the DMA channel shall be configured within this structure.

XMC_DMA_CH_CONFIG_t GPDMA0_Ch0_config =
{
 .enable_interrupt = true,

.dst_transfer_width = XMC_DMA_CH_TRANSFER_WIDTH_16,
 .src_transfer_width = XMC_DMA_CH_TRANSFER_WIDTH_16,
 .dst_address_count_mode = XMC_DMA_CH_ADDRESS_COUNT_MODE_INCREMENT,
 .src_address_count_mode = XMC_DMA_CH_ADDRESS_COUNT_MODE_INCREMENT,
 .dst_burst_length = XMC_DMA_CH_BURST_LENGTH_8,
 .src_burst_length = XMC_DMA_CH_BURST_LENGTH_8,
 .enable_src_gather = true,
 .enable_dst_scatter = false,
 .transfer_flow = XMC_DMA_CH_TRANSFER_FLOW_P2M_DMA,
 .src_addr = (uint32_t) &VADC_G0->RES[0],
 .dst_addr = (uint32_t) &verify_ADC_Result[0],
 .src_gather_interval = 1,
 .src_gather_count = 1,
 .dst_scatter_interval = 0,
 .dst_scatter_count = 0,
 .block_size = 8,
 .transfer_type = XMC_DMA_CH_TRANSFER_TYPE_MULTI_BLOCK_SRCADR_RELOAD_DSTADR_RELOAD,
 .priority = XMC_DMA_CH_PRIORITY_7,
 .src_handshaking = XMC_DMA_CH_SRC_HANDSHAKING_HARDWARE,
 .src_peripheral_request = DMA0_PERIPHERAL_REQUEST_VADC_G0SR2_1,
};

7.2.1 Setting the transfer flow and priority

As hardware handshaking is required only from the source peripheral (VADC). Therefore we can select the

transfer flow from peripheral to memory (_P2M) with DMA _DMA) as the flow controller.

Since there is no other DMA channel is configured in this case, therefore the priority is not relevant.

.transfer_flow = XMC_DMA_CH_TRANSFER_FLOW_P2M_DMA,

.priority = 7,

7.2.2 Enable the Hardware handshaking

When the VADC (Source) is ready, it shall instruct the GPDMA to transfer data from the result registers to the

GPDMA FIFO. For this case hardware handshaking is necessary for the source. Next to transfer data from the

GPDMA FIFO to memory (Destination), no handshaking is required for the destination as the memory is

always in ready state.

.src_handshaking = XMC_DMA_CH_SRC_HANDSHAKING_HARDWARE,

General Purposes Direct Memory Access (GPDMA)

AP32290

Multi block transfer of VADC result registers to RAM for motor control

Application Note 19 V1.0, 2015-07

7.2.3 Selecting the service request via the DMA Line Router

After the hardware handshake is enabled, the next thing is to route the service request signal VADC.G0SR2

(VADC result event) to GPDMA channel 0. This can be done by simply searching for VADC_G0SR2 in the file

xmc_dma_map.h and assigned the macro to the configuration structure as shown below:-

.src_peripheral_request = DMA0_PERIPHERAL_REQUEST_VADC_G0SR2_1,

7.2.4 Source configuration

The source consists of 8 VADC result registers from VADC_G0RES0 to VADC_G0RES7 (block size = 8) with

individual 16 bit RESULT (transfer width = 16bit) within the 32bit register. From the assigned base address of

the VADC_G0_RES_ADDRESS, the GPDMA will increament according to the programmed transfer width to

the next address location.

Note: Block size configuration is the same for both the source and destination

.block_size = 8,

.src_addr = VADC_G0_RES_ADDRESS,

.src_transfer_width = XMC_DMA_CH_TRANSFER_WIDTH_16,

.src_address_count_mode = XMC_DMA_CH_ADDRESS_COUNT_MODE_INCREMENT,

Note: One word is equal to 16bit

As only the 16bit RESULT is required out of the 32bit result register, therefore we can program the GPDMA to

transfer one word (Gather count = 1) from the start of the base address followed by interval of one word

(Gather Interval =1) for the next word to be transferred.

.enable_src_gather = true,

.src_gather_count = 1,

.src_gather_interval = 1,

G0RES0.RESULT0x40004700

G0RES0.XXXXXX

G0RES1.RESULT0x40004704

G0RES1.XXXXXX

G0RES2.RESULT0x40004708

G0RES2.XXXXXX

G0RES7.RESULT0x4000471C

G0RES7.XXXXXX

Interval

Count

16bit
Figure 16 Gather transfer

General Purposes Direct Memory Access (GPDMA)

AP32290

Multi block transfer of VADC result registers to RAM for motor control

Application Note 20 V1.0, 2015-07

7.2.5 Destination configuration

An array of 8 words (transfer width = 16bit) is created for the storage of the converstion result. Therefore the

destination is configured with the base address (&DMA_ADC_Result[0])of the array with incremental count.

.dst_addr = (uint32_t)&DMA_ADC_Result[0],

.dst_transfer_width = XMC_DMA_CH_TRANSFER_WIDTH_16,

.dst_address_count_mode = XMC_DMA_CH_ADDRESS_COUNT_MODE_INCREMENT,

7.2.6 Configure the block transfer type

The GPDMA is programmed for multiblock source reload and destination reload.

.transfer_type = XMC_DMA_CH_TRANSFER_TYPE_MULTI_BLOCK_SRCADR_RELOAD_DSTADR_RELOAD,

7.2.7 Block transfer complete Interrupt

After a successful DMA block transfer of the VADC result registers to the designated RAM location, the user is

notified with a block transfer complete interrupt from the GPDMA.

.enable_interrupt = true

void GPDMA_Init(void)

{

XMC_DMA_CH_EnableEvent(XMC_DMA0, CH0, XMC_DMA_CH_EVENT_BLOCK_TRANSFER_COMPLETE);

NVIC_SetPriority(GPDMA0_0_IRQn, 11); //Priority no.11

NVIC_EnableIRQ(GPDMA0_0_IRQn);

}

User can place their codes in the interrupt routine to process the value of the result registers.

#define GPDMA_BlockTransfer_ISR GPDMA0_0_IRQHandler

void GPDMA_BlockTransfer_ISR(void)
{
 uint32_t event;

 event = XMC_DMA_CH_GetEventStatus(XMC_DMA0,CH0);

 if(event == XMC_DMA_CH_EVENT_BLOCK_TRANSFER_COMPLETE)
 {

XMC_DMA_CH_ClearEventStatus(XMC_DMA0, CH0,
XMC_DMA_CH_EVENT_BLOCK_TRANSFER_COMPLETE);

 }

 /* Coding to process array verify_ADC_Result[0] */

}

General Purposes Direct Memory Access (GPDMA)

AP32290

Single block transfer CRC checking

Application Note 21 V1.0, 2015-07

8 Single block transfer CRC checking
In this use case, [1] the GPDMA is used to feed the Flexible CRC Engine (FCE) to calculate the CRC-32 on a

fictitious frame of data. In this process the CRC-32 of a frame of 256 words is calculated. [2] When the block

transfer is completed an interrupt will be triggered. [3] And in the interrupt handler, the GPDMA shall

compare the values of the calculated CRC with a pre determined CRC value stored in the CRC check register.

If the calculated CRC matches the expected one, then the status of a variable will be updated as PASS.

CRC_data
[256]

Dest. Address
Reg = FCE_IR

Source address Reg
= CRC_data[0]

Channel 0

GPDMA0 FCEMemory

Block transfer
interrupt

Software

GPDMA_BlockTransfer_ISR

XMC4500

3

CRC Result
register

CRC Input register

CRC Check
register=?

1 2

Figure 17 FCE upload with DMA

Therefore for this use case, we shall make the following configuration for GPDMA channel 0.

 Block transfer size = 256 and Width = 32bit

 Source: CRC_Data (Memory) and Destination: CRC input register

 Block Transfer type: Single block transfer

 GPDMA interrupt: Block complete interrupt

General Purposes Direct Memory Access (GPDMA)

AP32290

Single block transfer CRC checking

Application Note 22 V1.0, 2015-07

8.1 Setting up FCE for CRC checking

The FCE is configured to use CRC Kernel 0, which is a CRC32 with ethernet polynomial of 0x04C11DB7. And

the initial value (seedvalue) is configured as 0xffffffff.

XMC_FCE_t crc_engine =
{
 .kernel_ptr = FCE_KE0,
 .fce_cfg_update.config_xsel = true,
 .fce_cfg_update.config_refin = true,
 .fce_cfg_update.config_refout = true,
 .seedvalue = 0xffffffffU

};

The check value is aslo input into the CRC Check register such that the FCE hardware can do a comparison

with the CRC Result register to determine if they are matching.

#define CRC_CHECK_VALUE 0x99f69cd9

/* Set expected CRC-32 */

XMC_FCE_UpdateCRCCheck(&crc_engine, CRC_CHECK_VALUE);

8.2 GPDMA configuration for Single block transfer

For this use case single block DMA transfer is being used with transfer flow from Memory to Memory as

handshaking is not required due to the reason that both the memory and FCE are in ready state.

XMC_DMA_CH_CONFIG_t GPDMA0_Ch0_config =
{
.enable_interrupt = true,
.dst_transfer_width = XMC_DMA_CH_TRANSFER_WIDTH_32,
.src_transfer_width = XMC_DMA_CH_TRANSFER_WIDTH_32,
.dst_address_count_mode = XMC_DMA_CH_ADDRESS_COUNT_MODE_NO_CHANGE,
.src_address_count_mode = XMC_DMA_CH_ADDRESS_COUNT_MODE_INCREMENT,
.dst_burst_length = XMC_DMA_CH_BURST_LENGTH_8,
.src_burst_length = XMC_DMA_CH_BURST_LENGTH_8,
.enable_src_gather = false,
.enable_dst_scatter = false,
.transfer_flow = XMC_DMA_CH_TRANSFER_FLOW_M2M_DMA,
.src_addr = (uint32_t) &CRC_data,
.dst_addr = (uint32_t) &(FCE_KE0->IR),
.src_gather_interval = 0,
.src_gather_count = 0,
.dst_scatter_interval = 0,
.dst_scatter_count = 0,
.block_size = 256,
.transfer_type = XMC_DMA_CH_TRANSFER_TYPE_SINGLE_BLOCK,
.priority = XMC_DMA_CH_PRIORITY_0,
};

General Purposes Direct Memory Access (GPDMA)

AP32290

Single block transfer CRC checking

Application Note 23 V1.0, 2015-07

8.2.1 Setting the transfer flow and priority

The FCE and memory does not require handshaking, as they are always ready to accept new data. Therefore

transfer flow memory to memory (_M2M) with DMA as the flow controller (_DMA) is chosen. For priority

setting, it is not relevant since there is no other DMA channel is configured in this case.

.transfer_flow = XMC_DMA_CH_TRANSFER_FLOW_M2M_DMA,

.priority = XMC_DMA_CH_PRIORITY_0,

8.2.2 Source configuration

The source refers to a 32bit array CRC_data with a size of 256 words (block size = 256) for CRC checking.

Therefore the base address and transfer width can be configured as shown below with address increment

after every single word.

.block_size = 256,

.src_addr = (uint32_t) &CRC_data,

.src_transfer_width = XMC_DMA_CH_TRANSFER_WIDTH_32,

.src_address_count_mode = XMC_DMA_CH_ADDRESS_COUNT_MODE_INCREMENT,

8.2.3 Destination configuration

And the destination refers to the FCE input register which has a data width of 32 bit. As we want to transfer

always to the input register of the FCE so there is no change to the address after every transaction.

.dst_addr = (uint32_t) &(FCE_KE0->IR),

.dst_transfer_width = XMC_DMA_CH_TRANSFER_WIDTH_32,

.dst_address_count_mode = XMC_DMA_CH_ADDRESS_COUNT_MODE_NO_CHANGE,

8.2.4 Configure the block transfer type

The single block transfer is used and after the transfer is completed the DMA channel will be disabled.

.transfer_type = XMC_DMA_CH_TRANSFER_TYPE_SINGLE_BLOCK,

8.2.5 Block transfer complete Interrupt

After a successful DMA block transfer of the CRC_data to the FCE input register, the user is notified with a

block transfer complete interrupt from the GPDMA.

.enable_interrupt = true

#define GPDMA0_0_IRQn_11 11

void GPDMA_Init(void)

{

XMC_DMA_CH_EnableEvent(XMC_DMA0, CH0, XMC_DMA_CH_EVENT_BLOCK_TRANSFER_COMPLETE);

NVIC_SetPriority(GPDMA0_0_IRQn, GPDMA0_0_IRQn_11);

NVIC_EnableIRQ(GPDMA0_0_IRQn);

}

General Purposes Direct Memory Access (GPDMA)

AP32290

Single block transfer CRC checking

Application Note 24 V1.0, 2015-07

With this interrupt, the user can instruct the GPDMA to compare the value of the CRC result register with the

CRC check register. If both values are the same the “verify_CRC_check” shall be updated with PASS.

#define GPDMA_BlockTransfer_ISR GPDMA0_0_IRQHandler

void GPDMA_BlockTransfer_ISR(void)
{
 if (XMC_FCE_GetEventStatus(&crc_engine, XMC_FCE_STS_MISMATCH_CRC) == false)
 {
 verify_CRC_check = PASS;
 }
 else
 {
 verify_CRC_check = FAIL;
 }
}

General Purposes Direct Memory Access (GPDMA)

AP32290

Revision History

Application Note 25 V1.0, 2015-07

9 Revision History

Current Version is V1.0, 2015-07

Page or Reference Description of change

V1.0, 2015-07

 Initial Version

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2015 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about any

aspect of this document?

Email: erratum@infineon.com

Document reference

Legal Disclaimer
THE INFORMATION GIVEN IN THIS APPLICATION
NOTE (INCLUDING BUT NOT LIMITED TO
CONTENTS OF REFERENCED WEBSITES) IS GIVEN
AS A HINT FOR THE IMPLEMENTATION OF THE
INFINEON TECHNOLOGIES COMPONENT ONLY
AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN
FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE
RECIPIENT OF THIS APPLICATION NOTE MUST
VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE
REAL APPLICATION. INFINEON TECHNOLOGIES
HEREBY DISCLAIMS ANY AND ALL WARRANTIES
AND LIABILITIES OF ANY KIND (INCLUDING
WITHOUT LIMITATION WARRANTIES OF NON-
INFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO
ANY AND ALL INFORMATION GIVEN IN THIS
APPLICATION NOTE.

Information
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may
contain dangerous substances. For information on
the types in question, please contact the nearest
Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or
systems only with the express written approval of
Infineon Technologies, if a failure of such components
can reasonably be expected to cause the failure of
that life-support device or system or to affect the
safety or effectiveness of that device or system. Life
support devices or systems are intended to be
implanted in the human body or to support and/or
maintain and sustain and/or protect human life. If
they fail, it is reasonable to assume that the health of
the user or other persons may be endangered.

www.infineon.com

Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™,
EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, ISOFACE™, IsoPACK™, i-
Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.

Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM
Limited, UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-
iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of
Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale. IrDA™ of
Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim
Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA.
muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc.
Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun
Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc.
TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2014-07-17

Edition 2015-07

AP32290

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/
www.infineon.com

	1 GPDMA Overview
	1.1 Block diagram of GPDMA
	1.2 GPDMA Terminology

	2 Flow control and Handshaking Interface
	2.1 Hardware handshaking
	2.1.1 Enable of Hardware handshake
	2.1.2 Routing service request signal to DMA channel

	2.2 Software handshaking

	3 DMA transfer block size
	4 Source and Destination addressing
	4.1 Address increment or decrement
	4.2 Gather transfer (Source)
	4.3 Scatter transfer (Destination)

	5 Block transfer types
	5.1 Auto reloading of channel register
	5.2 Contiguous address between blocks
	5.3 Block chaining using linked lists

	6 Service Request Generation
	7 Multi block transfer of VADC result registers to RAM for motor control
	7.1 PWM period match interrupt to trigger ADC conversion
	7.2 GPDMA configuration for multiple block transfer
	7.2.1 Setting the transfer flow and priority
	7.2.2 Enable the Hardware handshaking
	7.2.3 Selecting the service request via the DMA Line Router
	7.2.4 Source configuration
	7.2.5 Destination configuration
	7.2.6 Configure the block transfer type
	7.2.7 Block transfer complete Interrupt

	8 Single block transfer CRC checking
	8.1 Setting up FCE for CRC checking
	8.2 GPDMA configuration for Single block transfer
	8.2.1 Setting the transfer flow and priority
	8.2.2 Source configuration
	8.2.3 Destination configuration
	8.2.4 Configure the block transfer type
	8.2.5 Block transfer complete Interrupt

	9 Revision History

