

 WICED Studio

WICED™ Development System
Factory Programming

Associated Part Family: BT CYW2070x

Doc. No.: 002-19004 Rev. *A

Cypress Semiconductor

198 Champion Court

San Jose, CA 95134-1709

www.cypress.com

http://www.cypress.com/

WICED™ Development System Factory Programming Doc. No.: 002-19004 Rev. *A 2

Contents

About this Document ... 3

Purpose and Scope ... 3
Audience ... 3
Acronyms and Abbreviations ... 3
IoT Resources and Technical Support .. 3

1 General Overview .. 4

2 Creating a Unique DCT ... 5

2.1 Overview ... 5
2.2 Generating DCT Images .. 8

3 Writing an Image to Microprocessor Flash ... 9

3.1 OCD Command-line Configuration .. 9
3.2 OCD Command-line Internal Flash Programming ... 9
3.3 OCD Command-line External Flash Programming .. 11

4 Assigning a MAC Address to your Device .. 13

4.1 WLAN OTP Memory .. 13
4.2 DCT ... 13
4.3 NVRAM (Development ONLY) .. 13

Document Revision History .. 14

Worldwide Sales and Design Support .. 15

Products .. 15
PSoC

®
 Solutions .. 15

Cypress Developer Community ... 15
Technical Support .. 15

WICED™ Development System Factory Programming Doc. No.: 002-19004 Rev. *A 3

About this Document

Purpose and Scope

This document describes the process to program device specific information into a Cypress Wireless Internet Connectivity
for Embedded Devices (WICED™; pronounced “wicked”) device. The process is typically used at the time of device
manufacture.

Note: This document applies to WICED SDK 4.2 or higher.

Audience

This document is for software developers who are using the WICED Development System to create a manufacturing
process for WICED-based embedded wireless networked devices.

Acronyms and Abbreviations

In most cases, acronyms and abbreviations are defined on first use.

For a comprehensive list of acronyms and other terms used in Cypress documents, go to www.cypress.com/glossary.

IoT Resources and Technical Support

Cypress provides a wealth of data at www.cypress.com/internet-things-iot to help you to select the right IoT device for
your design, and quickly and effectively integrate the device into your design. Cypress provides customer access to a
wide range of information, including technical documentation, schematic diagrams, product bill of materials, PCB layout
information, and software updates. Customers can acquire technical documentation and software from the Cypress
Support Community website (community.cypress.com/)

http://www.cypress.com/glossary
http://www.cypress.com/internet-things-iot
http://community.cypress.com/

WICED™ Development System Factory Programming Doc. No.: 002-19004 Rev. *A 4

1 General Overview

During the manufacturing process, individual WICED devices require a limited set of unique parameters to be
programmed into onboard flash. The WICED SDK provides the necessary tools to aid the customization and programming
process.

By default, the WICED build system generates three separate firmware elements for each WICED device when an
application is built: the Bootloader, the Application and the Device Configuration Table (DCT). The bootloader and
application are common to all devices, however the DCT may contain device specific information including, but not limited
to, a unique device serial number, WLAN MAC address and security certificate.

This document describes how to generate a unique per-device DCT image, and how to program the DCT image together
with the bootloader and application images, into a WICED device during manufacture.

For the example in this document, the WICED SDK is used from a command line (rather than the WICED IDE) since a
typical manufacturing environment is run with a script. The WICED IDE may alternately be used to issue build commands.

Examples are provided for the Windows
®

operating system, the same procedure using equivalent commands may also be
used on OS X and Linux since the WICED SDK runs on all major operating systems.

WICED™ Development System Factory Programming Doc. No.: 002-19004 Rev. *A 5

2 Creating a Unique DCT

2.1 Overview

The process to create a unique DCT image is described here by way of an example. Developers are free to customize the

process to suit individual manufacturing requirements. The WICED SDK temp_control demonstration application

provides two unique DCT parameter files. The text in this section shows how to use these parameter files to create two
unique DCT images suitable for programming into two individual WICED devices.

Using the WICED IDE (or a command shell), navigate to the WICED SDK temp control directory located in the SDK at

<WICED-SDK>/apps/demo/temp_control. In addition to the usual application files, the directory includes a file

called factory_reset_dct.c and a sub-directory called mfg which contains two files 0001.txt and

0002.txt.

The factory_reset_dct.c file contains a factory_reset_dct_t structure similar to that shown in Figure

2-1. The structure contains static information that is populated into the DCT for all devices, as well as placeholders for
dynamic information that is populated on a per-device basis by the WICED build system. Dynamic information is

prepended with the keyword _DYNAMIC_, for example _DYNAMIC_WLAN_MAC_ADDRESS.

IMPORTANT NOTE: ALL variables defined in the generic WICED SDK platform_dct.h header file (located in the

<WICED-SDK>/Platform/include directory) but not listed in the factory_reset_dct_t structure will be

initialized to 0 by the WICED SDK build system when a unique DCT is generated! For the default reference see
<WICED-SDK>/internal/dct.c.

 Creating a Unique DCT

WICED™ Development System Factory Programming Doc. No.: 002-19004 Rev. *A 6

Figure 2-1. Example Factory Reset DCT Structure

The 0001.txt and 0002.txt files are unique per-device DCT parameter files. Each file includes unique parameters

that are programmed into an individual device. Notice there is a unique parameter in each file called
WLAN_MAC_ADDRESS. The assigned value of this unique parameter replaces the corresponding

_DYNAMIC_WLAN_MAC_ADDRESS placeholder in the factory_reset_dct_t structure when individual DCT images

are generated by the WICED SDK build system. Similarly, each parameter in the unique DCT parameter file is used to
replace the matching dynamic placeholder in the factory_reset_dct structure. The unique DCT parameter file

0001.txt is reproduced in Figure 2-2 for reference.

static const factory_reset_dct_t initial_dct =

{

...

 /* Manufacturing Section ___*/

 .platform.mfg_info = _DYNAMIC_MFG_INFO,

 /* Security Credentials for Config Section _______________________________________*/

 .platform.security_credentials.certificate = _DYNAMIC_CERTIFICATE_STORE,

 .platform.security_credentials.cooee_key = COOEE_KEY_STRING,

...

 .platform.wifi_config.stored_ap_list[0] = _DYNAMIC_STORED_AP_INFO,

 .platform.wifi_config.soft_ap_settings.SSID = _DYNAMIC_SOFT_AP_SSID,

 .platform.wifi_config.soft_ap_settings.security_key = _DYNAMIC_SOFT_AP_PASSPHRASE,

 .platform.wifi_config.config_ap_settings.SSID = _DYNAMIC_CONFIG_AP_SSID,

 .platform.wifi_config.config_ap_settings.security_key = _DYNAMIC_CONFIG_AP_PASSPHRASE,

...

 .platform.wifi_config.mac_address = _DYNAMIC_WLAN_MAC_ADDRESS,

...

};

 Creating a Unique DCT

WICED™ Development System Factory Programming Doc. No.: 002-19004 Rev. *A 7

Figure 2-2. Example of a unique DCT parameter file : 0001.txt

SOFT_AP_SSID = {sizeof("WICED_SOFT_AP-0001")-1,"WICED_SOFT_AP-0001"}

SOFT_AP_PASSPHRASE = "abcd1234"

CONFIG_AP_SSID = {sizeof("WICED-0001")-1,"WICED-0001"}

CONFIG_AP_PASSPHRASE = "12345678"

WLAN_MAC_ADDRESS = {"\x02\x0A\xF7\x00\x00\x01"}

STORED_AP_INFO =

 {

 .details.SSID = {sizeof("YOUR_AP_SSID")-1,"YOUR_AP_SSID"},

 .security_key = "YOUR_AP_PASSPHRASE",

 .security_key_length = sizeof("YOUR_AP_PASSPHRASE")-1,

 .details.security = WICED_SECURITY_WPA2_MIXED_PSK,

 }

MFG_INFO=

 {

 .manufacturer = "Cypress",

 .product_name = "Wiced Device",

 .BOM_name = "100-123793-0000",

 .BOM_rev = "P100",

 .serial_number = "0001",

 .manufacture_date_time = "2013/10/30 12:30:15",

 .manufacture_location = "USA",

 .bootloader_version = "1.0",

 }

CERTIFICATE_STORE="-----BEGIN CERTIFICATE-----\r\n"

 "MIIDdTCCAl2gAwIBAgILBAAAAAABFUtaw5QwDQYJKoZIhvcNAQEFBQAwVzELMAkG\r\n"

 "A1UEBhMCQkUxGTAXBgNVBAoTEEdsb2JhbFNpZ24gbnYtc2ExEDAOBgNVBAsTB1Jv\r\n"

 "b3QgQ0ExGzAZBgNVBAMTEkdsb2JhbFNpZ24gUm9vdCBDQTAeFw05ODA5MDExMjAw\r\n"

 "MDBaFw0yODAxMjgxMjAwMDBaMFcxCzAJBgNVBAYTAkJFMRkwFwYDVQQKExBHbG9i\r\n"

 "YWxTaWduIG52LXNhMRAwDgYDVQQLEwdSb290IENBMRswGQYDVQQDExJHbG9iYWxT\r\n"

 "aWduIFJvb3QgQ0EwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDaDuaZ\r\n"

 "jc6j40+Kfvvxi4Mla+pIH/EqsLmVEQS98GPR4mdmzxzdzxtIK+6NiY6arymAZavp\r\n"

 "xy0Sy6scTHAHoT0KMM0VjU/43dSMUBUc71DuxC73/OlS8pF94G3VNTCOXkNz8kHp\r\n"

 "1Wrjsok6Vjk4bwY8iGlbKk3Fp1S4bInMm/k8yuX9ifUSPJJ4ltbcdG6TRGHRjcdG\r\n"

 "snUOhugZitVtbNV4FpWi6cgKOOvyJBNPc1STE4U6G7weNLWLBYy5d4ux2x8gkasJ\r\n"

 "U26Qzns3dLlwR5EiUWMWea6xrkEmCMgZK9FGqkjWZCrXgzT/LCrBbBlDSgeF59N8\r\n"

 "9iFo7+ryUp9/k5DPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNVHRMBAf8E\r\n"

 "BTADAQH/MB0GA1UdDgQWBBRge2YaRQ2XyolQL30EzTSo//z9SzANBgkqhkiG9w0B\r\n"

 "AQUFAAOCAQEA1nPnfE920I2/7LqivjTFKDK1fPxsnCwrvQmeU79rXqoRSLblCKOz\r\n"

 "yj1hTdNGCbM+w6DjY1Ub8rrvrTnhQ7k4o+YviiY776BQVvnGCv04zcQLcFGUl5gE\r\n"

 "38NflNUVyRRBnMRddWQVDf9VMOyGj/8N7yy5Y0b2qvzfvGn9LhJIZJrglfCm7ymP\r\n"

 "AbEVtQwdpf5pLGkkeB6zpxxxYu7KyJesF12KwvhHhm4qxFYxldBniYUr+WymXUad\r\n"

 "DKqC5JlR3XC321Y9YeRq4VzW9v493kHMB65jUr9TU/Qr6cf9tveCX4XSQRjbgbME\r\n"

 "HMUfpIBvFSDJ3gyICh3WZlXi/EjJKSZp4A==\r\n"

 "-----END CERTIFICATE-----\r\n"

 "\0"

 "\0"

 Creating a Unique DCT

WICED™ Development System Factory Programming Doc. No.: 002-19004 Rev. *A 8

2.2 Generating DCT Images

The following description provides an example of how to use the WICED SDK to generate two unique DCT images

suitable for use with the temp_control application. A command prompt is used for this example since most

manufacturing processes are run using a script (rather than a GUI).

Open a command prompt and cd to the top level WICED SDK directory.

Enter the following command to build the temp_control application and bootloader for the BCM943362WCD4

platform using the platform default RTOS, Network Stack and WLAN-MCU bus.

Figure 2-3. Windows cmd shell command to build temp_control application

Figure 2-4. Bash shell command to build temp_control application

After the build completes, use the following commands to generate two unique DCT. Note that the only difference

between these commands is the appended unique DCT parameter file 0001.txt vs. 0002.txt. Each command

must be entered on a single line.

NOTE: You need to change <platform> to the platform you are using (ex: 43364WCD1 or BCM943362WCD4)!

NOTE: Windows uses ‘\’ separators between sub-directories in the path. However, the filename is handed to the

OpenOCD driver, which always uses ‘/’ separators.

Figure 2-5. Windows cmd shell command to build separate unique factory reset DCT files

Figure 2-6. Bash shell command to build separate unique factory reset DCT files

The WICED build system writes each of the generated factory_reset_dct_000X images to the build directory

<Wiced-SDK>/build/demo.temp_control-<platform>/factory_reset: The *.elf files are used in the

next step to program the files into FLASH, as they contain the correct offset to program the data.

As previously discussed, each generated unique DCT image contains common, as well as device specific, information.

> .\make demo.temp_control-BCM943362WCD4

> ./make demo.temp_control-BCM943362WCD4

> .\make demo.temp_control-<platform> factory_reset_dct apps/demo/temp_control/mfg/0001.txt

> .\make demo.temp_control-<platform> factory_reset_dct apps/demo/temp_control/mfg/0002.txt

> ./make demo.temp_control-<platform> factory_reset_dct apps/demo/temp_control/mfg/0001.txt

> ./make demo.temp_control-<platform> factory_reset_dct apps/demo/temp_control/mfg/0002.txt

WICED™ Development System Factory Programming Doc. No.: 002-19004 Rev. *A 9

3 Writing an Image to Microprocessor Flash

The WICED SDK build system uses the OpenOCD utility to download images via USB JTAG to the microprocessor flash
on the WICED device. By default, the SDK hides these commands, full output is otherwise available by adding

“VERBOSE=1” to an application build string. For factory programming, a review of just the commands required to write

images to the flash is provided in this section.

3.1 OCD Command-line Configuration

In addition to the image to be written, OpenOCD requires configuration information about the platform to assist with flash
programming. This includes the USBIO device type used to emulate JTAG, the microcontroller type and information about
how to access the flash. This information is provided by the SDK in various OpenOCD configuration files.

For convenience, we suggest setting up environment variables to identify each configuration file using the Windows set
command as shown in Figure 2-3 (use an equivalent command for your operating system if you are not using Windows). It
is also possible to provide each of these files as direct arguments to OpenOCD if you choose not to setup environment

variables. This example uses the BCM943362WCD4 microprocessor. If your WICED platform does not use the

BCM943362WCD4 platform, locate and use the correct OpenOCD configuration files to suit your microprocessor family.

Run the commands in Figure 2-3 now to setup the necessary OpenOCD configuration environment variables.

NOTE: The easiest way to determine which configuration files to use for your platform is to add “VERBOSE=1” to the

application build string.

Figure 3-1. Set Windows Environment variables to identify OpenOCD configuration files

Figure 3-2. Set bash Environment variables to identify OpenOCD configuration files

3.2 OCD Command-line Internal Flash Programming

This section describes the method for platforms that use an internal FLASH to store program and data. For platforms with
external SFLASH, read this section, then read the next section which describes the differences.

Images are loaded into the flash using the ‘elf’ format since elf files natively include the physical address in flash to locate
the image. If a binary file is otherwise used, OpenOCD also requires the physical address in flash to write the image.

> set JTAG_CFG=.\tools\OpenOCD\BCM9WCD1EVAL1.cfg

> set MCU_CFG=.\tools\OpenOCD\stm32f2x.cfg

> set FLASH_CFG=.\tools\OpenOCD\stm32f2x-flash-app.cfg

> export JTAG_CFG=./tools/OpenOCD/BCM9WCD1EVAL1.cfg

> export MCU_CFG=./tools/OpenOCD/stm32f2x.cfg

> export FLASH_CFG=./tools/OpenOCD/stm32f2x-flash-app.cfg

 Writing an Image to Microprocessor Flash

WICED™ Development System Factory Programming Doc. No.: 002-19004 Rev. *A 10

The commands shown in Figure 2-4 provide examples showing how to use OpenOCD to program the Bootloader,
Application and DCT images to flash. To program a unique DCT image into a device, the factory programming script
invokes OpenOCD using a unique DCT elf file for each new device.

The final command, which is used to download the unique DCT image, includes logging and error reporting that may also
be used with the other commands to download the bootloader and application if desired.

Run the commands in Figure 2-4 now to program the Bootloader, Application and unique DCT images to the
microprocessor flash memory. The ‘echo’ commands may be safely ignored, they are provided for illustrative purposes.

NOTE: You need to change <platform> to the platform you are using (ex: 43364WCD1 or BCM943362WCD4)!

NOTE: Windows uses ‘\’ separators between sub-directories in the path. However, the filename is handed to the

OpenOCD driver, which always uses ‘/’ separators.

Figure 3-3. Windows cmd shell command sequences to write Bootloader, Application and DCT images to flash

Figure 3-4. Bash shell command sequences to write Bootloader, Application and DCT images to flash

NOTE: The commands in Figure 3-3 (or Figure 3-4) may be run at any time, in any order and more than once on a

particular device that is using internal FLASH after the corresponding elf file is available.

NOTE: Each command must be provided on a single line. Using copy-paste to grab the command line text may insert

additional unwanted carriage returns that should be removed.

> echo “Downloading Bootloader ...”

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f %JTAG_CFG%
-f %MCU_CFG% -f %FLASH_CFG% -c "flash write_image erase build/waf.bootloader-NoOS-

<platform>/binary/waf.bootloader-NoOS-<platform>.stripped.elf" -c shutdown

> echo “Downloading Application ...”

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f %JTAG_CFG%

-f %MCU_CFG% -f %FLASH_CFG% -c "flash write_image erase build/demo.temp_control-

<platform>/binary/demo.temp_control-<platform>.stripped.elf" -c shutdown

> echo “Downloading DCT ...”

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f %JTAG_CFG%

-f %MCU_CFG% -f %FLASH_CFG% -c "flash write_image erase build/demo.temp_control-

<platform>/factory_reset/factory_reset_dct_0001.stripped.elf" -c shutdown

> echo “Downloading Bootloader ...”

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG
-f $MCU_CFG -f $FLASH_CFG -c "flash write_image erase build/waf.bootloader-NoOS-

<platform>/binary/waf.bootloader-NoOS-<platform>.stripped.elf" -c shutdown

> echo “Downloading Application ...”

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_CFG -c "flash write_image erase build/demo.temp_control-

<platform>/binary/demo.temp_control-<platform>.stripped.elf" -c shutdown

> echo “Downloading DCT ...”

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_CFG -c "flash write_image erase build/demo.temp_control-

<platform>/factory_reset/factory_reset_dct_0001.stripped.elf" -c shutdown

 Writing an Image to Microprocessor Flash

WICED™ Development System Factory Programming Doc. No.: 002-19004 Rev. *A 11

3.3 OCD Command-line External Flash Programming

For some platform builds where the program and data is stored in an external SFLASH, the WICED Filesystem and the
Application Look Up Table (LUT) are needed as well. As discussed in the beginning of this section, when using the
WICED IDE , add “VERBOSE=1” to the build command to show which files are downloaded to the Flash during your build
and their destination addresses.

These examples show the download sequence for the snip.scan application built for the BCM943907WAE_1. To provide
different unique DCTs, copy the method shown above, and replace the “DCT.bin” file in the following examples with your
factory_reset_dct files.

NOTE: It is important to note that external FLASH writing script requires the destination address. Most addresses are

fixed due to the nature of the FLASH Layout: Bootloader, DCT, Apps LUT and Filesystem. The location for the Application
is dependent on the size of the Resource Filesystem. If the Resource Filesystem size changes, the destination address
for the Application will change.

NOTE: These download examples use the script file =.\apps\waf\sflash_write\sflash_write.tcl and the first download

(bootloader) specifies that the FLASH be erased (note the “1” in the string passed to the script). This should only be done
once. You can also only write each element once (different than writing to an internal FLASH).

NOTE: These download examples use the script file =.\apps\waf\sflash_write\sflash_write.tcl and define the destination

address.

NOTE: Change <platform>, <chip> and <platform>-<board>-<bus> to the platform you are using. You can determine
these values for your platform by looking at the output in the Console tab of the IDE when you build your project during
development with “VERBOSE=1” as a command argument.

Figure 3-5. Windows cmd shell command sequences

> .\make snip.scan-BCM943907WAE_1

> set JTAG_CFG=.\tools\OpenOCD\BCM9WCD1EVAL1.cfg

> set MCU_CFG=.\tools\OpenOCD\BCM4390x.cfg

> set FLASH_TCL=.\apps\waf\sflash_write\sflash_write.tcl

> echo Downloading Bootloader ...

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/waf.bootloader-NoOS-NoNS--<platform>-

<board>-<bus>/binary/waf.bootloader-NoOS-NoNS-<platform>-<board>-<bus>.trx.bin 0x00000000

<platform>-<board>-<bus> 1 <chip>" -c shutdown

> echo Downloading resources filesystem ...

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-<platform>/filesystem.bin

69632 <platform>-<board>-<bus> 0 <chip>" -c shutdown

> echo Downloading APP0 ...

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-<platform>/binary/snip.scan-

<platform>.stripped.elf 589824 <platform>-<board>-<bus> 0 <chip>" -c shutdown

> echo Downloading apps lookup table ...

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-<platform>/APPS.bin 0x10000

<platform>-<board>-<bus> 0 <chip>" -c shutdown

> echo Downloading DCT ...

> .\tools\OpenOCD\Win32\openocd-all-brcm-libftdi.exe -s .\tools\OpenOCD\scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan--<platform>/DCT.bin

0x00008000 <platform>-<board>-<bus> 0 <chip>" -c shutdown

 Writing an Image to Microprocessor Flash

WICED™ Development System Factory Programming Doc. No.: 002-19004 Rev. *A 12

Figure 3-6. Bash shell command sequences

> ./make snip.scan-BCM943907WAE_1

> export JTAG_CFG=./tools/OpenOCD/BCM9WCD1EVAL1.cfg

> export MCU_CFG=./tools/OpenOCD/BCM4390x.cfg

> export FLASH_TCL=./apps/waf/sflash_write/sflash_write.tcl

> echo Downloading Bootloader ...

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/waf.bootloader-NoOS-NoNS-<platform>-

<board>-<bus>/binary/waf.bootloader-NoOS-NoNS-<platform>-<board>-<bus>.trx.bin 0x00000000

<platform>-<board>-<bus> 1 <chip>" -c shutdown

> echo Downloading resources filesystem ...

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-<platform>/filesystem.bin

69632 <platform>-<board>-<bus> 0 <chip>" -c shutdown

> echo Downloading APP0 ...

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-<platform>/binary/snip.scan-

BCM943907WAE_1.stripped.elf 589824 <platform>-<board>-<bus> 0 <chip>" -c shutdown

> echo Downloading apps lookup table ...

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-<platform>/APPS.bin 0x10000

<platform>-<board>-<bus> 0 <chip>" -c shutdown

> echo Downloading DCT ...

> ./tools/OpenOCD/Win32/openocd-all-brcm-libftdi.exe -s ./tools/OpenOCD/scripts -f $JTAG_CFG

-f $MCU_CFG -f $FLASH_TCL -c "sflash_write_file build/snip.scan-<platform>/DCT.bin

0x00008000 <platform>-<board>-<bus> 0 <chip>" -c shutdown

WICED™ Development System Factory Programming Doc. No.: 002-19004 Rev. *A 13

4 Assigning a MAC Address to your Device

A Medium Access Control (MAC) address is used to uniquely identify a Wi-Fi device on the wireless network. Each Wi-Fi
device must be assigned a unique Wi-Fi MAC address. The WICED SDK provides various options to set the Wi-Fi MAC

address of a WICED device.

4.1 WLAN OTP Memory

Each WLAN chip includes a small amount of One-Time Programmable (OTP) memory. Many Wi-Fi module manufacturers
program a MAC address into the OTP during the module manufacturing process. In most cases, it is best to leave WICED
to use the MAC address in OTP. If your devices each require a MAC address other than that assigned by the module
manufacturer, you may use one of the methods described in Sections 4.2 or 4.3 to set the MAC address (and override the
MAC address in OTP).

4.2 DCT

A unique per-device MAC address may be specified in the DCT as described in Section 2.1. To direct WICED and the
WLAN chip to use the MAC addressed located in the DCT, it is necessary to define a global variable in the application

makefile. Using the temp_control app as an example, add a MAC_ADDRESS_SET_BY_HOST global define to the

temp_control application makefile located in the WICED SDK at <WICED-

SDK>/App/demo/temp_control/temp_control.mk as follows:

GLOBAL_DEFINES += MAC_ADDRESS_SET_BY_HOST

4.3 Custom

If you do not want to use the MAC address in the WLAN OTP or in the DCT, you may redefine the WICED API function

host_platform_get_mac_address()to provide a MAC address when the WICED Wi-Fi driver initializes the

WLAN chip.

For most architectures, host_platform_get_mac_address()is located in the file:

<WICED-SDK>/WICED/platform/MCU/wwd_platform_separate_mcu.c

For BCM94390x architectures, host_platform_get_mac_address()is located in the file:

<WICED-SDK>/WICED/platform/MCU/BCM4390x/BCM4390x_platform.c

The global variable MAC_ADDRESS_SET_BY_HOST must also be configured as described in Section 5.2.

4.4 NVRAM (Development ONLY)

A text file known as NVRAM is provided for each WICED platform. The NVRAM provides platform specific information
related to the Wi-Fi chip including, but not limited to, the frequency of the crystal used, transmit power limits and a MAC
address. In general, changing NVRAM variables is not recommended since it is possible to adversely impact the
performance of the Wi-Fi chip.

The MAC address specified in the NVRAM is used by the Wi-Fi chip if the OTP does not contain a MAC address. Setting
the MAC address in NVRAM is only useful during development since the NVRAM is compiled into the final application,
and the final application is common to all devices.

WICED™ Development System Factory Programming Doc. No.: 002-19004 Rev. *A 14

Document Revision History

Document Title: WICED™ Development System Factory Programming

Document Number: 002-19004

Revision ECN Issue Date Description of Change

** 11/05/2013 WICED-AN800-R:

Initial Doc.

02/17/2017 WICED-AN800-R 0.2:

Bring up to date with latest SDK 4.0

02/24/2017 WICED-AN800-R 0.3:

Correct some mistakes, add changes to indicate changes needed per platform

*A 03/21/2017 Converted to Cypress template format.

WICED™ Development System Factory Programming Doc. No.: 002-19004 Rev. *A 15

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To
find the office closest to you, visit us at Cypress Locations.

Products

ARM
®
 Cortex

®
 Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs
| Training | Components

Technical Support

cypress.com/support

t

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2013-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress
under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties
and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights.
If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the
Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in
the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only
internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers
and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make
changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described
in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference
purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this
information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or
intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including
resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or
system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose
failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of
Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for
personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com.
Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	About this Document
	Purpose and Scope
	Audience
	Acronyms and Abbreviations
	IoT Resources and Technical Support

	1 General Overview
	2 Creating a Unique DCT
	2.1 Overview
	2.2 Generating DCT Images

	3 Writing an Image to Microprocessor Flash
	3.1 OCD Command-line Configuration
	3.2 OCD Command-line Internal Flash Programming
	3.3 OCD Command-line External Flash Programming

	4 Assigning a MAC Address to your Device
	4.1 WLAN OTP Memory
	4.2 DCT
	4.3 Custom
	4.4 NVRAM (Development ONLY)

	Document Revision History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

