

USB Flash Drive Controller Using SPI

October 12, 2010 Document No. 001-15484 Rev. *A 1

AN15484
Author: Ernie Buterbaugh
Associated Project: Yes

Associated Part Family: CY7C67300
Software Version: CY3663 EZ-Host Development Kit V1.1, CY4640

Associated Application Notes: None

Application Note Abstract
This Application Note describes using the EZ-Host™ USB Host to access a USB flash drive. An SPI bus is used as the
interface to connect the EZ-Host to an embedded processor. All of the necessary commands to access the USB Flash drive
including read and write file are described.

Introduction
USB Flash drives, also referred as thumb-drive, pen-drive,
have become an important device for storing various
amounts of data. Floppy disks and ZIP drives are a thing
of the past because of the USB Flash drives. They are
easy to use and nearly all computers with a USB port can
read and write them.

But what about those systems that do not have a Windows
or Linux OS and a USB host? There are many embedded
systems that would like easy access to data and what
could be easier or ubiquitous as the USB Flash drive?
However, these embedded systems need a way to easily
interface to the USB flash drive without adding excessive
hardware and software.

SPI to USB Flash Drive
The EZ-Host is a programmable USB host controller and
can be used to control any full speed USB peripheral with
the appropriate firmware. There are two modes of
operation for the device: coprocessor and standalone. In
coprocessor mode, the EZ-Host provides the low level
control on the USB interface and passes the data to a
processor attached to one of its interfaces. This processor
is responsible for the overall USB operation and the
device drivers. In standalone mode, the EZ-Host is a self
contained USB system and no external processor is
required to support a USB device. This is the mode used
for the USB Flash drive controller.

The SPI interface is simply the interface by which the
embedded system reads and writes data to and from the
flash drive using a low level protocol.

This application note discusses how to interface a SPI
capable device to read and write to a USB Flash drive.
The main component of this design is the CY7C67300,
also known as the EZ-Host. Figure 1 shows a block
diagram of the logic. Appendix A: Reference Schematic
has a detailed schematic that can be used to implement

this function. This design uses the following signals to the
embedded processor:

 SPI MOSI

 SPI MISO

 SPI SS

 SPI Clock

 GPIO24

 GPIO25

 Reset
The four SPI signals are the standard SPI bus interface
controls. GPIO24 and GPIO25 are outputs from the EZ-
Host that signal the completion of various events. Reset is
an input to the EZ-Host and allows the embedded
processor to restart the code if necessary.

Figure 1. USB Memory Block Diagram

CY7C67300

SRAM

Serial
EEPROM

USB Memory Stick

SPI InterfaceCY7C67300

SRAM

Serial
EEPROM

USB Memory Stick

SPI Interface

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_1

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 2

EZ-Host Firmware
As mentioned earlier, firmware is necessary for the EZ-
Host to enumerate and control the USB flash drive. The
code that is used by this application note is in the EZ-Host
Mass Storage Class (MSC) Reference Design (CY4640)
from the Cypress website (www.cypress.com). The code
from version 1.1 of this kit is used with a few modifications.
These changes are described in Appendix B: Changes in
the Code.

About 56 KB of code is used to operate the USB Flash
drive. This is larger than the 16 KB of RAM on the EZ-Host
and hence the need for the external SRAM. Upon power-
on, the RAM of the EZ-Host needs to be loaded with this
code. This memory can be loaded automatically from an
external serial EEPROM or it can be loaded directly
across the SPI interface. An advantage of loading directly
across the SPI is it eliminates the serial EEPROM and
allows for easy code management. The advantage of
having the serial EEPROM is the SPI interface control is
simplified since it does not need to manage the booting
process.

This application note uses the serial EEPROM as the
method of loading the EZ-host memory and uses the SPI
interface for data access.

EEPROM Code
The code that is programmed into the serial EEPROM is in
a format called Link Control Protocol (LCP). This allows
the code in the EEPROM to do more than simply load
memory. It also allows for loading control registers, calling
subroutines, and branching to an address in the code. You
can find more information on LCP Commands in the OTG-
Host BIOS User Manual which is part of the CY3663
developer’s kit.

Upon power on, the BIOS in the EZ-Host reads GPIO30
(SCL) and GPIO31 (SDA) and if both are high (which they
should be since these I2C™ lines have pull up resistors),
the EZ-Host executes the LCP commands from the
EEPROM.

The LCP commands loads the RAM (both internal to the
EZ-Host and the external SRAM) with the appropriate
data. During this time GPIO25 is high. When the EEPROM
is finished loading, GPIO25 is low. At this point, the
memory is loaded with all of the code and the EZ-Host
processor is waiting for a ‘start’ command from the SPI
interface before it interfaces with the USB Flash drive.

Before moving on, a discussion on how to program the
serial EEPROM could be helpful. There are the standard
methods of programming the part using an external
programmer before placing the part on the board. You can
also program the part while it is on the board through USB
port 2A on the EZ-Host chip. While in BIOS mode (that is
before the EEPROM is programmed or anytime before the
‘start’ command is issued from the SPI interface) the EZ-
Host enumerates as a device on this port. Simply attach
this port to a PC and program the EEPROM with a utility
called QTUI2C. This utility is part of the CY3663
developer’s kit. When this kit is installed, a BASH

environment is provided under the Cypress folder (Start,
All Programs). The QTUI2C is executed in this BASH
environment. The binary file that contains the code
described is this application note is named:

MSC_EEPROM_scan_LCP_v2.bin

This file (or a later version) can be found with this
application note. To load the EEPROM with this file,
simply type the following in the BASH window after
navigating to the project directory containing the .bin file:

qtui2c MSC_EEPROM_scan_LCP_v2.bin f

System Architecture
Before discussing the details of the SPI communications, it
is necessary to describe the architecture of the firmware
that is operating on the EZ-Host.

There are a variety of buffers allocated in the EZ-Host
memory that are used to pass commands, filenames, and
data to and from the SPI device. By reading and writing
these various memory locations, the SPI device has
access to the USB Flash drive contents.

Figure 2. Main Parameter Table

There is one main table (Figure 2) that contains the
pointers to the various buffers as well as status
information. The address for the start of this table is in the
EZ-Host memory at address 0x0310.

During the Initialization process, memory location 0x0310
is read to get the starting memory address of the
Parameter Table. Memory location 0x310 is a fixed
location; however, the pointer to the parameter table can
change depending on how the EZ-Host MSC code is
compiled. With code in the file
MSC_EEPROM_scan_LCP_v2.bin which accompanies
this application note, the value at 0x0310 is 0x24E8.

For reference, the addresses in parenthesis that are
associated with the code in the file
MSC_EEPROM_scan_LCP_v2.bin are shown in Figure 2
and throughout the remainder of this application note.

[+] Feedback

http://www.cypress.com/�
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_2

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 3

The following is a brief description of the values in this
table.

Table 1. Main Parameters Table: Value, Size, and
Description

Value Size Description

Return
Value 32 bit

Gives status and information regarding
an executed command. The values are
dependant on the specific command.

Command
Buffer
Pointer

16 bit

Points to a location in memory where the
various commands (e.g. open file) are
loaded. For reference, this value is
0x24FA in v2 of the code.

Data
Buffer
Pointer

16 bit

Points to a location in memory where the
various data values (e.g. filenames) are
loaded. For reference, this value is
0x256A in v2 of the code.

Callback
Buffer
Pointer

16 bit

Points to a location in memory where the
special return values are loaded. For
reference, this value is 0x2D6A in v2 of
the code.

Buffer
Size 16 bit

Specifies the size of memory allocated in
the EZ-Host for each of the three buffers.
This value is 0x0800 in v2 of the code.

Data
Count 16 bit Indicates the maximum number of bytes

in the current transaction.

Command
Flag 16 bit

Indicates the command buffer has a valid
command loaded and the EZ-Host
should process the command.

Callback
Flag 16 bit

Indicates that some event (e.g. USB
Flash drive was removed) occurred that
needs servicing.

In order to read and write the USB Flash drive, it is simply
a matter of reading and writing the various buffers and
flags.

SPI Interface
The necessary commands to control the USB flash drive
can be broken down into four elements:

 SPI signals

 Read/Write Memory

 Disk Operations

 High Level Functions
This structure makes it easier to describe, and also follows
how one would write the interface code on an embedded
processor for the SPI master.

SPI Signals
Timing on the SPI interface uses the standard SPI bus
signals: MOSI, MISO, SS, and SCLK. Figure 3 shows the
timing waveform for a SPI transaction. Note that SS must
toggle for every byte transferred. When sending and
receiving data, the most significant bit (MSB) is the first bit
clocked. The data sent from the SPI Master to the EZ-Host
slave is 0x09 in Figure 3.

Figure 3. SPI Byte Transfer

NSSI

SCLK

MOSI

MISO

NSSI

SCLK

MOSI

MISO

The maximum SPI clock rate is 2 MHz. It is recommended
that a small delay be placed between the de-assertion of
Slave Select of one byte and the assertion of Slave Select
for the next byte in order to allow the SPI slave on the EZ-
Host to recognize and capture the incoming byte.

Read Memory
The read memory protocol allows the SPI master to read
any memory in the EZ-Host. It contains a structure to
specify the address and returned data. It also provides an
acknowledgement control and checksum word to ensure
data integrity. The following shows the structure for
Reading Memory:

MOSI: 10 00 <Addr> <Len> 00 00
MISO: 18 00 <Addr> <Len> <CS> <Data>
MOSI: 18 00 <Addr> <Len> <CS>
In the first transaction where the SPI master is sending out
data, the 16 bit command 0x0010 to read memory is sent.
Note that the least significant byte (LSB) is sent first and
then the most significant byte (MSB) of each 16 bit word
on the SPI bus is sent. The next two bytes are the address
of the memory location to be read. The two byte LEN field
specifies how many bytes are to be returned. The address
is automatically incremented and therefore the LEN can
be any even number of bytes. And finally two bytes of 00’s
are sent to make the complete transaction eight bytes
long.

Before the master can begin reading the data back from
the EZ-Host slave, it must first wait for GPIO24 to pulse.
This signals that the buffer has been read and the EZ-Host
is ready to return data.

In the second transaction, the EZ-Host slave returns a
read acknowledge of 0x0018 followed by the same Addr
and Len as provided by the master. The next two bytes
contain the checksum of the data being returned. The data
bytes follow the checksum. The number of data bytes
transferred is equal to the value specified by the Len field.

Again, the SPI Master must wait for GPIO24 to pulse
before sending the final transaction.

The last transaction is simply an acknowledgement by the
SPI Master back to the EZ-Host slave that the data was
received. Note that these are the same eight bytes that the
EZ-Host previously sent without the data bytes.

Here is a specific example where two bytes of memory
address 0x310 is read and 0x24E8 is the value at that
location. Note the byte ordering.

MOSI: 10 00 10 03 02 00 00 00
MISO: 18 00 10 03 02 00 17 DB E8 24
MOSI: 18 00 10 03 02 00 17 DB

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_3

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 4

The checksum that is inserted is a 1’s complement form.
The algorithm used adds each of the 16 bit values to form
a 32 bit result. The upper 16 bits of the 32 bit result is
added to the lower 16 bits to form a new 16 bit value. This
value is then inverted. The C code used to implement this
algorithm is in Appendix C: Checksum Algorithm
Implemented in C.

Write Memory
The write memory protocol allows the SPI master to write
any memory in the EZ-Host. It contains a structure not
only to specify the address and the data, but it also
provides an acknowledgement control and checksum word
to ensure data integrity just like the read memory
operation. The following shows the structure for Writing
Memory:

MOSI: 20 00 <Addr> <Len> <CS>
MISO: 28 00 <Addr> <Len> <CS>
MOSI: <Data>
MISO: 28 00 <Addr> <Len> <CS>
In the first transaction where the SPI master is sending out
data, the 16 bit command 0x0020 to write memory is sent.
Again, note that the LSB is sent first and then the MSB of
each 16 bit word on the SPI bus. The next two bytes are
the address of the memory location to write. The LEN field
specifies how many bytes are to be written. And in this
case a 16 bit checksum is sent. As in the read, the
checksum covers the data only and follows the same
algorithm as the read.

The address is automatically incremented and therefore
the LEN can be any even number of bytes. This
transaction is always eight bytes long.

Before the master can begin reading the acknowledge
transaction from the EZ-Host slave, it must first wait for
GPIO24 to pulse. This signals that the buffer has been
read and the EZ-Host is ready to return data.

In the second transaction, the EZ-Host slave returns a
write acknowledge of 0x0028, followed by the same Addr,
Len and CS as provided by the master.

Again, the SPI Master must wait for GPIO24 to pulse
before sending the next transaction.

The SPI Master can now send the data bytes to the EZ-
Host Slave. The number of bytes must equal the length
specified in the preceding transactions.

Again, the SPI Master must wait for GPIO24 to pulse
before sending the next transaction.

The last transaction is simply an acknowledgement by the
EZ-Host slave back to the SPI Master that the data was
received. Note that these are the same eight bytes that the
EZ-Host previously sent.

Here is a specific example where two bytes of memory
address 0x24FA is written with 0xC3B6. Again note the
byte ordering.

MOSI: 28 00 FA 24 02 00 49 3C
MISO: 28 00 FA 24 02 00 49 3C
MOSI: B6 C3
MISO: 28 00 FA 24 02 00 49 3C

Disk Operations
There are a variety of commands used to control the USB
Flash drive that the EZ-Host supports, and each follows a
similar pattern. First an OPCODE and a few parameters
are written to the Command Buffer. Then depending on
the command, data may be written to the Data Buffer. The
Command Flag is set to tell the EZ-Host to go execute that
command. When the EZ-Host is finished processing the
command, GPIO25 toggles. This tells the SPI Master that
it can read the status bytes and data buffers depending on
the particular command.

Each of the operations is described in detail following this
example operation. This example executes the Show
Current Directory operation. The directory name that is
returned is capsen~1.

First write to the Command Buffer an OPCODE for Show
Current Directory and its associated parameters. From the
previous discussion, the Command Buffer starts at
location 0x24FA in memory (this value is from the Main
Table). The OPCODEs and parameters are described
later. For the Show Current Directory we write these six
bytes:

24FA <- F00D
24FC <- 0004
24FE <- 0104
This operation is performed by writing two bytes to the
three respective memory locations, or simply, write six
bytes to address 0x24FA.

Next, write the command flag to indicate the command is
ready to be executed.

24F6 <- C3B6
After writing this command, the SPI Master must wait for
GPIO25 to trigger before reading the status.

The SPI Master then reads the status word (Return Value)
to ensure that it is 0000 indicating success.

24E8 -> 0000
Then read the number of bytes being returned as
indicated in the Data Count (in the Main Table). In this
specific case, 10 bytes are returned:

24F4 -> 000A
Note that these can be two separate memory reads but
since they are in the same table, you could have read
fourteen bytes starting at location 24E8 to get all of the
data.

Since there are 10 (0x0A) bytes being returned, read the
Data Buffer to get the character string of the directory
name. Again with v2 of this code, the Data Buffer starts at
address 0x256A and therefore, read the 10 bytes starting
at this location:

256A -> 632F 7061 6573 7E6E 0031
Notice the several items in the contents of the buffer. First,
the data bytes are swapped again – 2F (‘/’) is really the
first character of the string followed by 63 (“C”) and then
61 (“A”). The string is terminated with a null – 00.
Therefore the buffer returns what we had expected:

/CAPSEN~1

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_4

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 5

File Operation Format
The following is a list of each OPERATION and the
expected data. For each of the commands, various buffers
and flags are set and then the function is executed. After
execution, various buffers and flags are read. It is
recommended to test the Callback Flag after every File
Operation to determine if the USB device has been
detached. The section titled USB Insertion and Removal
discuses the Callback operation.

Note that only 8.3 filenames are supported. Microsoft long
filenames extensions are not supported.

SHOW CURRENT DIRECTORY
This operation returns the full path of the current working
directory. If the current working directory is the root, a
slash (/) is returned. If the directory is something other
than the root, the string contains the directory name.

Setup Parameters
Command Buffer F00D, 0004, 0104

Command Flag C3B6

Returned Values
Return Value 0000 = OK

Data Count Number of bytes in Data Buffer

Data Buffer <String of directory name><null
terminated>

OPEN FILE
This operation opens the specified file for either reading or
writing.

Setup Parameters

Command Buffer

F000, 0000, 00nn
nn equals the number of bytes of the
filename including nulls. This must be an
even number of bytes and therefore there
can be one or two bytes of nulls.

Data Buffer <String of filename><null terminated>

Command Flag C3B6

Returned Values

Return Value FFFF = file not found; otherwise Return
Value is the 16 bit File Handle.

CREATE FILE
The Create File operation creates the specified file. If the
filename already exists, it is opened and truncated.

Setup Parameters

Command Buffer

F005, 0000, 00nn
nn equals the number of bytes of the
filename including nulls. This must be an
even number of bytes and therefore there
can be one or two bytes of nulls.

Data Buffer <String of filename><null terminated>

Command Flag C3B6

Returned Values
Return Value FFFF = file not created; otherwise Return

Setup Parameters
Value is the 16 bit File Handle.

ACCESS FILE
The Access File operation, when used with files,
determines whether the file exists and can be accessed.
When used with directories, it determines only whether the
specified directory exists.

Setup Parameters

Command Buffer

F008, 0000, 00nn
nn equals the number of bytes of the
filename including nulls. This must be an
even number of bytes and therefore there
can be one or two bytes of nulls.

Data Buffer <String of filename><null terminated>

Command Flag C3B6

Returned Values

Return Value FFFF = file not open; otherwise Return Value
is the 16 bit File Handle.

CLOSE FILE
This operation closes the specified file.

Setup Parameters
Command Buffer F001, 0000

Data Buffer File Handle

Command Flag C3B6

Returned Values
Return Value 0000 = OK

CHANGE DIRECTORY
This Change Directory operation changes the current
working directory to the specified directory. The new
directory must already exist.

Setup Parameters
Command Buffer F00C, 0000

Data Buffer <String of directory name><null terminated>

Command Flag C3B6

Returned Values
Return Value 0000 = OK

REMOVE DIRECTORY
This Remove Directory operation deletes a directory with
the specified name. The directory must be empty and
must not be the current directory or the root directory.

Setup Parameters
Command Buffer F00F, 0000

Data Buffer <String of directory name><null terminated>

Command Flag C3B6

Returned Values
Return Value 0000 = OK

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_5

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 6

MAKE DIRECTORY
This Make Directory operation creates a directory with the
specified name.

Setup Parameters
Command Buffer F00E, 0000

Data Buffer <String of directory name><null terminated>

Command Flag C3B6

Returned Values
Return Value 0000 = OK

REMOVE FILE
The Remove File operation erases the specified file. All
handles for the specified file must be closed before it can
be deleted.

Setup Parameters
Command Buffer F006, 0000

Data Buffer <String of filename><null terminated>

Command Flag C3B6

Returned Values
Return Value 0000 = OK

RENAME FILE or DIRECTORY
The Rename File operation renames the specified file or
directory. The old name must be an existing file or
directory. The new name must not be the name of an
existing file or directory.

Setup Parameters

Command Buffer

F007, 0000, 00nn
nn equals the number of bytes of the old
filename including nulls. This must be an
even number of bytes and therefore there
can be one or two bytes of nulls.

Data Buffer
<String of old filename><null
terminated><String of new filename><null
terminated>

Command Flag C3B6

Returned Values
Return Value 0000 = OK

FIND FIRST
This Find First operation returns file information about the
first instance of a file that matches the filename specified.
The filename may include wildcards characters * or ?.

Setup Parameters
Command Buffer F016, 0004, <filename><null terminated>

Command Flag C3B6

Returned Values

Return Value FFFF = file not found, otherwise Return
Value is the 16 bit File Handle.

Data Count Number of bytes returned in Data Buffer

Data Buffer <String of filename><null terminated>

Note: The string name of the file or directory starts on the
13th byte in the Data Buffer and is null terminated.

FIND NEXT
This Find Next operation returns file information about the
next instance of a file that matches the file specified.
(Used in conjunction with Find First.)

Setup Parameters
Command Buffer F017, 0004, <file handle>

Command Flag C3B6

Returned Values
Return Value FFFF = file not found; Filehandle if file found.

Data Count Number of bytes returned in Data Buffer
Note: The string name of the file or directory starts on the
13th byte in the Data Buffer and is null terminated.

FIND CLOSE
The Find Close operation closes the specified handle and
releases associated resources.

Setup Parameters
Command Buffer F018, 0000

Data Buffer <file handle>

Command Flag C3B6

Returned Values
Return Value 0000 = OK.

END OF FILE
End Of File operation determines whether the end of the
referenced file has been reached.

Setup Parameters
Command Buffer F004, 0000

Data Buffer <file handle>

Command Flag C3B6

Returned Values
Return Value 0000 = Not at EOF or 0001 = EOF

READ FILE
This operation reads a maximum number of bytes
(specified by Data Count) into the Data Buffer from the
referenced file. The read operation begins at the current
position of the file pointer. After the read, the file pointer
points to the next unread character.

Setup Parameters
Command Buffer F002, 0008, 0000, 0000, <file handle>

Data Count Max Number of bytes in Data Buffer

Command Flag C3B6

Returned Values
Return Value Number of bytes returned in Data Buffer

Data Buffer <data from file>

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_6

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 7

WRITE FILE
This operation writes the number of bytes (specified by
Data Count) from the Data Buffer to the referenced file.
The write operation begins at the current position of the
file pointer. After the write operation completes, the file
pointer increments by the number of bytes actually written
to the file.

Setup Parameters
Command Buffer F003, 0008, 0000, 0000, <file handle>

Data Count Max Number of bytes in Data Buffer

Data Buffer <data for file>

Returned Values
Return Value Number of bytes written to file

USB Insertion and Removal
When the USB Flash drive is inserted or removed, the
GPIO25 signal pulses. When this occurs, the SPI Master
needs to read the Callback Flag in the Main Parameter
Table. (The address is 0x24F8 in v2 of the code.) If this
value is non zero, then a change of status has occurred.

The first step is to clear the Callback Flag by writing
0x0000 to that memory location. The second step is to
read the Callback Buffer (The address of the buffer is
0x2D6A for v2 of the code.) Twenty six bytes of the
Callback Buffer need to be read. Bytes 25 and 26 contain
a value of either 0x0001 (USB Device Inserted) or 0x0002
(USB Device Unplugged).

If a USB Device was inserted, the first eight bytes of the
Callback Buffer contains the Volume Label string. Here is
an example of the CallBack Buffer Contents:

Callback Buffer:

7375, 3062, 003A, 0000, 0000, 0001, BA60,
0020, 0000, 0000, 0000, CF58, 0001
In this case bytes 25 and 26 contain a 0001 and therefore
indicate the USB device was inserted. The volume label
from the first eight bytes shows the name of: “usb0:”.

The other bytes in the buffer provide additional disk
information.

High Level Functions
Many of the Disk Operations provide meaningful results
(e.g. SHOW CURRENT DIRECTORY) as a standalone
function. However, it is useful to link several of the
operations together to create higher level functions such
as reading or writing a file.

The High Level Functions section describes how to
interact with the USB flash drive as you might from a DOS
or Linux prompt. They allow you to view the contents of a
directory, read a file, create a directory, and many more
functions. Some simply use a single Disk Operation and
others loop through several operations. This application
note describes various High Level Functions most often
used and similar to those found in an OS command line
environment.

The following describes the list directory contents
command (i.e. LS for Linux, DIR for DOS) to illustrate the
process that is used. In order to execute this function,
several of the low level disk operations are called:

 Find First

 Find Next

 Find Close
The first operation is the Find First with a filename of *.*.
From the description given above, it is known that *.* is
part of the command string and sent to the EZ-Host. After
the command is executed, the return code is read and if
not 0xFFFF, the file exists. Of course in this case,
wildcards of *.* are being sent and therefore, all files
match. If you only want to list files with an extension of .txt,
you could have pass the filename *.txt to list only those
type of files.

If files do exist, the return code is the file handle which is
used in subsequent operations. The name of the first file
or directory is also returned in the Data. The amount of
data in the Data Buffer is indicated by the Data Count
byte. Note that the actual name of the file or directory
starts on the 13th byte and is null terminated.

Now that the first file/directory name has been retrieved,
loop on the next operation. Use FIND NEXT to retrieve the
names of all the other names.

Pass the filehandle to the FIND NEXT operation and then
execute. If the return code is 0xFFFF then no more
file/directory names exist and we proceed to the FIND
CLOSE operation.

If the return code is equal to the filehandle, then a new
name is in the Data Buffer. As with the FIND FIRST
command, read the Data Count parameter for the number
of valid bytes in the buffer. Again, the actual name of the
file or directory starts on the 13th byte and is null
terminated.

Repeat the FIND NEXT operation until it returns with a
0xFFFF status code indicating no more names.

And finally to end this function a FIND CLOSE operation is
performed. This is accomplished by setting up the
command buffer with the FIND CLOSE opcodes, placing
the filehandle in the Data Buffer and then executing. The
Return Code should be a 0x0000 when complete.

High Level Functions are described in the following format.
The first parameters in parentheses are the relevant
returned data from the File Operation. The File Operation
command is in all caps. And the data provided to the File
Operation are the last parameters in parentheses. The
operation just described is noted as follows.

LIST Contents
(filehandle, name) FIND FIRST (*.*)
(status, name) FIND NEXT (filehandle)
(status) FIND CLOSE (filehandle)
Summary: Get filehandle and the first name using the
FIND FIRST command. Continue with FIND NEXT
commands until no names are found. End the operation
with the FIND CLOSE command.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_7

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 8

The following describes the most often used High Level
Functions. Other functions can be created using the
various disk operations in the same manner. This
application note describes these functions:

 Make Directory

 Remove Directory

 Rename

 Create File

 Remove File

 Show Working Directory

 List Directory

 Change Directory

 Read File

 Write File

Show Working Directory (CWD)
(status, name) SHOW CURRENT DIRECTORY

Summary: Simply execute the SHOW CURRENT
DIRECTORY disk operation. The name of the directory is
returned in the data buffer starting at byte 0 and null
terminated. See Appendix D: SPI Initialization Sequence
for an example SPI sequence of this function.

Make Directory (MKDIR)
(status) MAKE DIRECTORY (name)
Summary: Simply execute the MAKE DIRECTORY disk
operation. The name of the directory is placed in the data
buffer. Status returns with success or failure.

Remove Directory (RMDIR)
(status) REMOVE DIRECTORY (name)
Summary: Execute the REMOVE DIRECTORY disk
operation. The name of the directory is placed in the data
buffer. Status returns with success or failure.

Rename File (RENAME)
(status) RENAME FILE (old filename, new
filename)
Summary: Execute the RENAME FILE disk operation. The
name of the old filename and the new filename are placed
in the data buffer. Nulls separate the two names and the
string is null terminated. Status returns with success or
failure.

Change Directory (CD)
(status) CHANGE DIRECTORY (name)
Summary: Execute the CHANGE DIRECTORY disk
operation. The name of the directory is placed in the data
buffer. Status returns with success or failure.

Read File (CAT)
(filehandle) OPEN FILE (filename)
(status) END OF FILE (filehandle)
(status, data) READ FILE (filehandle)
(status) CLOSE FILE (filehandle)
Summary: Open the filename by executing the OPEN
FILE disk operation. If successful, a filehandle is returned.

If a file handle is returned, test the file status by executing
the END OF FILE command. Status indicates end
(0x0001) or not at end (0x0000) of file. If at the end of the
file, start the CLOSE FILE operation. If not end of file,
continue with READ FILE. Execute the READ FILE and
the status indicates how many bytes are being returned in
the Data Buffer. After the data is retrieved, continue to
loop through the END OF FILE and READ FILE
operations until an End Of File is reached or the desired
number of bytes are captured. Finish by executing the
CLOSE FILE operation.

Write File (Write)
(filehandle) CREATE FILE (filename)
(status) WRITE FILE (filehandle, data)
(status) CLOSE FILE (filehandle)
Summary: Create the filename by executing the CREATE
FILE disk operation. If successful, a filehandle is returned.
Note that you may perform an ACCESS FILE or OPEN
FILE command to see if the file does exist in which case
the CREATE FILE is not necessary. Next write a block of
data. This can be as much as 2K bytes but is generally
dictated by the size of the buffer in the controlling
processor. The status indicates successful writes. Finish
by executing the CLOSE FILE operation.

Remove File (RM)
(filehandle, name) FIND FIRST (filename)
(status) REMOVE FILE (filehandle)
(status, name) FIND NEXT (filehandle)
(status) FIND CLOSE (filehandle)
Summary: Find the first occurrence of the filename. Note
that the filename can be the full name or a name with
wildcards and hence the need to search the directory for
other occurrences. If found, remove the file by providing
the returned filename and executing the REMOVE FILE
operation. Next perform a FIND NEXT operation to
determine if another file exists. If not, proceed to FIND
CLOSE. If a file does exist, execute REMOVE FILE with
the newly returned file name from the Data Buffer.
Continue the loop of FIND NEXT and REMOVE FILE until
FIND NEXT returns no more names. Finally execute FIND
CLOSE to finish.

Create File (CREATE)
(filehandle) CREATE FILE (filename)
(status) CLOSE FILE (filehandle)
Summary: Create a file whose name is placed in the Data
Buffer using the CREATE FILE Operation. The CREATE
FILE returns with the 16 bit file handle if successful. Close
the file using the CLOSE FILE operation and pass the file
handle from the CREATE FILE operation.

Initialization Sequence
Now that all of the commands and operations are known,
the last item of importance is how to start the EZ-Host
Mass Storage Code after the EEPROM has loaded the
memory. As mentioned earlier, the code that is with this
application note is booted into the EZ-Host memory on
power on. The EZ-Host then waits for a command
sequence to start.

GPIO25 is held low after the serial EEPROM contents is
loaded into the SRAM. Since this GPIO can glitch at

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_8

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 9

power on or at reset, ensure that GPIO25 is low for at
least 100 µs before sending the initialization sequence. If
the EZ-Host is controlled by a microprocessor, it is
recommended to issue a reset to the EZ-Host with the
microprocessor and then monitor GPIO25. This allows the
ability to re-try should something fail during the
initialization sequence.

Once the EEPROM is loaded and the EZ-Host signals it is
ready, send an LCP command to instruct the EZ-Host to
start the code. The LCP command that is sent is a JUMP
to 0x04A4. This is the starting location in memory of the
EZ-Host program.

The SPI master sends the following bytes to the EZ-Host:

MOSI: 04 CE A4 04 00 00 00 00
Note that the documentation for the EZ-Host BIOS
indicates that the SPI Master should continuously read
MISO until the 0x0FED response is returned before
proceeding. However, since this code re-initializes the SPI
hardware, the 0x0FED response is delayed until the
reading of the next status.

Upon successful completion of this command, GPIO25
pulses high and then back to low. The code in the EZ-Host
is now operational.

Before starting, it is recommended to read a memory
location to clear out any extraneous status on the SPI bus
(i.e. the 0x0FED from the JUMP command). Reading two

bytes from memory location 0x310 is sufficient. Instead of
getting back 10 bytes of data, you should read 12 bytes of
data. The first two bytes is the status from the LCP JUMP
instruction and should be 0x0FED. The SPI sequence in
Appendix D shows this initialization.

At this point, read memory at 0x310 and get its value. This
is the pointer to the Main Table. As mentioned earlier, the
binary code (MSC_EEPROM_scan_LCP_v2.bin) that is
with this application note should return a value of 0x24E8.
With this pointer now known, you can determine the
location of all of the status registers and each of the
memory buffer locations.

The last step is to read the Command Flag in the Main
Table. The value must be 0x55AA. If it is not, then the
code is not operating correctly. If it is correct, write a
0x0000 to the Command Flag to clear the flag.

Conclusion
USB Flash drives have gained a tremendous amount of
popularity. Most people have them and they are easily
accessible. All PCs with USB ports support the Flash drive
making them very easy to read and write. By using the EZ-
Host with the Mass Storage Code firmware, your
embedded processor can now easily take advantage of
USB Flash drives too. By using a SPI interface and the
appropriate commands, reading and writing data is at your
command.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_9

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 10

Appendix A: Reference Schematic
Figure 4. Reference Schematic for SPI Bus Interface

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_10

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 11

Appendix B: Changes in the Code
The code that is included in the CY4640 Version 1.1 Mass Storage Class Reference Design was used as the baseline code for
this application note. There are a few changes to this code to allow support for loading the EEPROM and controlling the SPI
interface. A few corrections to the algorithms were also made. The following details the changes made to the source in order
to create the file MSC_EEPROM_scan_LCP_v2.bin.

comm._driver.c (in MSC_API subdirectory)
The CY4640 Version 1.1 Checksum routine is incorrect. It is replaced with the code as shown in Appendix C: Checksum
Algorithm Implemented in C.

app.c (in MSC_API subdirectory)
Added support for the LCP code in the EEPROM to branch to a known place in code. This code enables the SPI hardware,
signals that the code load is complete, and then branches to BIOS to wait for LCP commands from the SPI interface. This
code is located at 0x4E26 in EZ-Host memory. This is an added callable code segment placed directly before app_pre_init.
The last LCP command in the EEPROM code JUMPS to this location.

/* This function is also called by the EEPROM LCP Functions */
/* After the EEPROM is loaded via I2C, the last command jumps here */
/* Then the memory loads and waits for an LCP command */
/* to jump to 04A4 ---- EWB */

void EEPROMLoadReady(void)
{
 __asm("call 0xE998"); /* call SPI_GInit */

 (volatile uint16)(0xc028)|= 0x0200; /* Lower GPIO25 */

 __asm("jmp 0xE0A2"); /* jmp to BIOS exec */
}

app.c (in MSC_API subdirectory)
The raise_interrupt routine has been changed to have added delay for the GPIO25 interrupt line which ensures a true rise and
fall pulse. It also uses drive high and drive low writes to the GPIO port instead of an XOR function.

/**
 * FUNCTION : raise_interrupt
 * PURPOSE : Raise and lower GPIO25
 *
 * DESCRIPTION : Helper function for signaling external processor
 * PARAMS :
 *
 * RETURNS : void
 **/
void raise_interrupt(void)
{

 /*Raise interrupt for external processor.Raise GPIO25 */

 (volatile uint16)(0xc028)&= ~0x0200; /* Raise it */
 counter1 = 0;
 while(counter1<100)
 {
 counter1++;
 }
/*Lower the level again .Lower GPIO25*/
 (volatile uint16)(0xc028)|= 0x0200;

}

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_11

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 12

app.c (in MSC_API subdirectory)
In the app_pre_init routine, the following was added to initialize the SPI hardware engine so SPI commands can be processed.
This routine is not required when booted from the EEPROM but is still in the code to support memory loading from the SPI
when an external EEPROM is not used. The code that was used to create MSC_EEPROM_scan_LCP_v2.bin has this code.

/* --- Initialize SPI interface by EWB ----- */
 #ifdef EEPROM_Mode
 /* Typecast a function pointer */
 typedef void (*VOIDFUNC)(void);
 /* Create an instance of the VOIDFUNC and initialize */
 /* it to have the address you want to call into. */
 VOIDFUNC my_spi_ginit = (VOIDFUNC) 0xe998;
 /* Make the call. */
 my_spi_ginit();

 /* Set SPI Enable in GPIO Control Reg */
 /* *(volatile uint16*)(0xc006)|= 0x0020; */
 /* *(volatile uint16*)(0xc03a)= 0x2222; */
 /* *(volatile uint16*)(0xc038)= 0x0008; */

 /* __asm("sti"); */
 #endif /* EEPROM_Mode */
 /* ---- end EWB mods ---- */

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_12

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 13

Appendix C: Checksum Algorithm Implemented in C

/**
 * FUNCTION : checksum
 * PURPOSE : Calculate 1's complement checksum for the given block
** of data in buffer specified by byte_length
 *
 * DESCRIPTION :
 * PARAMS : Buffer Array, Length
 *
 * RETURNS : 16 bit checksum
 **/

static uint16 checksum(char* buffer,uint16 byte_length)
{

 uint16 checksum;
 uint32 sum = 0;

 while(byte_length > 1)
 {
 /* This is the inner loop */
 sum += * (unsigned short*) buffer++;
 buffer++;

 byte_length -= 2;
 }

 /* Add left-over byte, if any */
 if(byte_length > 0)
 sum += * (unsigned char *) buffer;

 /* Fold 32-bit sum to 16 bits */
 while (sum>>16)
 sum = (sum & 0xffff) + (sum >> 16);

 checksum = ~sum;

return(checksum);

}
#endif /*USE_CHECKSUM*/

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_13

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 14

Appendix D: SPI Initialization Sequence
After the Main Parameter Table address is known (e.g. 0x24E8), the pointers to the buffers and the location of the flags are
known. Capture these values and then verify the Command Flag contains 0x55AA. Clear the Command Flag and the code is
ready for the USB Flash drive. The clock rate in this design for the SPI bus is 1 MHz.

Index min:sec.ms.us.ns MOSI MISO Comment
1 0:09.658.842.900 FFFF Clear SPI Registers
2 0:09.658.910.800 FFFF
3 0:09.658.978.700 FFFF
4 0:09.659.046.700 FFFF
5 0:09.659.114.600 FFFF
6 0:09.659.182.500 FFFF
7 0:09.659.250.400 FFFF
8 0:09.659.318.400 FFFF
9 0:09.659.390.200 04FF Tell EZ-Host goto 04A4
10 0:09.659.461.900 CEFF
11 0:09.659.533.500 A4FF
12 0:09.659.605.100 04FF
13 0:09.659.676.800 00FF
14 0:09.659.748.400 00FF
15 0:09.659.820.000 00FF
16 0:09.659.891.700 00FF <= GPIO25 pulses high after this byte. Wait for it.
17 0:10.006.775.200 10FF Read Memory 0x0103 to Get Table Pointer
18 0:10.006.846.800 00FF (Used to sync Status)
19 0:10.006.918.400 10FF
20 0:10.006.990.100 03FF
21 0:10.007.061.700 02FF
22 0:10.007.133.300 00FF
23 0:10.007.205.000 00FF
24 0:10.007.276.600 00FF
25 0:10.060.532.900 FFED 0x0FED from ‘goto’ command above
26 0:10.060.609.700 FF0F
27 0:10.060.686.600 FF18
28 0:10.060.763.400 FF00
29 0:10.060.840.200 FF10
30 0:10.060.917.100 FF03
31 0:10.060.993.900 FF02
32 0:10.061.070.700 FF00
33 0:10.061.147.600 FF17
34 0:10.061.224.400 FFDB
35 0:10.061.301.200 FFE8 Contents of 0x0103
36 0:10.061.378.100 FF24
37 0:10.114.641.500 18FF
38 0:10.114.714.400 00FF
39 0:10.114.787.400 10FF
40 0:10.114.860.300 03FF
41 0:10.114.933.300 02FF
42 0:10.115.006.200 00FF
43 0:10.115.079.200 17FF
44 0:10.115.152.200 DBFF
45 0:10.115.271.000 10FF Read Memory 0x0103 to Get Table Pointer
46 0:10.115.343.900 00FF
47 0:10.115.416.800 10FF
48 0:10.115.489.700 03FF
49 0:10.115.562.500 02FF
50 0:10.115.635.400 00FF
51 0:10.115.711.400 00FF
52 0:10.115.784.300 00FF
53 0:10.115.922.200 FF18
54 0:10.115.995.200 FF00
55 0:10.116.068.100 FF10
56 0:10.116.141.100 FF03
57 0:10.116.214.100 FF02

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_14

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 15

58 0:10.116.287.000 FF00
59 0:10.116.358.000 FF17
60 0:10.116.430.900 FFDB
61 0:10.116.503.900 FFE8 Main Table is at 0x24E8
62 0:10.116.576.900 FF24
63 0:10.117.107.900 18FF
64 0:10.117.180.800 00FF
65 0:10.117.253.700 10FF
66 0:10.117.326.500 03FF
67 0:10.117.402.600 02FF
68 0:10.117.475.400 00FF
69 0:10.117.548.300 17FF
70 0:10.117.621.200 DBFF

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_15

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 16

Appendix E: SPI Example Sequence for Show Current Directory
This is an actual SPI bus sequence that shows the transactions for a SHOW CURRENT DIRECTORY function. The clock rate
for the SPI bus is 1 MHz. Note the delays betweens each byte transferred. The slave select signal toggles for each byte. Also
note the time between the different command segments (i.e. Write Memory command of eight bytes, the eight byte ACK, etc).

Index min:sec.ms.us.ns Data Comment
0 0:00.000.000.000 MOSI MISO
1 0:03.288.410.600 20FF Write address command (8 bytes)
2 0:03.288.416.500 00FF The Write Address is writing 6 bytes
3 0:03.288.422.500 FAFF to address 0x24FA
4 0:03.288.428.500 24FF
5 0:03.288.434.400 06FF
6 0:03.288.440.400 00FF
7 0:03.288.446.400 EAFF
8 0:03.288.452.400 0EFF
9 0:03.288.770.800 FF28 ACK for the Write address command (8 bytes)
10 0:03.288.776.800 FF00
11 0:03.288.782.800 FFFA
12 0:03.288.788.700 FF24
13 0:03.288.794.700 FF06
14 0:03.288.800.700 FF00
15 0:03.288.806.600 FFEA
16 0:03.288.812.600 FF0E
17 0:03.289.195.100 0DFF The 6 bytes are F00D, 0004, 0104 --- the CWD Operation
18 0:03.289.201.100 F0FF
19 0:03.289.207.000 04FF
20 0:03.289.213.000 00FF
21 0:03.289.219.000 04FF
22 0:03.289.224.900 01FF
23 0:03.289.685.500 FF28 ACK again for the Write address command (8 bytes)
24 0:03.289.691.500 FF00
25 0:03.289.697.500 FFFA
26 0:03.289.703.400 FF24
27 0:03.289.709.400 FF06
28 0:03.289.715.400 FF00
29 0:03.289.721.300 FFEA
30 0:03.289.727.300 FF0E
31 0:03.290.242.200 20FF Now write the Command Flag 0x24F6…
32 0:03.290.248.100 00FF
33 0:03.290.254.100 F6FF
34 0:03.290.260.100 24FF
35 0:03.290.266.000 02FF
36 0:03.290.272.000 00FF
37 0:03.290.278.000 49FF
38 0:03.290.284.000 3CFF
39 0:03.290.648.000 FF28
40 0:03.290.654.500 FF00
41 0:03.290.660.500 FFF6
42 0:03.290.666.400 FF24
43 0:03.290.672.400 FF02
44 0:03.290.678.400 FF00
45 0:03.290.684.300 FF49
46 0:03.290.690.300 FF3C
47 0:03.291.103.700 B6FF with C3B6 --- tells EZ-Host to Execute CWD
48 0:03.291.109.700 C3FF
49 0:03.291.578.400 FF28
50 0:03.291.584.400 FF00
51 0:03.291.590.400 FFF6
52 0:03.291.596.300 FF24
53 0:03.291.602.300 FF02
54 0:03.291.608.300 FF00
55 0:03.291.614.300 FF49
56 0:03.291.620.200 FF3C Wait for GPIO25 before proceeding after this byte
57 0:03.292.973.800 10FF Now Read Main Table at 24E8

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_16

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 17

58 0:03.292.979.800 00FF
59 0:03.292.985.800 E8FF
60 0:03.292.991.700 24FF
61 0:03.292.997.700 14FF
62 0:03.293.003.700 00FF
63 0:03.293.009.700 00FF
64 0:03.293.015.600 00FF
65 0:03.293.381.300 FF18
66 0:03.293.387.300 FF00
67 0:03.293.393.200 FFE8
68 0:03.293.399.200 FF24
69 0:03.293.405.200 FF14
70 0:03.293.411.100 FF00
71 0:03.293.417.100 FF21
72 0:03.293.423.100 FF90
73 0:03.293.816.400 FF00 Status – 0000 is OK
74 0:03.293.822.400 FF00
75 0:03.293.828.300 FF00
76 0:03.293.834.300 FF00
77 0:03.293.840.300 FFFA
78 0:03.293.846.200 FF24
79 0:03.293.852.200 FF6A
80 0:03.293.858.200 FF25
81 0:03.293.864.100 FF6A
82 0:03.293.870.100 FF2D
83 0:03.293.876.100 FF00
84 0:03.293.882.100 FF08
85 0:03.293.888.000 FF02 Data Count – 2 bytes in Data Buffer
86 0:03.293.894.000 FF00
87 0:03.293.900.000 FF00
88 0:03.293.905.900 FF00
89 0:03.293.911.900 FF00
90 0:03.293.917.900 FF00
91 0:03.293.923.800 FF0D
92 0:03.293.929.800 FFF0
93 0:03.294.287.300 18FF
94 0:03.294.293.300 00FF
95 0:03.294.299.300 E8FF
96 0:03.294.305.200 24FF
97 0:03.294.311.200 14FF
98 0:03.294.317.200 00FF
99 0:03.294.323.100 21FF
100 0:03.294.329.100 90FF
101 0:03.294.844.500 10FF Read the 2 bytes from Data Buffer (0x256A)
102 0:03.294.850.500 00FF
103 0:03.294.856.400 6AFF
104 0:03.294.862.400 25FF
105 0:03.294.868.400 02FF
106 0:03.294.874.300 00FF
107 0:03.294.880.300 00FF
108 0:03.294.886.300 00FF
109 0:03.295.272.600 FF18
110 0:03.295.278.500 FF00
111 0:03.295.284.500 FF6A
112 0:03.295.290.500 FF25
113 0:03.295.296.400 FF02
114 0:03.295.302.400 FF00
115 0:03.295.308.400 FFD0
116 0:03.295.314.300 FFFF
117 0:03.295.715.300 FF2F This is the name of the directory, null terminated.
118 0:03.295.721.200 FF00 Since we’re in the root, a slash (/) this there.
119 0:03.296.178.100 18FF
120 0:03.296.184.000 00FF
121 0:03.296.190.000 6AFF
122 0:03.296.196.000 25FF

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_17

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 18

123 0:03.296.201.900 02FF
124 0:03.296.207.900 00FF
125 0:03.296.213.900 D0FF
126 0:03.296.219.800 FFFF
127 0:03.296.753.700 10FF Read Callback Flag (0x24F8)
128 0:03.296.759.700 00FF
129 0:03.296.765.600 F8FF
130 0:03.296.771.600 24FF
131 0:03.296.777.600 02FF
132 0:03.296.783.500 00FF
133 0:03.296.789.500 00FF
134 0:03.296.795.500 00FF
135 0:03.297.181.800 FF18
136 0:03.297.188.300 FF00
137 0:03.297.194.200 FFF8
138 0:03.297.200.200 FF24
139 0:03.297.206.200 FF02
140 0:03.297.212.100 FF00
141 0:03.297.218.100 FFFF
142 0:03.297.224.100 FFFF
143 0:03.297.619.000 FF00 Make sure 0000, otherwise USB may have been unplugged
144 0:03.297.625.000 FF00
145 0:03.298.090.000 18FF
146 0:03.298.095.900 00FF
147 0:03.298.101.900 F8FF
148 0:03.298.107.900 24FF
149 0:03.298.113.800 02FF
150 0:03.298.152.400 00FF
151 0:03.298.158.300 FFFF
152 0:03.298.164.300 FFFF

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_18

AN15484

October 12, 2010 Document No. 001-15484 Rev. *A 19

About the Author
Name: Ernie Buterbaugh

Title: Principal Field Applications Engineer

Background: BSEE from Pennsylvania State University.
More than 25 years experience with embedded
processors, board level design, ASIC, FPGA ,
and CPLD designs. Has authored a variety of
application notes, articles, and the book Perfect
Timing: A Design Guide for Clock Generation
and Distribution.

Contact: ewb@cypress.com

Document History
Document Title: USB Flash Drive Controller Using SPI - AN15484

Document Number: 001-15484

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 1070141 NMMA 05/15/2007 New Application Note
*A 3056366 DBIR 10/12/2010 Updated title. Template Updated

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2007-2010. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[+] Feedback

http://www.cypress.com/�
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-15484_pdf_p_19

	Application Note Abstract
	Introduction
	SPI to USB Flash Drive
	EZ-Host Firmware
	EEPROM Code
	System Architecture
	SPI Interface
	SPI Signals
	Read Memory
	Write Memory
	Disk Operations

	File Operation Format
	SHOW CURRENT DIRECTORY
	OPEN FILE
	CREATE FILE
	ACCESS FILE
	CLOSE FILE
	CHANGE DIRECTORY
	REMOVE DIRECTORY
	MAKE DIRECTORY
	REMOVE FILE
	RENAME FILE or DIRECTORY
	FIND FIRST
	FIND NEXT
	FIND CLOSE
	END OF FILE
	READ FILE
	WRITE FILE

	USB Insertion and Removal
	High Level Functions
	LIST Contents
	Show Working Directory (CWD)
	Make Directory (MKDIR)
	Remove Directory (RMDIR)
	Rename File (RENAME)
	Change Directory (CD)
	Read File (CAT)
	Write File (Write)
	Remove File (RM)
	Create File (CREATE)

	Initialization Sequence
	Conclusion
	Appendix A: Reference Schematic
	Appendix B: Changes in the Code
	comm._driver.c (in MSC_API subdirectory)
	app.c (in MSC_API subdirectory)
	app.c (in MSC_API subdirectory)
	app.c (in MSC_API subdirectory)

	Appendix C: Checksum Algorithm Implemented in C
	Appendix D: SPI Initialization Sequence
	Appendix E: SPI Example Sequence for Show Current Directory
	About the Author
	Document History

