
`

THIS SPEC IS OBSOLETE

Spec No: 001-14558

Spec Title: Implementing an SPI Master on EZ-USB®
FX2LP™ - AN14558

Sunset Owner: DBIR

Replaced By: None

 www.cypress.com Document No. 001-14558 Rev. *G 1

AN14558
Implementing an SPI Master on EZ-USB® FX2LP™

Author: Sonia Gandhi, Nikhil Naik
Associated Project: Yes

Associated Part Family: CY7C6801XA
Software Version: None

This application note details two approaches (bit-banging general purpose I/O (GPIO) pins, using the UART block) to
implement SPI Master interface on FX2LP, including the example code. The application note also shows how to use
a Microsoft Visual Studio application (USB Control Center) to communicate with SPI slave devices connected to
FX2LP using USB Vendor Requests. An SPI EEPROM (25AA160B) is used as an example of a slave SPI device.

Introduction
EZ-USB FX2LP is a single-chip solution to implement
high-speed USB 2.0 peripherals. FX2LP integrates a USB
controller and an 8051 MCU to handle USB transfers and
to create interfaces to other system devices. Although the
8051 contains two UARTs, it does not include a hardware
SPI (Serial Peripheral Interface) unit. However it is
possible to implement an SPI master using one of two
methods. First, an SPI master can be implemented using
GPIO pins and writing “bit-bang” code to directly control
the GPIO pins. Second, one of the 8051 UARTs may
operate as an SPI master.

Figure 1. Basic SPI.

Master (FX2LP) Slave (EEPROM)

MOSI

SCLKMaster
Clock

76543210 76543210

MISO

Figure 1 illustrates the basics of SPI. Two shift registers-
one in the master and the other in the slave connected in
a ring. The master supplies the common clock SCLK to
both shift registers. The data pins are named MOSI for
Master Out/Slave In, and MISO for Master In/Slave Out.
Data is transmitted MSB-first. After eight clocks, the bytes
in the master and slave exchange places.
Most SPI slave devices include an input pin named Chip
Select (CS#) or Slave Select (SS#). This active-LOW
signal enables SPI transfers. When the master de-asserts
SS#, the slave tristates its MISO output driver and ignores
SCLK transitions. Some SPI slaves use the de-assertion
of the CS# signal to reset internal logic.

There are four possible combinations of SCLK polarity and
phase, abbreviated as CPOL and CPHA. The SPI Mode is
abbreviated as (CPOL, CPHA). Most SPI devices,
including the EEPROM used in this note, operate
equivalently in modes (0, 0) and (1, 1). In these modes the
data is sampled on the rising edge of the SCLK. The only
difference is the quiescent state of SCLK: LOW in mode
(0, 0) and HIGH in mode (1, 1).

SPI prescribes no protocol. For example, there is no
provision to address different slaves on the bus. Instead,
the master provides individual CS# signals to each slave
device. For this reason, the designer must consult the data
sheet for specific SPI device protocol.

A common SPI slave is an EEPROM. EEPROMs are
available in various densities, and over time they have
adopted a common protocol. This application note shows
how to connect FX2LP to a 16-Kb (2048x8) EEPROM.
These EEPROMs are available from multiple vendors,
usually with “160” in the part number to indicate the
density. For example, this note uses a Microchip
25AA160B device for testing, which Atmel offers as an
AT25160B, ON as a CAT25160, Renesas as an
R1ECX25016, ST as an M95160, Rohm as a BR25L160,
etc. There are minor differences between manufacturers
and devices in features such as page size, so be sure to
consult the data sheet for the device you choose.

These EEPROMs operate using a wide supply voltage
range, all of them compatible with 3.3 V, so they can be
directly connected to FX2LP pins.

Test Hardware
The example code in this note runs on a Cypress FX2LP
Development board, included as part of the FX2LP
Evaluation Kit, available from Cypress website. Installing
the software in the kit installs the Windows driver needed
for the testing.

http://www.cypress.com/
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p40-vmn6tpb
http://www.cypress.com/?rID=14321

Implementing an SPI Master on EZ-USB FX2LP™

 www.cypress.com Document No. 001-14558 Rev. *G 2

The ‘Bit-Bang’ Approach
In this approach, the 8051 directly controls (“bit-bangs”)
GPIO pins to communicate with an SPI EEPROM.

Figure 2. FX2LP to EEPROM Connections

PA0

PA1

PA2

PA4

3.3 V

GND

SI

SCK

CS#
SO

Vcc

HOLD#
WP#

GND

P2

15

19

2

18

20

17

4

1

2

5

6

7
3
8

FX2LP Dev Board EEPROM

Figure 2 shows the connection between the FX2LP
Development Board and a 25AA160B EEPROM. Figure 3
highlights P2 on the left edge of the FX2LP Development
Board. Note that pin 1 is upper-left, and pin 20 is lower-
right on J2.

Figure 3. P2 on the FX2LP Development Board.

SPI Byte Write
Code 1 shows the C code to write an SPI byte.

Code 1. C Code to Bit-Bang an SPI Write
void SPIByteWrite(unsigned char b)

// caller manages SPI_CS signal

{

 SPI_CLK = 0;

 if(b & 0x80) MOSI = 1;else MOSI= 0;

 SPI_CLK = 1; SPI_CLK = 0;

 if(b & 0x40) MOSI = 1;else MOSI= 0;

 SPI_CLK = 1; SPI_CLK = 0;

 if(b & 0x20) MOSI = 1;else MOSI= 0;

 SPI_CLK = 1; SPI_CLK = 0;

 if(b & 0x10) MOSI = 1;else MOSI= 0;

 SPI_CLK = 1; SPI_CLK = 0;

 if(b & 0x08) MOSI = 1;else MOSI= 0;

 SPI_CLK = 1; SPI_CLK = 0;

 if(b & 0x04) MOSI = 1;else MOSI= 0;

 SPI_CLK = 1; SPI_CLK = 0;

 if(b & 0x02) MOSI = 1;else MOSI= 0;

 SPI_CLK = 1; SPI_CLK = 0;

 if(b & 0x01) MOSI = 1;else MOSI= 0;

 SPI_CLK = 1; SPI_CLK = 0;

}

Writing the code inline instead of using a program loop
makes the SPI transfer as quick as possible. Note that the
8051 MCU has bit addressing, so the MOSI variable
(defined as the bit PA1) can be directly set or cleared.
Code 2 shows the protocol to write one EEPROM byte. It
is one case in a switch statement that decodes USB
Vendor Requests described later in this note. After
enabling the EEPROM by setting its Chip Select pin LOW,
the code sends the “Enable Write” command. Then, it
toggles CS# pin HIGH to LOW to latch the command into
the EEPROM. Next, the code sends the EEPROM Write
command followed by two address bytes and one data
byte. Returning CS# HIGH triggers the write cycle. The
address and data bytes arrive over USB in a SETUP Data
packet, which the code accesses in the 8-byte
SETUPDAT buffer.

http://www.cypress.com/

Implementing an SPI Master on EZ-USB FX2LP™

 www.cypress.com Document No. 001-14558 Rev. *G 3

Code 2. Code to write one EEPROM byte.
case VR_WRITE_SPI_BB:

 SPI_CS = 0;

 SPIByteWrite(EE_ENABLE_WRITE);

 SPI_CS = 1;//set write-enable latch

 SPI_CS = 0;//ready to write

 SPIByteWrite(EE_WRITE);//command

 SPIByteWrite(SETUPDAT[3]);//addrH

 SPIByteWrite(SETUPDAT[2]);//addrL

 SPIByteWrite(SETUPDAT[4]);//data

 SPI_CS = 1;//trigger the write

break;

Figure 4. Logic Analyzer Trace of the Bit-Banged Byte-Write Operation

http://www.cypress.com/

Implementing an SPI Master on EZ-USB FX2LP™

 www.cypress.com Document No. 001-14558 Rev. *G 4

Figure 4 shows the five SPI byte write operations. Writing
an EEPROM byte takes about 180 µs with an FX2LP
12 MHz clock. The MOSI line shows the output data, while
the MISO line is “don’t care” since no EEPROM data is
read. The first byte 0x06 is the ENABLE_WRITE
command, followed by CS# toggling from HIGH to LOW.
The second byte 0x02 is the WRITE command, followed
by address 0x0123 and data 0xAB.
EEPROMs can accept burst writes, whereby a string of
bytes follow the data byte (0xAB in Figure 4). This
improves write times by requiring the first four bytes to be
sent only once per burst. Consecutive writes increment an
internal EEPROM address pointer.

SPI Byte Read
Code 3 shows the C code to read an SPI byte.

Code 3. C code to bit-bang an SPI Read
unsigned char SPIByteRead(void)

// caller manages SPI_SS signal

{

 unsigned char val = 0;

 SPI_CLK= 0;

 SPI_CLK=1;

if(MISO == 1) val|=0x80; SPI_CLK=0;

 SPI_CLK=1;

if(MISO == 1) val|=0x40; SPI_CLK=0;

 SPI_CLK=1;

if(MISO == 1) val|=0x20; SPI_CLK=0;

 SPI_CLK=1;

if(MISO == 1) val|=0x10; SPI_CLK=0;

 SPI_CLK=1;

if(MISO == 1) val|=0x08; SPI_CLK=0;

 SPI_CLK=1;

if(MISO == 1) val|=0x04; SPI_CLK=0;

 SPI_CLK=1;

if(MISO == 1) val|=0x02; SPI_CLK=0;

 SPI_CLK=1;

if(MISO == 1) val|=0x01; SPI_CLK=0;

 return val;

}

As with the write operation, inline coding each bit test
gives the fastest possible read operation.
Code 4 shows the protocol to read one EEPROM byte.
The code selects the EEPROM by setting CS#=0, and
then checks to make sure any previous write operation
has completed. It does this by sending a READ STATUS
command, then looping until bit 0 in the STATUS byte is 0,
indicating that no write operation is in progress. Then the
code sends the address bytes as before, finally reading
the data byte into the first byte of the ENDPOINT Zero
data buffer EP0BUF[0]. Finally, the code arms the IN data
for USB transfer by writing a byte count of one. Note that
the MCU arms FX2LP USB transfers by writing the lower
byte count register EP0BCL, so the upper byte count
register EP0BCH should always be loaded first.

Code 4. Code to Read One EEPROM Byte
case VR_READ_SPI_BB:

 SPI_CS = 0;

 SPIByteWrite(EE_READ_STATUS);

 //wait until write complete

 while (SPIByteRead() & 0x01);
 SPI_CS = 1;

 SPI_CS = 0;// enable READ

 SPIByteWrite(EE_READ);

 SPIByteWrite(SETUPDAT[3]);// addrH

 SPIByteWrite(SETUPDAT[2]);// addrL

 EP0BUF[0] = SPIByteRead();// data

 SPI_CS = 1;

 EP0BCH=0;

 EP0BCL=1;// arm EP0-IN transfer

break;

http://www.cypress.com/

Implementing an SPI Master on EZ-USB FX2LP™

 www.cypress.com Document No. 001-14558 Rev. *G 5

Figure 5. Logic Analyzer Trace of the Bit-Banged Byte Read Operation

Figure 5 shows a five-byte SPI read operation. The first
byte 0x05 is the READ_STATUS command, followed by
reading the status byte on the MISO pin. Because bit 0 is
0 (no writes in progress), the sequence proceeds with the
READ command 0x03, the two address bytes 0x0123, and
finally reading back the data byte 0xAB. Similar to the
writes, the MCU code can also read consecutive bytes in a
burst.

Serial Port Mode 0 Approach
Both FX2LP UARTs have a Mode 0 that provides an
output clock in addition to the serial data input and output
pins. This mode can be used to implement an SPI master.
Similar to the bit-bang approach, a GPIO pin provides the
EEPROM CS# signal. This example uses UART0 as an
SPI master.
The UART signals are remapped in Mode 0 as shown in
Table 1 for UART0:

Table 1. SPI Remapping for UART0 Mode 0

UART0 Signal SPI Signal Pin Number on
FX2LP DVK

TXD0 SCK U7-11

RXD0 MISO U7-12

RxD0OUT MOSI PORTE.3 (P6-16)

-- CS# PORTC.2 (P3-17)

Any GPIO pin can be used for CS#; this example uses
PORTC bit 2. The “Available” column shows where the
signals can be found on the FX2LP Development Board.
As Figure 6 shows, the TXD0 and RXD0 signals must be
taken from the input side of the RS-232 level converter U7
to conform to the 3.3 V logic levels required by the
EEPROM. This requires soldering wires to U7 pins 11
(TXD0/SCK) and 12 (RXD0/MISO).

Figure 6. Location of RXD0 and TXD0 Signals on the
FX2LP Development Board

UART0 is initialized for Mode 0 operation as shown in
Code 5. PORT E bit 3 is configured to be the UART output
(MOSI), and the PORTC bit 4 driver is turned on to
provide the CS# output.

Code 5. UART0 Mode 0 Initialization Code
// SPI-UART Initialization

SCON0 = 0x13; // See Figure 7

PORTECFG = 0x08; // make PE3->MOSI

SPI_CS_U = 1; // deselect EEPROM

OEC = 0x04; // CS# is PORTC.2

The 8051 clock speed is set by the CLKSPD[1:0] bits in
the CPUCS register. This example uses the default setting
of 00, giving a 12 MHz CPU clock. The UART clock is set
by bits in the SCON0 register (See Figure 7).

http://www.cypress.com/

Implementing an SPI Master on EZ-USB FX2LP™

 www.cypress.com Document No. 001-14558 Rev. *G 6

Figure 7. SCON0 Register Bits

SM0 SM1 SM2 REN TB8 RB8 TI RI

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 1 0 0 1 1

SM0-SM1 = 00 to select UART Mode 0. SM2 in Mode 0
selects the baud rate divisor of the CPU clock (0=divide by
12, 1=divide by 4). For this example, SM2=0, for an SCK
output of 12 MHz/12=1 MHz. REN=1 enables the receiver.
TB8 and RB8 are not used in Mode 0. TI and RI are set to
1 to initialize the UART transmit and receive flags to their
ready states.

The SPI byte write and byte read functions are shown in
Code 6. The function names are as before, but with a “U”
suffix to indicate the UART.

Code 6. UART Mode0 Write and Read Code
void SPIByteWriteU (BYTE d)

 {

 TI = FALSE; //Clear flag

 SBUF0 = swap1[d]; //Write byte

 while (!TI); //Wait until
transmit done

}

BYTE SPIByteReadU (void)

{

 RI = FALSE; //Clear flag

 while (!RI); //Wait until Rx done

 return (swap1[SBUF0]); //Return byte

}

Figure 8. Logic Analyzer Trace of the UART Mode0 Byte Write

Figure 8 shows the five SPI byte write operation. The data is identical to Figure 4, but there are three differences compared
with the bit-bang example:

1. With a 1 MHz clock, the writes are about twice as fast, with the write cycle taking about 90 microseconds. Setting
SM2=1 (Figure 11) would triple this clock rate. Before doing this, make sure that the EEPROM can take a 3-MHz
clock rate.

2. The UART clock quiescent state is HIGH instead of LOW. This is an example of SPI mode (1, 1) being equivalent to
mode (0, 0). Both modes strobe and sample the data on the clock rising edge.

3. The UART outputs bytes LSB first, so the C code must flip each byte end-to-end. This can be done in a loop with shift
and mask instructions. For faster execution than the loop, this example uses a 256-byte lookup table.

http://www.cypress.com/

Implementing an SPI Master on EZ-USB FX2LP™

 www.cypress.com Document No. 001-14558 Rev. *G 7

Testing
Cypress provides an application called USB Control
Center as part of its Suite USB, available as a free
download on the Cypress web site. Complete Microsoft
Visual Studio source code is provided to allow study and
modification. For convenience, the companion folder to
this application note contains a binary version of
CyControl.exe.
This note tests the SPI read and write routines using USB
Vendor Requests. Vendor Requests allow you to create
your own USB commands. Cypress application note
AN45471 discusses Vendor Requests in detail. This note
summarizes AN45471 topics to help understand how
Vendor Requests are used to test the SPI byte write and
read functions.
This example creates six USB Vendor requests using the
request numbers shown in Table 2. The example code
uses the Cypress USB Frameworks, which is a
C application that creates a fully operational USB device
that can be customized. The USB Frameworks code
routes USB requests to predefined placeholder functions.
For example, to respond to Vendor Requests, you write
code in the provided DR_VendorCmd (Device Request,
Vendor Command) function in the Vend_SPI.C file. The
first two requests in Table 2 are from AN45471, and the
remaining four are unique to this application note.

Table 2. USB Vendor Commands for This Application
Note

Request Purpose

0xA5 Update 7-segment readout

0xA6 Update four LEDs

0xA7 Write SPI byte (bit-bang)

0xA8 Read SPI byte (bit-bang)

0xAA Write SPI byte (UART)

0xAB Read SPI byte (UART)

1. Start CyControl.exe and you see the screen in Figure

9.

Note: If your version of the USB control center shows
many connected USB devices in the left panel, you can
simplify the display by clicking the “Device Class
Selection” tab and selecting only the first checkbox to
display only Cypress devices.

Figure 9. USB Control Center Startup Screen

2. On the FX2LP Development Board, move the two
slide switches at the lower left to the “down” position.
This disables program loads from onboard EEPROMs
and enables the USB loader. Verify that the jumpers
are set to the states shown in Table 3.

Table 3. FX2LP Development Board Jumper Settings

JP State Purpose

6,7 OUT Memory configuration for development

2 IN Power the board from the USB connector

1,5,10 IN Local (from USB) 3.3 V source

3 IN All four jumpers IN—activate four LEDs
D2-D5

8 Either Not used (for Remote Wakeup testing)

3. Plug the FX2LP Development Board into a USB port.

The board appears as in Figure 10. “Default Device”
means that FX2LP has enumerated as a default USB
device, capable of loading hex code into its internal
RAM for execution. This default USB device is hard-
wired into FX2LP, requiring no code.

Figure 10. FX2LP Develop Board Detected

4. Select the device entry, and then select Program >
FX2 > RAM (See Figure 11).

http://www.cypress.com/
http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=34485
http://www.cypress.com/?rID=34485

Implementing an SPI Master on EZ-USB FX2LP™

 www.cypress.com Document No. 001-14558 Rev. *G 8

Figure 11. Download Hex Code Into FX2LP RAM

5. Navigate to the Vend_SPI.hex file in the VEND_SPI
example folder provided with this application note.
Double-click the file to load it into FX2LP RAM. You
will hear the USB disconnect sound on the PC,
followed by the reconnect sound as FX2LP
enumerates as a new device. This new device is the
one defined by the loaded file.

Note: You can review and modify the example Vend_SPI
project using the Keil tools provided in the Cypress
download. Every time you modify and rebuild your code,
creating a new .hex file, you must press the RESET
button on the FX2LP Development Board to reconnect the
board as the USB code loader.

6. Expand the device tree and select the “Control

endpoint(0x00) entry. Then select the Data Transfer
tab. The screen should look like Figure 12.

Figure 12. USB Control Center is Ready to Conduct EP0
Transfers

The fields in the USB control center allow you to specify
bytes in a SETUP packet, and receive bytes over Endpoint
0. A USB SETUP packet has the format shown in Table 4.

Table 4. The Eight Bytes in a SETUP Packet

Index Field Meaning

0 bmRequestType Direction, Type, and Target

1 bRequest Specific Request (Refer Table 2)

2 wValueL Command-specific value (we
choose EEPROM address). 3 wValueH

4 wIndexL Command-specific index (we
choose EEPROM data in low byte). 5 wIndexH

6 wLengthL Number of bytes if the request
includes a data stage 7 wLengthH

The USB Control Center uses dropdown lists to fill in the
required SETUP bytes. By selecting Req Type to
“Vendor”, the Value and Index fields can be anything you
define them to be. In the SPI test, you can designate
wValue to be the EEPROM address and wIndex to be the
EEPROM data to write.
To write the byte 0xAB to EEPROM location 0x0123 using
the bit-bang approach, set the USB Control Center
settings as in Figure 13.

Figure 13. Settings for a Bit-Bang Byte Write

Specifically:

1. Set the Bytes To Transfer field to 0. All the Vendor

Request bytes are contained in the SETUP packet, so
no data stage is required.

2. Direction to OUT
3. Req Type to Vendor
4. Target to Device
5. Req Code to 0xA7 (Table 2)
6. wValue to the address 0x0123
7. wIndex to the data byte 0x00AB

http://www.cypress.com/

Implementing an SPI Master on EZ-USB FX2LP™

 www.cypress.com Document No. 001-14558 Rev. *G 9

Press the Transfer Data button. The text in the yellow box
indicates that the transfer was successful. These settings
produced the logic analyzer trace in Figure 4.
To read back the EEPROM value, change the settings to
match Figure 14.

Figure 14. Settings for a Bit-Bang Read

Specifically:
1. Change Bytes To Transfer to 1. This tells the USB

Control Center to expect one byte in the IN transfer,
which is the byte read from the EEPROM.

2. Change Direction to IN.
3. Change Req Code to 0xA8 (See Table 2).
4. Change wIndex to 0x0000. This is not mandatory, but

it makes it clear that the returned byte did not come
from this field.

Press the Transfer Data button. The byte you wrote
(0xAB) is returned. These settings produced the logic
analyzer trace in Figure 8.
To repeat the tests using the UART code, use the above
instructions, but substitute 0xAA for the write and 0xAB for
the read from the SPI EEPROM (See Table 2).

Selecting the Approach to Use
To evaluate which approach to use, consider the following
factors:
• Pin assignment. The bit-bang approach gives the

freedom to assign any GPIO pins. This may help with
FX2LP resource allocation and PCB routing.

• UART utilization. If the application requires two
UARTs, use the bit-bang approach.

• Code size. If the UART approach uses a lookup table
to flip the bytes, its code size is larger than the bit-
bang approach.

• Interrupts. If you want the SPI operations to be
interrupt-driven, use the UART which has interrupt
provision for send and receive. The bit-bang approach
does not.

Conclusion
This application note presented two methods for
implementing an FX2LP SPI master. The bit-bang
approach uses GPIO pins, and the UART approach uses
one of the internal UARTS. An example Keil project
contains C code with functions to implement both
approaches. The code is tested using the Cypress USB
Control Center, which can initiate USB Vendor (custom)
requests.

References

 EZ-USB® Technical Reference Manual (Document
#001-13670)

 CY7C68013A/CY7C68014A/CY7C68015A/CY7C6801
6A EZ-USB FX2LP™ USB Microcontroller High
Speed USB Peripheral Controller Data Sheet
(Document #38-08032)

 AN65209-Getting Started with FX2LP

 AN45471 - Create Your Own USB Vendor Commands
Using FX2LP™

 SPI Serial Flash (25AA160B) Data Sheet

http://www.cypress.com/
http://www.cypress.com/?rID=38232
http://www.cypress.com/?docID=34060
http://www.cypress.com/?docID=34060
http://www.cypress.com/?rID=48371
http://www.cypress.com/?rID=34485
http://www.cypress.com/?rID=34485
http://www.micron.com/parts/nor-flash/serial-nor-flash/m25p40-vmn6tpb

Implementing an SPI Master on EZ-USB FX2LP™

 www.cypress.com Document No. 001-14558 Rev. *G 10

Document History
Document Title: Implementing an SPI Master on EZ-USB® FX2LP™ - AN14558

Document Number: 001-14558

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 968201 DBIR 04/13/2007 New Application Note.

*A 3170872 DBIR 02/11/2011 Updated in new template.

*B 3182387 DBIR 02/25/2011 No technical updates.

*C 3610200 DBIR 05/07/2012 Updated in new template.
No technical updates. Completing sunset review.

*D 3916605 OSG / NIKL 02/28/2013 Updated Document Title to read as “Implementing I/O Bit-Bang SPI Interface with
EZ-USB FX2LP™ - AN14558”.
Changed “SPI Device” to “FLASH” in all instances across the document.
Removed “Code for SpiFileWrite() and SpiFileRead() Sequence”.
Added a project and a test procedure to run the project.

*E 3931944 NIKL 03/13/2013 Updated Projects (Attached files along with this document).

*F 4311684 RSKV 03/17/2014 Merged AN67442
Updated Projects (Attached files along with this document).

*G 4631096 DBIR 01/19/2015 Obsolete document.

http://www.cypress.com/

Implementing an SPI Master on EZ-USB FX2LP™

 www.cypress.com Document No. 001-14558 Rev. *G 11

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products
Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc
cypress.com/go/plc

Memory cypress.com/go/memory

Optical Navigation Sensors cypress.com/go/ons

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions
psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 5

Cypress Developer Community
Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2007-2015. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/
http://www.cypress.com/go/locations
http://www.cypress.com/go/products
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=24
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/go/powerpsoc
http://www.cypress.com/go/plc
http://www.cypress.com/?id=64
http://www.cypress.com/go/ons
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=167
http://www.cypress.com/products/?gid=14
http://www.cypress.com/?id=10
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1573
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203
http://www.cypress.com/?app=forum
http://www.cypress.com/?id=2200
http://www.cypress.com/?id=2660
http://www.cypress.com/?id=1162
http://www.cypress.com/go/support
http://www.cypress.com/

	Introduction
	Test Hardware
	The ‘Bit-Bang’ Approach
	SPI Byte Write
	SPI Byte Read

	Serial Port Mode 0 Approach
	Testing
	Selecting the Approach to Use
	Conclusion
	References
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions

