
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

Cypress EZ-PD™ CCGx Host SDK User Guide

Revision 3.4.0

Doc. No. 002-24327 Rev. *D

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone (USA): 800.858.1810

Phone (Intl): 408.943.2600
www.cypress.com

http://www.cypress.com/

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 2

© Cypress Semiconductor Corporation, 2018-2020. This document is the property of Cypress Semiconductor Corporation and

its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced

in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and

other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated

in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the

Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress

governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without

the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify

and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to

distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and

distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are

infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for

use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is

prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without

further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in

this document. Any information provided in this document, including any sample design information or programming code, is

provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test

the functionality and safety of any application made of this information and any resulting product. Cypress products are not

designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons,

weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including

resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where

the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical

component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure

of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and

hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress

products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities,

including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and

Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list

of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 3

Contents

1. Introduction ... 5

1.1 USB Type-C and Power Delivery .. 5

1.2 EZ-PD™ Type-C Controllers ... 5

1.3 CCGx Host SDK .. 5

2. SDK Installation ... 10

2.1 SDK Installation ... 10

2.2 Tool Dependencies.. 10

2.3 Hardware Dependencies ... 11

3. Getting Started with CCGx Host SDK ... 12

3.1 Preparing to use PSoC Creator .. 12

3.2 Using the Reference Projects ... 13

3.3 Updating CCGx Configuration .. 23

4. Customizing the Firmware Application .. 33

4.1 Solution Structure .. 33

4.2 Compile Time Options ... 34

4.3 Part Number Update ... 39

4.4 USB-PD Specification Revision Support... 41

4.5 CYPD6227-96BZXI_notebook_tbt Application ... 42

4.6 CYPD6227-96BZXI_notebook_dualapp_tbt Application... 49

4.7 CYPD6227-96BZXI_notebook_dualapp Application... 50

4.8 CYPD6125-40LQXI_notebook Application ... 55

4.9 CYPD5126-40LQXI_notebook Application ... 61

4.10 CYPD5125-40LQXI_notebook Application ... 67

4.11 CYPD5225-96BZXI_notebook Application ... 73

4.12 CYPD4126-24LQXI_notebook application ... 75

4.13 CYPD4126-40LQXI_notebook application ... 80

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 4

4.14 CYPD4226-40LQXI_notebook application ... 81

4.15 CYPD3125-40LQXI_notebook application ... 84

4.16 CYPD3126-42FNXI_notebook application ... 88

5. Firmware Architecture .. 89

5.1 Firmware Blocks .. 89

5.2 SDK Usage Model... 90

5.3 Firmware Versioning ... 91

5.4 Flash Memory Map ... 93

5.5 Bootloader ... 94

5.6 Firmware Operation .. 96

6. Firmware APIs ... 99

6.1 Data Structures ... 99

6.2 API Summary .. 100

6.3 API Usage Examples ... 113

7. Revision History .. 129

7.1 Document Revision History ... 129

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 5

1. Introduction

1.1 USB Type-C and Power Delivery

USB Type-C is the new USB-IF standard that solves several challenges faced by today's Type-A and Type-B cables and
connectors. USB Type-C uses a slimmer connector (measuring only 2.4 mm in height) to enable increasing miniaturization of
consumer and industrial products. The USB Type-C standard is gaining rapid support by enabling small form-factor, easy-to-
use connectors, and cables that can transmit multiple protocols. In addition, it offers power delivery up to 100 W – a significant
improvement over the 7.5 W for previous standards.

1.1.1 USB Type-C Highlights

▪ New reversible connector measuring only 2.4 mm in height.

▪ Compliant with USB Power Delivery Specification, providing up to 100 W.

▪ Increases the data bandwidth to 40 Gbps with USB4™.

▪ Combines multiple protocols in a single cable, including DisplayPort™, PCIe®, and Thunderbolt™.

1.2 EZ-PD™ Type-C Controllers

Cypress offers the EZ-PD line of Type-C controllers, which currently include six product families:

▪ EZ-PD™ CCG1: Industry’s First Programmable Type-C Port Controller

▪ EZ-PD™ CCG2: Industry’s Smallest Programmable Type-C Port Controller

▪ EZ-PD™ CCG3: Industry’s Most Integrated Type-C Port Controller

▪ EZ-PD™ CCG4: Industry’s First Dual-Port Type-C Port Controller

▪ EZ-PD™ CCG5: Cypress’s second generation Dual-Port Type-C Port Controller

▪ EZ-PD™ CCG5C: Cypress’s second generation Single-Port Type-C Port Controller

▪ EZ-PD™ CCG3PA: Cypress’s USB Type-C Power Adapter / Power Bank Port Controller

▪ EZ-PD™ CCG6: Single port Type-C Port Controller with integrated Load Switch Controller

▪ EZ-PD™ CCG6F: Single port Type-C Port Controller with integrated Load Switch

▪ EZ-PD™ CCG6DF: Dual- Port Type-C Port Controller with integrated Load Switch

▪ EZ-PD™ CCG6SF: Single-Port Type-C Port Controller with integrated Load Switch

Visit the Cypress Type-C Controller web page for more details on these product families and a feature comparison.

1.3 CCGx Host SDK

The CCGx Host Software Development Kit (SDK) is a software solution that allows users to harness the capabilities of the
Type-C controllers from Cypress to create PD Port Controller applications for notebook computers, desktops etc.

The following applications are supported by the SDK:

▪ CCG5 based single port notebook PD controller solution.

▪ CCG5 based single port Thunderbolt/USB4 PD port controller solution.

▪ CCG5 based dual port notebook PD controller solution.

http://www.cypress.com/products/ez-pd-ccg1-type-c-port-controller
http://www.cypress.com/products/ez-pd-ccg2-type-c-cable-controller
http://www.cypress.com/products/ez-pd-ccg3-type-c-port-controller-pd
http://www.cypress.com/products/ez-pd-ccg4-two-port-usb-type-c-controller-power-delivery
http://www.cypress.com/products/ez-pd-ccg5-two-port-usb-type-c-and-power-delivery
http://www.cypress.com/documentation/datasheets/ez-pd-ccg5c-usb-type-c-port-controller
http://www.cypress.com/products/ez-pd-ccg3pa-usb-type-c-and-power-delivery
http://www.cypress.com/products/ez-pd-ccg6-one-port-usb-type-c-and-power-delivery
https://www.cypress.com/documentation/datasheets/ez-pd-ccg6f-usb-type-c-port-controller
https://www.cypress.com/products/ez-pd-ccg6df-ccg6sf-dual-single-port-usb-c-power-delivery
https://www.cypress.com/products/ez-pd-ccg6df-ccg6sf-dual-single-port-usb-c-power-delivery
http://www.cypress.com/products/usb-type-c-and-power-delivery

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 6

▪ CCG5 based dual port Thunderbolt/USB4 PD port controller solution.

▪ CCG5C based single port notebook PD controller solution.

▪ CCG5C based single port Thunderbolt/USB4 PD port controller solution.

▪ CCG6 based single port notebook PD controller solution.

▪ CCG6 based single port Thunderbolt/USB4 PD port controller solution.

▪ CCG6SF based single port notebook PD controller solution.

▪ CCG6SF based single port Thunderbolt/USB4 PD port controller solution.

▪ CCG6DF based dual port notebook PD controller solution.

▪ CCG6DF based dual port Thunderbolt/USB4 PD port controller solution.

In addition to the above projects, the Host SDK also provides the following solutions for compatibility with older SDK versions.
These solutions are unchanged from the previously released SDK 3.3.1 version.

▪ CCG3 based single port notebook PD controller solution.

▪ CCG4 based single port notebook PD controller solution using 24-QFN part.

▪ CCG4 based single port notebook PD controller solution using 40-QFN part.

▪ CCG4 based dual port notebook PD controller solution.

The SDK provides a firmware stack compatible with Type-C and USB-PD specifications, along with the necessary drivers and
software interfaces required to implement Notebook/Host applications using the CCG5, CCG5C, CCG6, CCG6DF, CCG3 and
CCG4 PD controllers.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 7

The key features of CCGx notebook port controller solutions are:

▪ Compliant to USB-PD specification Revision 3.0, Version 2.0

▪ Compliant to USB Type-C Specification Revision 2.0

▪ Supports Type-C VBUS Over-Voltage Protection (OVP) and Over-Current Protection (OCP).

▪ Supports OCP on VConn supply (CCG5, CCG5C, CCG6, CCG6SF and CCG6DF only).

▪ Supports VBUS Short-Circuit Protection (SCP) and Reverse-Voltage Protection (RCP) on CCG6, CCG6SF and

CCG6DF devices.

▪ Support Over-Temperature Protection (OTP) on CCG6SF and CCG6DF devices.

▪ Support DisplayPort alternate mode as a DFP_U/DFP_D.

▪ Support Thunderbolt3 alternate mode in DFP and UFP roles.

▪ Support USB4 operation in DFP and UFP roles.

▪ Support Host Processor Interface (HPI) for runtime control of power profiles, modes etc.

▪ Support field firmware upgrades over I2C Interface.

▪ Support BC 1.2 power source (DCP/CDP) operation for charging devices through Type-C to Type-A cable adapters

(CCG5, CCG5C and CCG6 only).

▪ Support USB Type-C Connector System Software Interface (UCSI v1.1) protocol.

▪ Support I2C slave interface and interrupt to notify Platform Controller (SoC) based on PD state changes.

▪ Support I2C master interface to configure Intel Retimers as required based on PD state changes.

Figure 1: CCGx Host SDK Components

· PD stack, HPI and Intel Platform support in library form
· Firmware sources for other blocks
· Full-featured Notebook/Host Application

Reference Projects

· Release Notes
· SDK User Guide
· API Reference Guide (CHM and PDF)

Documentation

· HEX and CYACD files corresponding to all Reference
Projects

Firmware Binaries

The CCGx Host SDK consists of several basic components as shown in Figure 1.

The SDK also includes reference projects implementing standard Type-C applications and documentation that guides the user
in customizing existing applications or creating new applications.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 8

1.3.1 SDK Directory Structure

At the top level, the following folders are present:

· Documentation: The docs folder contains the EZ-PD™ CCGx Host SDK documentation, which includes release
notes, user guide, and API reference guide.

· CapsuleDriver: The capsule driver folder contains the capsule reference driver source code and the user guide.

· Firmware: The Firmware folder contains the firmware stack sources, reference projects, and pre-built firmware
binaries targeted for the Kits and reference designs from Cypress.

o binaries: The binaries folder contains the pre-built firmware binaries

o projects: The projects folder contains the sources and PSoC Creator workspaces for the port controller
designs.

▪ CYPD5125-40LQXI_notebook: Single port Notebook PD port controller application using CCG5.

· CYPD5125-40LQXI_notebook.cywrk: PSoC Creator workspace settings for the
application.

· CYPD5125-40LQXI_notebook.cydsn: PSoC Creator projects container directory.

o Bootloader: Bootloader binaries used in the application.

o common: Application specific source files.

o src: General CCGx firmware sources and headers.

o lib: USB-PD stack, HPI and Intel platform support libraries.

o CYPD5125-40LQXI_notebook.cyprj: PSoC Creator build settings for the
application.

o backup_fw.cydsn: Container for the reduced feature secondary (back-up)
application which is combined with the main application.

▪ CYPD5126-40LQXI_notebook: Single port Notebook PD port controller application using CCG5C.

▪ CYPD6125-40LQXI_notebook: Single port Notebook PD port controller application using CCG6.

▪ CYPD5225-96BZXI_notebook: Dual port Notebook PD port controller application using CCG5.

▪ CYPD5125-40LQXI_notebook_tbt: Single port USB4 DRD port controller application using
CCG5.

▪ CYPD5126-40LQXI_notebook_tbt: Single port USB4 DRD port controller application using
CCG5C.

▪ CYPD6125-40LQXI_notebook_tbt: Single port USB4 DRD port controller application using
CCG6.

▪ CYPD5225-96BZXI_notebook_tbt: Dual port USB4 DRD port controller application using CCG5.

▪ CYPD6227-96BZXI_notebook_dualapp: Notebook PD port controller application using CCG6SF
(single port) or CCG6DF (dual port).

▪ CYPD6227-96BZXI_notebook_dualapp_tbt: USB4 DRD port controller application using
CCG6SF (single port) or CCG6DF (dual port).

▪ CYPD6227-96BZXI_notebook_tbt: USB4 DRD port controller application using CCG6SF (single
port) or CCG6DF (dual port).

▪ CYPD3125-40LQXI_notebook: Single port Notebook PD port controller using CCG3

▪ CYPD3126-42FNXI_notebook: Single port Notebook PD port controller using CCG3

▪ CYPD4126-24LQXI_notebook: Single port Notebook PD port controller using CCG4

▪ CYPD4126-40LQXI_notebook: Single port Notebook PD port controller using CCG4

▪ CYPD4226-40LQXI_notebook: Dual port Notebook PD port controller using CCG4

The src folder inside each reference application has the following sub-folders:

· app: The app folder contains the top-level application layer functionality that implements the required USB-PD
controller functions. This includes functionality such as PDO evaluation and contract negotiation, fault detection and
handling, BC 1.2 charging support etc.

o app/alt_mode: The alternate mode specific implementation can be found in this directory.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 9

o app/intel_tbt: This folder contains the headers for the Intel Platform support including I2C slave interface to
the Platform SoC and I2C master interface to control retimers.

· hpiss: The hpiss folder contains the API interface definition for the Host Processor Interface implemented by the
CCGx firmware.

· pd_common: The pd_common folder contains the headers for the core Type-C and USB-PD stack for the CCGx
device. This includes the HAL, the Type-C port manager, the USB-PD protocol layer, the USB-PD policy engine, and
the Device Policy Manager.

· pd_hal: The pd_hal folder contains the low-level driver header and source files for USB-PD hardware block.

· scb: The scb folder contains the API interface definition for the dedicated I2C slave driver using the Serial Controller
Blocks (SCB) on the CCGx device. Since I2C slave mode is the most commonly-used interface for CCGx, a specially
optimized driver is provided for the same.

· system: The system folder contains header and source files relating to the CCGx device hardware and registers,
bootloader and flash access functions, low-level drivers for the GPIO blocks on the CCGx device, and a soft timer
implementation that is used by the firmware stack.

· ucsi: The ucsi folder contains implementation of the USB Type-C Connector System Software Interface (UCSI v1.1).
The UCSI protocol is implemented on top of the HPI I2C slave interface using separate registers and commands.

Figure 2 shows the installed directory structure of the CCGx Host SDK, along with descriptions for all of the important folders.

Figure 2: CCGx Host SDK Directory Structure

EZ-PD CCGx Host SDK CCGx Host SDK Directory

│

└─CCGx CCGx Host Directory

 ├─Documentation Documentation: User guide, API guide etc.

 ├─CapsuleDriver CapsuleDriver: Reference driver source code and User

 │ guide.

 └─Firmware

 ├─binaries Pre-built firmware binaries

 └─projects Reference Projects

 ├───CYPD3125-40LQXI_notebook CCG3 based Notebook PD controller project

 ├───CYPD3126-42FNXI_notebook CCG3 based Notebook PD controller project

 ├───CYPD4126-24LQXI_notebook CCG4 (24-QFN) based Notebook PD controller project

 ├───CYPD4126-40LQXI_notebook CCG4 based single port Notebook PD controller project

 ├───CYPD4226-40LQXI_notebook CCG4 based single port Notebook PD controller project

 ├───CYPD5125-40LQXI_notebook CCG5 based single port Notebook PD controller project

 ├───CYPD5125-40LQXI_notebook_tbt CCG5 based single port USB4 DRD controller project

 ├───CYPD5225-96BZXI_notebook CCG5 based dual port Notebook PD controller project

 ├───CYPD5225-96BZXI_notebook_tbt CCG5 based dual port USB4 DRD controller project

 ├───CYPD5126-40LQXI_notebook CCG5C based Notebook PD controller project

 ├───CYPD5126-40LQXI_notebook_tbt CCG5C based USB4 DRD controller project

 ├───CYPD6125-40LQXI_notebook CCG6 based Notebook PD controller project

 ├───CYPD6125-40LQXI_notebook_tbt CCG6 based USB4 DRD controller project

 ├───CYPD6227-96BZXI_notebook_dualapp CCG6DF based Notebook PD controller project

 ├───CYPD6227-96BZXI_notebook_dualapp_tbt CCG6DF based USB4 DRD controller project

 └───CYPD6227-96LZXI_notebook_tbt CCG6DF based USB4 DRD controller project

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 10

2. SDK Installation

2.1 SDK Installation

Once installed, the directory structure will be as shown in Figure 2.

2.2 Tool Dependencies

2.2.1 PSoC Creator

Cypress’s Type-C controllers are based on Cypress’s PSoC® 4 programmable system-on-chip architecture, which includes
programmable analog and digital blocks, an ARM® Cortex®-M0 core, and internal flash memory.

The PSoC Creator IDE is used for configuring the CCGx devices, to develop and compile the firmware applications and
optionally to program the devices using SWD. This version of the SDK requires PSoC Creator 4.3 (4.3 Build 34) or higher.

This version of PSoC Creator can be installed and used on a computer along with previous versions of PSoC Creator.

The PSoC Creator release includes the GNU ARM compiler tools.

2.2.2 ARM MDK Compiler and Tools

All reference projects in the Host SDK require the ARM MDK tools (http://www2.keil.com/mdk5/) for compilation. Please

obtain a license for the MDK toolchain from ARM to work with these projects.

Trying to compile the projects using the GNU ARM tools provided with PSoC Creator will results in build errors due to

firmware binary size that exceeds the device flash memory constraints.

2.2.3 Python

The USB4/Thunderbolt host reference projects make use of a set of Python scripts to customize the binaries at the end of

build process. These Python scripts are invoked as part of the build process itself and will result in build failure is Python is

not installed on the computer.

Please install Python 3.7 or later from https://www.python.org/downloads/ to ensure that these post-build steps can work

properly.

2.2.4 EZ-PD Configuration Utility

The CCGx devices are shipped with a pre-programmed bootloader that allows the firmware on the device to be updated
through an I2C interface, the CC channel or the USB interface, which is part of the Type-C interface. All of the parts supported
by the Host SDK make use of an I2C bootloader, which means that firmware updates are done through the I2c interface.

The EZ-PD Configuration Utility is a Windows-based application, which can be used to program the CCGx devices on
Cypress-provided kits (DVKs and EVKs) through the bootloader interface.

http://www2.keil.com/mdk5/
https://www.python.org/downloads/

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 11

The EZ-PD Configuration Utility relies on a Cypress USB controller, which can connect to the CCGx device through I2C for
programming. Therefore, it will only work with the Cypress-provided kits or other hardware, which includes the Cypress USB
– I2C bridge devices.

The EZ-PD Configuration Utility is also used for creating custom configurations for the CCGx firmware application, which
includes aspects such as the supported power profiles, protection schemes, and so on.

This version of the SDK requires the latest EZ-PD Configuration Utility version 1.3.1, which includes support for programming
and configuring CCG2, CCG3, CCG4, CCG5, CCG5C, CCG6, CCG6DF and CCG6xF devices.

2.3 Hardware Dependencies

The CY4531 kit (http://www.cypress.com/documentation/development-kitsboards/cy4531-ez-pd-ccg3-evaluation-kit) can be
used to evaluate the CCG3 firmware solution.

The CY4541 kit (http://www.cypress.com/documentation/development-kitsboards/cy4541-ez-pdtm-ccg4-evaluation-kit-
guide) can be used to evaluate the CCG4 firmware solutions. The kit ships with the CYPD4225-40LQXI controller which
supports only USB-PD 2.0 by default. The CCG4 device on the board can be swapped with CYPD4126-40LQXI or
CYPD4226-40LQXI devices to work with the projects in the SDK.

Cypress does not provide Evaluation Kits for CCG5, CCG5C, CCG6, CCG6SF or CCG6DF devices at present. CCG5,
CCG5C, CCG6, CCG6SF and CCG6DF solutions should use the reference schematics available in the respective
datasheets.

http://www.cypress.com/documentation/development-kitsboards/cy4531-ez-pd-ccg3-evaluation-kit
http://www.cypress.com/documentation/development-kitsboards/cy4541-ez-pdtm-ccg4-evaluation-kit-guide
http://www.cypress.com/documentation/development-kitsboards/cy4541-ez-pdtm-ccg4-evaluation-kit-guide

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 12

3. Getting Started with CCGx Host SDK

3.1 Preparing to use PSoC Creator

3.1.1 Environment Updates

Many of the reference projects in the CCGx Host SDK make use of a post-build script which combines code from multiple
projects into a single binary. These scripts make use of the CyElfTool.exe application which is part of the PSoC Creator
installation. To enable the projects to locate the executable and run successfully, the path where PSoC Creator has been
installed needs to be added to the PATH environment variable in the system.

Figure 3 shows the PATH variable updated to add the standard install path for PSoC Creator 4.4. If you have installed PSoC
Creator at a different location, please use the appropriate path.

Figure 3: Adding PSoC Creator binary folder to PATH

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 13

3.2 Using the Reference Projects

As Figure 2 shows, the SDK includes reference projects for the target applications that can be used to obtain a jump-start in
the process of developing a CCGx based notebook port controllers (notebook, for short) applications.

This version of SDK provides the following reference projects for the following applications:

1. CYPD5125-40LQXI_notebook: This project implements a single Type-C port controller for notebook platforms using
the CYPD5125-40LQXI (CCG5) device.

2. CYPD5125-40LQXI_notebook_tbt: This project implements a single Type-C port controller for USB4 Dual-Role
Device (DRD) platforms using the CYPD5125-40LQXI (CCG5) device.

3. CYPD5126-40LQXI_notebook: This project implements a single Type-C port controller for notebook platforms using
the CYPD5126-40LQXI (CCG5C) device.

4. CYPD5126-40LQXI_notebook_tbt: This project implements a single Type-C port controller for USB4 DRD platforms
using the CYPD5126-40LQXI (CCG5C) device.

5. CYPD5225-96BZXI_notebook: This project implements a dual Type-C port controller for notebook platforms using
the CYPD5225-96BZXI (CCG5) device.

6. CYPD5225-96BZXI_notebook_tbt: This project implements a dual Type-C port controller for USB4 DRD platforms
using the CYPD5225-96BZXI (CCG5) device.

7. CYPD6125-40LQXI_notebook: This project implements a single Type-C port controller for notebook platforms using
the CYPD6125-40LQXI (CCG6) device.

8. CYPD6125-40LQXI_notebook_tbt: This project implements a single Type-C port controller for USB4 DRD platforms
using the CYPD6125-40LQXI (CCG6) device.

9. CYPD6227-96BZXI_notebook_dualapp: This project implements a dual Type-C port controller for notebook
platforms using the CYPD6227-96BZXI (CCG6DF) device. This project also generates a binary that implements a
single Type-C port controller for notebook platforms using the CYPD6127-48LQXI (CCG6SF) device.

10. CYPD6227-96BZXI_notebook_dualapp_tbt: This project implements a dual Type-C port controller for USB4 DRD
platforms using the CYPD6227-96BZXI (CCG6DF) device. This project also generates a binary that implements a
single Type-C port controller for USB4 DRD platforms using the CYPD6127-48LQXI (CCG6SF) device.

11. CYPD6227-96BZXI_notebook_tbt: This project implements a dual Type-C port controller for USB4 DRD platforms
using the CYPD6227-96BZXI (CCG6DF) device. This project also generates a binary that implements a single Type-
C port controller for USB4 DRD platforms using the CYPD6127-48LQXI (CCG6SF) device. This version of the USB4
DRD implementation uses a different boot architecture as compared to the CYPD6227-
96BZXI_notebook_dualapp_tbt project.

12. CYPD3125-40LQXI_notebook: This project implements a single Type-C port controller for notebook platforms using
the CYPD3125-40LQXI (CCG3) device. Please note that the CCG3 Notebook DRP firmware is in maintenance mode
and has not been updated since the Host SDK 3.3.1 release.

13. CYPD3126-42FNXI_notebook: This project implements a single Type-C port controller for notebook platforms using
the CYPD3126-42FNXI (CCG3) device. Please note that the CCG3 Notebook DRP firmware is in maintenance mode
and has not been updated since the Host SDK 3.3.1 release.

14. CYPD4126-24LQXI_notebook: This project implements a single Type-C port controller for notebook platforms using
the CYPD4126-24LQXI (CCG4) device. Please note that the CCG4 Notebook DRP firmware is in maintenance mode
and has not been updated since the Host SDK 3.3.1 release.

15. CYPD4126-40LQXI_notebook: This project implements a single Type-C port controller for notebook platforms using
the CYPD4126-40LQXI (CCG4) device. Please note that the CCG4 Notebook DRP firmware is in maintenance mode
and has not been updated since the Host SDK 3.3.1 release.

16. CYPD4226-40LQXI_notebook: This project implements a dual Type-C port controller for notebook platforms using
the CYPD4226-40LQXI (CCG4) device. Please note that the CCG4 Notebook DRP firmware is in maintenance mode
and has not been updated since the Host SDK 3.3.1 release.

Each reference project is provided in the form of a PSoC Creator workspace. The workspace can be opened using the
PSoC Creator and the projects can be customized and compiled.

Note: These projects are designed to work with specific devices mentioned above. Changing the target part number using
Device Selector will cause the firmware build to fail.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 14

3.2.1 Copying the Project with PSoC Creator

PSoC Creator allows SDK example projects to be copied to a different location without affecting the original installed files.
There are mainly two ways of doing this: using the Start Page to copy the workspaces and using the Code Examples.

3.2.1.1 From Start Page

The SDK example projects are listed under Kits→ EZ-PD CCGx Host SDK on the Start Page. Click on the workspace name
to copy it. When copying the workspace, the complete workspace directory along with all the projects associated with the
workspace are copied to the selected destination location. PSoC Creator automatically opens the copied workspace after
completing the copy. Figure 4 shows the startup page for PSoC Creator, expanded to show the reference firmware projects
provided with EZ-PD CCGx Host SDK.

Figure 4: PSoC Creator Startup Page

Note: If Start Page is not open, it can be accessed via View->Other Windows->Start Page.

3.2.1.2 From Code Examples

PSoC Creator lists the SDK examples under the Code Examples Dialog. This dialog can be accessed via File->Code
Example … or during new project creation.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 15

Figure 5: PSoC Creator Code Examples Dialog

Figure 5 shows the example projects from Code Examples Dialog. The required Device Family can be selected to narrow
down the list of examples and the required project can be copied by clicking the Create Project button. When using Code
Examples Dialog to copy the project, the complete project directory and the selected project shall be copied. It should be
noted that the workspace and the files outside the project directory are not copied. All files required for the SDK examples
projects are under the project directory and so this behavior shall not have any impact.

Note: Since a common code example is used to generate binaries for CCG6DF and CCG6SF devices, use the CCG6DF
device family to locate and select the reference project for CCG6SF devices as well.

Note: The bootloader project shall not be present in the workspace created through the code example dialog, and shall require
to be explicitly added to the workspace. These projects will still be available under the project root folder and you can use the
File → Add → Existing project option to add them to the workspace.

The File → New → Project menu option also allows you to create a new project based on existing example projects. Choose
the desired device from the list of EZ-PD CCGx Host SDK items as the Target Kit in the Create Project dialog as shown in
Figure 6.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 16

Figure 6: Selection of Target Kit for creation on new project

Then choose Code Example and select the desired code example as shown in Figure 5.

Note: When copying via Create Project option, a wrong device part number may get selected. In this case, the user is
expected to change the part number to correct one using Device Selector Dialog.

3.2.2 Compiling the Project with PSoC Creator

This section walks you through the procedure to open the reference projects and build them using PSoC Creator. The
CYPD5125-40LQXI_notebook project is used as an illustration in the following descriptions.

3.2.2.1 Selecting the Compiler Toolchain

The code examples provided in the Host SDK can only be compiled using ARM MDK toolchain (µVision V5.25 or later). Since
the CCGx parts supported by the SDK have up to 128 KB of flash, a full version of the MDK tools is required to make use of
this option.

The following steps should be followed to build the code examples using the MDK toolchain.

1. Download and install MDK from http://www2.keil.com/mdk5. A limited period evaluation license can be used or a full
license can be purchased from ARM.

2. Provide the path to the ARM compiler toolchain in the PSoC Creator settings, by using the Project Management →
ARM Toolchains option under the Tools → Options menu, as shown in Figure 7.

http://www2.keil.com/mdk5

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 17

Figure 7: Pointing PSoC Creator to the ARM MDK compiler path

3.2.2.2 Compiling the Reference Project

The following steps describe the process to compile the reference project and generate the binaries using the PSoC Creator
IDE and the ARM MDK tool-chain.

1. Navigate to the project folder using Windows Explorer. The project folder contents will look as shown in Figure 8.

2. The CYPD5125-40LQXI_notebook.cywrk file is the PSoC Creator workspace file that can be opened using the
PSoC Creator IDE. If you have installed multiple Creator versions, ensure that the appropriate PSoC Creator version
(Creator 4.3 or later) is used to open the workspace.

Figure 8: Contents of the Reference Project Folder

3. Once you open the workspace, note that there are three projects:

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 18

a. CYPD5125-40LQXI_notebook.cydsn: This is the main firmware project for the application. This application is
designed to work on top of the bootloader pre-programmed on the CCG5 device. More details on this project
are provided in later sections.

b. backup_fw.cydsn: This is a limited feature version of the notebook PD port controller application using the
CCG5 device. This is used as a secondary firmware binary which allows recovery in case the device firmware
gets corrupted during an upgrade process.

c. noboot.cydsn: The main firmware project in CYPD5125-40LQXI_notebook.cydsn does not support runtime
debugging through the SWD interface. The noboot.cydsn is a version of the same firmware application, which
does not depend on the bootloader. This firmware overwrites the complete device flash and expects that the
device will be programmed through SWD.

NOTE: If the project was copied using Code Examples, then only the main project shall be seen on the workspace.
The other two projects can be added to the workspace using Add Existing Project option.

There is a fourth project available (i2c_boot.cydsn) in the project workspace directory. This is the bootloader project
available for reference. The pre-built bootloader binary from the Bootloader directory should be used unless boot
flow modifications are required. This project is not added to the workspace and can be added using Add Existing
Project option.

4. The CYPD5125-40LQXI_notebook.cydsn project is set as the default project for the workspace. Choose the Build

CYPD5125-40LQXI_notebook menu option from the Build menu or the pop-up menu obtained by right-clicking on
the project name.

5. Ensure that the compiler Toolchain is set to ARM MDK Generic. This can be verified / modified in the Build settings
for the project. The Build Settings Dialog can be opened by right clicking the corresponding project. Figure 9 shows
the Build Settings Dialog.

Figure 9: Project Build Settings Dialog

6. You may receive a pop-up window asking for permission to make the project file writeable. Select Yes to allow the
project build to go through. The complete build process may take about two to three minutes. The output window at
the bottom of the IDE will look as shown in Figure 10 at the end of the build process.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 19

Figure 10: Output Window after the Build is Complete

7. The build process may throw errors due to missing Creator components as shown in Figure 11. This error can be

resolved by right-clicking on the Workspace name and selecting Update Components. A Component Update Tool
dialog as shown in Figure 12 will pop up. Select Next and then Finish to allow PSoC Creator to download the latest
component versions. This update sequence will only need to be completed on the first Host SDK project that you
compile.

Figure 11: Build error due to missing Creator Components

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 20

Figure 12: Component update tool dialog showing available updates

8. If the post build script which combines the backup and primary firmware images throws an error as shown in Figure
13, please add the PSoC Creator binary folder to the PATH variable in the system environment and then restart
PSoC Creator. Please refer to Section 3.1.1 for more details.

Figure 13: Post-build script error in reference projects

9. Now, navigate to the project folder using Windows Explorer to locate the compiled firmware binaries. Navigate to the
CYPD5125-40LQXI_notebook.cydsn\CortexM0\ARM_MDK_Generic\Debug folder for the output files. The following
three files are the most important output files generated by the build process:

a. CYPD5125-40LQXI_notebook.hex: This is an SWD programmable binary file in the Intel Hex format that
combines the bootloader as well as the notebook port controller firmware application.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 21

b. CYPD5125-40LQXI_notebook_2.cyacd: This binary file contains the full-featured firmware application that can
be loaded to the CCG5 device flash through the I2C interface. The format of the file is documented here. The
EZ-PD Configuration Utility accepts firmware binaries in the cyacd format and programs them to the CCG5
device.

c. CYPD5125-40LQXI_notebook_1.cyacd: This binary file contains the limited feature backup firmware
application that can be loaded to the CCG5 device flash through the I2C interface. The format of the file is
documented here. The EZ-PD Configuration Utility accepts firmware binaries in the cyacd format and programs
them to the CCG5 device.

3.2.3 Programming CCGx using the EZ-PD Configuration Utility

If the CCG5 evaluation board is being used, the firmware binaries built using the above procedure can be loaded on to the
CCG5 device using the EZ-PD Configuration Utility. This section provides step-by-step instructions for updating the firmware
with the EZ-PD Configuration Utility. Refer to the EZ-PD Configuration Utility User Manual for more details.

1. Power up the CCG5 evaluation board using the 20V power adapter and connect a USB cable from the Mini-B
connector to the host PC.

2. Wait for driver detection and binding for the USB-Serial controller on the board. The driver for this controller can be
obtained by searching on Windows Update. Once the driver binding is successful, a “USB-Serial (Single Channel)
Vendor 1” device will be listed under ‘Universal Serial Bus Controllers’ in the Device Manager window. See Figure
14 for the expected device listing.

Figure 14: Device Manager View Showing USB-Serial Bridge Device

3. If the automatic driver installation does not succeed, you can download and use the Cypress USB Serial Windows

Driver Installer. Refer to the USB-Serial Windows Driver Installation Guide document as well.

4. Open the EZ-PD Configuration Utility GUI. If the device driver binding is successful, the GUI should report a device
connected on the lower border of the UI as shown in Figure 15.

http://www.cypress.com/knowledge-base-article/format-cyacd-file-relating-psoc-35-bootloaders
http://www.cypress.com/knowledge-base-article/format-cyacd-file-relating-psoc-35-bootloaders
http://www.cypress.com/documentation/software-and-drivers/ez-pd-configuration-utility
http://www.cypress.com/documentation/software-and-drivers/usb-serial-software-development-kit
http://www.cypress.com/documentation/software-and-drivers/usb-serial-software-development-kit
http://www.cypress.com/?docID=45724

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 22

Figure 15: Configuration Utility Detecting the Connected CCG5 evaluation board

5. Go to Tools → Firmware Update. The utility detects and identifies the device at this stage. A firmware update dialog
appears at the end of this process (see Figure 16).

6. When you click on the required node (Notebook) in the device tree, the UI displays information about the CCGx
device and the current firmware running on it.

Figure 16: Firmware Update Dialog

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 23

7. Navigate to the folder containing the firmware binaries generated during the firmware build, and select the
CYPD5125-40LQXI_notebook_1.cyacd and CYPD5125-40LQXI_notebook_2.cyacd files in the two firmware path
options in the dialog.

8. Check the “Use bootloader to flash” option so that both banks of firmware can be updated in one step; and click on
the Program button to start the firmware update. The full update will take about 30 seconds.

9. Once the update process is complete, use the Tools > Read from Device option to bring up a dialog that can show
the current firmware version. If the firmware project from the SDK is used without any changes, the new running
firmware version should match the version of firmware downloaded.

10. Since the Firmware-2 binary is the full-featured application, the CCG5 bootloader is designed such that it loads the
Firmware-2 whenever it is present (independent of the firmware version).

3.3 Updating CCGx Configuration

3.3.1 Configuration Parameters

The CCGx firmware design uses a configuration table, which specifies several parameters that control device functionality.
These parameters include:

▪ The VDM responses sent by the device for various PD messages.

▪ The power profiles supported by the device as a provider and as a consumer.

▪ The port roles supported by the device (Source/Sink/Dual Role).

▪ Enable/disable flags and parameters that control the various firmware features.

These parameters are stored in a configuration table so that they can be updated/customized without updating the firmware.
The utility provides an interactive GUI through which all of the contents of the configuration table can be updated.

Table 1 shows the list of configuration parameters which are relevant to the various Notebook/Host PD port controller
solutions. Refer to the EZ-PD Configuration Utility User Manual for a description of the various UI screens presented by the
utility to configure these parameters. Each UI screen also provides tool-tips that guide you through the process of defining
the firmware configuration.

Please note that changing the Source PDO configuration is not recommended while using the EVKs because the default
settings in the solution correspond to the actual kit hardware design.

Table 1: List of Configuration parameters for Host Applications

Configuration Parameter Description Default Value Change Allowed

Device Parameters

Part Number CCG MPN used in the project. <As per
Project>

Select the part number
matching the application.

Manufacturer Info String used in the PD 3.0 Manufacturer
Info message.

“Cypress” Can be changed.

Vendor ID Vendor ID value used in the ID Header
VDO, Manufacturer Info and Source
Capabilities Extended messages.

0x04B4 Can be changed.

Config table major version Config table format revision. Used by
firmware to ensure compatibility.

2 The version of the
configuration table format.
Leave this with the default
value.

PD revision USB-PD spec revision supported by the
firmware.

Note: This parameter only affects the
UI behavior and does not change
firmware functionality. The parameter

3.0 Set based on firmware
features.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 24

value should be based on the actual
feature selection in the firmware binary.

Cable discovery count Number of cable discovery attempts to
be made

0x14 Can be changed in the
range of 1 to 20.

Dead battery event mask
(0x)

Default value of HPI event mask that
will be applied to all PD ports on the
device.

0x0000 Can be changed.

Port Information

Product ID Product ID used in Product VDO,
Source Capabilities Extended and
Manufacturer Info messages.

<As per
Project>

The USB Product ID
assigned for the product.

Port role Power role configuration for the port:
Sink, Source or Dual Role

Dual role Change not recommended
for a host platform.

Default port role Determines the start-up state used by
the Type-C state machine when the
port role is DRP.

Note: Changing this parameter does
not guarantee the port role used when
there is a Type-C connection.

Source Change not recommended
for a host platform.

DRP preferred role Enable Source or Sink preference on a
DRP port.

Source Change not recommended
for a host platform.

Current level Choose the Rp current source used as
a Type-C source.

3A Can be changed.

Is source battery connected Legacy parameter: Don’t care in current
stack.

No Don’t care

Is sink battery connected Legacy parameter: Don’t care in current
stack.

No Don’t care

Sink USB suspend Determines the No USB Suspend bit in
the request message sent by the CCGx
device.

No Can be changed.

Sink USB communication Determines the USB Communications
capable bit in PD messages.

Yes Change not recommended.

Rp-Rd Toggle Whether DRP port should use
automatic Rp-Rd toggle sequence.

Yes Should be YES for DRP
ports.

Rp supported Bit-map representing supported Rp
current source values. The actual Rp
value can be chosen from this list at
run-time through the HPI interface.

Default, 1.5A
and 3.0A

Can be changed

Is source externally powered Whether the power source is externally
powered.

No Can be changed based on
system design.

Is sink externally powered Whether the power sink is externally
powered.

Note: Should be set to the same value
as Is source externally powered.

No Can be changed based on
system design.

Cable discovery enable Whether cable discovery is enabled.
Power supply will be limited to 3A when
cable discovery is not enabled.

Yes Change not recommended

Dead battery enable Whether Type-C state machine should
directly transition to Attached.SNK state
if VBus is present on power-up.

Yes Change not recommended

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 25

Error recovery enable Whether Type-C error recovery
sequence is enabled.

Yes Change not recommended

DR_SWAP response Default response to be used for
DR_SWAP requests.

ACCEPT Can be changed

PR_SWAP response Default response to be used for
PR_SWAP requests.

ACCEPT Can be changed

VCONN_SWAP response Default response to be used for
VCONN_SWAP requests to become
VConn source.

Swap to allow the port partner to
become VConn source is always
accepted.

ACCEPT Can be changed

FRS Enable Whether Fast Role Swap as source
(sink → source) is enabled.

FRS Receive Can be set to FRS receive
or None. FRS transmit is
not supported.

VConn retain Whether the port should continue to
supply VConn even if the AMA or Cable
reports that VConn supply is not
required.

No Can be changed.

Device IDs

USB host support Whether the port implements a USB
host controller.

Yes Should be Yes for desktops
and notebooks.

USB device support Whether the port implements a USB
device.

No Should be No for desktops
and notebooks.

Modal operation supported Whether any Type-C alternate modes
are supported as an UFP.

Yes Set this to No if no UFP
alternate modes are
required.

USB Vendor Id Vendor ID. Copied from the Device
parameters screen.

0x04B4 This gets changed through
Port Information node.

Product type (UFP) Product type to be reported as an UFP. Peripheral Can be changed

Product type (DFP) Product type as a DFP. Host Change not recommended

USB-ID compliance XID XID value to be used in the Cert Stat
VDO.

0 Can be changed

USB Product ID Product ID. Copied from the Device
parameters screen.

<As per
project>

This gets changed through
Port Information node.

Bcd device BCD Device value to be reported in
Product VDO.

0 Can be changed

UFP VDO 1

UFP VDO version Version Number of the VDO 0 Should not be changed

USB 2.0 device capability Is device USB 2.0 capable Capable Can be changed

USB 3.2 device capability Is device USB 3.2 capable Capable Can be changed

USB 4 device capability Is device USB 4 capable Capable Can be changed

TBT3 mode enable Support of TBT3 data mode Yes Can be changed

Other data mode enable Enable/disable Alternate Modes that
reconfigure the signals on the USB
Type-C connector (except for TBT3)

No Can be changed

Custom mode enable Enable/disable Alternate Modes that do
not reconfigure the signals on the USB
Type-C connector.

No Can be changed

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 26

USB Highest Speed The USB Highest Speed field shall
indicate the port’s highest signaling
capability.

Gen3 Can be changed

UFP VDO 2

USB4 Min Power (W) Minimum power in watts required to
function in USB4 operation

15 Can be changed

USB4 Max Power (W) Maximum power in watts required to
function in USB4 operation

15 Can be changed

USB3 Min Power (W) Minimum power in watts required to
function in USB3 operation

15 Can be changed

USB3 Max Power (W) Maximum power in watts required to
function in USB3 operation

15 Can be changed

DFP VDO

DFP VDO version Version Number of the VDO 0 Should not be changed

USB 2.0 host capability Is host USB 2.0 capable Capable Can be changed

USB 3.2 host capability Is host USB 3.2 capable Capable Can be changed

USB 4 host capability Is host USB 4 capable Capable Can be changed

Port Number Unique port number to identify a
specific port on a multi-port device

0 Can be changed

Source PDO 0

Dual role power Both power source and sink functions
are supported.

Yes Can be changed

USB suspend support USB link suspend is supported No Can be changed

USB communication capable USB host or device function is
supported

Yes Can be changed

Data role swap Data role swap is supported Yes Can be changed

Unchunked extended
messages supported

Device support send and receive
extended messages in a single
unchunked message

Yes Should not be changed

Peak current (0x) Additional peak current source
capability. See USB-PD Spec for
encoding

0 Can be changed

Voltage (mV) Output voltage level in mV units 5000 Can’t be changed

Maximum current (mA) Maximum current that can be sourced
in mA units

3000 Can be changed

Source PDO 1 Second source PDO. 9 V @ 3A Can be changed

Source PDO 2 Third source PDO. 15 V @ 3A Can be changed

Source PDO 3 Fourth source PDO. 20 V @ 3A Can be changed

Sink PDO

Sink PDO 0 First sink PDO: Must be a 5 V fixed
supply PDO.

5 V @ 0.9 A Current can be changed.

Sink PDO 1 Second sink PDO. 7 to 21 V @ 0.9
A

Can be changed.

SCEDB Configuration: Source Capabilities Extended Data Block

VID Vendor ID 0x04B4 Can be changed

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 27

PID Product ID <As per
Project>

Can be changed

XID USB-IF assigned ID for the product. 0 Can be changed

FW Version Firmware version 1 Can be changed

HW Version Hardware version 1 Can be changed

Voltage regulation load step
slew rate (mA/us)

Load variation allowed per us by the
voltage regulator.

150 Not allowed

Voltage regulation load step
magnitude (%loC)

Range of load variation allowed (%)
allowed.

25 Can be changed

Holdup Time (ms) Time in ms for which the output voltage
remains in holdup on interruption of
input supply.

0 Can be changed

LPS compliant IEC power supply compliance status. No Can be changed

PS1 compliant IEC power supply compliance status. No Can be changed

PS2 compliant IEC power supply compliance status. No Can be changed

Low touch current EPS Touch current status bit. No Can be changed

Ground pin Whether Ground pin is supported. Supported Can be changed

Touch temp Specifies IEC standard used to
determine surface temperature.

Default: IEC
60950-1.

Can be changed

Source Inputs-External
supplies

External supply type. Constrained
external supply

Can be changed

Source Inputs-Internal
batteries

Whether batteries are present. No Can be changed

Hot swappable batteries Number of hot swappable batteries. 0 Can be changed

Fixed batteries Number of fixed batteries. 0 Can be changed

Source PD Power PD power supply capability in Watts. 60 Can be changed. Should
match Source PDOs.

SKEDB Configuration: Sink Capabilities Extended Data Block

VID (0x) The 16-bit Vendor ID (VID) assigned to
the Source’s vendor by the USB-IF

4B4 Can’t be changed

PID (0x) The 16-bit Product ID (PID) assigned
by the Source’s vendor

<As per
Project>

Can’t be changed

XID (0x) Value provided by the USB-IF to assign
to product

00000000 Can be changed

FW Version (0x) Firmware version number 1 Can be changed

HW Version (0x) Hardware version number 1 Can be changed

SKEDB Version (0x) SKEDB Version 1 Can’t be changed

Load step slew rate (mA/us) Indicates the Load Step Slew Rate and
Magnitude that this Sink prefers

150 Can be changed

Percent overload Percent overload in 10% increments.
Values higher than 250 are clipped to
250%.

0 Can be changed

Overload period (ms) Overload period in ms.Value is stored
in table as 20ms unit

0 Can be changed

Duty cycle Duty cycle in 5% increments 0 Can be changed

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 28

1 Three sets of peak current values are to be provided as per USB-PD specification.

VBUS Voltage droop
tolerance

Can tolerate VBUS Voltage droop No Can be changed

LPS Compliant Whether sink is LPS compliant No Can be changed

PS1 Compliant Whether sink is PS1 compliant No Can be changed

PS2 Compliant Whether sink is PS2 compliant No Can be changed

Touch Temp The IEC standard used to determine
the surface temperature of the Sink’s
enclosure

Default Can be changed

Hot swappable batteries Number of hot swappable batteries
(0..4)

0 Can be changed

Fixed batteries Number of fixed batteries (0..4) 0 Can be changed

PPS charging supported Ability of Sink to use a PPS Source for
fast charging

No Can be changed

VBUS powered Ability of Sink to be sourced by Vbus Yes Can be changed

Mains powered Ability of Sink to be sourced by an
external mains power supply

No Can be changed

Battery powered Ability of Sink to be sourced by a
battery

Yes Can be changed

Unlimited battery powered Ability of Sink to be sourced by a
battery with essentially infinite energy
(e.g. a car battery)

No Can be changed

Sink minimum PDP The Minimum PDP required by the Sink
to operate without consuming any
power from its Battery(s) should it have
one.

5 Can be changed

Sink operational PDP The PDP the Sink requires to operate
normally. For Sinks with a Battery, it is
the PDP Rating of the charger supplied
with it or recommended for it.

15 Can be changed

Sink maximum PDP The Maximum PDP the Sink can
consume to operate and charge its
Battery(s) should it have one.

20 Can be changed

Peak Current1

Percentage overload (%) Percentage of overload allowed. 0 Can be changed

Overload period (ms) Period in ms of the rolling average time
window for overloading.

0 Can be changed

Duty cycle (%) Percentage of time for which
overloading persists within the rolling
window.

0 Can be changed

Vbus voltage droop Whether there can be additional VBus
droop due to overload.

No Can be changed

DP Mode Parameters

Modes supported Supported DisplayPort pin
assignments.

CDE Can be changed

Mux Control Whether CCGx is responsible for
configuring the Type-C data switch to
enable/disable display connection.

Controlled by
CCGx

Can be changed based on
hardware design.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 29

2 Only supported on the CCG6, CCG6DF and CCG6SF device families.

3 Only supported on the CCG5, CCG5C, CCG6, CCG6DF and CCG6SF device families.

Mode trigger Whether CCGx firmware should
automatically enter DisplayPort mode
and enable display output when a
Type-C display is detected.

Automatic Can be changed

Preferred DP Mode Legacy parameter: Don’t care 4-lane DP Not applicable for
Notebook/Desktop designs.

Over Voltage Protection

Enable Whether OVP (as sink and source) is
enabled.

Enabled Can be changed

OVP Threshold Max. allowed excess voltage as
percentage of expected value.

20% Can be changed

Debounce period Debounce period in us. 10 us Can be changed

Retry count Number of recovery and retry attempts
to be made before disabling Type-C
connection with a faulty device.

2 Can be changed

Over Current Protection

OCP enable Whether OCP (as source) is enabled. Yes Can be changed

OCP Threshold (%) Max. allowed overload as percentage of
maximum expected current.

20% Can be changed

Debounce period Debounce period in ms. Used to ignore
brief surges and load variations.

10ms Can be changed

Retry count Number of recovery and retry attempts
to be made before disabling Type-C
connection with a faulty device.

2 Can be changed

OCP Threshold-2 (%) Reserved for future use 50 Not supported

Debounce period – 2(ms) Reserved for future use 1 ms Not supported

Sense resistance (milli ohm) Sense resistor impedance 5 Change is not
recommended

Tuning resistance (ohm) Current sense tuning resistor
impedance

0 Not supported

Short Circuit Protection2

Enable Whether SCP (as source) is enabled. Enabled Can be changed

SCP Threshold (%) Threshold above nominal operating
current to be treated as SC fault

50 Can be changed. Can be
changed

Debounce period (us) Debounce period (in us) that should be
applied before SC is detected

1 Can be changed

Retry count Number of recovery and retry attempts
to be made before disabling Type-C
connection with a faulty device.

2 Can be changed

VConn Over-Current Protection3

Enable Whether VConn OCP is enabled Yes Can be changed

Threshold (%) Reserved for future use. 30 Not supported as of now.

Debounce period (ms) Debounce period in ms. Used to ignore
momentary load variations.

1 Change not recommended.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 30

4 Only supported on the CCG6SF and CCG6DF device families.

5 Only supported on the CCG6, CCG6SF and CCG6DF device families.

6 Only supported on the CCG5, CCG5C and CCG6 device families.

7 SBU MUX configuration is only applicable to CCG5, CCG5C and CCG6 devices.

Note: Setting to this to values greater
than 1 ms can cause device damage in
case of overload.

Retry count Number of VCONN OCP events that
are allowed before CCGx shuts down
the port completely

0 Not Supported

Over Temperature Protection4

Enable Enable OTP protection Yes Can be change

Thermistor type 1

Type of thermistor is being used
(Negative Temperature Co-efficient,
Positive Temperature Co-efficient or
Internal BJT sensing).

Internal BJT Can be changed

Cutoff value 1 Temperature at which OTP cutoff is to
be performed

100 Can be changed

Restart value 1 Temperature at which system operation
can be resumed

85 Can be changed

Debounce period (ms) Period (in ms) that should be applied
before over temperature is detected

0 Can be changed

Reverse Current Protection5

Enable Whether RCP (as source) is enabled. Yes Can be changed.

Retry count Number of recovery and retry attempts
to be made before disabling Type-C
connection with a faulty device.

2 Can be changed.

Charging Configuration - Source6

Charging mode Legacy charging mode supported:
None, DCP or Apple charging.

BC 1.2 Can be changed.

QC 4.0 enabled Reserved for future use No Not supported in host
projects.

Thunderbolt Host Configuration

Enable Enable thunderbolt host configuration
settings

Yes Can be changed

Preferred power role Preferred power role to be enforced
using PR-SWAP.

No preference Can be changed

Preferred data role Preferred data role to be enforced using
DR-SWAP.

DFP Change is not
recommended

HPD Handling Handle the HPD signal via GPIO or I2C Virtual HPD Can be changed

VPRO capable Host supports VPRO docks Yes Can be changed

SBU MUX configuration SBU MUX configuration to be used
(SBU MUX pass-through, SBU MUX
without polarity change, Full SBU MUX
configuration)

SBU MUX
pass-through7

Can be changed

USB4 data role USB4 data role Dual-Role Can be changed

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 31

USB3 data role USB3 data role Dual-Role Can be changed

USB4 host support Enable/Disable USB4 host support Enable Can be changed

Support TBT tunneling TBT tunneling over USB4 support Yes Can be changed

Support DP tunneling DP tunneling over USB4 support Yes Can be changed

Support PCIe tunneling PCIe tunneling over USB4 support Yes Can be changed

Non-thunderbolt MUX Non-thunderbolt MUX is used in the
design

No Feature not supported

Alternate Mode 0

SVID#0 (0x) Thunderbolt 3 alternate mode SVID 8087 Can be changed. Remove
this if Thunderbolt 3 is not
supported.

Supported in DFP
(checkbox)

Thunderbolt 3 alternate mode is
supported by DFP

Checked Can be changed

Supported in UFP
(checkbox)

Thunderbolt 3 alternate mode is
supported by UFP

Checked Can be changed

Alternate Mode 1

SVID#0 (0x) Display Port alternate mode SVID FF01 Can be changed. Remove
this if Display Port is not
supported.

Supported in DFP
(checkbox)

Display Port alternate mode is
supported by DFP

Checked Can be changed

Supported in UFP
(checkbox)

Display Port alternate mode is
supported by UFP

Not checked Not supported in host
projects.

Custom Alt Mode Configuration

Enable Enable custom alternate mode Yes Can be changed

Alternate mode SVID#0 (0x) Custom alternate mode SVID 0 Can be changed

Supported in DFP Custom Port alternate mode is
supported by DFP

No Can be changed

Supported in DFP Custom Port alternate mode is
supported by UFP

No Can’t be changed

Custom Host Configuration

Accessory mode Accessory mode enable/disable mode Enable Can be changed

Rp detach Enable/disable disconnect detect
mechanism using Rp in Sink role

Enable Can be changed

Power threshold Minimal power (in mW) required to turn
FET ON if source provides at least this
value

4500 Can be changed

Request max power Request max current provided by the
port partner instead of the current
mentioned in the sink capabilities

No Can be changed

Accept PR_SWAP if
externally powered

Whether to accept PR_SWAP even if
there is an external powered bit is set

No Can be changed

Source PDO selection
algorithm

Source PDO selection algorithm:
Default, Highest power, Highest
current, Highest voltage

Default Can be changed

Intel Platform configuration

Platform selection ICL/TGL/RKL platform TGL Can be changed

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 32

3.3.2 EZ-PD Configuration Utility

EZ-PD Configuration Utility is a Windows application which allows the user to define the configuration parameter values
through a set of UI screens and convert the configuration into a binary format that can be programmed onto the device or
embedded into the firmware source.

Figure 17: PD Port Configuration using EZ-PD Configuration Utility

Figure 17 shows a snapshot of the UI screens used for configuring the CCG5 firmware as an example. The entire device
configuration is completed by navigating through all the nodes shown on the left side window of the UI.

The various fields are inter-related, and should be updated to be mutually consistent. After all the parameters are defined,
click on the ‘Save’ button (or go to File → Save As) to save a copy of the configuration to the disk. The configuration is stored
in the form of an XML file. The utility also generates two additional output files that help the user in deploying the configuration.

1. A cyacd file is generated, which can be used to program the new configuration data to the device. The EZ-PD utility
itself uses the cyacd file for device programming.

2. A .c file is generated, which can be included in the firmware project to compile a new binary that embeds the desired
configuration. More details on the use of this file are provided in later sections of this guide.

After the configuration is saved, use the Tools → Configure Device option to program the configuration to the device. The
utility issues a warning if the firmware version is older than the current version, and you have the option of aborting the
configuration update at this stage.

Retimer count Number of retimers per PD port 1 Can be changed

I2C retimer #1 address (0x) I2C address of retimer #1 40 Can be changed

SoC I2C address (0x) I2C address to be used for the SoC
slave interface.

50 Can be changed

SoC Mux initialization delay
(0x)

Soc Mux initialization delay in milli
seconds

19 Can be changed

SoC Mux config delay (0x) Delay between two Mux update events E Can be changed

User Parameters

Parameters 1 to 8 Reserved for customer specific usage. 00 Can be changed

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 33

4. Customizing the Firmware Application

As shown in section 3.3, a major part of the CCGx host application functionality can be modified without having to change
any of the firmware sources.

Any changes to the hardware design around the CCGx device will, however, require changes to the firmware sources
implementing the application. This chapter walks through the process of updating the firmware implementation to work with a
different hardware design.

Note: As the firmware sources and reference projects are installed in the Program Files folder, it is not recommended that
you make changes to the original installed version of these files. You can create a copy of the Firmware folder from the SDK
installation, and use the copy for making any changes. The code example option of PSoC Creator will allow you to make
copies of the projects. This will ensure that you have a clean version of the files that you can revert to as well. Refer to section
3.2.1 for more details.

Since the target application remains the same, it is expected that the changes are limited to aspects such as the mechanism
for voltage selection, FET control, data path MUX/Switch control, and so on. This does not involve changes to the core
functionality implemented by the CCGx device.

4.1 Solution Structure

The CCGx solution structure is shown in Figure 18. The figure uses the CYPD5125-40LQXI_notebook workspace as
reference. The source and header files used in the solution are grouped into different folders.

Figure 18: CCG5 Notebook Solution Structure

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 34

▪ Solution: The solution folders contain header and source files that provide user configurations, user hardware-specific
functions and custom code modules. It is expected that these files will need to be changed to match the hardware design
and requirements for all customer implementations. The solution-level sources include:

 config.h: Header file that enables/disables firmware features and provides macros or function mappings for
hardware-specific functions such as FET control and voltage selection.

 stack_params.h: Configuration parameters used by the PD stack and application layers which manage the PD
power negotiation. The content of this file is not expected to be changed by users.

 alt_modes_config.h: Header file that selects the alternate modes that are supported by the firmware when CCGx
is a Downstream Facing Port (DFP) or Upstream Facing Port (UFP).

 solution.h: Header file providing constant, variable and function declarations for external hardware controls
implemented by CCG5 firmware.

 config.c: This source file contains the default run-time configuration for the CCGx notebook application and has
been generated using the EZ-PD Configuration Utility.

 solution.c: This source file contains the functions that control the data switch and/or external buck-boost regulators
used in the system for data connection and power control.

 main.c: This source file contains the main application entry point.

▪ app: The app folders contain header and source files that implement the device policy decisions such as power contract
negotiation roles, port role management, power protection schemes, Vendor Defined Message (VDM) handling, and so
on. The default implementation provided in the source form uses the configuration table and runtime customizations
provided by the EC to handle these tasks. The files can be updated if there is a need to change the way policy decisions
are implemented by the CCG firmware. The app source files include:

 app.c: This is the top-level application source file that connects the PD stack to the alternate modes manager as
well as the solution level code.

 pdo.c: This source file implements the Power Data Object (PDO) and Request Data Object (RDO) handlers that
define the power contract negotiation rules.

 psource.c: This source file implements the power source-related state machines and tasks.

 psink.c: This source file implements the power sink related state machines and tasks.

 swap.c: This source file implements the various swap request handlers.

 vdm.c: This source file implements the handlers for VDMs received by the CCGx device.

 ucsi.c: This source file implements the UCSI interface which allows the OS policy manager to manage the Type-C
port functionality.

 battery_charging.c: This source file implements the BC 1.2 (CDP and DCP) support for the CCGx notebook
application.

▪ pd_hal: The pd_hal folders header and source files that implement the low-level drivers for the PD stack. The header file
definitions should not be modified as these are used by the PD stack library and conflicting definitions can result in
undefined behavior. The pd_hal level sources include:

 pdss_mx_hal.c: The hardware interface file to the PD block.

 hal_ccgx.c: This source file implements various protection tasks, which are specific to the CCG device architecture.

▪ alt_mode: This folder contains header and source files that implement the alternate mode manager functions for when
CCG is functioning as DFP and when CCG is functioning as UFP.

▪ pd_common: Since the PD stack is provided in the library form, the pd_common folder only contains header files that
provide data structure definitions and function declarations for the PD stack. The header file definitions should not be
modified as these are used by the PD stack library and conflicting definitions can result in undefined behavior.

▪ hpiss: Header file which defines the Host Processor Interface related functions.

▪ scb: Header file which defines the generic I2C slave driver used for HPI and other functions.

▪ system: This folder contains the base system-level functionality such as GPIO, soft timer implementation, flash driver,
and firmware upgrade handlers. The header file definitions should not be modified as these are used by the PD and HPI
stack libraries and conflicting definitions can result in undefined behavior.

4.2 Compile Time Options

The notebook port controller application supports a set of features that can be enabled/disabled using compile time options.
These compile time options are set in the config.h header file that you can find under the solution folder, and are summarized

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 35

in Table 2. These parameters are a super-set of the parameters supported across all the reference applications. Please refer
to the application specific sections below for the set of parameters supported by each application.

Table 2: Selectable Firmware Features in config.h

Pre-processor Switch Description Values

APP_VBUS_SRC_FET_ ON_P1
Function/Macro to turn on the port 1
source FET.

Map to a function or macro which
disables the source (provider) FET
associated with PD port 1.

APP_VBUS_SRC_FET_ OFF_P1
Function/Macro to turn off the port 1
source FET.

Map to a function or macro which
enables the source (provider) FET
associated with PD port 1.

APP_VBUS_SRC_FET_ ON_P2
Function/Macro to turn on the port 2
source FET.

Only applicable for a dual-port solution.

Map to a function or macro which
disables the source (provider) FET
associated with PD port 2.

APP_VBUS_SRC_FET_ OFF_P2
Function/Macro to turn off the port 2
source FET.

Only applicable for a dual-port solution.

Map to a function or macro which
enables the source (provider) FET
associated with PD port 2.

APP_VBUS_SNK_FET_OFF_P1
Function/Macro to turn on the port 1
sink FET.

Map to a function or macro which
disables the sink (consumer) FET
associated with PD port 1.

APP_VBUS_SNK_FET_ON_P1
Function/Macro to turn off the port 1
sink FET.

Map to a function or macro which
enables the sink (consumer) FET
associated with PD port 1.

APP_VBUS_SNK_FET_OFF_P2
Function/Macro to turn on the port 2
sink FET.

Only applicable for a dual-port solution.

Map to a function or macro which
disables the sink (consumer) FET
associated with PD port 2.

APP_VBUS_SNK_FET_ON_P2
Function/Macro to turn off the port 2
sink FET.

Only applicable for a dual-port solution.

Map to a function or macro which
enables the sink (consumer) FET
associated with PD port 2.

APP_DISCHARGE_FET_ON_P1
Function/Macro to turn on the port 1
VBus discharge circuit.

Map to a function or macro which
enables the VBus discharge circuit
associated with PD Port 1.

The internal discharge FET on the
CCG device can be used for this
purpose.

APP_DISCHARGE_FET_OFF_P1
Function/Macro to turn off the port 1
VBus discharge circuit.

Map to a function or macro which
disables the VBus discharge circuit
associated with PD Port 1.

The internal discharge FET on the
CCG device can be used for this
purpose.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 36

Pre-processor Switch Description Values

APP_DISCHARGE_FET_ON_P2
Function/Macro to turn on the port 2
VBus discharge circuit.

Only applicable for a dual-port solution.

Map to a function or macro which
enables the VBus discharge circuit
associated with PD Port 2.

The internal discharge FET on the
CCG device can be used for this
purpose.

APP_DISCHARGE_FET_OFF_P2
Function/Macro to turn off the port 2
VBus discharge circuit.

Only applicable for a dual-port solution.

Map to a function or macro which
disables the VBus discharge circuit
associated with PD Port 2.

The internal discharge FET on the
CCG device can be used for this
purpose.

CCG_PROG_SOURCE_ENABLE
Select whether power source supports
variable (not a discrete set) of VBus
voltage settings.

Set to 1 if there is a programmable
regulator to provide the power output.

Set to 0 if the regulator only supports
discrete voltage settings of 5V, 9V,
12V, 15V and 20V.

APP_VBUS_SET_VOLT_P1
Function/Macro to select the source
voltage (VBus output) on PD port 1.

Only required when
CCG_PROG_SOURCE_ENABLE is
set to 1.

Map to a function or macro which
updates the on-board regulator to
source the required output voltage.

APP_VBUS_SET_VOLT_P2
Function/Macro to select the source
voltage (VBus output) on PD port 2.

Only required when
CCG_PROG_SOURCE_ENABLE is
set to 1.

Map to a function or macro which
updates the on-board regulator to
source the required output voltage.

APP_VBUS_SET_5V_P1

APP_VBUS_SET_9V_P1

APP_VBUS_SET_12V_P1

APP_VBUS_SET_15V_P1

APP_VBUS_SET_20V_P1

Function/Macro to set the output
voltage on Port 1 to the desired level.

Only required when
CCG_PROG_SOURCE_ENABLE is
set to 0.

Map to functions or macros which
select the output voltage from the on-
board regulator.

The implementation for unsupported
voltages can be left as NOP.

APP_VBUS_SET_5V_P2

APP_VBUS_SET_9V_P2

APP_VBUS_SET_12V_P2

APP_VBUS_SET_15V_P2

APP_VBUS_SET_20V_P2

Function/Macro to set the output
voltage on Port 2 to the desired level.

Only required when
CCG_PROG_SOURCE_ENABLE is
set to 0.

Map to functions or macros which
select the output voltage from the on-
board regulator.

The implementation for unsupported
voltages can be left as NOP.

BATTERY_CHARGING_ENABLE
Enable/disable BC 1.2 (CDP/DCP)
source support on the USB ports.

Set to 1 to enable BC 1.2 power
source support.

Only supported on CCG5, CCG5C
and CCG6.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 37

Pre-processor Switch Description Values

SYS_DEEPSLEEP_ENABLE
Enable/disable putting the CCGx
device into a low power mode when
idle.

Can be set to 0 to save flash space
where required.

VBUS_OVP_ENABLE
Enable/disable detection and handling
of VBus Over-Voltage faults.

Recommend setting this to 1 in all
cases.

VBUS_OVP_MODE
Select mode of OVP detection and
handling.

0 ➔ Not supported.

1 ➔ OVP detection by OV comparator
and handling by firmware.

2 ➔ OVP detection by OV comparator
and automated hardware based
handling.

Should be set to 2 for proper
operation.

VBUS_OCP_ENABLE
Enable/disable detection and handling
of VBus Over-Current faults.

1 ➔ Type-C VBUS OCP enable.

0 ➔ Type-C VBUS OCP disable.

VBUS_OCP_MODE
Select mode of OVP detection and
handling.

0 ➔ Use external load switch

1 ➔ Not supported

2 ➔ OCP detection by internal CSA
with automatic hardware based
handling.

3 ➔ OCP detection by internal CSA
with firmware based debounce and
handling.

Should be set to 3 for proper
operation.

VBUS_SCP_ENABLE
Enable/disable detection and handling
of VBus Short-Circuit faults.

1 ➔ Type-C VBUS SCP enable.

0 ➔ Type-C VBUS SCP disable.

Only supported on CCG6, CCG6DF
and CCG6SF.

VBUS_RCP_ENABLE
Enable/disable detection and handling
of VBus Reverse-Current faults.

1 ➔ Type-C VBUS RCP enable.

0 ➔ Type-C VBUS RCP disable.

Only supported on CCG6, CCG6DF
and CCG6SF.

VCONN_OCP_ENABLE
Enable/disable detection and handling
of VConn Over-Current faults.

1 ➔ Type-C VConn OCP enable.

0 ➔ Type-C VConn OCP disable.

OTP_ENABLE
Enable/disable OTP feature 1 ➔ OTP feature enable.

0 ➔ OTP feature disable.

Only supported on CCG6DF and
CCG6SF.

CCG_UCSI_ENABLE
Enable/disable the UCSI interface. 1 ➔ UCSI interface enable.

0 ➔ UCSI interface disable.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 38

Pre-processor Switch Description Values

DFP_ALT_MODE_SUPP
Enable/disable the alternate mode
discovery and handling state machine
when the port managed by CCG5 is a
DFP.

1 ➔ Enable alternate modes when
CCG5 is DFP.

0 ➔ Disable alternate modes when
CCG5 is DFP.

DP_DFP_SUPP
Enable/disable DisplayPort source
(DFP_U/DFP_D) functionality.

1 ➔ Enable DP source functionality.

0 ➔ Enable DP sink functionality.

TBT_DFP_SUPP
Enable/disable Thunderbolt alternate
mode operation when CCG5 is a DFP.

This can only be enabled in system
designs that include a Thunderbolt
controller from Intel.

1 ➔ Enable TBT alternate mode.

0 ➔ Disable TBT alternate mode.

UFP_ALT_MODE_SUPP
Enable/disable the alternate mode
discovery and handling state machine
when the port managed by CCG5 is a
UFP.

1 ➔ Enable alternate modes when
CCG5 is UFP.

0 ➔ Disable alternate modes when
CCG5 is UFP.

TBT_UFP_SUPP
Enable/disable Thunderbolt alternate
mode operation when CCG5 is a UFP.

This can only be enabled in system
designs that include a Thunderbolt
controller from Intel.

1 ➔ Enable TBT alternate mode.

0 ➔ Disable TBT alternate mode.

RESET_ON_ERROR_ ENABLE
Selects whether to enable / disable
CCG device reset on error (watchdog
expiry or hard fault)

1 ➔ Enable reset option

0 ➔ Disable reset option

STACK_USAGE_CHECK_ENABLE
Enable/disable periodic checking of
available margin in the runtime stack.

1 ➔ Enable stack margin checks

0 ➔ Disable stack margin checks

APP_PD_REV3_ENABLE
Enable/disable PD 3.0 Support. 1 ➔ Enable PD 3.0

0 ➔ Disable PD 3.0

Only applicable for CCG6DF and
CCG6SF.

APP_USB4_DATA_ENABLE
Enable/Disable USB 4.0 Support 1 ➔ Enable PD 3.0

0 ➔ Disable PD 3.0

Only applicable for CCG6DF and
CCG6SF.

ICL_ENABLE
Enable/Disable Intel Ice Lake features 1 ➔ Enable Intel Host Platform

specific features

0 ➔ Disable Intel Host Platform
specific features

ICL_SLAVE_ENABLE
Enable/Disable Ice Lake PMC Specific
support

1 ➔ Enable ICL PMC Specific
features

0 ➔ Disable ICL PMC Specific
features

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 39

Pre-processor Switch Description Values

BB_RETIMER_ENABLE
Enable/Disable Burnside Bridge retimer
Interface

1 ➔ Burnside Bridge Retimer (BBR)
interface enable.

0 ➔ BBR interface disable.

ICL_ALT_MODE_HPI_DISABLED
Enable/Disable Alt Mode Related HPI
Commands

1 ➔ Disable alt mode related HPI
commands.

0 ➔ Enable alt mode related HPI
commands.

ICL_ALT_MODE_EVTS_DISABLED
Enable/Disable Alt Mode related HPI
Events

1 ➔ Disable alt mode related HPI
Events.

0 ➔ Enable alt mode related HPI
Events.

In addition to the user-selectable parameters listed above, the config.h file also defines a set of parameters that configure the
behavior of the PD stack and other modules in the CCG5 firmware. Changes to these parameters are not recommended for
optimal operation. These parameters are described in Table 3.

Table 3: Firmware configuration definitions in config.h

Pre-processor Switch Description Values

CCG_PD_REV3_ ENABLE
Whether to enable PD 3.0 support or not.
PD 3.0 operation is recommended. More
details in section 4.4.

1 ➔ PD 3.0 support enabled

0 ➔ PD 3.0 support disabled

CCG_FRS_RX_ENABLE
Enable/disable handling of Fast Role Swap
requests from a PD 3.0 power source.

1 ➔ Enable FRS receive function.

0 ➔ Disable FRS receive function.

CCG_FRS_TX_ENABLE
Enable/disable generation of Fast Role
Swap request as a PD 3.0 power source.

1 ➔ Enable FRS transmit function.

0 ➔ Disable FRS transmit function

CCG_SINK_ONLY
Configure the CCG device in a Sink-only
power role. Used in Backup firmware
applications.

1 ➔ CCG implements Sink-only Type-C state
machine.

0 ➔ CCG implements DRP Type-C state
machine.

4.3 Part Number Update

The SDK workspaces are geared to work with appropriate applications. But there can be instances where the target part
needs to be changed. The following are the steps to be done for changing the part.

4.3.1 Device Selector

The part number for the project in the workspace needs to be updated to match the new part. This can be achieved using the
device selector. Right click the project on the Workspace Explorer window and select Device Selector. As shown in Figure 19,
use the Device Selector dialog to change the part number. The part number selection can also be done when copying the
example project as per section 3.2.1.2. If this is already done, then this step can be avoided.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 40

Figure 19,: Device Selector Dialog for changing Part Number

4.3.2 Bootloader selection

When application part number is modified, the corresponding bootloader binaries should also be updated. In the schematics
tab of the application double click the Bootloadable component. Update the bootloader binary files in the Dependencies Tab
as shown in Figure 20. Choose the bootloader binary that matches the part number.

Figure 20: Bootloader binary file update option

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 41

CCGx host firmware makes use of two different boot architectures depending on the reference project used. The bootloader
usage in the project depends on the boot architecture as well as the application type which is being configured.

4.3.2.1 Bootloader + Asymmetric Dual Binary Architecture

Most of the reference projects in the Host SDK make use of the Bootloader + Asymmetric Dual Binary Architecture. These
applications make use of an I2C bootloader which is placed at the base of the device flash and two different application
binaries (full-featured primary application and reduced-feature backup application). Refer to Section 5.5 for details of the
bootloader operation and boot sequence.

4.3.2.1.1 Bootloader in Backup Firmware application

The actual I2C boot-loader for the CCGx device is used in the Backup firmware application. Fully tested pre-compiled boot-
loader binaries for each of the CCGx devices are made available in the corresponding Bootloader folder.

The i2c_boot.cydsn project which is part of the code example folder can be used to compile a new customized boot-loader
where required. Figure 20 shows the bootloader binary selection option for the backup firmware project.

4.3.2.1.2 Bootloader in Primary Firmware Application

The primary firmware project uses a dummy boot-loader binary which is not added into the final HEX file that is generated.
The post build script which runs at the end of the build process replaces the dummy boot-loader with the real boot-loader
which it selects from the backup firmware binary.

A pre-compiled binary for the dummy boot-loader is provided in the Bootloader folder under each CCGx project workspace.
Since the dummy boot-loader is not really used in the final binaries, there is no need to change this binary.

4.3.2.2 Hybrid Boot Architecture

In this case, the bootloader functionality is integrated into the reduced-feature backup application; and the project only
generates the backup and primary binaries.

The CYPD6227-96BZXI_notebook_tbt reference project which makes of this boot architecture in this version of the Host SDK.

4.3.2.2.1 Bootloader in Hybrid Architecture

In this case, a fixed bootloader is not used; and the bootloader binary is refreshed every time the Backup Firmware project is
compiled.

The primary application uses the HEX file generated during the backup firmware build as the bootloader.

4.3.3 Build and re-compile

Once the part number and bootloader binary files have been updated, the workspace is ready to be compiled and used
normally. Once the part number has been updated, the firmware cannot be used correctly on the kit and requires the correct
part to be used.

4.4 USB-PD Specification Revision Support

The example applications provided for CCGx devices support USB-PD specification revision 3.0 by default. Since PD 3.0
support requires significant code addition, this leaves little room for the addition of customer specific code in these
applications.

It is possible to gain more space in the CCG device flash by restricting the applications to USB-PD Revision 2.0 support. The
following steps are required to switch applications between PD 3.0 and PD 2.0 support:

1) Five versions of the PD stack libraries which support different feature sets are provided for each CCGx device family.

The libraries can be found in the lib\<ccg_family>\mdk folder inside the reference project folder.

a) ccgx_pd3.lib: Stack library with Type-C DRP, USB-PD Revision 3.0 and USB4 support enabled.

b) ccgx_pd.lib: Stack library with Type-C DRP, Try.SRC/Try.SNK, USB-PD Revision 2.0 and cable discovery support

enabled.

c) ccgx_pd_lite.lib: Stack library with Type-C DRP and USB-PD Revision 2.0 support enabled.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 42

d) ccgx_pd_snk.lib: Stack library with Type-C Sink operation, USB-PD Revision 2.0 and cable discovery support

enabled.

e) ccgx_pd_lite_snk.lib: Stack library with Type-C Sink operation and USB-PD Revision 2.0 support enabled.

The appropriate library version can be used to link the firmware application based on required features. By default, the

primary binary uses the ccgx_pd3.lib library and the backup binary uses the ccgx_pd_lite_sink.lib library.

2) Since the application code also needs to be customized based on the Type-C/PD stack configuration, a few pre-processor

macro values need to be updated so that they match with the library used, as shown in Table 4.

Table 4: Feature enable macro dependency with various stack library versions

Macro ccgx_pd3 ccgx_pd ccgx_pd_lite ccgx_pd_snk ccgx_pd_lite_snk

CCG_PD_REV3_ENABLE 1 0 0 0 0

CCG_FRS_RX_ENABLE 1 0 0 0 0

CCG_FRS_TX_ENABLE 1 0 0 0 0

CCG_SINK_ONLY 0 0 0 1 1

CCG_TRY_SRC_SNK_DISABLE 0 0 1 Don’t care Don’t care

CCG_CBL_DISC_DISABLE 0 0 1 0 1

CCG_VCONN_DISABLE 0 0 1 0 1

3) The configuration table contents for the application should be changed based on the specification version to be supported.

The SRC_PDO, SNK_PDO and DISCOVER_ID response parameters in the configuration table have fields that are

defined only for PD 3.0. These values should be adjusted as required when switching between PD revisions.

4.5 CYPD6227-96BZXI_notebook_tbt Application

The CYPD6227-96BZXI_notebook_tbt application implements a USB4 Dual-Role Device (DRD) port controller for desktop

and notebook platforms. Table 5 summarizes the features supported by the primary and backup versions of this firmware

solution.

Table 5: CYPD6227-96BZXI_notebook_tbt firmware features

Feature Support in Primary

Firmware

Support in

Backup

Firmware

DRP with Type-C 2.0 spec support Yes No

Sink with Type-C 2.0 spec support No Yes

Try.SRC and Try.SNK support Yes No

USB-PD Revision 2.0 support Yes Yes

USB-PD Revision 3.0 support with Fast-Role Swap Receive Yes No

Cable discovery support Yes No

USB4 support Yes No

DFP Data Role Preference Yes Yes

Thunderbolt3 alternate mode as DFP and UFP Yes No

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 43

DP alternate mode as DFP (DFP_U/DFP_D) Yes No

Support for other alternate modes as DFP Yes No

Support for alternate modes as UFP No No

Tiger lake SoC support Yes Partial8

Retimer Support Yes Partial9

HPI commands for firmware update No Yes

HPI event notifications (connections, faults etc.) Yes Yes

HPI commands for PD port management Yes No

HPI user extension support Yes Yes

Deep sleep for power saving Yes No

Software Watchdog and Stack Monitoring Yes No

VBus OVP Support (source/sink) Yes Yes (Sink Only)

VBus OCP Support (source only) Yes No

VConn OCP Support Yes No

VBus SCP Support Yes No

VBus RCP support Yes No

OTP support Yes No

UCSI 1.1 support Yes No

The following sub-sections describe the project structure and implementation in more detail. The primary firmware
implementation is described in detail, as the backup firmware is only a sub-set of the primary firmware.

8 SoC Retimer Debug Mode register(0x5D) writes are not supported in this binary.

9 Retimer Debug Mode register(0x07) writes, Retimer Firmware update features and Retimer register write

retries are not supported in this binary.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 44

4.5.1 PSoC Creator Schematic

Figure 21: PSoC Creator Schematic for CYPD6227-96BZXI_notebook_tbt project

Open TopDesign.cysch file in the PSoC creator project. Schematic contains hardware resources used in the application. The
schematic elements are split across multiple sheets, and Figure 21 shows all the active elements together.

In CCG6DF/CCG6SF projects, the system clock and I2C interface configuration is done automatically by the device start-up
code. Hence, these components are not shown in the schematic. In addition to the GPIO interfaces shown above, the
CCG6DF USB4 DRD project makes use of three sets of SCB (I2C) interfaces:

1. HPI Interface: I2C slave interface which allows Embedded Controller (EC) in the system to monitor/control the CCG
device operation.

2. SoC Interface: I2C slave interface which allows the Intel Platform SoC to identify the PD connection state.

3. Retimer Interface: I2C master interface which is used by CCG6DF to configure the Burnside Bridge Retimer based
on PD connection state.

The selection of some of these elements is fixed due to the capabilities of the CCG6xF device. Table 6 points out the changes
allowed in the schematic design.

Note: There is a similar file in the noboot.cydsn project folder as well. If debugging is being used, the schematic dependent
changes should be replicated there as well.

Table 6: Schematic Elements in CCG6xF Dual-Single-port Notebook Design

Schematic Element Description Changes allowed

Bootloadable_1 This is a software block which
interacts with the boot-loader on the
CCG6DF device.

Change not recommended. If
the backup binary has been
fixed, it can be used here.

EC_INT_PIN Output interrupt signal from CCG6DF
to the Embedded Controller.

Change not recommended.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 45

Schematic Element Description Changes allowed

I2C_CFG Control signal used to define the I2C
slave address used in the HPI
interface.

Change not recommended.

AR_INT_P1 Output interrupt signal from CCG6xF
Port#1 to the SoC

Can be changed

AR_INT_P2 Output interrupt signal from CCG6xF
Port#2 to the SoC

IO is not used and can be
removed.

PROCHOT Output signal used to signal
PROCHOT from CCG6xF

Can be changed

OC_FAULT Output signal used to signal VBUS
OCP fault to the Embedded
Controller

IO is not used and can be
removed.

RETIMER_FORCE_PWR_EN Input signal used to signal Retimer
force power enable from Embedded
Controller to CCG6xF

Can be changed subject to
the constraint that it should be
placed in the same GPIO port
as ADP_DETECT.

ADP_DETECT Input signal used to signal ADP
Detect from Embedded Controller to
CCG6xF

Can be changed subject to
the constraint that it should be
placed in the same GPIO port
as
RETIMER_FORCE_PWR_EN

RETIMER_PWR_EN_P1 Output signal used to signal P#1
Retimer Power Enable

Can be changed

RETIMER_PWR_EN_P2 Output signal used to signal P#2
Retimer Power Enable

Can be changed

RETIMER_RESET_N_P1 Output signal used to signal P#1
Retimer Reset Enable

Can be changed

RETIMER_RESET_N_P2 Output signal used to signal P#2
Retimer Reset Enable

Can be changed

Closely associated with the Schematic is the Design Wide Resources (DWR) view, which maps each schematic element to a
pin, clock, or hardware block on the CCG6DF device. Open the CYPD6227-96BZXI_notebook_tbt.cydwr file to see the DWR
settings for the project.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 46

Figure 22: Design Wide Resource (DWR) View of CYPD6227-96BZXI_notebook_tbt project

As shown in Figure 22, the DWR view has several tabs, which configure aspects such as pin mapping, interrupt mapping,
clock selection, flash security, and so on. It is recommended that you restrict any changes to the DWR to the pin mapping
view. Do not change the clock, interrupt, system, or flash configurations. Even in the pin mapping editor, the changes should
be subject to the constraints outlined in Table 6.

4.5.2 Compile Time Options

The CYPD6227-96BZXI_notebook_tbt application supports a set of features that can be enabled/disabled using compile

time options. These compile time options are set in the config.h header file that you can find under the solution folder, and

are summarized in Table 7.

Note: While features can be enabled/disabled as desired, changes to the mode selected for various protections schemes is

not recommended.

Table 7: Compile time options in CYPD6227-96BZXI_notebook_tbt application

Pre-processor Switch Description Values

SYS_DEEPSLEEP_ENABLE
Enable/disable putting the CCG6F
device into a low power mode
when idle.

Can be set to 0 to save flash space where
required.

VBUS_OVP_ENABLE
Enable/disable detection and
handling of VBus Over-Voltage
faults.

Recommend setting this to 1 in all cases.

VBUS_OVP_MODE
Select mode of OVP detection and
handling.

0 ➔ OVP detection using the ADC
comparator.

1 ➔ OVP detection by OV comparator and
handling by firmware.

2 ➔ OVP detection by OV comparator and
automated hardware based handling.

Should be set to 2 for proper operation.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 47

Pre-processor Switch Description Values

VBUS_OCP_ENABLE
Enable/disable detection and
handling of VBus Over-Current
faults.

1 ➔ Type-C VBUS OCP enable.

0 ➔ Type-C VBUS OCP disable.

VBUS_OCP_MODE
Select mode of OVP detection and
handling.

0 ➔ Using external OCP hardware

1 ➔ Internal OCP with neither software
debounce nor automatic FET control.

2 ➔ Internal OCP with automatic FET
control by hardware when an OCP event is
detected.

3 ➔ Internal OCP with software debounce
using delay in milliseconds from the
configuration table.

Should be set to 3 for proper operation.

VCONN_OCP_ENABLE
Enable/disable detection and
handling of VConn Over-Current
faults.

1 ➔ Type-C VConn OCP enable.

0 ➔ Type-C VConn OCP disable.

VBUS_SCP_ENABLE
Enable/disable detection and
handling of short circuit faults.

1 ➔ VBUS SCP feature enable.

0 ➔ VBUS SCP feature disable.

VBUS_RCP_ENABLE
Enable/disable detection and
handling of reverse current faults.

1 ➔ VBUS RCP feature enable.

0 ➔ VBUS RCP feature disable.

OTP_ENABLE
Enable/disable the detection and
handling of the over temperature
condition.

1 ➔ Enable OTP feature.

0 ➔ Disable OTP feature.

DFP_ALT_MODE_SUPP
Enable/disable the alternate mode
discovery and handling state
machine when the port managed
by CCG is a DFP.

1 ➔ Enable alternate modes when
CCG6DF is DFP.

0 ➔ Disable alternate modes when
CCG6DF is DFP.

DP_DFP_SUPP
Enable/disable DisplayPort source
(DFP_U/DFP_D) functionality.

1 ➔ Enable DP source functionality.

0 ➔ Disable DP source functionality.

TBT_DFP_SUPP
Enable/disable Thunderbolt
alternate mode operation when
CCG is a DFP.

1 ➔ Enable TBT alternate mode support in
DFP role.

0 ➔ Disable TBT alternate mode support
in DFP role.

UFP_ALT_MODE_SUPP
Enable/disable the alternate mode
discovery and handling state
machine when the port managed
by CCG is a UFP.

1 ➔ Enable alternate modes when
CCG6DF is UFP.

0 ➔ Disable alternate modes when
CCG6DF is UFP.

TBT_UFP_SUPP
Enable/disable Thunderbolt
alternate mode operation when
CCG is a UFP.

1 ➔ Enable TBT alternate mode in UFP
role.

0 ➔ Disable TBT alternate mode in UFP
role.

RESET_ON_ERROR_ ENABLE
Selects whether to enable / disable
CCG device reset on error
(watchdog expiry or hard fault)

1 ➔ Enable reset option

0 ➔ Disable reset option

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 48

Pre-processor Switch Description Values

CCGX_POWER_ROLE_SINK_O

NLY

Enable/disable the DRP 1 ➔ Enable PD Sink only

0 ➔ PD Port is DRP

Used in backup application.

APP_PD_REV3_ENABLE
Enable/disable PD 3.0 Support. 1 ➔ Enable PD 3.0

0 ➔ Disable PD 3.0

Used in backup application.

APP_USB4_DATA_ENABLE
Enable/Disable USB 4.0 Support 1 ➔ Enable USB4 negotiation

0 ➔ Disable USB4 negotiation

ICL_ENABLE
Enable/Disable Intel Ice Lake
features

1 ➔ Enable Intel Ice Lake features

0 ➔ Disable Intel Ice Lake features

ICL_SLAVE_ENABLE
Enable/Disable Ice Lake PMC
Specific support

1 ➔ Enable ICL PMC Specific features

0 ➔ Disable ICL PMC Specific features

BB_RETIMER_ENABLE
Enable/Disable Burnside Bridge
retimer Interface

1 ➔ BBR interface enable.

0 ➔ BBR interface disable.

ICL_ALT_MODE_HPI_DISABLE

D

Enable/Disable Alt Mode Related
HPI Commands

1 ➔ Disable alt mode related HPI
commands.

0 ➔ Enable alt mode related HPI
commands.

ICL_ALT_MODE_EVTS_DISABL

ED

Enable/Disable Alt Mode related
HPI Events

1 ➔ Disable alt mode related HPI Events.

0 ➔ Enable alt mode related HPI Events.

4.5.3 On-chip Resource Usage

The CYPD6227-96BZXI_notebook_tbt reference application uses the following on-chip resources for various functionalities.

1. Watchdog: The Watchdog is used as a generic timer for task scheduling and as a mechanism to trigger device reset
in case of firmware lock-up.

2. SCB Resources

a. SCB0 is used for HPI slave (I2C) implementation.

b. SCB1 is used as I2C master to control the Retimer.

c. SCB2 is used as SoC slave (I2C) implementation.

3. TCPWM Resources are not used and are available.

4. USB-PD Resources

a. ADC block

i. The single ADC available is used for VBus measurement so as to track voltage changes and
detect disconnection of a power source. The AMUXB input of the ADC is connected internally to a
divided version of VBus for measurement. AMUXA input can be used for other purposes on a time-
shared basis.

ii. ADC block along with internal BJT based temperature sensing is used to detect the OTP condition.

b. Comparators

i. The OV comparator is used to detect Over-Voltage condition by comparing a divided version of
VBus against a programmable threshold.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 49

ii. The UV comparator is unused and can be enabled as required.

iii. The VSYS_DET comparator is used to detect changes to the VSYS supply.

c. Signal MUX and Switch

i. The SBU Switch is used to connect the Type-C side SBU1 and SBU2 pins to the Intel Platform
SoC.

ii. The DPDM MUX is used to connect the DP_TOP/DM_TOP or DP_BOT/DM_BOT pins to the
DP_SYS/DM_SYS pins to enable USB 2.0 data connection.

4.5.4 Secondary Extension

The CYPD6227-96BZXI_notebook_tbt project makes use of a Hybrid Boot architecture where the bootloader (firmware
update) functionality is embedded into the backup firmware itself. This means that the backup firmware itself cannot be
updated in the field (if backup binary is corrupted, device cannot function anymore).

It is recommended that users who make use of this architecture write protect the backup binary before deploying on their
systems for production. One limitation of write protecting the backup binary is that the PD port configuration parameters for
this binary (configuration table) cannot be modified.

A special mechanism is provided to over-ride the configuration table embedded in the write-protected backup binary. This is
called the secondary extension project. A sample implementation of the secondary extension which overrides the config
parameters of the backup binary can be found in the workspace.

If this configuration table over-ride is not required, the secondary extension can be removed; thereby freeing up about 2 KB
of flash space.

4.5.5 CCG6SF Support

A common workspace is used to generate the binaries for CCG6DF as well as CCG6SF devices. This approach is chosen
because a sizable portion of the stack and driver source code on these devices has been moved into ROM. The common
ROM code requires that shared data structures be defined for a dual-port part, and will automatically adjust if the actual part
in use supports only one PD port.

Python based post build scripts are used to generate separate binaries for use on CCG6DF and CCG6SF devices. The
following binaries are generated as part of the build process:

1) CYPD6127-48LQXI_notebook_icl.hex: CCG6SF based single-port Thunderbolt3 Port Controller for Ice Lake Platforms.
2) CYPD6127-48LQXI_notebook_rkl.hex: CCG6SF based single-port USB4 Port Controller for Rocket Lake + Maple

Ridge Platforms.
3) CYPD6127-48LQXI_notebook_tgl.hex: CCG6SF based single-port USB4 Port Controller for Tiger Lake Platforms.
4) CYPD6227-96BZXI_notebook_icl.hex: CCG6DF based dual-port Thunderbolt3 Port Controller for Ice Lake Platforms.
5) CYPD6227-96BZXI_notebook_rkl.hex: CCG6DF based dual-port USB4 Port Controller for Rocket Lake + Maple Ridge

Platforms.
6) CYPD6227-96BZXI_notebook_tgl.hex: CCG6DF based dual-port USB4 Port Controller for Tiger Lake Platforms.

The difference between the binaries for Ice Lake, Tiger Lake and Rocket Lake platforms is only in the customized configuration
table.

While the configuration table settings used in CCG6DF and CCG6SF binaries are different, the main difference is applied
automatically by the firmware by identifying the PD part that is in use.

4.6 CYPD6227-96BZXI_notebook_dualapp_tbt Application

The CYPD6227-96BZXI_notebook_dualapp_tbt code example is functionally equivalent to the CYPD6227-
96BZXI_notebook_tbt example described in Section 4.5.

The only difference between the two examples is that this uses the standard Bootloader + Dual asymmetric binary boot
architecture which is used by all other host projects.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 50

4.7 CYPD6227-96BZXI_notebook_dualapp Application

The CYPD6227-96BZXI_notebook_dualapp application implements a Notebook PD Port Controller for desktop and

notebook platforms. Table 8 summarizes the features supported by the primary and backup versions of this firmware

solution.

Table 8: CYPD6227-96BZXI_notebook_dualapp firmware features

Feature Support in Primary

Firmware

Support in

Backup

Firmware

DRP with Type-C 2.0 spec support Yes No

Sink with Type-C 2.0 spec support No Yes

Try.SRC and Try.SNK support Yes No

USB-PD Revision 2.0 support Yes Yes

USB-PD Revision 3.0 support with Fast-Role Swap Receive Yes No

Cable discovery support Yes No

USB4 support No No

DFP Data Role Preference No No

Thunderbolt3 alternate mode as DFP and UFP No No

DP alternate mode as DFP (DFP_U/DFP_D) Yes No

Support for other alternate modes as DFP Yes No

Support for alternate modes as UFP No No

Tiger lake SoC support No No

Retimer Support No No

HPI commands for firmware update Yes Yes

HPI event notifications (connections, faults etc.) Yes Yes

HPI commands for PD port management Yes No

HPI user extension support Yes Yes

Deep sleep for power saving Yes No

Software Watchdog and Stack Monitoring Yes No

VBus OVP Support (source/sink) Yes Yes (Sink Only)

VBus OCP Support (source only) Yes No

VConn OCP Support Yes No

VBus SCP Support Yes No

VBus RCP support Yes No

OTP support Yes No

UCSI 1.1 support Yes No

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 51

The following sub-sections describe the project structure and implementation in more detail. The primary firmware
implementation is described in detail, as the backup firmware is only a sub-set of the primary firmware.

4.7.1 PSoC Creator Schematic

Figure 23: PSoC Creator Schematic for CYPD6227-96BZXI_notebook_dualapp project

Open TopDesign.cysch file in the PSoC creator project. Schematic contains hardware resources used in the application. The
schematic elements are split across multiple sheets, and Figure 23 shows all the active elements together.

In CCG6DF/CCG6SF projects, the system clock and I2C interface configuration is done automatically by the device start-up
code. Hence, these components are not shown in the schematic. In addition to the GPIO interfaces shown above, the
CCG6DF Notebook project makes use of two sets of SCB (I2C) interfaces:

1. HPI Interface: I2C slave interface which allows Embedded Controller (EC) in the system to monitor/control the CCG
device operation.

2. Regulator / MUX Interface: I2C master interface used by CCG to configure the buck-boost voltage source and Type-
C Signal MUX used in the design.

The selection of some of these elements is fixed due to the capabilities of the CCG6xF device. Table 9 points out the changes
allowed in the schematic design.

Note: There is a similar file in the noboot.cydsn project folder as well. If debugging is being used, the schematic dependent
changes should be replicated there as well.

Table 9: Schematic Elements in CYPD6227-96BZXI_notebook_dualapp Design

Schematic Element Description Changes allowed

Bootloadable_1 This is a software block which
interacts with the boot-loader on the
CCG6DF device.

Should not be changed.

EC_INT Output interrupt signal from CCG6DF
to the Embedded Controller.

Should not be changed as the
bootloader uses this pin.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 52

Schematic Element Description Changes allowed

I2C_CFG Control signal used to define the I2C
slave address used in the HPI
interface.

Should not be changed as the
bootloader uses this pin.

FW_LED Pin toggled by the firmware to
indicate device operation.

Can be changed/disabled.

DP_HPD_P1 HotPlug Detect pin used to connect to
DisplayPort controller for Port-1 in the
system.

Should not be changed.

DP_HPD_P2 HotPlug Detect pin used to connect to
DisplayPort controller for Port-2 in the
system.

Should not be changed.

Closely associated with the Schematic is the Design Wide Resources (DWR) view, which maps each schematic element to a
pin, clock, or hardware block on the CCG6DF device. Open the CYPD6227-96BZXI_notebook_dualapp.cydwr file to see the
DWR settings for the project.

Figure 24: Design Wide Resource (DWR) View of CYPD6227-96BZXI_notebook_dualapp project

As shown in Figure 24, the DWR view has several tabs, which configure aspects such as pin mapping, interrupt mapping,
clock selection, flash security, and so on. It is recommended that you restrict any changes to the DWR to the pin mapping
view. Do not change the clock, interrupt, system, or flash configurations. Even in the pin mapping editor, the changes should
be subject to the constraints outlined in Table 9.

4.7.2 Compile Time Options

The CYPD6227-96BZXI_notebook_tbt application supports a set of features that can be enabled/disabled using compile

time options. These compile time options are set in the config.h header file that you can find under the solution folder, and

are summarized in Table 10.

Note: While features can be enabled/disabled as desired, changes to the mode selected for various protections schemes is

not recommended.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 53

Table 10: Compile time options in CYPD6227-96BZXI_notebook_dualapp application

Pre-processor Switch Description Values

SYS_DEEPSLEEP_ENABLE
Enable/disable putting the CCG6F
device into a low power mode
when idle.

Can be set to 0 to save flash space where
required.

VBUS_OVP_ENABLE
Enable/disable detection and
handling of VBus Over-Voltage
faults.

Recommend setting this to 1 in all cases.

VBUS_OVP_MODE
Select mode of OVP detection and
handling.

0 ➔ OVP detection using the ADC
comparator.

1 ➔ OVP detection by OV comparator and
handling by firmware.

2 ➔ OVP detection by OV comparator and
automated hardware based handling.

Should be set to 2 for proper operation.

VBUS_OCP_ENABLE
Enable/disable detection and
handling of VBus Over-Current
faults.

1 ➔ Type-C VBUS OCP enable.

0 ➔ Type-C VBUS OCP disable.

VBUS_OCP_MODE
Select mode of OVP detection and
handling.

0 ➔ Using external OCP hardware

1 ➔ Internal OCP with neither software
debounce nor automatic FET control.

2 ➔ Internal OCP with automatic FET
control by hardware when an OCP event is
detected.

3 ➔ Internal OCP with software debounce
using delay in milliseconds from the
configuration table.

Should be set to 3 for proper operation.

VCONN_OCP_ENABLE
Enable/disable detection and
handling of VConn Over-Current
faults.

1 ➔ Type-C VConn OCP enable.

0 ➔ Type-C VConn OCP disable.

VBUS_SCP_ENABLE
Enable/disable detection and
handling of short circuit faults.

1 ➔ VBUS SCP feature enable.

0 ➔ VBUS SCP feature disable.

VBUS_RCP_ENABLE
Enable/disable detection and
handling of reverse current faults.

1 ➔ VBUS RCP feature enable.

0 ➔ VBUS RCP feature disable.

OTP_ENABLE
Enable/disable the detection and
handling of the over temperature
condition.

1 ➔ Enable OTP feature.

0 ➔ Disable OTP feature.

DFP_ALT_MODE_SUPP
Enable/disable the alternate mode
discovery and handling state
machine when the port managed
by CCG is a DFP.

1 ➔ Enable alternate modes when
CCG6DF is DFP.

0 ➔ Disable alternate modes when
CCG6DF is DFP.

DP_DFP_SUPP
Enable/disable DisplayPort source
(DFP_U/DFP_D) functionality.

1 ➔ Enable DP source functionality.

0 ➔ Disable DP source functionality.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 54

Pre-processor Switch Description Values

TBT_DFP_SUPP
Enable/disable Thunderbolt
alternate mode operation when
CCG is a DFP.

1 ➔ Enable TBT alternate mode support in
DFP role.

0 ➔ Disable TBT alternate mode support
in DFP role.

UFP_ALT_MODE_SUPP
Enable/disable the alternate mode
discovery and handling state
machine when the port managed
by CCG is a UFP.

1 ➔ Enable alternate modes when
CCG6DF is UFP.

0 ➔ Disable alternate modes when
CCG6DF is UFP.

TBT_UFP_SUPP
Enable/disable Thunderbolt
alternate mode operation when
CCG is a UFP.

1 ➔ Enable TBT alternate mode in UFP
role.

0 ➔ Disable TBT alternate mode in UFP
role.

RESET_ON_ERROR_ ENABLE
Selects whether to enable / disable
CCG device reset on error
(watchdog expiry or hard fault)

1 ➔ Enable reset option

0 ➔ Disable reset option

CCGX_POWER_ROLE_SINK_O

NLY

Enable/disable the DRP 1 ➔ Enable PD Sink only

0 ➔ PD Port is DRP

Used in backup application.

APP_PD_REV3_ENABLE
Enable/disable PD 3.0 Support. 1 ➔ Enable PD 3.0

0 ➔ Disable PD 3.0

Used in backup application.

4.7.3 On-chip Resource Usage

The CYPD6227-96BZXI_notebook_dualapp reference application uses the following on-chip resources for various
functionalities.

1. Watchdog: The Watchdog is used as a generic timer for task scheduling and as a mechanism to trigger device reset
in case of firmware lock-up.

2. SCB Resources

a. SCB0 is used for HPI slave (I2C) implementation.

b. SCB2 is used in I2C master mode to configure the buck-boost voltage source and Type-C Signal MUX.

3. TCPWM Resources are not used and are available.

4. USB-PD Resources

a. ADC block

i. The single ADC available is used for VBus measurement so as to track voltage changes and
detect disconnection of a power source. The AMUXB input of the ADC is connected internally to a
divided version of VBus for measurement. AMUXA input can be used for other purposes on a time-
shared basis.

ii. ADC block along with internal BJT based temperature sensing is used to detect the OTP condition.

b. Comparators

i. The OV comparator is used to detect Over-Voltage condition by comparing a divided version of
VBus against a programmable threshold.

ii. The UV comparator is unused and can be enabled as required.

iii. The VSYS_DET comparator is used to detect changes to the VSYS supply.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 55

c. Signal MUX and Switch

i. The SBU Switch is used to connect the Type-C side SBU1 and SBU2 pins to the DisplayPort
controller.

ii. The DPDM MUX is used to connect the DP_TOP/DM_TOP or DP_BOT/DM_BOT pins to the
DP_SYS/DM_SYS pins to enable USB 2.0 data connection.

4.7.4 CCG6SF Support

A common workspace is used to generate the binaries for CCG6DF as well as CCG6SF devices. This approach is chosen
because a sizable portion of the stack and driver source code on these devices has been moved into ROM. The common
ROM code requires that shared data structures be defined for a dual-port part, and will automatically adjust if the actual part
in use supports only one PD port.

Python based post build scripts are used to generate separate binaries for use on CCG6DF and CCG6SF devices. The
following binaries are generated as part of the build process:

1) CYPD6127-48LQXI_notebook_dualapp.hex: CCG6SF based single-port Notebook Port controller
2) CYPD6227-96BZXI_notebook_dualapp.hex: CCG6DF based dual-port Notebook port controller.

While the configuration table settings used in CCG6DF and CCG6SF binaries are different, the main difference is applied
automatically by the firmware by identifying the PD part that is in use.

4.8 CYPD6125-40LQXI_notebook Application

The CCG6 (CYPD6125-40LQXI_notebook) application implements a Type-C PD port controller for desktop and notebook
platforms. Table 11 summarizes the features supported by the primary and the backup versions of this firmware solution.

Table 11: CYPD6125 (CCG6) Notebook firmware features

Feature Support in Primary

Firmware

Support in

Backup

Firmware

DRP with Type-C 2.0 spec support Yes Yes

Try.SRC and Try.SNK support Yes No

Type-C Sink only operation No Yes

USB-PD Revision 2.0 support Yes Yes

USB-PD Revision 3.0 support with Fast-Role Swap Receive Yes No

Cable discovery support Yes No

DFP Data Role Preference No No

DP alternate mode as DFP (DFP_U/DFP_D) Yes No

Support for other alternate modes as DFP Yes No

Support for alternate modes as UFP No No

HPI commands for firmware update Yes Yes

HPI event notifications (connections, faults etc.) Yes Yes

HPI commands for PD port management Yes No

HPI user extension support Yes Yes

Deep sleep for power saving Yes No

Software Watchdog and Stack Monitoring Yes No

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 56

VBus OVP Support (source/sink) Yes Yes

VBus OCP Support (source only) Yes No

VConn OCP Support Yes No

VBus SCP Support Yes No

VBus RCP support Yes No

BC 1.2 support (CDP, DCP) as source Yes No

Apple charger support as source Yes No

UCSI 1.1 support Yes No

The following sub-sections describe the project structure and implementation in more detail. The primary firmware
implementation is described in detail, as the backup firmware is only a sub-set of the primary firmware.

4.8.1 PSoC Creator Schematic

Figure 25: PSoC Creator Schematic for CYPD6125 Notebook project

Open TopDesign.cysch file in the PSoC creator project. Schematic contains hardware resources used by power adapter such
as clocks, voltage selection IOs etc. The schematic elements are split across multiple sheets, and Figure 26 shows all the
active elements together.

The selection of some of these elements is fixed due to the capabilities of the CCG6 device and the bootloader design. Table
12 points out the changes allowed in the schematic design.

Note: There is a similar file in the noboot.cydsn project folder as well. If debugging is being used, the schematic dependent
changes should be replicated there as well.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 57

Table 12: Schematic Elements in CCG6 single-port Notebook Design

Schematic Element Description Changes allowed

Bootloadable_1 This is a software block which
interacts with the boot-loader on the
CCG6 device.

Change not recommended.
The bootloader binary used
can be updated if a custom
bootloader is required.

PDSS_PORT0_RX_CLK This is an internal clock that is used
for the RX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT0_TX_CLK This is an internal clock that is used
for the TX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT0_SAR_CLK This is an internal clock that is used
for the analog portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT0_BCH_CLK This is an internal clock that is used
for the Battery Charging.

No changes are allowed.

PDSS_PORT0_ISINK_CLK This is an internal clock that is used
for the soft start of the PFET gate
driver of the USB-PD block.

No changes are allowed.

PDSS_PORT0_SWAP_CLK This is an internal clock that is used
by FR-SWAP transmit/receive part of
the USB-PD block.

No changes are allowed.

PDSS_PORT0_FILT1_CLK This is an internal clock that is used
for the filters used for debouncing
various comparator outputs in the
USB-PD block.

No changes are allowed.

PDSS_PORTX_REFGEN_CLK This is an internal clock that is used
for the reference generator block of
the USB-PD block.

No changes are allowed.

BCH_DETACH_DET_CLK Clock used for the BC detach
detection.

No changes are allowed.

HPI_IF This is an I2C slave block through
which the CCG6 communicates with
the Embedded Controller in the
Notebook design.

No changes are allowed as
the HPI_IF is also used by the
boot-loader which is fixed.

EC_INT Output interrupt signal from CCG6 to
the Embedded Controller.

Can be changed only in cases
where the EC does not
require an interrupt and will
poll CCG6 for interrupt
notifications.

I2C_CFG Control signal used to define the I2C
slave address used in the HPI
interface.

No changes are allowed as
the HPI_IF is also used by the
boot-loader which is fixed.

FW_LED GPIO used to toggle an LED
periodically to indicate firmware
operation.

Can be changed or removed.
The APP_FW_LED_ENABLE
definition should be set to 0 if
this function is being removed.

I2C_MSTR_1 I2C master block used by the CCG6
to control the buck-boost regulator
and data switch devices.

Can be changed/removed as
required.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 58

Schematic Element Description Changes allowed

NCP81239_EN_P1_1 Output signal used to enable the on-
board buck-boost regulator.

Can be changed/removed as
required.

HPD_P1 DisplayPort HotPlug Detect signal
output.

Can be removed if DP source
function is not required.

Changes are not allowed.

Timer_1 Counter block used for the BC detach
detection.

No changes are allowed.

Closely associated with the Schematic is the Design Wide Resources (DWR) view, which maps each schematic element to a
pin, clock, or hardware block on the CCG6 device. Open the CYPD6125-40LQXI_notebook.cydwr file to see the DWR settings
for the project.

Figure 26: Design Wide Resource (DWR) View of CCG6 single-port notebook design

As shown in Figure 26, the DWR view has several tabs, which configure aspects such as pin mapping, interrupt mapping,
clock selection, flash security, and so on. It is recommended that you restrict any changes to the DWR to the pin mapping
view. Do not change the clock, interrupt, system, or flash configurations. Even in the pin mapping editor, the changes should
be subject to the constraints outlined in Table 12.

4.8.2 Compile Time Options

The CYPD6125-40LQXI_notebook application supports a set of features that can be enabled/disabled using compile time

options. These compile time options are set in the config.h header file that you can find under the solution folder, and are

summarized in Table 13.

Note: While features can be enabled/disabled as desired, changes to the mode selected for various protections schemes is

not recommended.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 59

Table 13: Compile time options in CCG6 single-port notebook application

Pre-processor Switch Description Values

BATTERY_CHARGING_ENABL

E

Enable/disable BC 1.2 (CDP/DCP) and
Apple source support on the USB ports.

Set to 1 to enable BC 1.2 and
Apple source support.

Set to 0 to disable BC 1.2 and
Apple source support.

SYS_DEEPSLEEP_ENABLE
Enable/disable putting the CCG6
device into a low power mode when
idle.

Can be set to 0 to save flash
space where required.

VBUS_OVP_ENABLE
Enable/disable detection and handling
of VBus Over-Voltage faults.

Recommend setting this to 1
in all cases.

VBUS_OVP_MODE
Select mode of OVP detection and
handling.

0 ➔ OVP detection using the
ADC comparator.

1 ➔ OVP detection by OV
comparator and handling by
firmware.

2 ➔ OVP detection by OV
comparator and automated
hardware based handling.

VBUS_OCP_ENABLE
Enable/disable detection and handling
of VBus Over-Current faults.

1 ➔ Type-C VBUS OCP
enable.

0 ➔ Type-C VBUS OCP
disable.

VBUS_OCP_MODE
Select mode of OVP detection and
handling.

0 ➔ Using external OCP
hardware

1 ➔ Internal OCP with neither
software debounce nor
automatic FET control.

2 ➔ Internal OCP with
automatic FET control by
hardware when an OCP event
is detected.

3 ➔ Internal OCP with
software debounce using
delay in milliseconds from the
configuration table.

VCONN_OCP_ENABLE
Enable/disable detection and handling
of VConn Over-Current faults.

1 ➔ Type-C VConn OCP
enable.

0 ➔ Type-C VConn OCP
disable.

VBUS_SCP_ENABLE
Enable/disable detection and handling
of short circuit faults.

1 ➔ VBUS SCP feature
enable.

0 ➔ VBUS SCP feature
disable.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 60

Pre-processor Switch Description Values

VBUS_RCP_ENABLE
Enable/disable detection and handling
of reverse current faults.

1 ➔ VBUS RCP feature
enable.

0 ➔ VBUS RCP feature
disable.

DFP_ALT_MODE_SUPP
Enable/disable the alternate mode
discovery and handling state machine
when the port managed by CCG6 is a
DFP.

1 ➔ Enable alternate modes
when CCG6 is DFP.

0 ➔ Disable alternate modes
when CCG6 is DFP.

DP_DFP_SUPP
Enable/disable DisplayPort source
(DFP_U/DFP_D) functionality.

1 ➔ Enable DP source
functionality.

0 ➔ Enable DP sink
functionality.

TBT_DFP_SUPP
Enable/disable Thunderbolt alternate
mode operation when CCG6 is a DFP.

This can only be enabled in system
designs that include a Thunderbolt
controller from Intel.

1 ➔ Enable TBT alternate
mode.

0 ➔ Disable TBT alternate
mode.

UFP_ALT_MODE_SUPP
Enable/disable the alternate mode
discovery and handling state machine
when the port managed by CCG6 is a
UFP.

1 ➔ Enable alternate modes
when CCG6 is UFP.

0 ➔ Disable alternate modes
when CCG6 is UFP.

TBT_UFP_SUPP
Enable/disable Thunderbolt alternate
mode operation when CCG6 is a UFP.

This can only be enabled in system
designs that include a Thunderbolt
controller from Intel.

1 ➔ Enable TBT alternate
mode.

0 ➔ Disable TBT alternate
mode.

RESET_ON_ERROR_ ENABLE
Selects whether to enable / disable
CCG6 device reset on error (watchdog
expiry or hard fault)

1 ➔ Enable reset option

0 ➔ Disable reset option

STACK_USAGE_CHECK_ENAB

LE

Enable/disable periodic checking of
available margin in the runtime stack.

1 ➔ Enable stack margin
checks

0 ➔ Disable stack margin
checks

4.8.3 On-chip Resource Usage

The CYPD6125-40LQXI_notebook reference application uses the following on-chip resources for various functionalities.

1. Watchdog: The Watchdog is used as a generic timer for task scheduling and as a mechanism to driver device reset
in case of firmware lock-up.

2. SCB Resources

a. SCB0 is used for HPI slave (I2C) implementation.

b. SCB1 is used as I2C master to control the NCP81239 buck-boost controller and the PI3DPX1205 Type-C
Redriver MUX.

c. SCB2 and SCB3 are not used and are available.

3. TCPWM Resources

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 61

a. TCPWM timer 0 is used to time the output of the DP/DM line comparators to detect USB device
disconnections.

b. TCPWM timer 1 is not used and is available.

4. USB-PD Resources

a. ADC block

i. The single ADC available is used for VBus measurement so as to track voltage changes and
detect disconnection of a power source. The AMUXB input of the ADC is connected internally to a
divided version of VBus for measurement. AMUXA input can be used for other purposes on a time-
shared basis.

b. Comparators

i. The OV comparator is used to detect Over-Voltage condition by comparing a divided version of
VBus against a programmable threshold.

ii. The UV comparator is unused and can be enabled as required.

iii. The VBUS_MON comparator is unused and can be enabled as required.

iv. The VSYS_DET comparator is used to detect changes to the VSYS supply.

v. The DP_SYS comparator is used to compare the voltage on the DP_SYS pin against a
programmable reference.

vi. The DM_SYS comparator is used to compare the voltage on the DM_SYS pin against a
programmable reference.

c. Signal MUXes

i. The SBU MUX is used to connect the SBU1 and SBU2 pins to the AUX_P and AUX_N pins while
connected to a Type-C display.

ii. The DPDM MUX is used to connect the DP_TOP/DM_TOP or DP_BOT/DM_BOT pins to the
DP_SYS/DM_SYS pins to enable USB 2.0 data connection.

d. Charger Detect block

i. The charger detect block is enabled only when CCG6 is the power source connected to a Type-C
sink. The block function can be changed between CDP and Apple brick through runtime HPI
commands.

4.9 CYPD5126-40LQXI_notebook Application

The CCG5C (CYPD5126-40LQXI_notebook) application implements a Type-C PD port controller for desktop and notebook
platforms. Table 14 summarizes the features supported by the primary and backup versions of this firmware solution.

Table 14: CYPD5126 (CCG5C) Notebook firmware features

Feature Support in Primary

Firmware

Support in Backup

Firmware

DRP with Type-C 2.0 spec support Yes Yes

Try.SRC and Try.SNK support Yes No

Type-C Sink only operation No Yes

USB-PD Revision 2.0 support Yes Yes

USB-PD Revision 3.0 support with Fast-Role Swap

Receive

Yes No

Cable discovery support Yes No

DFP Data Role Preference No No

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 62

DP alternate mode as DFP (DFP_U/DFP_D) Yes No

Support for other alternate modes as DFP Yes No

Support for alternate modes as UFP No No

HPI commands for firmware update Yes Yes

HPI event notifications (connections, faults etc.) Yes Yes

HPI commands for PD port management Yes No

HPI user extension support Yes Yes

Deep sleep for power saving Yes No

Software Watchdog and Stack Monitoring Yes No

VBus OVP Support (source/sink) Yes Yes

VBus OCP Support (source only) Yes No

VConn OCP Support Yes No

VBus SCP Support No No

VBus RCP support No No

BC 1.2 support (CDP, DCP) as source Yes No

Apple charger support as source No No

UCSI 1.1 support Yes No

The following sub-sections describe the project structure and implementation in more detail. The primary firmware
implementation is described in detail, as the backup firmware is only a sub-set of the primary firmware.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 63

4.9.1 PSoC Creator Schematic

Figure 27: PSoC Creator Schematic for CYPD5126 Notebook project

Open TopDesign.cysch file in the PSoC creator project. Schematic contains hardware resources used by power adapter such
as clocks, voltage selection IOs etc. The schematic elements are split across multiple sheets, and Figure 27 shows all of the
active elements together.

The selection of some of these elements is fixed due to the capabilities of the CCG5C device and the bootloader design.
Table 15 points out the changes allowed in the schematic design.

Note: There is a similar file in the noboot.cydsn project folder as well. If debugging is being used, the schematic dependent
changes should be replicated there as well.

Table 15: Schematic Elements in CCG5C single-port Notebook Design

Schematic Element Description Changes allowed

Bootloadable_1 This is a software block which
interacts with the boot-loader on the
CCG5C device.

Change not recommended.
The bootloader binary used
can be updated if a custom
bootloader is required.

PDSS_PORT0_RX_CLK This is an internal clock that is used
for the RX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT0_TX_CLK This is an internal clock that is used
for the TX portion of the USB-PD
block.

No changes are allowed.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 64

Schematic Element Description Changes allowed

PDSS_PORT0_SAR_CLK This is an internal clock that is used
for the analog portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT0_SWAP_CLK This is an internal clock that is used
by FR-SWAP transmit/receive part of
the USB-PD block.

No changes are allowed.

PDSS_PORT0_FILT1_CLK This is an internal clock that is used
for the filters used for debouncing
various comparator outputs in the
USB-PD block.

No changes are allowed.

PDSS_PORTX_REFGEN_CLK This is an internal clock that is used
for the reference generator block of
the USB-PD block.

No changes are allowed.

PDSS_PORT0_BCH_CLK This is an internal clock that is used
for the Battery Charging.

No changes are allowed.

BCH_DETACH_DET_CLK Clock used for the BC detach
detection.

No changes are allowed.

HPI_IF This is an I2C slave block through
which the CCG5C communicates with
the Embedded Controller in the
Notebook design.

No changes are allowed as
the HPI_IF is also used by the
boot-loader which is fixed.

EC_INT Output interrupt signal from CCG5C
to the Embedded Controller.

Can be changed only in cases
where the EC does not
require an interrupt and will
poll CCG5C for interrupt
notifications.

I2C_CFG Control signal used to define the I2C
slave address used in the HPI
interface.

No changes are allowed as
the HPI_IF is also used by the
boot-loader which is fixed.

FW_LED GPIO used to toggle an LED
periodically to indicate firmware
operation.

Can be changed or removed.
The APP_FW_LED_ENABLE
definition should be set to 0 if
this function is being removed.

I2C_MSTR_1 I2C master block used by the CCG5C
to control the buck-boost regulator
and data switch devices.

Can be changed/removed as
required.

NCP81239_EN_P1 Output signal used to enable the on-
board buck-boost regulator.

Can be changed/removed as
required.

HPD_P1 DisplayPort HotPlug Detect signal
output.

Can be removed if DP source
function is not required.

Changes are not allowed.

Timer_1 Counter block used for the BC detach
detection.

No changes are allowed.

Closely associated with the Schematic is the Design Wide Resources (DWR) view, which maps each schematic element to a
pin, clock, or hardware block on the CCG5C device. Open the CYPD5126-40LQXI_notebook.cydwr file to see the DWR
settings for the project.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 65

Figure 28: Design Wide Resource (DWR) view of CCG5C single-port Notebook application

As shown in Figure 28, the DWR view has several tabs, which configure aspects such as pin mapping, interrupt mapping,
clock selection, flash security, and so on. It is recommended that you restrict any changes to the DWR to the pin mapping
view. Do not change the clock, interrupt, system, or flash configurations. Even in the pin mapping editor, the changes should
be subject to the constraints outlined in Table 15.

4.9.2 Compile Time Options

The CYPD5126-40LQXI_notebook application supports a set of features that can be enabled/disabled using

compile time options. These compile time options are set in the config.h header file that you can find under the

solution folder, and are summarized in Table 16.

Note: While features can be enabled/disabled as desired, changes to the mode selected for various protections

schemes is not recommended.

Table 16: Compile time options in CCG5C single-port Notebook application

Pre-processor Switch Description Values

BATTERY_CHARGING_ENAB

LE

Enable/disable BC 1.2 (CDP/DCP) and
Apple source support on the USB ports.

Set to 1 to enable BC 1.2 and Apple
source support.

Set to 0 to disable BC 1.2 and Apple
source support.

CCG_BC_12_IN_PD_ENABL

E

Enable/disable CDP operation after USB-
PD contract is in place.

Set to 1 to enable support for CDP
negotiation even after PD contract is
in place.

Set to 0 (default) to disable support for
CDP once PD contract is in place.

CCG5_CDP_WAIT_DURATIO

N

Specify a timeout (in seconds) period
from Type-C attach at which point BC 1.2
support will be disabled.

This can be set to a non-zero value for
power savings in cases where a Type-C
to Type-A cable is left connected to the
port without a device attached.

Timeout period in seconds.

0 (default) means no timeout.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 66

Pre-processor Switch Description Values

SYS_DEEPSLEEP_ENABLE
Enable/disable putting the CCG5C device
into a low power mode when idle.

Can be set to 0 to save flash space
where required.

VBUS_OVP_ENABLE
Enable/disable detection and handling of
VBus Over-Voltage faults.

Recommend setting this to 1 in all
cases.

VBUS_OCP_ENABLE
Enable/disable detection and handling of
VBus Over-Current faults.

1 ➔ Type-C VBUS OCP enable.

0 ➔ Type-C VBUS OCP disable.

VCONN_OCP_ENABLE
Enable/disable detection and handling of
VConn Over-Current faults.

1 ➔ Type-C VConn OCP enable.

0 ➔ Type-C VConn OCP disable.

CCG_UCSI_ENABLE
Enable/disable the UCSI interface 1 ➔ UCSI interface enable.

0 ➔ UCSI interface disable.

DFP_ALT_MODE_SUPP
Enable/disable the alternate mode
discovery and handling state machine
when the port managed by CCG5C is a
DFP.

1 ➔ Enable alternate modes when
CCG5C is DFP.

0 ➔ Disable alternate modes when
CCG5C is DFP.

DP_DFP_SUPP
Enable/disable DisplayPort source
(DFP_U/DFP_D) functionality.

1 ➔ Enable DP source functionality.

0 ➔ Enable DP sink functionality.

TBT_DFP_SUPP
Enable/disable Thunderbolt alternate
mode operation when CCG5C is a DFP.

This can only be enabled in system
designs that include a Thunderbolt
controller from Intel.

1 ➔ Enable TBT alternate mode.

0 ➔ Disable TBT alternate mode.

UFP_ALT_MODE_SUPP
Enable/disable the alternate mode
discovery and handling state machine
when the port managed by CCG5C is a
UFP.

1 ➔ Enable alternate modes when
CCG5C is UFP.

0 ➔ Disable alternate modes when
CCG5C is UFP.

TBT_UFP_SUPP
Enable/disable Thunderbolt alternate
mode operation when CCG5C is a UFP.

This can only be enabled in system
designs that include a Thunderbolt
controller from Intel.

1 ➔ Enable TBT alternate mode.

0 ➔ Disable TBT alternate mode.

4.9.3 On-chip Resource Usage

The CYPD5126-40LQXI_notebook reference application uses the following on-chip resources for various functionalities.

1. Watchdog: The Watchdog is used as a generic timer for task scheduling and as a mechanism to driver device reset
in case of firmware lock-up.

2. SCB Resources

a. SCB0 is used for HPI slave (I2C) implementation.

b. SCB1 is used as I2C master to control the NCP81239 buck-boost controller and the PI3DPX1205 Type-C
Redriver MUX.

c. SCB2 and SCB3 are not used and are available.

3. TCPWM Resources

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 67

a. TCPWM timer 0 is used to time the output of the DP/DM line comparators to detect USB device
disconnections.

b. TCPWM timer 1 is not used and is available.

4. USB-PD Resources

a. ADC block

i. The single ADC available is used for VBus measurement so as to track voltage changes and
detect disconnection of a power source. The AMUXB input of the ADC is connected internally to a
divided version of VBus for measurement. AMUXA input can be used for other purposes on a time-
shared basis.

b. Comparators

i. The OV comparator is used to detect Over-Voltage condition by comparing a divided version of
VBus against a programmable threshold.

ii. The UV comparator is unused and can be enabled as required.

iii. The VBus_MON comparator is unused and can be enabled as required.

iv. The VSYS_DET comparator is used to detect changes to the VSYS supply.

v. The DP_SYS comparator is used to compare the voltage on the DP_SYS pin against a
programmable reference.

vi. The DM_SYS comparator is used to compare the voltage on the DM_SYS pin against a
programmable reference.

c. Signal MUXes

i. The SBU MUX is used to connect the SBU1 and SBU2 pins to the AUX_P and AUX_N pins while
connected to a Type-C display.

ii. The DPDM MUX is used to connect the DP_TOP/DM_TOP or DP_BOT/DM_BOT pins to the
DP_SYS/DM_SYS pins to enable USB 2.0 data connection.

d. Charger Detect block

i. The charger detect block is enabled only when CCG5C is the power source connected to a Type-
C sink. The block function can be changed between CDP and DCP through runtime HPI
commands.

4.10 CYPD5125-40LQXI_notebook Application

The CCG5 (CYPD5125-40LQXI_notebook) application implements a Type-C PD port controller for desktop and notebook
platforms. Table 17 summarizes the features supported by the primary and backup versions of this firmware solution.

Table 17: CCG5 Single-Port Notebook firmware features

Feature Support in Primary
Firmware

Support in Backup
Firmware

DRP with Type-C 1.3 spec support Yes Yes

Try.SRC and Try.SNK support Yes No

Type-C Sink only operation No Yes

USB-PD Revision 2.0 support Yes Yes

USB-PD Revision 3.0 support with Fast-Role Swap Receive Yes No

Cable discovery support Yes No

DFP Data Role Preference No No

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 68

DP alternate mode as DFP (DFP_U/DFP_D) Yes No

Support for other alternate modes as DFP Yes No

Support for alternate modes as UFP No No

HPI commands for firmware update Yes Yes

HPI event notifications (connections, faults etc.) Yes Yes

HPI commands for PD port management Yes No

HPI user extension support Yes Yes

Deep sleep for power saving Yes No

Software Watchdog and Stack Monitoring Yes No

VBus OVP Support (source/sink) Yes Yes

VBus OCP Support (source only) Yes No

VConn OCP Support Yes No

VBus SCP Support No No

VBus RCP support No No

BC 1.2 support (CDP, DCP) as source Yes No

UCSI 1.1 support Yes No

The following sub-sections describe the project structure and implementation in more detail. The primary firmware
implementation is described in detail, as the backup firmware is only a sub-set of the primary firmware.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 69

4.10.1 PSoC Creator Schematic

Figure 29: PSoC Creator Schematic for CYPD5125 Notebook project

Open TopDesign.cysch file in the PSoC creator project. Schematic contains hardware resources used by power adapter such
as clocks, voltage selection IOs etc. The schematic elements are split across multiple sheets, and Figure 29 shows all the
active elements together.

The selection of some of these elements is fixed due to the capabilities of the CCG5 device and the bootloader design. Table
18 points out the changes allowed in the schematic design.

Note: There is a similar config file in the noboot.cydsn project folder as well. If debugging is being used, the schematic

dependent changes should be replicated there as well.

Table 18: Schematic Elements in CCG5 single-port Notebook Design

Schematic Element Description Changes allowed

Bootloadable_1 This is a software block which
interacts with the boot-loader on the
CCG5 device.

Change not recommended. The
bootloader binary used can be
updated if a custom bootloader is
required.

PDSS_PORT0_RX_CLK This is an internal clock that is used
for the RX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT0_TX_CLK This is an internal clock that is used
for the TX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT0_SAR_CLK This is an internal clock that is used
for the analog portion of the USB-PD
block.

No changes are allowed.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 70

Schematic Element Description Changes allowed

PDSS_PORT0_SWAP_CLK This is an internal clock that is used
by FR-SWAP transmit/receive part of
the USB-PD block.

No changes are allowed.

PDSS_PORT0_FILT1_CLK This is an internal clock that is used
for the filters used for debouncing
various comparator outputs in the
USB-PD block.

No changes are allowed.

PDSS_PORTX_REFGEN_CLK This is an internal clock that is used
for the reference generator block of
the USB-PD block.

No changes are allowed.

HPI_IF This is an I2C slave block through
which the CCG5 communicates with
the Embedded Controller in the
Notebook design.

No changes are allowed as the
HPI_IF is also used by the boot-loader
which is fixed.

EC_INT Output interrupt signal from CCG5 to
the Embedded Controller.

Can be changed only in cases where
the EC does not require an interrupt
and will poll CCG5 for interrupt
notifications.

I2C_CFG Control signal used to define the I2C
slave address used in the HPI
interface.

No changes are allowed as the
HPI_IF is also used by the boot-loader
which is fixed.

FW_LED GPIO used to toggle an LED
periodically to indicate firmware
operation.

Can be changed or removed. The
APP_FW_LED_ENABLE definition
should be set to 0 if this function is
being removed.

I2C_MSTR I2C master block used by the CCG5
to control the buck-boost regulator
and data switch devices.

Can be changed/removed as
required.

NCP81239_EN_P1 Output signal used to enable the on-
board buck-boost regulator.

Can be changed/removed as
required.

HPD_P1 DisplayPort HotPlug Detect signal
output.

Can be removed if DP source function
is not required.

Changes are not allowed.

Closely associated with the Schematic is the Design Wide Resources (DWR) view, which maps each schematic element to a
pin, clock, or hardware block on the CCG5 device. Open the CYPD5125-40LQXI_notebook.cydwr file to see the DWR settings
for the project.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 71

Figure 30: Design Wide Resource (DWR) View of CCG5 single-port Notebook application

As shown in Figure 30, the DWR view has several tabs, which configure aspects such as pin mapping, interrupt mapping,
clock selection, flash security, and so on. It is recommended that you restrict any changes to the DWR to the pin mapping
view. Do not change the clock, interrupt, system, or flash configurations. Even in the pin mapping editor, the changes should
be subject to the constraints outlined in Table 18.

4.10.2 Compile Time Options

The notebook port controller application supports a set of features that can be enabled/disabled using compile

time options. These compile time options are set in the config.h header file that you can find under the solution

folder, and are summarized in Table 19.

Table 19: Compile time options in CCG5 single-port Notebook application

Pre-processor Switch Description Values

BATTERY_CHARGING_ENABLE
Enable/disable BC 1.2 (CDP/DCP)
source support on the USB ports.

Set to 1 to enable BC 1.2 source
support.

Set to 0 to disable BC 1.2 source
support.

CCG_BC_12_IN_PD_ENABLE
Enable/disable CDP operation after
USB-PD contract is in place.

Set to 1 to enable support for CDP
negotiation even after PD contract is
in place.

Set to 0 (default) to disable support
for CDP once PD contract is in place.

CCG5_CDP_WAIT_DURATION
Specify a timeout (in seconds) period
from Type-C attach at which point BC
1.2 support will be disabled.

This can be set to a non-zero value
for power savings in cases where a
Type-C to Type-A cable is left
connected to the port without a
device attached.

Timeout period in seconds.

0 (default) means no timeout.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 72

Pre-processor Switch Description Values

SYS_DEEPSLEEP_ENABLE
Enable/disable putting the CCG5
device into a low power mode when
idle.

Can be set to 0 to save flash space
where required.

VBUS_OVP_ENABLE
Enable/disable detection and
handling of VBus Over-Voltage
faults.

Recommend setting this to 1 in all
cases.

VBUS_OCP_ENABLE
Enable/disable detection and
handling of VBus Over-Current faults.

1 ➔ Type-C VBUS OCP enable.

0 ➔ Type-C VBUS OCP disable.

VCONN_OCP_ENABLE
Enable/disable detection and
handling of VConn Over-Current
faults.

1 ➔ Type-C VConn OCP enable.

0 ➔ Type-C VConn OCP disable.

CCG_UCSI_ENABLE
Enable/disable the UCSI interface 1 ➔ UCSI interface enable.

0 ➔ UCSI interface disable.

DFP_ALT_MODE_SUPP
Enable/disable the alternate mode
discovery and handling state
machine when the port managed by
CCG5 is a DFP.

1 ➔ Enable alternate modes when
CCG5 is DFP.

0 ➔ Disable alternate modes when
CCG5 is DFP.

DP_DFP_SUPP
Enable/disable DisplayPort source
(DFP_U/DFP_D) functionality.

1 ➔ Enable DP source functionality.

0 ➔ Enable DP sink functionality.

TBT_DFP_SUPP
Enable/disable Thunderbolt alternate
mode operation when CCG5 is a
DFP.

This should only be enabled in
system designs that include a
Thunderbolt controller from Intel.

1 ➔ Enable TBT alternate mode.

0 ➔ Disable TBT alternate mode.

UFP_ALT_MODE_SUPP
Enable/disable the alternate mode
discovery and handling state
machine when the port managed by
CCG5 is a UFP.

1 ➔ Enable alternate modes when
CCG5 is UFP.

0 ➔ Disable alternate modes when
CCG5 is UFP.

TBT_UFP_SUPP
Enable/disable Thunderbolt alternate
mode operation when CCG5 is a
UFP.

This should only be enabled in
system designs that include a
Thunderbolt controller from Intel.

1 ➔ Enable TBT alternate mode.

0 ➔ Disable TBT alternate mode.

4.10.3 On-chip Resource Usage

The CYPD5125-40LQXI_notebook reference application uses the following on-chip resources for various functionalities.

1. Watchdog: The Watchdog is used as a generic timer for task scheduling and as a mechanism to driver device reset
in case of firmware lock-up.

2. SCB Resources

a. SCB0 is used for HPI slave (I2C) implementation.

b. SCB1 is used as I2C master to control the NCP81239 buck-boost controller and the PI3DPX1205 Type-C
Redriver MUX.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 73

c. SCB2 and SCB3 are not used and are available.

3. TCPWM Resources

a. TCPWM blocks (0 and 1) are unused and are available.

4. USB-PD Resources

a. ADC block

i. The single ADC available is used for VBus measurement so as to track voltage changes and
detect disconnection of a power source. The AMUXB input of the ADC is connected internally to a
divided version of VBus for measurement. AMUXA input can be used for other purposes on a time-
shared basis.

b. Comparators

i. The OV comparator is used to detect Over-Voltage condition by comparing a divided version of
VBus against a programmable threshold.

ii. The UV comparator is unused and can be enabled as required.

iii. The VBus_MON comparator is unused and can be enabled as required.

iv. The VSYS_DET comparator is used to detect changes to the VSYS supply.

c. Signal MUXes

i. The SBU MUX is used to connect the SBU1 and SBU2 pins to the AUX_P and AUX_N pins while
connected to a Type-C display.

ii. The DPDM MUX is used to connect the DP_TOP/DM_TOP or DP_BOT/DM_BOT pins to the
DP_SYS/DM_SYS pins to enable USB 2.0 data connection.

d. Charger Detect block

i. The charger detect block is enabled only when CCG5 is the power source connected to a Type-C
sink. The block function can be changed between CDP and DCP through runtime HPI commands.

4.11 CYPD5225-96BZXI_notebook Application

The dual-port CCG5 notebook application is very similar to the single-port application. The supported features are the same
and are summarized in Table 17. The only changes between the projects are additional elements in the schematic design,
compile-time configuration changes and changes to the PD stack and HPI libraries.

4.11.1 PSoC Creator Schematic

Open TopDesign.cysch file in the PSoC creator project to access power adapter’s schematic. Schematic contains hardware
resources used by power adapter such as clocks, voltage selection IOs etc.

Figure 31 shows the various schematic elements used in the CCG5 dual-port notebook solution. The elements are almost
the same as those listed in Table 18 with a few additions. The additions specific to the dual-port project are described in Table
20.

Note: There is a similar config file in the noboot.cydsn project folder as well. If debugging is being used, the schematic

dependent changes should be replicated there as well.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 74

Figure 31: PSoC Creator Schematic for CCG5 dual-port notebook application

Table 20: Additional Schematic Elements in CCG5 dual-port notebook solution

Schematic Element Description Changes allowed

NCP81239_EN_P2 Output signal used to enable the on-
board buck-boost regulator for the
second PD port.

Can be changed/removed as
required.

HPD_P2 DisplayPort HotPlug Detect signal
output for the second PD port.

Can be removed if DP source
function is not required.

Changes are not allowed.

4.11.2 Compile Time Options

Refer to Section 4.10.2 for details on how to enable/disable various features in the application firmware.

4.11.3 On-chip Resource Usage

The CYPD5225-96BZXI_notebook reference application uses the following on-chip resources for various functionalities.

1. Watchdog: The Watchdog is used as a generic timer for task scheduling and as a mechanism to driver device reset
in case of firmware lock-up.

2. SCB Resources

a. SCB0 is used for HPI slave (I2C) implementation.

b. SCB1 is used as I2C master to control the NCP81239 buck-boost controller and the PI3DPX1205 Type-C
Redriver MUX.

c. SCB2 and SCB3 are not used and are available.

3. TCPWM Resources

a. TCPWM blocks (0 and 1) are unused and are available.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 75

4. USB-PD Resources

a. ADC block

i. The single ADC available (per PD block) is used for VBus measurement so as to track voltage
changes and detect disconnection of a power source. The AMUXB input of the ADC is connected
internally to a divided version of VBus for measurement. AMUXA input can be used for other
purposes on a time-shared basis.

b. Comparators

i. The OV comparator is used to detect Over-Voltage condition by comparing a divided version of
VBus against a programmable threshold.

ii. The UV comparator is unused and can be enabled as required.

iii. The VBus_MON comparator is unused and can be enabled as required.

iv. The VSYS_DET comparator (only available on the first PD port) is used to detect changes to the
VSYS supply.

c. Signal MUXes

i. The SBU MUX is used to connect the SBU1 and SBU2 pins to the AUX_P and AUX_N pins while
connected to a Type-C display.

ii. The DPDM MUX is used to connect the DP_TOP/DM_TOP or DP_BOT/DM_BOT pins to the
DP_SYS/DM_SYS pins to enable USB 2.0 data connection.

d. Charger Detect block

i. The charger detect block is enabled only when CCG5 is the power source connected to a Type-C
sink. The block function can be changed between CDP and DCP through runtime HPI commands.

4.12 CYPD4126-24LQXI_notebook application

This reference project is a single-port notebook PD port controller application using the CYPD4126-24LQXI part from the
CCG4 family. The functionality is like that of the CCG5 notebook applications with the following exceptions:

1. GPIOs are used for gate control of the Provider and Consumer FETs. An external FET will be required to generate
the actual high voltage gate control signal.

2. GPIO based source voltage selection (5V, 9V, 15V and 20V) is used instead of I2C based regulator control.

3. The on-board ADC is used to implement the Over-Voltage detection and protection feature. Also, there is no
capability to automatically disable power paths by the hardware on fault detection. Firmware intervention is required
which means that latency of fault handling will be higher.

4. Over-Current detection is not supported by the CCG4 device. So, the application relies on a fault indication from
external load switch to detect over-current (overload) faults.

5. There is no support for legacy charging (BC 1.2) protocols.

Table 21 shows the features supported by each of the CCG4 notebook applications.

Table 21: CCG4 Notebook Application Features

Feature Support in Primary

Firmware

Support in Backup

Firmware

DRP with Type-C 1.3 spec support Yes Yes

Try.SRC and Try.SNK support Yes No

USB-PD Revision 2.0 support Yes Yes

USB-PD Revision 3.0 support with Fast-Role Swap Receive Yes No

Cable discovery support Yes No

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 76

DP alternate mode as DFP (DFP_U/DFP_D) Yes No

Support for other alternate modes as DFP Yes No

Support for alternate modes as UFP No No

HPI commands for firmware update Yes Yes

HPI event notifications (connections, faults etc.) Yes Yes

HPI commands for PD port management Yes No

HPI user extension support Yes Yes

Deep sleep for power saving Yes No

Software Watchdog and Stack Monitoring Yes No

VBus OVP Support (source/sink) Yes Yes

VBus OCP Support (source only) Yes (based on

external load switch)

Yes (based on external

load switch)

VConn OCP Support No No

VBus SCP Support No No

VBus RCP support No No

BC 1.2 support (CDP, DCP) as source No No

Apple charger support as source No No

UCSI 1.1 support Yes No

4.12.1 PSoC Creator Schematic

Figure 32: PSoC Creator Schematic for CYPD4126-24LQXI_notebook project

Most aspects of the hardware design around the CCG4 device are captured in the schematics associated with the
PSoC Creator firmware project.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 77

The PSoC Creator schematic can be found in the TopDesign.cysch file, which is part of each PSoC Creator project. Double-
click on this file to open the schematic editor window (see Figure 32).

The schematic shows how internal resources of the CCG4 device are used in the design. This includes all the internal clocks
used by the design, the various serial interfaces, and all the GPIO pins used to communicate with external elements.

The analog input pins of the CCG4 device are shown with a red wire connected to it on the right side. See the VBUS_MON_P1
signal for example.

Digital input pins are shown with a green wire connected to it on the right side. See the OCP_FAULT_P1 signal for example.

Digital output pins are shown with the corresponding pin mapping annotated on the left side. See the VBUS_P_CTRL_P1
signal for example.

Table 22 shows the various schematic elements used in the CCG4 notebook project. The selection of some of these elements
is fixed due to the capabilities of the CCG4 device and the bootloader design. The table also points out the changes allowed
in the schematic design.

Table 22: Schematic Elements in CCG4 24-QFN Notebook Design

Schematic Element Description Changes Allowed

Bootloadable_1 This is a software block, which
interacts with the bootloader on the
CCG4 device.

Change not recommended.
The bootloader binary used
can be updated if a custom
bootloader is required.

HPI_IF This is an I2C slave block through
which the CCG4 communicates with
the Embedded Controller in the
Notebook design.

No changes are allowed as
the HPI_IF is also used by
the bootloader which is fixed.

MUX_CTRL This is an I2C master block used by
CCG4 to configure the Parade Type-
C Interface switch on the CY4541 kit.

This block can be changed /
replaced by other
mechanisms (such as
GPIOs), which can control
the interface switch on the
target design.

PDSS_PORT0_RX_CLK This is an internal clock that is used
for the RX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT0_TX_CLK This is an internal clock that is used
for the TX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT0_SAR_CLK This is an internal clock that is used
for the analog portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT0_SWAP_CLK This is an internal clock that is used
by the Fast Role Swap detect logic to
time the incoming Fast Role Swap
request.

No changes are allowed.

EC_INT This is an output pin used to interrupt
the Embedded Controller when there
is a state change.

No changes are allowed as
EC_INT is also used by boot-
loader.

I2C_CFG This is an input pin used to select the
I2C slave address used on the HPI
interface.

No changes are allowed as
EC_INT is also used by boot-
loader.

HPD_P1 This is the Hotplug Detect output pin
from CCG4 to the DisplayPort
controller on the notebook.

This pin can be removed if
DisplayPort is not used. If
used, the pin mapping cannot
be changed.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 78

Schematic Element Description Changes Allowed

FW_LED This is the firmware activity LED pin. Actual control is via the GPIO
module APIs. See the
APP_FW_LED_ENABLE
compile-time option for more
information.

VSEL1_P1

VSEL2_P1

These are output pins used to select
the source voltage to be provided on
the Type-C port.

These can be changed
based on the voltage
selection mechanism in the
target hardware.

VBUS_P_CTRL_P1

VBUS_C_CTRL_P1

Output pins used to control the
provider and consumer FETs in the
design.

These can be changed
based on the FET control
mechanism in the target
hardware.

VBUS_DISCHARGE_P1 Output pin used to control the VBus
discharge path in the design.

These can be changed
based on the discharge
control mechanism in the
target hardware.

VBUS_MON_P1 Input pin used to monitor the voltage
on VBus.

No changes are allowed as
the connectivity to the
internal comparators is fixed.

OCP_FAULT_P1 Input pin that notifies CCG4 that an
overcurrent condition has been
detected.

This can be removed if OCP
fault detection circuitry is not
available. If used, the name
of the pin should not be
changed. However, any
available GPIO can be used
for this purpose.

VBUS_OVP_TRIP_P1 Output pin from CCG4 that is used for
a fast turn-off of the VBus supply in
case of overvoltage.

This can be removed if OVP
trip functionality is not used.
If used, the name of the
signal and its pin mapping
should not be changed.

Closely associated with the schematic is the Design Wide Resources (DWR) view, which maps each schematic element to a
pin, clock, or hardware block on the CCG4 device. Open the CYPD4126-24LQXI_notebook.cydwr file to see the DWR
settings for the project.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 79

Figure 33. DWR Project Settings for CYPD4126-24LQXI_notebook

As shown in Figure 33, the DWR view has several tabs, which configure aspects such as pin mapping, interrupt mapping,
clock selection, flash security, and so on. It is recommended that you restrict any changes to the DWR to the pin mapping
view. Do not change the clock, interrupt, system, or flash configurations. Even in the pin mapping editor, the changes should
be subject to the constraints outlined in Table 22.

4.12.2 Compile Time Options

The CCG4 Notebook port controller application supports a set of features that can be enabled/disabled using compile time
options. These compile time options are set in the config.h header file that you can find under the solution folder, and are
summarized in Table 23.

Table 23: Compile Time Options for CCG4 24-QFN Notebook Application

Option Description Values

VBUS_OVP_ENABLE
Enable flag for the internal comparator-based Over
Voltage Protection (OVP) scheme. Even if the OVP
feature is enabled using this definition, it can be
disabled at run-time using the configuration table.

1 for OVP enable

0 for OVP disable

VBUS_OCP_ENABLE
Enable flag for the external load switch based Over
Current Protection (OCP) scheme.

1 for OCP enable

0 for OCP disable

VBUS_OVP_TRIP_ENABLE
Enable flag for a direct supply trip capability from
CCG hardware on OVP event. Enabling this requires
appropriate circuitry on the target hardware.

1 for OVP-TRIP enable

0 for OVP-TRIP disable

SYS_DEEPSLEEP_ENABLE
Enable flag for the low power module which keeps
CCG in Deep Sleep mode at all possible times.

1 for low power enable

0 for low power disable

DFP_ALT_MODE_SUPP
Enable flag for Alternate mode support when CCG is
a DFP.

1 for alternate mode
enable

0 for alternate mode
disable

DP_DFP_SUPP
Enable flag for DisplayPort support when CCG is a
DFP.

1 for DisplayPort enable

0 for DisplayPort disable

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 80

Option Description Values

APP_FW_LED_ENABLE
Enable flag for firmware activity LED indication.
When enabled, the user LED blinks at 1 second
intervals and the user switch cannot be used.

Since the LED uses the SWD_IO GPIO, it is
necessary to disable it if debugging via SWD.

This LED can be used for development support but
is recommended to be left in the OFF state to save
power in production designs.

1 for LED enable

0 for LED disable

CCG_UCSI_ENABLE
Enable flag for UCSI features 1 for UCSI enable

0 for UCSI disable

4.12.3 On-chip Resource Usage

The CYPD4126-24LQXI_notebook reference application uses the following on-chip resources for various functionalities.

1. Watchdog: The Watchdog is used as a generic timer for task scheduling and as a mechanism to driver device reset
in case of firmware lock-up.

2. SCB Resources

a. SCB0 is used for HPI slave (I2C) implementation.

b. SCB3 is used as I2C master to control the PS8740B Type-C redriving switch.

c. SCB1 and SCB2 are not used and are available.

3. TCPWM Resources

a. TCPWM blocks (0 and 1) are unused and are available.

4. USB-PD Resources

a. ADC block

i. ADC0 is used to monitor a divided version of the VBus supply voltage for Over-Voltage detection.
The AMUXA input to the ADC is connected to the VBUS_MON_P1 pin to enable this monitoring.
Use of ADC0 for any other measurements is not recommended as this will compromise the latency
of Over-Voltage detection and handling.

ii. ADC1 is used to monitor a divided version of the VBus supply voltage for control of voltage
transitions and detection of source disconnection. A separate ADC is used to measure the same
VBUS_MON_P1 input so that ADC0 can be left configured for OV detection at all times. The
AMUXB input to the ADC can be used for other analog measurements.

b. Gate Control

i. CCG4 does not support any active gate drivers and can only provide GPIO signals which can be
used to indirectly enable/disable the Provider and Consumer FETs. On the CYPD4126-24LQXI
device, any free GPIOs can be used for gate control.

4.13 CYPD4126-40LQXI_notebook application

This reference project is a single-port notebook PD port controller application using the CYPD4126-40LQXI part from the
CCG4 family. The functionality is like that of the CYPD4126-24LQXI notebook application with only one change:

1. The CYPD4126-40LQXI has the capability to automatically control the GPIOs used to turn the provider and
consumer FETs on/off. For this reason, the VBUS_FET_INTERNAL_CTRL parameter is set to 1 in this project.

For the project schematic, DWR settings and compile time settings; refer to the CYPD4126-24LQXI_notebook project.

4.13.1 On-chip Resource Usage

The CYPD4126-40LQXI_notebook reference application uses the following on-chip resources for various functionalities.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 81

1. Watchdog: The Watchdog is used as a generic timer for task scheduling and as a mechanism to driver device reset
in case of firmware lock-up.

2. SCB Resources

a. SCB0 is used for HPI slave (I2C) implementation.

b. SCB3 is used as I2C master to control the PS8740B Type-C redriving switch.

c. SCB1 and SCB2 are not used and are available.

3. TCPWM Resources

a. TCPWM blocks (0 and 1) are unused and are available.

4. USB-PD Resources

a. ADC block

i. ADC0 is used to monitor a divided version of the VBus supply voltage for Over-Voltage detection.
The AMUXA input to the ADC is connected to the VBUS_MON_P1 pin to enable this monitoring.
Use of ADC0 for any other measurements is not recommended as this will compromise the latency
of Over-Voltage detection and handling.

ii. ADC1 is used to monitor a divided version of the VBus supply voltage for control of voltage
transitions and detection of source disconnection. A separate ADC is used to measure the same
VBUS_MON_P1 input so that ADC0 can be left configured for OV detection at all times. The
AMUXB input to the ADC can be used for other analog measurements.

b. Gate Control

i. CCG4 does not support any active gate drivers and can only provide GPIO signals which can be
used to indirectly enable/disable the Provider and Consumer FETs. On the CYPD4126-40LQXI
device, a pair of optimized GPIOs are provided for gate control. Use of these specific
VBUS_C_CTRL_P1 and VBUS_P_CTRL_P1 pins allows hardware control of the FETs for low
latency during a Fast Role Swap process.

4.14 CYPD4226-40LQXI_notebook application

This reference project is a dual-port notebook PD port controller application using the CYPD4226-40LQXI part from the CCG4
family. The functionality supported on each port is identical to that supported in the CYPD4126-40LQXI_notebook project.

4.14.1 PSoC Creator Schematic

Figure 34 shows the schematic associated with the CYPD4226-40LQXI_notebook project. The schematic elements are
similar to those in the CYPD4126-24LQXI_notebook project; with the port specific elements being replicated for the second
PD port.

Table 24 shows the additional schematic elements in the CYPD4226-40LQXI_notebook project as compared to the
CYPD4126-24LQXI_notebook and CYPD4126-40LQXI_notebook projects.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 82

Figure 34: PSoC Creator Schematic for CYPD4226-24LQXI_notebook project

Table 24: Additional Schematic Elements in dual-port CCG4 Notebook Design

Schematic Element Description Changes Allowed

PDSS_PORT1_RX_CLK This is an internal clock that is used
for the RX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT1_TX_CLK This is an internal clock that is used
for the TX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT1_SAR_CLK This is an internal clock that is used
for the analog portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT1_SWAP_CLK This is an internal clock that is used
by the Fast Role Swap detect logic to
time the incoming Fast Role Swap
request.

No changes are allowed.

HPD_P2 This is the Hotplug Detect output pin
from CCG4 to the DisplayPort
controller on the notebook.

This pin can be removed if
DisplayPort is not used. If
used, the pin mapping cannot
be changed.

VSEL1_P2

VSEL2_P2

These are output pins used to select
the source voltage to be provided on
the Type-C port.

These can be changed
based on the voltage
selection mechanism in the
target hardware.

VBUS_P_CTRL_P2

VBUS_C_CTRL_P2

Output pins used to control the
provider and consumer FETs in the
design.

These can be changed
based on the FET control
mechanism in the target
hardware.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 83

Schematic Element Description Changes Allowed

VBUS_DISCHARGE_P2 Output pin used to control the VBus
discharge path in the design.

These can be changed
based on the discharge
control mechanism in the
target hardware.

VBUS_MON_P2 Input pins used to monitor the voltage
on VBus.

No changes are allowed as
the connectivity to the
internal comparators is fixed.

OCP_FAULT_P2 Input pin that notifies CCG4 that an
overcurrent condition has been
detected.

This can be removed if OCP
fault detection circuitry is not
available. If used, the names
of the pins should not be
changed. However, any
available GPIO can be used
for this purpose.

VBUS_OVP_TRIP_P2 Output pin from CCG4 that are used
for a fast turn-off of the VBus supply
in case of overvoltage.

This can be removed if OVP
trip functionality is not used.
If used, the names of the
signals and their pin mapping
should not be changed.

4.14.2 Compile time options

Refer to Section 4.12.2 for details on the compile time options available for the project.

4.14.3 On-chip Resource Usage

The CYPD4226-40LQXI_notebook reference application uses the following on-chip resources for various functionalities.

1. Watchdog: The Watchdog is used as a generic timer for task scheduling and as a mechanism to driver device reset
in case of firmware lock-up.

2. SCB Resources

a. SCB0 is used for HPI slave (I2C) implementation.

b. SCB3 is used as I2C master to control the PS8740B Type-C redriving switch.

c. SCB1 and SCB2 are not used and are available.

3. TCPWM Resources

a. TCPWM blocks (0 and 1) are unused and are available.

4. USB-PD Resources

a. ADC block

i. ADC0 is used to monitor a divided version of the VBus supply voltage for Over-Voltage detection.
The AMUXA input to the ADC is connected to the VBUS_MON_Px pin to enable this monitoring.
Use of ADC0 for any other measurements is not recommended as this will compromise the latency
of Over-Voltage detection and handling.

ii. ADC1 is used to monitor a divided version of the VBus supply voltage for control of voltage
transitions and detection of source disconnection. A separate ADC is used to measure the same
VBUS_MON_Px input so that ADC0 can be left configured for OV detection at all times. The
AMUXB input to the ADC can be used for other analog measurements.

b. Gate Control

i. CCG4 does not support any active gate drivers and can only provide GPIO signals which can be
used to indirectly enable/disable the Provider and Consumer FETs. On the CYPD4226-40LQXI
device, optimized GPIOs are provided for gate control. Use of these specific VBUS_C_CTRL_Px

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 84

and VBUS_P_CTRL_Px pins allows hardware control of the FETs for low latency during a Fast
Role Swap process.

4.15 CYPD3125-40LQXI_notebook application

This reference project implements a single port notebook PD port controller using the CYPD3125-40LQXI device from the

CCG3 family. Table 25 summarizes the features supported by the CCG3 notebook application.

Table 25: CCG3 Notebook Application Features

Feature Supported

Dual Role Type-C v1.2 compliant port Yes

Try.SRC configuration support Yes

Try.SNK configuration support Yes

USB-PD revision 2.0 support Yes

USB-PD revision 3.0 support Yes

Fast Role Swap Receive Support Yes

DisplayPort source state machine Yes

Thunderbolt (DFP/UFP) state machine No

Firmware upgrade support through HPI Yes

PD status and event reporting through HPI Yes

PD command and VDM tunneling support through HPI Yes

BC 1.2 (CDP) source support No

VBus Over Voltage Protection Yes

VBus Over Current Protection Yes

VConn Over Current Protection No

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 85

4.15.1 PSoC Creator Schematic

Figure 35: PSoC Creator Schematic for CCG3 Notebook

Most aspects of the hardware design around the CCG3 device are captured in the schematics associated with the
PSoC Creator firmware project.

The Creator schematic can be found in the TopDesign.cysch file, which is part of each Creator project. Double-click on this
file to open the schematic editor window (see Figure 35).

The schematic shows how internal resources of the CCG3 device are used in the design. This includes all of the internal
clocks used by the design, the various serial interfaces and all of the GPIO pins used to communicate with external elements.

Table 26 shows the various schematic elements used in the CCG3 notebook project. The selection of some of these elements
is fixed due to the capabilities of the CCG3 device and the bootloader design. The table also points out the changes allowed
in the schematic design.

Note: The VBUS_P_CTRL_P1, VBUS_C_CTRL_P1, VBUS_DISCHARGE_PI and VBUS_MON_P1 elements are shown
greyed out because we use the dedicated hardware features of the CCG3 device for gate driver control, VBus discharge
control and VBus measurement. Hence, the corresponding I/Os do not need to be instantiated in the project.

Table 26: Schematic Elements in CCG3 Notebook Design

Schematic Element Description Changes allowed

Bootloadable_1 This is a software block which
interacts with the boot-loader on the
CCG3 device.

No changes should be made
to this element.

HPI_IF This is an I2C slave block through
which the CCG3 communicates with
the Embedded Controller in the
Notebook design.

No changes are allowed as
the HPI_IF is also used by
the boot-loader which is
fixed.

MUX_CTRL This is an I2C master block used by
CCG3 to configure the Parade Type-
C Interface switch on the CY4531 kit.

This block can be changed /
replaced by other
mechanisms (such as
GPIOs) which can control the
interface switch on the target
design.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 86

Schematic Element Description Changes allowed

PDSS_PORT0_RX_CLK This is an internal clock that is used
for the RX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT0_TX_CLK This is an internal clock that is used
for the TX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT0_SAR_CLK This is an internal clock that is used
for the analog portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT0_SWAP_CLK This is an internal clock that is used
by the Fast Role Swap detect logic to
time the incoming Fast Role Swap
request.

No changes are allowed.

EC_INT This is an output pin used to interrupt
the Embedded Controller when there
is a state change.

No changes are allowed as
EC_INT is also used by boot-
loader.

I2C_CFG This is an input pin used to select the
I2C slave address used on the HPI
interface.

No changes are allowed as
EC_INT is also used by boot-
loader.

HPD This is the Hotplug Detect output pin
from CCG3 to the DisplayPort
controller on the notebook.

This pin can be removed if
DisplayPort is not used. If
used, the pin mapping cannot
be changed.

FW_LED This is the firmware activity LED pin. Actual control is via the GPIO
module APIs. See the
APP_FW_LED_ENABLE
compile-time option for more
information.

VSEL1_P1

VSEL2_P1

These are output pins used to select
the source voltage to be provided on
the Type-C port.

These can be changed
based on the voltage
selection mechanism in the
target hardware.

4.15.2 Compile Time Options

Table 27 shows the compile-time selectable features supported by this application.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 87

Table 27: Compile time options in CCG3 Notebook Application

Pre-processor Switch Description Values

VBUS_OVP_ENABLE
Enable overvoltage Protection handling on
VBus. This feature can be turned off using the
configuration table, even if it is enabled here.

1 for VBus OVP enable

0 for VBus OVP disable

VBUS_OVP_MODE Select the OVP handling mechanism. 0 is reserved value

1 for firmware based
FET turn-off on OV
detection.

2 for hardware based
FET turn-off on OV
detection.

VBUS_OCP_ENABLE Enable OverCurrent Protection on VBus supply
when CCG3 is acting as the power source. This
feature can be turned off using the configuration
table, even if it is enabled here.

1 for VBus OCP enable

0 for VBus OCP
disable

VBUS_OCP_MODE Select handling mechanism for Over-Current
faults detected by the firmware.

2 for hardware based
FET turn-off on OC
detection.

3 for firmware based
debounce and FET
turn-off on OC
detection.

SYS_DEEPSLEEP_ENABLE
Enable flag for the low power module which
keeps CCG in deep sleep mode at all possible
times.

1 for low power enable

0 for low power disable

DFP_ALT_MODE_SUPP
Enable Alternate Mode handling when CCG is
DFP.

1 for alternate mode
enable

0 for alternate mode
disable

DP_DFP_SUPP
Enable DisplayPort Alternate mode when CCG
is DFP. This requires DFP_ALT_MODE_SUPP.

1 for DisplayPort
enable

0 for DisplayPort
disable

APP_FW_LED_ENABLE
Enable flag for firmware activity LED indication.
When enabled, the user LED blinks at 1 second
intervals and the user switch cannot be used.

Since the LED uses the SWD_IO GPIO, it is
necessary to disable it if debugging via SWD.

This LED can be used for development support
but is recommended to be left in the OFF state
to save power in production designs.

1 for LED enable

0 for LED disable

4.15.3 On-chip Resource Usage

The CYPD3125-40LQXI_notebook reference application uses the following on-chip resources for various functionalities.

1. Watchdog: The Watchdog is used as a generic timer for task scheduling and as a mechanism to driver device reset
in case of firmware lock-up.

2. SCB Resources

a. SCB2 is used for HPI slave (I2C) implementation.

b. SCB3 is used as I2C master to control the PS8740B Type-C Redriver switch.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 88

c. SCB0 and SCB1 are not used and are available.

3. TCPWM Resources

a. TCPWM timers 0 and 1 are not used and is available.

4. USB-PD Resources

a. ADC block

i. ADC0 is unused and can be used for analog measurement purposes.

ii. ADC1 is used to monitor a divided version of the VBus supply voltage for control of voltage
transitions and detection of source disconnection. The AMUXA input of the ADC is connected to
internal VBus resistor divider to enable this monitoring. The AMUXB input to the ADC can be used
for other analog measurements.

b. UVOV Block

i. The device has a dedicated UVOV block which is used to detect the Over-Voltage conditions by
monitoring a divided version of the VBus voltage.

c. Signal MUXes

i. The SBU MUX is used to connect the SBU1 and SBU2 pins to the AUX_P and AUX_N pins while
connected to a Type-C display.

d. Charger Detect block

i. The charger detect block on CCG3 is currently not enabled and can be used for implementation
of legacy charging protocols such as BC1.2.

4.16 CYPD3126-42FNXI_notebook application

This reference project is a clone of the CYPD3125-40LQXI_notebook project targeted for the CSP package of the CCG3

device. Please refer to Section 4.15 for details of this project.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 89

5. Firmware Architecture

5.1 Firmware Blocks

The CCGx firmware architecture allows users to implement a variety of USB-PD applications using the CCG devices and a
fully tested firmware stack. A block diagram of the CCGx firmware architecture is shown in Figure 36.

Figure 36: CCGx Firmware Block Diagram

Stack Libraries

Embedded

Controller

(EC)

Type-C

Connectors

Type-C

Switch (DP,

USB)

I2CCC

Library API Source Reference Code

I2C / GPIO

FETs /

Regulators

GPIO

Application Layer

CCGx Hardware

Hardware Adaptation Layer

SCBGPIOTimer Type-C & PD

Type-C and USB-PD Stack

Port

Management
Alternate Modes

Host Processor I/f

Low Power

(Sleep)

Solution Space

External HW Control

(FET, MUX etc.)
Solution Specific Tasks

Flash

Firmware

Update

UCSI I/f

The CCGx firmware architecture contains the following components:

▪ Hardware Adaptation Layer (HAL): This includes the low-level drivers for the various hardware blocks on the CCG
device. This includes drivers for the Type-C and USB-PD block, Serial Communication Blocks (SCBs), GPIOs, flash
module and timer module.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 90

▪ USB Type-C and USB-PD Protocol Stack: This is the complete USB-PD protocol stack that includes the Type-C and
USB-PD port managers, USB-PD protocol layer, the USB-PD policy engine, and the device policy manager. The
device policy manager is designed to allow all policy decisions to be made at the application level, either on an
external Embedded Controller (EC) or in the CCG firmware itself.

▪ Host Processor Interface (HPI): The Host Processor Interface (HPI) is an I2C-based control interface that allows an
Embedded Controller (EC) to monitor and control the USB-PD port on the CCG device. The HPI is the means to
allow the PC platform to control the PD policy management. This interface is not applicable for Power Adapters and
Power Banks.

▪ Firmware update module: This is a firmware module that allows the device firmware maintained in internal flash to
be updated. The functions provided by this module are invoked through the HPI module based on flash read/write
commands received from the EC.

▪ Port Management: This module handles all of the PD port management functions including the algorithm for optimal
contract negotiations, source and sink power control, source voltage selection, port role assignment, and swap
request handling.

▪ Alternate Modes: This module implements the alternate mode handling for CCG as a DFP and UFP. A fully tested
implementation of DisplayPort alternate mode with CCG as DFP is provided. The module also allows users to
implement their own alternate mode support in both DFP and UFP modes.

▪ Low Power: This module attempts to keep the CCG device in the low-power standby mode as often as possible to
minimize power consumption.

▪ UCSI: The UCSI module implements a set of registers and commands which the EC can use to implement the USB
Type-C System Software Interface.

▪ External Hardware Control: This is a hardware design-dependent module, which controls the external hardware
blocks such as FETs, regulators, and Type-C switches.

▪ Solution specific tasks: This is an application layer module where any custom tasks required by the user solution
can be implemented.

5.2 SDK Usage Model

Users of the CCG solution must follow these steps to use the SDK components:

1. Load the solution workspace using PSoC Creator.

2. Edit the project schematics and solution configuration header file if needed.

3. Use the EZ-PD Configuration Utility to build the configuration table, and copy the generated C source file into the
Creator project if necessary. The configuration table can also be updated by editing the config.c file in PSoC Creator
Source Editor.

4. Build the application projects using the PSoC Creator. The firmware binaries will be generated in ELF, HEX, and
CYACD formats suitable for SWD programming, Miniprog, and the EZ-PD configuration utility.

5. Load the firmware binary onto the target hardware for evaluation and testing.

This usage flow is illustrated in Figure 37. Many of these steps, such as changing the compile time configurations and using
the EZ-PD Configuration Utility to change the configuration table, are only required if the customer wants to change the way
the application works.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 91

Figure 37. SDK Usage Flow

START

OPEN SELECTED WORKSPACE

USING PSoC CREATOR

OPEN CONFIG.H

HEADER FILE

UPDATE SOLUTION LEVEL

CONFIGURATION AS REQUIRED

UPDATE PDOs, VDOs, AND

PORT CONFIGURATION

BUILD FIRMWARE BINARY

PROGRAM CCGx DEVICE

(SWD or CONFIG UTILITY)

STOP

SELECT FET CONTROLS

SELECT Vbus VOLTAGE

CONTROLS

SELECT DATA MUX

CONTROL METHOD

SELECT DEBUG FEATURES

(LED, INSTRUMENTATION)

USE EZ-PD CONFIG UTILITY

TO CONFIGURE PARAMETERS

GENERATE CONFIGURATION

IN C SOURCE FORMAT

IMPORT CONFIG.C FILE

INTO CREATOR WORKSPACE

5.3 Firmware Versioning

Each project has a firmware version (base version) and an application version number.

The base firmware version number shall consist of major number, minor number, and patch number in addition to an
automatically updated build number.

The base firmware version applies to the whole stack and is common for all applications and projects using the stack. The
version information can be found in the src/system/ccgx_version.h header file.

The application version shall be modified for individual customers based on requirements. This shall have a major version,
minor version, external circuit specification, and application name. This version information can be updated by users as
required, and is located in the Firmware/projects/<project_name>/common/app_version.h header file.

Note: Ensure that you do not change the application name from the value defined for the CCG application type. The
application type information is used by the EZ-PD configuration utility to interpret the configuration table content.

The version number information for each firmware shall be stored in an eight-byte data field and shall be retrieved over the
firmware upgrade interface. The following table denotes the version structure and format.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 92

Table 28: CCGx Firmware Version Structure

Bit Field Name Description

[15:0] Base FW Build number This field corresponds to base firmware version and shall be
automatically incremented during nightly build. This field should not
be manually edited.

This field is expected to be reset on every SNPP release cycle and
not modified throughout the release.

[23:16] Base FW Patch version
number

This field corresponds to base firmware patch version number. This
field shall be updated manually by the core PD team for base
firmware releases.

This field shall be incremented for every intermediate release done
to customer or an actual patch release performed for a previous full
release.

[27:24] Base FW Minor version
number

This field corresponds to base firmware minor version number. This
field shall be updated manually by the core PD team for base
firmware releases.

This field is generally updated once for every SNPP release cycle at
ES100 RC build. The exception is when an intermediate customer
release which breaks compatibility.

[31:28] Base FW Major version
number

This field corresponds to base firmware major version number. This
field shall be updated manually by the core PD team for base
firmware releases.

The major number is generally updated on a major project level
change or when we have cycled through all minor numbers. The
number shall be determined at the beginning of every SNPP release
cycle.

[47:32] Application Name /
number

This field is left for any application / customer-specific changes to be
done by applications team.

By default, this field shall be released by the base firmware version
team will have the following values:

Notebook “nb”

Power Adapter “pa”

Power Bank “pb”

Alternate Mode Adapter (AMA) “aa”

NOTE: This information is used by Ez-PD Configuration Utility to

determine the application type and should not be modified for

standard applications.

[55:48] External circuit number This field is left for any application / customer-specific changes to be
done by applications team. By default, this field shall be released by
the base firmware team as 0.

The circuit number values from 0x00 to 0x1F are reserved for base
firmware team. This is because base firmware team may have to
support same application on multiple platforms in the future.

[59:56] Application minor version
number

This field is left for any application / customer-specific changes to be
done by applications team. By default, this field shall be released by
the base firmware team as 0

[63:60] Application major version
number

This field is left for any application / customer-specific changes to be
done by applications team. By default, this field shall be released by
the base firmware team as 0

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 93

5.4 Flash Memory Map

5.4.1 CCG5/CCG5C/CCG6 Flash Memory Map

CCG5/CCG5C/CCG6 has 128-KB flash memory that is designated to store a bootloader along with the primary and backup
firmware applications. Each of the primary and backup firmware binaries are associated with corresponding configuration
table and metadata. The flash memory map for the device is shown in Figure 38.

Figure 38: CCG5/CCG5C/CCG6 Flash Memory Map

Bootloader – I2C

Primary FW Metadata

Backup FW Configuration Table

Backup Firmware Application Code

Primary FW Configuration Table

Primary Firmware Application Code

Backup FW Metadata

The bootloader is used to update firmware and configuration over the I2C-interface. It is allocated a fixed area. This memory
area can only be written to from the SWD interface. The bootloader uses 5KB of memory.

The configuration table holds the default PD configuration for the CCG application and is located at a fixed offset from start
of the firmware binary. The size of configuration table for each application is 1 KB.

The metadata area holds metadata about the firmware binary. The firmware metadata follows the definition provided by the
PSoC Creator bootloader component; and includes firmware checksum, size, and start address.

In addition to 128 KB of flash memory, CCG6 device has 8KB of user SROM. Common functions of both the backup firmware
and the primary firmware have been placed in this user SROM.

5.4.2 CCG6DF Firmware FLASH memory map

CCG6DF has 64 KB of FLASH, 96 KB of SROM of which 88 KB is User ROM.

CCG6DF firmware applications support two different boot architectures each of which has its own memory map format.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 94

5.4.2.1 Hybrid Boot Architecture

When the Hybrid Boot Architecture is used, the bootloader functionality is combined with one of the application binaries and
this application is called as Secondary Base application. Only the Secondary Base application supports updating the flash.

This Secondary Base firmware supports reduced USB Type-C and PD functionality while the Primary application is being
updated. In this architecture, the secondary base (backup) binary is fixed and cannot be updated in the field.

If the user wants to retain the ability to modify the configuration table used by the backup binary in the field, a secondary
extension binary can be deployed in addition to the primary application. The secondary extension is a very limited application
which has the capability to over-ride the configuration parameters used by the secondary base.

Figure 39: CCG6DF Hybrid Architecture Flash Memory Map

Secondary Base Firmware

Primary FW Metadata

Secondary Extension Firmware (Optional)

Primary Firmware

Primary Firmware Configuration Table

Secondary Extension FW Metadata

5.4.2.2 Bootloader + Dual Asymmetric Application Architecture

It is possible to support the standard bootloader + dual asymmetric application architecture described in Section 5.4.1 on
CCG6DF and CCG6SF devices as well. In such cases, the flash memory map will look the same as in Figure 38. The only
difference is that the total flash size is 64 KB and the flash row size is 128 bytes.

5.5 Bootloader

The Flash-based bootloader mainly functions as a boot-strap and is the starting point for firmware execution. It validates the
firmware based on checksum stored in Flash. The boot-strap also includes the flashing module in notebook applications. The
bootloader flow diagram follows.

In the case of a dual asymmetric binary architecture, the primary firmware always has higher priority and will be loaded if
present. The bootloader only loads the backup firmware if the primary has been corrupted or when there is an explicit request
to load the backup.

Figure 40 shows the bootloader flow diagram when a Dual Asymmetric binary architecture is used.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 95

Figure 40: Dual Binary Bootloader Flow Diagram

INITIALIZE BOOT INTERFACE

SROM FLASH START

WAIT FOR FLASHING
REQUESTS

RESET REQUEST?

YES

NO

Valid metadata

Backup FW is Valid

JUMP to Backup FW

JUMP to Primary FW

YES

YES

YES

NO

NO

NO
Primary FW is Valid?

5.5.1 Secondary Base Flow

When the bootloader functionality is integrated into the backup binary as in the case of the Hybrid Boot Architecture, the boot
flow is different.

Figure 41 shows the flow diagram of the secondary base application. If the primary application is not present or corrupted,
the secondary base looks for a valid secondary extension. If secondary extension is present, the configuration table embedded
in that binary is applied.

The secondary base then enables the PD port(s) in Sink-only mode and looks for connection while any I2C commands are
being processed. This implementation allows the notebook platform to be powered from the Type-C port and enumerate any
USB devices while the firmware update is being performed.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 96

Figure 41: Secondary Base boot flow diagram

INITIALIZE BOOT INTERFACE

Secondary Base Start

WAIT FOR FLASHING
REQUESTS

RESET REQUEST?

YES

NO

JUMP to Primary FW

YES

NOSecondary Extn.
Is Valid?

Boot Mode
Requested?

INITIALIZE PD BLOCK

Primary FW is Valid?

LOAD SECONDARY EXTN.
CONFIGURATION

YES

NO

5.6 Firmware Operation

Figure 42 shows the firmware initialization and operation sequence. The notebook firmware is implemented in the form of a
set of state machines and tasks that need to be performed periodically.

The code flow for the application is implemented in the common\main.c file. As can be seen from the main () function, the
implementation is a simple round-robin loop, which services each of the tasks that the application has to perform.

All of the PD management, HPI command handling, and VDM handling is encapsulated in the task handlers in the CCGx
Firmware Stack. Refer to the CCGx FW API Guide document for more details of these functions and handlers.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 97

Figure 42: Notebook Firmware Flow Diagram

INITIALIZATION

LOW POWER MODE

MAIN TASK LOOP

CONFIGURE PERIPHERAL
BLOCKS

FW ENTRY

VALID CONFIGURATION
TABLE

NO

YES

LOAD FLASH CONFIG INFO

INTIALIZE INTERRUPTS

INITIALIZE THE PD MODULES

TYPE-C STATE MACHINE
TASK

PD STATE MACHINE TASK

ENTER LOW POWER MODE

PD IDLE TIMEOUT?

CONFIGURE WAKEUP
SOURCES

WAIT FOR INTERRUPT
(DEEP SLEEP MODE)

DISABLE WAKEUP SOURCES

YES

NO

EXIT LOW POWER MODE

HOST PROCESSOR
INTERFACE TASK

MARK CURRENT FIRMWARE
INVALID

DEVICE RESET

ALTERNATE MODE TASK

INITIALIZE I2C/GPIO
INTERFACES

HOST PLATFORM TASK

RETIMER TASK

5.6.1 Fault Handling

Each CCGx device family supports different forms of fault detection and handling capabilities. Table 29 summarizes the
various kinds of fault detection and handling supported in various applications in the SDK.

Table 29: Summary of fault handling features in notebook applications

Type of
fault

CCG4 Support
CCG3

Support
CCG5 / CCG5C

Support
CCG6/CCG6DF/C
CG6SF Support

Comments

VBus
Over-
Voltage

Use external
resistor divider and
ADC for detection.

Firmware based
handling with
~50us latency
(typical).

Internal resistor divider and dedicated OV comparator.

Hardware can turn FET off on fault with programmable
debounce.

Hard Reset and
recovery will be
attempted for a
configurable
number of
retries.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 98

Type of
fault

CCG4 Support
CCG3

Support
CCG5 / CCG5C

Support
CCG6/CCG6DF/C
CG6SF Support

Comments

VBus
Over-
Current

No on-device
support.

Firmware supports
interrupt input from
external load
switch.

Firmware based
handling with
debounce in ms
units.

High-side current sensing across a sense resistor.

Firmware based FET turn-off after debounce in ms units.

Firmware
suspends the
port and waits
for physical
disconnection
after all retries
have elapsed.

VBus
Short-
Circuit

Not supported Not supported Not supported

High-side current
sensing across a
sense resistor.

Hardware based
FET turn-off in µs
units.

Hard Reset and
recovery will be
attempted till a
configurable
number of
retries.

Firmware
suspends the
port and waits
for physical
disconnection
after all retries
have elapsed.

VBus
Reverse-
Current

Not supported Not supported Not supported

High-side current
sensing across a
sense resistor;
Comparator based
higher VBus
detection; and
VBus OV based
detection.

Hardware based
FET turn-off in µs
units.

VConn
Over-
Current

Not supported Not supported
Hardware based detection and
automatic VConn switch disable.

Firmware exits
any alternate
modes which
require VConn
to be present.

VConn will be
re-enabled after
a delay, if
retries are
enabled.

CC line
Over-
Voltage

Not supported Not supported
Hardware based detection and CC line
disable.

Firmware
suspends the
port and waits
for physical
disconnection.

SBU line
Over-
Voltage

Not supported Not supported
Hardware based detection and SBU
MUX disconnection.

Over
temperat
ure

Not supported Not supported Not supported

On CCG6DF and
CCG6SF uses
internal BJT based
temperature
sensing using the
ADC for detecting
the OTP condition

Firmware
suspends the
port and waits
for physical
disconnection.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 99

6. Firmware APIs

This section provides a summary of the APIs provided by the PD stack and other layers in the CCGx firmware solution. Only
the APIs that are expected to be used directly from user code are documented here. Please refer to the API Reference Guide
for more details on the data structures used and APIs.

6.1 Data Structures

Table 30 lists the important data structures used by the APIs.

Table 30: List of important data structures

Data structure Description

dpm_pd_cmd_buf_t Data structure holding the command parameters for DPM commands. Refer to section
6.3.6.3 for usage.

dpm_status_t The data structure holds the status information for the device policy manager. This data
is retrieved by dm_get_info function. The application / solution layer can retrieve the
DPM status using this. The data should not be modified outside of DPM. Refer to section
6.3.6.4 for usage.

pd_do_t Union to hold a PD data object. All USB-PD data objects are 4-byte values which are
interpreted according to the message type, length and object position. This union
represents all possible interpretations of a USB-PD data object. Refer to the USB-PD
specification for details on each field.

pd_config_t The data structure holds the device configuration data as stored by the Ez-PD
Configuration Utility. These parameters are located at fixed offset from start of the
firmware so that the device can be configured without having to recompile and modify
the firmware binary. The structure consists of header fields holding header information
as well as checksum followed by port specific configuration data.

pd_port_config_t The data structure holds the port specific configuration data stored as part of
pd_config_t structure. Refer to the API Reference Guide for more details.

ovp_settings_t The data structure holds the over voltage protection settings selected via configuration
utility. This allows the selection on fault thresholds, debounce period and retry count.
Refer to the API Reference Guide for more details.

ocp_settings_t The data structure holds the over current protection settings selected via configuration
utility. This allows the selection on fault thresholds, debounce period and retry count.
Refer to the API Reference Guide for more details.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 100

scp_settings_t The data structure holds the short circuit protection settings selected via configuration
utility. This allows the selection on fault thresholds, debounce period and retry count.
Refer to the API Reference Guide for more details.

rcp_settings_t The data structure holds the reverse current protection settings selected via
configuration utility. This allows the selection on retry count. Refer to the API Reference
Guide for more details.

app_cbk_t This is a function pointer array for all PD stack handlers. The structure allows to override
/ customize handling for various PD stack controls from the solution space. Refer to
Section 6.3.7.2 for usage.

app_resp_t The data structure holds the response information for callbacks from the PD stack.

app_status_t Various state machine parameters stored for rereference from the generic application
implementation for the DPM handlers registered via app_cbk_t.

6.2 API Summary

6.2.1 Device Policy Manager (DPM) API

These functions are declared in the src/pd_common/dpm.h header file.

Table 31: List of Device Policy Manager API

Function Description Parameters Return

dpm_init Initialize the Device Policy
Manager interface for a given
USB-PD port. For a dual-port
part, the dpm_init needs to be
done separately for each port.

port: Port to be initialized

app_cbk: Structure with
function pointers that the
PD stack can call to
handle various events.

Call status.

dpm_start Start the PD state machine on
the given USB-PD port.

port: Port to be enabled. Call status.

dpm_stop Stop the PD state machine on
the given USB-PD port.

port: Port to be disabled Call status.

dpm_disable This function disables PD port
operation and limits it to
receiving hard reset signaling.

port: Port on which PD
operation is to be
disabled.

Call status.

dpm_deepsleep Check for PD state machine idle
state and prepare for deep
sleep.

port: Port to be checked. 1 if deepsleep is
possible.

0 if PD state
machine is busy.

dpm_sleep Check for PD state machine idle
state and prepare for sleep.

port: Port to be checked.

1 if sleep is
possible.

0 if PD state
machine is busy.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 101

Function Description Parameters Return

dpm_wakeup Update the PD block after device
resumes from deep sleep.

port: Port to be re-
enabled.

Always returns 1.

dpm_task PD state machine task. This
should be called periodically
from the main application.

port: Port to be serviced.

Call status.

dpm_get_info Get the DPM status for the
device. This is mainly intended
for use within other layers in the
Cypress provided firmware
modules.

port: Port whose status
is to be queried.

Pointer to the
DPM status
structure.

dpm_update_def_cable_cap Update the default cable current
characteristics. The default spec
limit is 3A. But in captive cable
designs, this can be overridden
to match actual design.

def_cur: New default
current setting in 10mA
units.

None.

dpm_get_def_cable_cap Get the current default cable
capabilities current setting.

None Default cable
current setting in
10mA units.

dpm_update_snk_wait_cap_peri
od

Update the sink wait for source
capabilities period
(tTypeCSnkWaitCap)

period: Wait period in
ms.

None

dpm_get_snk_wait_cap_period Get the current
tTypeCSnkWaitCap setting for
the stack.

None Wait period in ms.

dpm_update_mux_enable_wait_
period

Function to specify the delay to
be used between the
APP_EVT_TYPEC_ATTACH
which is used to enable the Data
Mux and the turning ON of the
power source.

period: Delay to be
provided (in ms)
between MUX enable
and VBus turning ON

None

dpm_get_mux_enable_wait_peri
od

Returns the current delay
between the MUX enable and
VBus turn ON.

None Current delay in
ms

dpm_pd_command Initiate a PD command such as
VDM, DR_SWAP etc.

port: Port on which
command is to be
initiated.

cmd: Command to be
initiated.

buf_ptr: Command
parameters.

cmd_cbk: Callback to be
called at the end of
command.

 Call status.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 102

Function Description Parameters Return

dpm_typec_command Initiate a Type-C command such
as Rp change.

port: Port on which
command is to be
initiated.

cmd: Command to be
initiated.

cmd_cbk: Callback to be
called at the end of
command.

Call status.

dpm_update_swap_response Update the response that CCG
will send for various swap
commands.

port: Port whose swap
handler is to be
changed.

value: Bitmap in the
following format.

Bits 1:0 => DR_SWAP

response

Bits 3:2 => PR_SWAP

response

Bits 5:4 =>

VCONN_SWAP response

 0 => ACCEPT

 1 => REJECT

 2 => WAIT

 3 =>

NOT_SUPPORTED

Call status.

dpm_update_src_cap Update the source capabilities
PDO list. The provided values
will replace the settings from the
configuration table.

port: Port to be updated.

count: Number of PDOs
in list. Maximum allowed
value is 7

pdo: Pointer to array
containing PDOs.

Call status.

dpm_update_src_cap_mask Change the mask that enables
specific source PDOs from the
list.

port: Port to be updated.

mask: New PDO enable
mask.

Call status.

dpm_update_snk_cap Update the sink capabilities PDO
list. The provided values will
replace the settings from the
configuration table.

port: Port to be updated.

count: Number of PDOs
in list. Maximum allowed
value is 7

pdo: Pointer to array
containing PDOs.

Call status.

dpm_update_snk_cap_mask Change the mask that enables
specific sink PDOs from the list.

port: Port to be updated.

mask: New PDO enable
mask.

Call status.

dpm_update_snk_max_min Change the min/max current
fields associated with each Sink
PDO.

port: Port to be updated.

count: Number of PDOs
in list. Maximum allowed
value is 7

max_min: Pointer to
array containing new
Min/Max operating
current values.

Call status.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 103

Function Description Parameters Return

dpm_update_port_config Change the USB-PD
configuration: port role, default
role etc. The port should have
been disabled using
dpm_typec_command
(DPM_CMD_PORT_DISABLE)
before the change is attempted.

port: Port to be updated.

role: New port role
setting.

dflt_role: New default
port role for DRP.

toggle_en: DRP toggle
enable flag

try_src_en: Try.SRC
enable flag

Call status.

dpm_is_rdo_valid Generic stack implementation to
verify an RDO with the current
source capabilities.

port: Port to be checked.

rdo: The RDO to be
verified.

Call status.

dpm_get_polarity Get the current polarity of the
Type-C connection

port: Port to be queried.

0 if CC1 is
connected

1 if CC2 is
connected

dpm_typec_deassert_rp_rd De-assert both Rp and Rd on
the specified PD port.

port: Port to be updated.

channel: Channel on
which terminations are to
be disabled.

Call status.

dpm_update_port_status Update the USB-PD port status
that will be returned by CCG as
part of a Get_Status response.

port: Port to be updated.

status_p: Pointer to
buffer containing buffer
status.

offset: Number of bytes
of offset to be applied
while updating the
status.

byte_cnt: Number of
bytes of status being
updated.

None

dpm_get_pd_port_status Get the current USB-PD port
status.

port: Port to be queried 32bit port status.

dpm_downgrade_pd_port_re
v

Downgrade the PD port revision
from 3.0 to 2.0.

port: Port to be updated.

Call status

dpm_update_ext_src_cap Updated the Extended Source
Capabilities returned by the
CCG device.

port: Port to be updated.

buf_p: Pointer to buffer
containing the extended
source capabilities.

None

dpm_update_frs_enable Update the Fast-Role Swap
feature support in the CCG PD
state machines. The change will
only take effect after a fresh
contract negotiation.

port: Port to be updated.

frs_rx_en: Whether FRS
receive is to be enabled.

frs_tx_en: Whether FRS
transmit is to be
enabled.

None

dpm_prot_reset Resets protocol layer TX and RX
counter for a specific sop type.

port: Port to be updated

sop: SOP type to do the
reset.

Call status

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 104

Function Description Parameters Return

dpm_prot_reset_rx Resets protocol layer RX only
counter for a specific sop type.

port: Port to be updated

sop: SOP type to do the
reset.

Call status

dpm_pe_stop This function stops the policy
engine. Used in fault scenario
wherein PD protocol need to be
stopped but type c manager still
runs.

port: Port to be updated Call status

dpm_set_alert Sets alert ADO on fault. port: Port to be updated

alert_ado: The ADO
object to be updated

Call status

dpm_clear_hard_reset_count Clears the hard reset count. port: Port to be updated Call status

dpm_set_fault_active Indicate that there is a fault
condition active.

port: Port to be updated Call status

dpm_clear_fault_active Clear all fault conditions port: Port to be updated Call status

dpm_send_hard_reset Function to send a HardReset to
the port partner

port: Port on which Hard
Reset needs to be sent.

reason: Reason for the
hard reset. Used for
internal status tracking
only.

Call status

dpm_update_ndiscover_identity_
count

Function to change the
maximum number of Discover
Identity messages sent to the
EMCA from the default value of

nDiscoverIdentityCount.

count: Number of
Discover Identity
messages that need to
be sent. Should be non-
zero.

None

dpm_get_stack_config Function to retrieve the
configurable switch values at
runtime

None Structure
indicating current
stack
configuration.

dpm_refresh_src_cap Regenerate the source
capabilities from the available
PDOs and PDO mask. Also
update current setting based on
the cable characteristics.

port: Port to be updated

0 – If failed

1 – If successful

dpm_refresh_snk_cap Regenerate the sink capabilities
from the available PDOs and
PDO mask.

port: Port to be updated

0 – If failed

1 – If successful

dpm_update_mux_enable_wait_
period

Update the delay to be used
between MUX enable and VBus
enable.

period: Delay in ms. None

6.2.2 Application Layer API

Table 32 lists the application layer APIs provided by the CCGx Host SDK. These function declarations and definitions can be
found under the src/app folder.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 105

Table 32: List of Application Layer APIs

Function Description Parameters Return

app_init Initializes the application layer
for operation.

None None

app_task Perform application layer
tasks. This includes VDM
handling and alternate mode
implementation.

port: Port on which the
application task is to be
performed.

1 if successful.

0 if failure

app_event_handler Application level handler for
PD stack events. This
updates the internal
application state, and then
calls the solution level event
handler.

port: Port on which event
occurred.

evt: Type of event.

dat: Event data provided by
stack.

None

app_get_status Get the current application
status information.

port: Port to be queried. Pointer to
application status
structure.

app_sleep Check whether the
application layer is ready for
device low power mode.

None true if application
layer is idle.

false if application
layer is busy.

app_wakeup This is called after device
wakes up from sleep, and can
be used to restore any state
that was saved as part of
sleep entry.

None None

system_sleep Top level sleep mode entry
function. This should be
called from the main loop to
allow CCG device to
consume minimal power.

None None

eval_src_cap Evaluates the source
capabilities advertised by the
port partner and identifies the
optimal power contract
setting.

port: PD port on which SRC.
CAP has been received.

src_cap: Source capabilities
that were received.

app_resp_handler: Callback
function to be called to
report decision.

None

eval_rdo Evaluate a PD request (RDO)
received and decide whether
to accept/reject.

port: PD port on which
request has been received.

rdo: Received RDO value.

app_resp_handler: Callback
function to be called to
report decision.

None

psnk_set_voltage Power sink (consumer)
handler for voltage change.
Default implementation sets
up the OVP voltage level
based on the provided
voltage.

port: Port to be updated.

volt_50mV: Expected VBus
voltage in 50 mV units.

None

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 106

Function Description Parameters Return

psnk_set_current Power sink (consumer)
handler for operating current
change. The default
implementation does not do
anything.

port: Port to be updated.

cur_10 mA: Expected
operating current in 10 mA
units.

None

psnk_enable Enable the power sink path. port: Port to be updated. None

psnk_disable Disable the power sink path. port: Port to be updated. None

psrc_set_voltage Set the desired voltage for
the power source (provider)
output. This function is
expected to make the
regulator updates as well as
set the OVP thresholds based
on the voltage.

This can be updated if the
voltage selection mechanism
should be changed.

port: Port to be updated.

volt_mv: Expected VBus
voltage in mV units.

None

psrc_set_current Set the current level for the
power source output. The
default implementation does
not do anything.

port: Port to be updated.

cur_10mA: Expected
operating current in 10 mA
units.

None

psrc_enable Enable the power source
output. The
power_ready_handler is
called once Vbus voltage has
stabilized at the desired level.

port: Port to be updated.

pwr_ready_handler:
Application handler callback
function.

None

psrc_disable Disable the power source
output. The
power_ready_handler is
called once Vbus voltage has
stabilized at vSafe0V.

port: Port to be updated.

pwr_ready_handler:
Application handler callback
function.

None

vconn_enable Enable the VConn supply. port: Port to be updated.

channel: Selected CC line

Call status.

vconn_disable Disable the VConn supply. port: Port to be updated.

channel: Selected CC line

Call status.

vconn_is_present Check whether VConn supply
is present.

port: Port to be queried. true if VConn is
present

false if VConn is
absent.

vbus_is_present Check whether VBus is
present within a specific
range.

port: Port to be queried.

volt: Expected VBus
voltage.

per: Allowed variance in
voltage as percentage of
expected voltage.

true if VBus is in
range.

false if VBus is
not in range.

vbus_discharge_on Enable the VBus discharge
path.

port: Port to be updated. None

vbus_discharge_off Disable the VBus discharge
path.

port: Port to be updated. None

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 107

Function Description Parameters Return

eval_dr_swap Evaluate a DR_SWAP
request from the port partner.

port: Port to be updated.

app_resp_handler: Callback
function to be called to
report decision.

None

eval_pr_swap Evaluate a PR_SWAP
request from the port partner.

port: Port to be updated.

app_resp_handler: Callback
function to be called to
report decision.

None

eval_vconn_swap Evaluate a VCONN_SWAP
request from the port partner.

port: Port to be updated.

app_resp_handler: Callback
function to be called to
report decision.

None

vdm_data_init Initialize the VDM handler
data structure with data from
configuration table.

port: Port to be updated.

None

vdm_update_data Update the VDM handler data
structure with custom data.

port: Port to be updated.

id_vdo_cnt: Number of DOs
in Discover ID response.

id_vdo_p: Array containing
the Discover ID response.

svid_vdo_cnt: Number of
DOs in Discover SVID
response.

svid_vdo_p: Array
containing the Discover
SVID response.

mode_resp_len: Total
length of all Discover Mode
responses.

mode_resp_p: Array
containing actual Discover
Mode responses.

None

eval_vdm Evaluate a received PD VDM
and respond to it.

port: Port on which VDM is
received.

vdm: Received VDM
pointer.

vdm_resp_handler:
Callback to be notified
about the VDM response.

None

app_ovp_enable Enable the Over-Voltage
Protection function.

Port: Port on which OVP is
to be enabled.

volt_50mV: Allowed
maximum voltage in 50 mV
units.

pfet: Whether the CCG
device is power source.

ovp_cb: Callback function to
be called when OVP is
detected.

None

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 108

Function Description Parameters Return

app_ovp_disable Disable the OVP function on
a PD port.

port: Port on which OVP is
to be disabled.

pfet: Whether CCG is a
power source at this time.

None

Table 33 lists the functions that the PD stack and application layer expect to be implemented at the solution level. These
functions must be implemented in the source files within the PSoC Creator project workspace. If the target application does
not require one or more of these functions; a stub implementation that does nothing should still be provided.

Table 33: Solution-level Functions

Function Description Parameters Return

mux_ctrl_init Initialize the Type-C switch
and corresponding control
interface. The Type-C data
pins should be isolated from
the USB and DisplayPort
controller pins at this stage.

port: Port to be
updated.

true if successful.

false if failure

mux_ctrl_set_cfg Update the Type-C switch to
enable/disable the desired
USB and DisplayPort
connections.

port: Port to be
updated.

cfg: Desired data
connection mode.

polarity: Polarity of
current Type-C
connection. 0 for CC1
and 1 for CC2.

true if successful.

false if failure

sln_pd_event_handler This is top level handler for
system event notifications
provided by the PD stack.
The default implementation of
this function calls the HPI
event handler so that the EC
can be notified about these
events.

port: Port on which
event occurred.

evt: Type of event.

data: Event data
provided by stack.

None

app_get_callback_ptr Function that returns a
structure filled with callback
function pointers for various
system events. Default
implementations for all of
these functions are provided
under the app folder, and the
structure can be initialized
with the corresponding
pointers.

port: Port to be
queried.

Pointer to structure
containing callback
function pointers. This
structure should
remain valid
throughout the device
operation.

6.2.3 Alternate Mode API

This section documents the alternate mode related API provided in the CCGx Host SDK. These APIs are defined in the

sources under src/app/alt_mode and are summarized in Table 34.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 109

Table 34: List of Alternate Mode APIs

Function Description Parameters Return

enable_vdm_task_mngr Enabled the alternate
mode manager.

port: Port to be
updated.

None

vdm_task_mngr_deinit De-initialize the alternate
mode manager.

port: Port to be
updated.

None

is_vdm_task_idle Check if the alternate
mode manager is idle, so
that device can enter low
power mode. Each port
has to be queried
separately.

port: Port to be
queried.

true if the manager
is idle.

false if the manager
is busy.

vdm_task_mngr Alt. mode manager state
machine task. This is
called from app_task.

port: Port to be
serviced.

None

eval_rec_vdm Evaluate VDM message
received.

port: Port to be
updated.

vdm_rcv: Pointer to
received attention
VDM.

true if VDM is to be
ACKed.

false if VDM is to be
NACKed.

6.2.4 Hardware Adaptation Layer (HAL) API

This section documents the API provided as part of the Hardware Adaptation Layer (HAL), which provides drivers for various
hardware blocks on the CCG device.

6.2.4.1 GPIO API

The PSoC Creator GPIO component and associated APIs can be used in all CCG projects. However, the SDK also provides
a set of special API for reduced memory footprint. These APIs are defined in the src/system/gpio.c file and are summarized
in Table 35.

Table 35: List of GPIO APIs

Function Description Parameters Return

hsiom_set_config Update the IO matrix
configuration for a given
pin.

port_pin: CCG pin identifier.

hsiom_mode: Desired IO
configuration

None

gpio_set_drv_mode Select GPIO drive mode
for a given pin.

port_pin: CCG pin identifier.

drv_mode: Desired drive
mode

None

gpio_hsiom_set_config Update IO matrix and drive
mode for a given pin.

port_pin: CCG pin identifier.

hsiom_mode: Desired IO
configuration

drv_mode: Desired drive
mode

value: Desired output state

None

gpio_int_set_config Configure interrupt
associated with a given
pin.

port_pin: CCG pin identifier.

int_mode: Desired interrupt
configuration.

None

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 110

Function Description Parameters Return

gpio_set_value Update the output value of
a given pin. The IO
configuration and drive
mode for the pin should
have been set separately.

port_pin: CCG pin identifier.

value: Desired output state

None

gpio_read_value Get the current state of a
given pin.

port_pin: CCG pin identifier. true if the pin is high.

false if the pin is low.

gpio_get_intr Check if there is an active
interrupt associated with
the given pin.

port_pin: CCG pin identifier. true if interrupt is
active.

false if interrupt is not
active.

gpio_clear_intr Clear any interrupts
associated with the given
pin.

port_pin: CCG pin identifier. None

6.2.4.2 I2C API

The Serial Communication Block component in PSoC Creator can be used with the CCG device. However, the SDK provides
a dedicated I2C slave mode driver, which is optimized for HPI implementation. These API definitions are provided in
src/scb/i2c.c and are summarized in Table 36.

Table 36: List of I2C driver APIs

Function Description Parameters Return

i2c_scb_init Initialize the I2C slave
block and set driver
parameters.

scb_index: SCB index to be used.

mode: Mode of I2C block operation.

clock_freq: Expected bit rate on the
interface.

slave_addr: Slave address to be
used.

slave_mask: Mask to be applied on
the slave address to detect I2C
addressing.

cb_fun_ptr: Callback function to be
called for read/write/error
notifications.

scratch_buffer: Pointer to scratch
buffer to be used to received
incoming data.

scratch_buffer_size: Size of scratch
buffer.

None

i2c_scb_deinit De-initialize the
specified I2C slave
block.

scb_index: SCB index to be used. None

i2c_scb_write Write data into the I2C
block transmit FIFO.

scb_index: SCB index to be used.

source_ptr: Location of data to be
written.

size: Size of data to be written.
Should be 8 bytes or lesser.

count: Return parameter indicating
actual size of data written.

None

i2c_reset Reset the I2C block. scb_index: SCB index to be used. None

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 111

Function Description Parameters Return

i2c_slave_ack_ctrl Used to enable/disable
clock stretching in the
device address stage.

scb_index: SCB index to be used.

enable: Enable device address
acknowledgement.

None

i2c_scb_is_idle Check whether the I2C
module is idle.

scb_index: SCB index to be used. true if the block
is idle.

false if the block
is busy.

i2c_scb_enable_wakeup Enable I2C device
addressing as a wakeup
source from low power
mode.

scb_index: SCB index to be used. None

6.2.4.3 Flash API

The flash API provides the core functionality used for CCG configuration and firmware updates. These are wrappers over the
PSoC Creator provided flash APIs, and implement checks to ensure that a firmware binary is not corrupted by writing while it
is being accessed. The flash related API are defined in src/system/flash.c and are summarized in Table 37.

Table 37: List of flash API

Function Description Parameters Return

flash_enter_mode Enable flash updates
through the specified
interface. Flash updates
are only allowed through
one interface (I2C, CC
etc.) at a time.

is_enable: Whether to enable or
disable flash access.

mode: Flash access interface

data_in_place: Specifies whether the
data to be written to flash should be
used in place, or a copy should be
made on stack.

None

flash_access_enabled
Check whether flash

access through any of the

specified interfaces is

enabled.

modes: Bitmap representing the flash
interfaces to be checked.

true if flash
access is
enabled.

false otherwise.

flash_set_access_limits Set limits regarding the
flash rows that can be
accessed. The firmware
application should
identify the memory
range that it is using,
and use this API to
protect it from updates.

start_row: Lowest flash row that can
be accessed.

last_row: Highest flash row that can
be accessed.

md_row: Metadata row that can be
accessed.

bl_last_row: Last row used by boot-
loader. Any flash row above this
value can be read.

None

flash_row_clear Clear the contents of the
specified flash row.

row_num: Row to be cleared. Flash erase
status

flash_row_write Write the desired
content into a flash row.
This is a blocking
operation.

row_num: Flash row to be updated.

data: Buffer containing flash data.

cbk: Must be zero as non-blocking
writes are not supported by the
device.

Flash write
status

flash_row_read Read the content of a
flash row into the
provided buffer.

row_num: Flash row to be read.

data: Buffer to read the data into.

Flash read
status.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 112

6.2.4.4 Timer API

The CCG firmware stack uses a soft timer implementation for various timing measurements. The soft timer granularity is 1
ms, and it uses a single hardware timer. If the timer block used is WDT (WatchDog Timer), the timers can be used across
device sleep modes; and it is possible to use a tickless implementation which reduces interrupt frequency. The soft timer
related API are defined in src/system/timer.c and are summarized in Table 38.

Table 38: List of timer API

Function Description Parameters Return

timer_init Initialize the timer module.
This enables the
hardware timer and
interrupt as well.

None None

timer_start
Start one soft timer (one

shot).

instance: Soft timer group or instance.
Separate timer groups are maintained for
each PD port.

id: ID of timer to be started. Timer IDs are
assigned statically.

period: Timer period in milliseconds.

cb: Timer expiry callback.

true if
successful.

false if failure.

timer_stop Stop a running soft timer. instance: Soft timer group or instance.

id: ID of timer to be stopped.

None

timer_is_running Check whether a soft
timer is running.

instance: Soft timer group or instance.

id: ID of timer to be queried.

true if running.

false if not
running.

timer_stop_all Stop all soft timers in a
group.

instance: Timer group to be stopped. None

timer_stop_range Stop all soft timers whose
IDs fall in a range.

instance: Timer group to be stopped.

start: Lowest timer ID to be stopped.

stop: Highest timer ID to be stopped.

None

timer_num_active Get number of active
timers in a group.

instance: Soft timer group or instance. Count of active
timers.

timer_enter_sleep Prepare the timer module
for sleep entry.

None None

6.2.5 Firmware Update API

CCG application support firmware updates through interfaces like HPI (I2C) and CC (Unstructured VDMs). The firmware
update APIs are common functions that are used by each of these protocol modules to implement the firmware update
functionality.

The firmware update related API are defined in src/system/boot.c and are summarized in Table 39.

Table 39: Firmware Update API

Function Description Parameters Return

boot_validate_fw Validate the firmware
image in device flash.

fw_metadata: Pointer to
metadata regarding the
firmware image.

Valid/invalid
status.

boot_validate_configtable
Validate the configuration

table in device flash.

table_p: Pointer to the
configuration table.

Valid/invalid
status.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 113

Function Description Parameters Return

get_boot_mode_reason Compute the boot mode
reason register value by
validating firmware and
configuration tables.

None Boot mode
reason bitmap
value.

boot_get_boot_seq Get the flash sequence
number associated with a
given firmware binary.

fwid: ID of firmware binary to be
queried.

Flash
sequence
number value.

sys_set_device_mode Set the current firmware
mode for the CCG
device.

fw_mode: Firmware mode to be
set.

None

sys_get_device_mode Get the current firmware
mode for the CCG
device.

None Current
firmware mode.

6.3 API Usage Examples

This section provides a few examples for the usage of the APIs documented under Section 0Refer to the API reference guide
for more details.

Most of the PD operations are initiated using the dpm_pd_command() and dpm_typec_command() APIs. These APIs are
non-blocking, and only initiate the operation. A callback function can be passed to the API; and it will be called on completion
of the operation. Completion of these operations will require the tasks in the main loop to be executed, and therefore, the
caller cannot block waiting for the callback to arrive.

If there is a need to wait for the operation to complete and then initiate other operations, this can be done in two ways:

1. Initiate the follow-on operations from the callback function itself.

2. Modify the main loop to detect the callback arrival, and then initiate the next operation after this.

6.3.1 Boot API Usage

The bootloader and firmware application communication in the CCGx Host SDK is built using the PSoC Creator Bootloader
and Bootloadable components. This section shows how the PSoC Creator bootloader and bootloadable components along
with the wrapper APIs in the SDK to transfer control from the application firmware to the bootloader or to the application in
the alternate memory bank.

6.3.1.1 Perform Device Reset

Since the order in which the bootloader prioritizes firmware images is fixed, resetting the device causes the device to boot
back into the same mode that it previously was in. The CySoftwareReset() API can be used to initiate a CCG device reset.

/* Include relevant header files. */

#include <project.h>

void reset_ccgx_device (void)

{
 /* Initiate device reset. */

 CySoftwareReset ();

}

6.3.1.2 Jump to Bootloader

This operation is not required because firmware update and flash read functionality is provided by the application firmware
itself. Also, the bootloader is a fixed binary application which cannot be updated to include additional functionality.

However, you can use the Bootloadable component API to transfer control to the bootloader from the application firmware.
You can do this by specifying the boot type for the next run using the Bootloadable_SET_RUN_TYPE() macro and then
initiating a reset using CySoftwareReset().

http://www.cypress.com/documentation/component-datasheets/bootloader-and-bootloadable
http://www.cypress.com/documentation/component-datasheets/bootloader-and-bootloadable

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 114

/* Include relevant header files. */

#include <project.h>

#include <boot.h>

void jump_to_bootloader(void)

{
 /* Select the boot mode for the next run. */

 Bootloadable_SET_RUN_TYPE(CCG_BOOT_MODE_RQT_SIG);
 /* Initiate device reset. */

 CySoftwareReset();

}

6.3.1.3 Jump to Alternate Firmware

As described in Chapter 5, the CCGx firmware projects are set up such that they generate two copies of the application
firmware. While both of these copies are expected to be equivalent, there may be cases where you need to use a fixed backup
firmware along with a dynamically updated primary firmware. In such cases, it would be desirable to transfer control to the
backup firmware in order to update the primary firmware.

The APIs shown in section 6.2.5 can also be used to transfer control to the alternate firmware binary. You will need to
determine the identity of the current firmware binary (FW1 or FW2) and then initiate the switch accordingly.

/* Include relevant header files. */

#include <project.h>

#include <boot.h>

void jump_to_alternate_fw(void)

{
 /* Set the next boot mode based on the current FW ID. */

 if (sys_get_device_mode() == SYS_FW_MODE_FWIMAGE_1)

 {

 Bootloadable_SET_RUN_TYPE (CCG_FW2_BOOT_RQT_SIG);

 }

 else

 {

 Bootloadable_SET_RUN_TYPE (CCG_FW1_BOOT_RQT_SIG);

 }

 /* Initiate device reset. */

 CySoftwareReset();

}

6.3.2 GPIO API Usage

All of the APIs provided by the PSoC Creator Pins component can be used in CCGx firmware solutions. In addition to these,
specific APIs to perform common GPIO functions are provided in the CCGx Host SDK. The list of GPIO APIs is provided in
section 6.2.4.1.

6.3.2.1 Configuring a CCGx Pin as an Edge Triggered Interrupt Input

The gpio_hsiom_set_config() API is used to set the I/O mapping and drive mode settings for a given CCGx pin. The
gpio_int_set_config() API is used to enable interrupt functionality on a CCGx pin. The following code snippet shows how the
pin P3[1] on CCGx can be configured as an input signal triggering interrupts on a falling edge.

/* We are using P3.1 as the interrupt pin. */

http://www.cypress.com/documentation/component-datasheets/pins

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 115

#define INTR_GPIO_PORT_PIN (GPIO_PORT_3_PIN_1)

/* The ISR vector number corresponds to PORT3. */

#define CCGX_PORT3_INTR_NO (3u)

/* ISR for the GPIO interrupt. */

CY_ISR (gpio_isr)

{
 /* Clear the interrupt. */

 gpio_clear_intr (INTR_GPIO_PORT_PIN);

 /* Custom interrupt handling actions here. */

 ...;

}

/* Function to configure and enable the interrupt. */

void configure_intr_input (void)

{
 /* Configure the IO modes for the pin. */

 gpio_hsiom_set_config (INTR_GPIO_PORT_PIN,

 HSIOM_MODE_GPIO, GPIO_DM_HIZ_DIGITAL, false);

 /* Configure the interrupt mode for the pin. */

 gpio_int_set_config (INTR_GPIO_PORT_PIN,

 GPIO_INTR_FALLING);

 /* Set the ISR routine and enable the interrupt. */

 CyIntSetVector (CCGX_PORT3_INTR_NO, gpio_isr);

 CyIntEnable (CCGX_PORT3_INTR_NO);

}

6.3.2.2 Connecting a pin to the internal ADC

Refer to the CCGx device datasheet to identify pins that can be connected to the internal ADC blocks through the Analog
MUX configuration. The hsiom_set_config() API can be used to connect a specific pin to the ADC.

#define VBUS_MON_PORT_PIN (GPIO_PORT_3_PIN_1)

void connect_vbus_mon_to_adc (void)

{
 /* Connect the pin to AMUXB. */

 hsiom_set_config (VBUS_MON_PORT_PIN, HSIOM_MODE_AMUXB);

}

6.3.3 Timer API Usage

The CCGx Host SDK provides a soft timer module, which can be used for task scheduling. The timer APIs allow users to
create one-shot timer objects with callback notification on timer expiry.

Soft timers are identified using a single byte timer ID, and the caller should ensure that the timer ID used does not collide with
timers used elsewhere. This is facilitated by reserving the timer ID range from 0xE0 to 0xFF for use by user application code.
These timer IDs are not used internally within the CCGx firmware stack and are safe for use.

A soft timer is started using the timer_start() API and can be aborted using the timer_stop() API.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 116

#define APP_TIMER_ID (0xF0)

static void timer_expiry_callback(uint8_t instance, timer_id_t id)

{
 /* Start the desired task here. */

 ...;

}

/* Use a timer to schedule task to be run delay_ms milliseconds later. */

void schedule_task(uint16_t delay_ms)

{
 /* Start an application timer to wait for delay_ms.
 Devices with two USB-PD ports support two sets of timers, and
 the set to be used is selected using the first parameter. */

 timer_start(0, APP_TIMER_ID, delay_ms, timer_expiry_callback);
}

6.3.4 HPD API Usage

The HotPlugDetect output pin from CCGx is used in Notebook implementations to signal interrupts from the far-end
DisplayPort (DP) peripheral to the DP controller in the Notebook system. The DP peripheral will signal HPD events to the
CCGx Notebook controller through PD messages, and CCGx will relay these HPD events to the DP controller through the
GPIO output.

The hpd_transmit_init() and hpd_transmit_sendevt() APIs are used to initialize the HPD transmit logic and to send event
notifications to the DP controller respectively.

/* Callback that notifies user of completion of HPD signaling. */

static void hpd_callback(uint8_t port, hpd_event_type_t event)

{

 if (event == HPD_COMMAND_DONE)

 {
 /* Requested HPD command is complete. */

 }

}

/* Initialize the HPD transmit logic for USB-PD port 0, and register
 the command completion callback. */

void initialize_hpd_logic(void)

{

 hpd_transmit_init(0, hpd_callback);

}

/* Send HPD_IRQ to the DP controller. */

void send_hpd_irq(void)

{
 /* Asynchronous mode: Do not wait for completion. */

 hpd_transmit_sendevt(0, HPD_EVENT_IRQ, false);

}

6.3.5 Sleep Mode Control

The decision to enter device deep sleep mode to save power is made at the application level. The system_sleep() function
call in the main loop can be disabled if deep sleep mode entry is to be disabled.

6.3.6 DPM API Usage

6.3.6.1 Enabling a PD port

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 117

The dpm_start() API can be used to enable a PD port for operation. The dpm_init() API should have been called prior to doing
this.

bool enable_pd_port(uint8_t port)

{

 if (dpm_start(port) == 0)

 {

 /* DPM start failed. Handle errors. */

 return (false);

 }

return (true);

}

6.3.6.2 Disabling a PD port

The dpm_stop() API should not be used to directly disable a PD port, as the port might already be in contract. The
dpm_typec_command() API should be used initiate the DPM_CMD_PORT_DISABLE command. This will ensure that the port
is disabled safely and the VBus voltage is discharged to a safe level, before the completion callback is issued.

static volatile bool pd_disable_completed = true;

static volatile bool pd_disable_issued = false;

/* Callback for the PD disable command. */

static void pd_port_disable_cb(uint8_t port, dpm_typec_cmd_resp_t resp)

{

 pd_disable_completed = true;

 /* Other APIs can be started here, if required. */

}

bool disable_pd_port(uint8_t port)

{

 /* Store state of operation. */

 pd_disable_issued = true;

 pd_disable_completed = false;

 /* Initiate port disable. */

 if (dpm_typec_command(port, DPM_CMD_PORT_DISABLE,

 pd_port_disable_cb) != CCG_STAT_SUCCESS)

 {

 /* Handle error here. */

 pd_disable_issued = false;

 return false;

 }

 /* Port disable has been queued. We cannot block for callback.

 Wait for callback in the main loop.

 */

 return true;

}

int main ()

{

 /* Init tasks here. */

 ...;

 while (1)

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 118

 {

 /* Call regular task handlers (DPM, APP, HPI) here. */

 ...;

 if ((pd_disable_issued) && (pd_disable_completed))

 {

 /* Port is now disabled. */

 ...;

 pd_disable_issued = false;

 }

 }

}

6.3.6.3 Sending a DISCOVER_ID VDM

The dpm_pd_command() API should be used to send VDMs and other PD commands to the port partner. The send operation
is non-blocking and the completion callback will notify that the operation is complete. Note that the main loop should continue
to run for proper completion of the VDM operation.

static volatile bool abort_cmd = false;

static dpm_pd_cmd_buf_t cmd_buf;

static void pd_command_cb(uint8_t port, resp_status_t resp,

 const pd_packet_t *vdm_ptr)

{

 uint32_t response;

 if (status == RES_RCVD)

 {

 /* Response received. Check handshake. */

 response = vdm_ptr->dat[0].std_vdm_hdr.cmd_type;

 switch (response)

 {

 case CMD_TYPE_RESP_ACK:

 /* ACK received. */

 ...;

 break;

 case CMD_TYPE_RESP_BUSY:

 /* BUSY received. */

 ...;

 break;

 case CMD_TYPE_RESP_NAK:

 /* NACK received. */

 ...;

 break;

 }

 /* Next operation can be started from here. */

 }

}

bool send_discover_id(uint8_t port)

{

 /* Store state of operation. */

 pd_command_issued = true;

 pd_command_completed = false;

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 119

 /* Format the command parameters.

 Single DO with standard Discover_ID command to SOP controller.

 Timeout is set to 100 ms.

 */

 cmd_buf.cmd_sop = SOP;

 cmd_buf.cmd_do[0] = 0xFF008001;

 cmd_buf.no_of_cmd_do = 1;

 cmd_buf.timeout = 100;

 /* Initiate the command. Keep trying until accepted. */

 while (dpm_pd_command(port, DPM_CMD_SEND_VDM,

 &cmd_buf, pd_command_cb) != CCG_STAT_SUCCESS)

 {

 /* Can implement a timeout/abort here. */

 if (abort_cmd)

 return false;

 }

 /* Command has been queued. We cannot block for callback here. */

 return true;

}

6.3.6.4 Getting Current PD Port Status

The Device Policy Manager interface layer in the CCGx PD stack maintains a status data structure that provides complete
status information about the USB-PD port.

This structure can be retrieved using the dpm_get_info() API. The API returns a const pointer to a dpm_status_t structure
which includes the following status fields:

1. attach: Specifies whether the port is currently attached.

2. cur_port_role: Specifies whether the port is currently a Source or a Sink

3. cur_port_type: Specifies whether the port is currently a DFP or an UFP

4. polarity: Specifies the Type-C connection polarity (CC1 or CC2 being used)

5. contract_exist: Specifies whether a PD contract exists

6. contract: Specifies the current PD contract (voltage and current) information.

7. emca_present: Specifies whether CCGx as DFP has detected a cable marker

8. src_sel_pdo: Specifies the PDO that CCGx as source used to establish contract

9. snk_sel_pdo: Specifies the Source Cap that CCGx as sink accepted to establish contract

10. src_rdo: Specifies the RDO that CCGx received for PD contract

11. snk_rdo: Specifies the RDO that CCGx as Sink sent for PD contract.

6.3.6.5 Issue a DR_SWAP where required

CCGx in a Notebook Port controller application is expected to function as a DFP. You can check the current port type of the
CCGx device and initiate a DR_SWAP if CCGx is a UFP, so that we can ensure that the supported alternate modes can be
enabled.

The current port type is checked as described in Section 6.3.6.4, and the dpm_pd_command() API can be used to initiate a
DR_SWAP.

/* Function to initiate a DR_SWAP if CCGx is UFP. */

void dr_swap_if_required()

{

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 120

const dpm_status_t *dpm_stat = dpm_get_info (0);

dpm_pd_cmd_buf_t param;

ccg_status_t status;

if (dpm_stat->cur_port_type == PRT_TYPE_UFP)

{

/* CCGx is UFP. Initiate DR_SWAP.

 We keep retrying while the PD port is in a busy state. */

 param.cmd_sop = SOP;

 do {

 status = dpm_pd_command (0, DPM_CMD_SEND_DR_SWAP,

 ¶m, cmd_callback);

 } while (status == CCG_STAT_BUSY);

}

}

6.3.6.6 Change the Source Capabilities

The dpm_update_src_cap() and dpm_update_src_cap_mask() APIs can be used to update the source capabilities supported
by CCGx.

At any time, CCGx can support a set of maximum seven source capabilities. These seven capabilities are maintained in the
form of a the cur_src_pdo array in the dpm_status_t structure. A subset of these PDOs can be enabled at runtime using a
PDO enable bit mask setting. The current PDO enable mask value can be read from the src_pdo_mask field of the
dpm_status_t structure.

The PDO enable mask can be changed using the dpm_update_src_cap_mask() API.

The set of PDOs can be changed using the dpm_update_src_cap() API. The PDO enable mask will also need to be updated
after updating the set of PDOs.

/* Function to configure and enable a desired source PDO. */

void select_source_pdo(pd_do_t new_pdo)

{

 const dpm_status_t *dpm_stat = dpm_get_info (0);

 uint8_t index;

 bool pdo_found = false;

 /* See if the new_pdo is already part of the list. */

 for (index = 0; index < dpm_stat->src_pdo_count; index++)

 {

 if (dpm_stat->src_pdo[index].val == new_pdo.val)

 {

 pdo_found = true;

 break;

 }

 }

 if (pdo_found)

 {

 /* PDO found. Just enable it. */

 dpm_update_src_cap_mask(0,

(dpm_stat->src_pdo_mask | (1 << index)));

}

else

 {

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 121

/* PDO not found, update the PDO list and enable it.

 Note: For this example, we are replacing the complete list

 with a single PDO. This needs be updated to retain the

 other required PDOs. */

 dpm_update_src_cap(0, 1, &new_pdo);

 dpm_update_src_cap_mask(0, 1);

}

}

Refer to the Alternate Mode module source for more examples of using the DPM APIs.

6.3.7 Solution Level Examples

6.3.7.1 PD Event Handling

The PD events raised by the stack are handled at the solution level in the sln_pd_event_handler() function. In the normal
case where policy decisions are handled through the EC, it is sufficient to pass the events onto the EC through the HPI
interface. See below for a sample implementation of the event handler.

/* Solution PD event handler */

void sln_pd_event_handler(uint8_t port, app_evt_t evt, const void *data)

{

 /* Pass the event onto the EC through HPI. */

 hpi_pd_event_handler(port, evt, data);

}

6.3.7.2 Application Callback Registration

The application callbacks that handle various operations requested by the PD stack are registered through a structure that
contains pointers to all the functions. The callbacks are registered using the app_get_callback_ptr() function. A sample
implementation of this function is shown below.

/*

 * Application callback functions for the DPM. Since this application

 * uses the functions provided by the stack, loading with the stack defaults.

 */

const app_cbk_t app_callback =

{

 app_event_handler, /* Event handler. */

 psrc_set_voltage, /* Source voltage update function. */

 psrc_set_current, /* Source current update function. */

 psrc_enable, /* Enable source FET. */

 psrc_disable, /* Disable source FET. */

 vconn_enable, /* Enable VConn supply. */

 vconn_disable, /* Disable VConn supply. */

 vconn_is_present, /* Check if VConn is present. */

 vbus_is_present, /* Check if VBus is in the expected range. */

 vbus_discharge_on, /* Enable VBus discharge path. */

 vbus_discharge_off, /* Disable VBus discharge path. */

 psnk_set_voltage, /* Set sink voltage. */

 psnk_set_current, /* Set sink current. */

 psnk_enable, /* Enable sink FET. */

 psnk_disable, /* Disable sink FET. */

 eval_src_cap, /* Evaluate source power capabilities. */

 eval_rdo, /* Evaluate partner power request. */

 eval_dr_swap, /* Evaluate DR_SWAP command. */

 eval_pr_swap, /* Evaluate PR_SWAP command. */

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 122

 eval_vconn_swap, /* Evaluate VCONN_SWAP command. */

 eval_vdm, /* Evaluate received VDM. */

 eval_fr_swap, /* Evaluate received FR swap */

 vbus_get_value, /* Retrieve the VBUS voltage */

 psrc_get_voltage, /* Get the current voltage level enabled by the power source. */

 update_rdo /* Allow solution layer to make changes to the RDO. */

};

app_cbk_t* app_get_callback_ptr(uint8_t port)

{

 /* Solution callback pointer is same for all ports */

 (void)port;

 return ((app_cbk_t *)(&app_callback));

}

6.3.7.3 Change the Source PDO selection logic

The eval_src_cap() callback function is invoked by the PD stack on receiving source capabilities message from the Source.
The default implementation of the same is available in src/app/pdo.c. This function can be overridden during application
callback registration (Section 6.3.7.2).

The eval_src_cap() and is_src_acceptable_snk() functions in src/app/pdo.c can be used as template and a custom function
can be implemented in the solution.

For example, If an additional check needs to be done for maximum current support in the source PDO, then this can be done
by changing the eval_src_cap() callback function to my_eval_src_cap().

/* Custom function to check if the source PDO is acceptable or not. */

void my_is_src_acceptable_snk(uint8_t port, pd_do_t* pdo_src, uint8_t snk_pdo_idx)

{

 ...

 case PDO_FIXED_SUPPLY:

 if(fix_volt == pdo_snk->fixed_snk.voltage)

 {

 compare_temp = GET_MAX (max_min_temp, pdo_snk->fixed_snk.op_current);

 if (pdo_src->fixed_src.max_current >= compare_temp)

 {

 /* Added new check for absolute maximum current. */

 if (pdo_src->fixed_src.max_current <= MY_MAX_SNK_CURRENT)

 {

 op_cur_power[port] = pdo_snk->fixed_snk.op_current;

 out = true;

 }

 }

 }

 break;

 ...

}

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 123

/* Function to evaluate source PDO message. */

void my_eval_src_cap (uint8_t port, const pd_packet_t* src_cap, app_resp_cbk_t

app_resp_handler)

{

 ...

 for(snk_pdo_index = 0u; snk_pdo_index < dpm->cur_snk_pdo_count;

snk_pdo_index++)

{

for(src_pdo_index = 0u; src_pdo_index < num_src_pdo; src_pdo_index++)

{

 if(my_is_src_acceptable_snk(port, (pd_do_t*)(&src_cap->dat[src_pdo_index]),

snk_pdo_index))

 {

 ...

 }

 ...

}

}

}

Refer to the notebook project source files (main.c) for more examples of the solution level code.

6.3.8 Alternate Mode Handling

Support for USB-PD alternate modes is a critical part of the CCG firmware functionality. Support for the

DisplayPort alternate mode is pre-built into the Notebook and dongle applications. Users can add additional

alternate mode support to the firmware. The procedure to add additional alternate mode handler to the firmware

includes two steps:

1. Implementing the handlers for the alternate modes. This includes code that will discover UFP capabilities and

handle attention messages in a DFP role, and/or code that will receive and handle alternate mode requests as

an UFP.

2. Registering the alternate mode handlers with the manager.

6.3.8.1 Implementing the Alternate Mode Handlers

The CCG firmware stack provides a generic alternate mode manager which holds information about the supported

alternate modes. This manager will invoke the handler functions specific to the alternate modes registered in the

firmware application.

When CCG is a DFP, the alternate mode manager will discover whether the connected UFP supports any alternate

modes for which handlers have been registered; and then call the associated handler functions.

When CCG is a UFP, the alternate mode manager will check whether incoming VDMs correspond to any

registered alternate modes; and then call the associated handler functions.

6.3.8.1.1 Alternate Mode Data Structure

The alt_mode_info_t structure serves as the interface between the alternate mode manager and the handlers for

each alternate mode. An array of such structures is maintained by the alternate mode manager. This structure

incorporates the fields shown in Table 40.

Table 40: List of alternate mode information structure members

Field Type Description

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 124

mode_state enum alt_mode_state_t State of the alternate mode. Can be one of DISABLED,

IDLE, INIT, SEND_CMD, WAIT_FOR_RESP, FAIL or

EXIT.

sop_state[] Array of enum

alt_mode_state_t

Alternate mode state corresponding to each PD packet

type (SOP, SOP’ and SOP’’). This is useful in cases where

the alternate mode requires any EMCA cables to support

the mode as well.

vdo_max_numb Unsigned char Maximum number of VDOs that the alternate mode

handler can handler.

obj_pos uint8_t Alternate mode object position of port partner.

cbl_obj_pos uint8_t Alternate mode object position of the cable.

alt_mode_id Unsigned char The alternate mode id for this mode.

vdm_header pd_do_t Holds the VDM header for the received messages.

vdo Array of pd_do_t pointers Pointers to buffers where alt. mode VDOs with various

packet types should be stored. The storage is provided by

the alternate mode handler and used by the manager.

vdo_numb Array of uint8_t Current number of VDOs used for processing in VDO

buffers. Array of maximum number of VDOs for each

VDM message type: SOP, SOP', SOP"

cbk Function pointer Callback used by alternate mode manager to invoke the

specific alternate mode handler.

is_active bool Indicates if alternate mode is active

custom_att_obj_pos bool Object position field in Att VDM used by alt mode as

custom object position

uvdm_supp bool Flag to indicate if alt mode support unstructured VDMs.

set_mux_isolate bool Flag to indicate if MUX should be set to safe state while

ENTER/EXIT alt mode is being processed.

6.3.8.1.2 Alternate Mode Handling Flow

The alternate mode handler uses the mode state to communicate (receive/send VDM) with alternate mode

manager.

- IDLE state is responsible for received VDM processing;

- WAIT_FOR_RESP state is responsible for received VDM response processing;

- FAIL state is responsible for the failed VDM processing;

- INIT state is responsible for initialization of the alt mode (DFP only);

- EXIT state is responsible for de-initialization/exit of the alt mode (DFP only);

- SEND state should be set by alt mode to inform alt modes manager that a VDM packet is ready and should be

sent to the port partner.

The alternate mode handler can use internal states to process the received VDM or VDM responses. These states

are not used by the alternate mode manager.

6.3.8.1.2.1 DFP Handling

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 125

When alternate mode is DFP when main DFP state machine operates with five states:

1. The INIT state is used to initiate alternate mode handling. This state uses in two cases:

a. When DFP alternate mode registrations is successful and we need to initiate alternate mode handling.

b. When Alt modes manager initiates asynchronous entry of the alternate mode.

c. During initialization next steps should be done:

i. Set sop_state array variables as ALT_MODE_STATE_SEND in the dependence if SOP/SOP’/SOP”

VDMs should be send while entering the mode

ii. Save pointers to the VDO buffer in the info structure

iii. Assign enter mode VDOs if needed

iv. Save alt mode DFP state machine function in the info structure

v. Save App command handler function in the info structure

vi. Set alternate mode state as enter

vii. Additional initialization code as required by the alternate mode.

2. IDLE state is used to analyze received VDM related to the alt mode. When a VDM is received, the following

steps should be completed:

a. Get the received command from VDM header

b. Run custom analysis of the received VDM

c. If a response VDM should be sent after analysis, then change the internal alternate mode state in

compliance with the specific command number, fill the VDO buffer and set alternate mode state to the

SEND state.

3. WAIT_FOR_RESP state is used to process/analyze received VDM response. When VDM response is

received, next steps should be done:

a. Get internal alternate mode depending on command from VDM header

b. Set alternate mode state to IDLE

c. Analyze the received VDM response

d. If another VDM should be sent based on the received response, then change the internal alternate mode

state in compliance with the specific command number, fill the VDO buffer and set alternate mode state to

the SEND state.

4. FAIL state is used to make decision when sent VDM was failed (e.g. NAKed response, Good CRC was not

received etc.)

5. EXIT state is used when the alternate mode manager initiates asynchronous exit of the alternate mode. In this

case, alternate mode should send exit mode command to the port partner.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 126

Figure 43: Alternate mode handler state machine for DFP

Get Alternate Mode
State

INIT State IDLE State
WAIT FOR RESPONSE

State
FAIL StateEXIT State

Fill alt mode info
structure

Get Command
(state)

ENTER CMD EXIT CMD
OTHER

COMMANDS

Selected command
analysis/processing

VDM to be sent?

yes

Set Alt Mode State
to SEND

Set Alt Mode
State to IDLE

Form VDM header

yes

Get Command
(state)

ATTENTION
CMD

ENTER CMD EXIT CMD

Get Command
(state)

Set Alt mode state
to EXIT

Set alt mode
command EXIT

6.3.8.1.2.2 UFP Handling

Alternate mode handling when CCG is UFP operates in one of two states:

1. IDLE state is used to analyze received VDMs related to the alternate mode. When a VDM is received, the

following should be done:

a. Analyze the VDM based on the alternate mode rules.

b. If the VDM received is valid and an ACK response is to be sent, then set alternate mode state to

IDLE.

c. If an alternate mode specific response is to be returned, fill the vdo array with data to be sent and set

the alternate mode state to SEND.

2. WAIT_FOR_RESP state is used to process/analyze received VDM responses. When a VDM response is

received, the following steps should be performed:

a. Get internal alternate mode depending on command from VDM header

b. Set alternate mode state to IDLE

c. Analyze the response received

d. If another VDM should be sent after analysis (e.g. attention), then change the internal alternate mode

state in compliance with the specific command number, fill the VDO buffer and alternate mode state

to the SEND state.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 127

Figure 44: Alternate mode handler state machine for UFP

Get Alternate Mode State

IDLE State

ENTER CMD
Mode specific

command
EXIT CMD

WAIT FOR RESPONSE
State

UNKNOWN
CMD

Get mode state (received
command)

Get received command
response

Set Alt Mode IDLE
STATE

Analyze command

Selected
command
analysis/

processing

Is command ACKed?

Does response
contain VDOs?

Assign VDO

Set Alt Mode EXIT
STATE

Set Alt Mode FAIL
STATE

yes

yes

no

no

6.3.8.2 Alternate modes configuration

Any project that uses at least one Alternate mode should have:

· An alt_modes_config.h file that holds the info to register Alternate mode in the Alternate mode’s
manager.

· Base alternate modes section in the configuration table. This section holds the information about
Alternate modes (SVID, priority (entry queue) of Alternate modes, compatibility with other Alternate
modes, DFP/UFP Alternate modes enable/disable masks) are supported by CCG.

6.3.8.2.1 alt_modes_config.h file structure

The table below (example) represents the supported Alternate modes:

#if ((DFP_ALT_MODE_SUPP) || (UFP_ALT_MODE_SUPP))
reg_am_t reg_alt_mode [] =

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 128

{
#if ((DP_DFP_SUPP) || (DP_UFP_SUPP))

{DP_SVID, reg_dp_modes},
#endif /* ((DP_DFP_SUPP) || (DP_UFP_SUPP)) */

#if ((TBT_DFP_SUPP) || (TBT_UFP_SUPP))

{INTEL_VID, reg_intel_modes},
#endif /* ((TBT_DFP_SUPP) || (TBT_UFP_SUPP)) */
};
Structures about the hold info about Alternate mode SVID and the pointer to the function to register Alternate
mode in the Alternate mode’s manager.

6.3.8.2.2 Alternate modes configuration

To configure alternate modes, some configurations should be provided in configuration (see Table 1: List of

Configuration parameters for Host Applications).

To add alternate mode in configuration table – go to Base Alternate Modes section.

Figure 45: Base Alternate Modes Settings Example

For example in Figure 45, there the list of 3 alternate modes Alternate mode 0, Alternate mode 1, Alternate mode

2. These 3 alternate modes correspond to 3 different alternate modes which already added in the FW.

SVID#0 in configuration corresponds to base alternate mode SVID.

Supported in DFP and Supported in UFP checkboxes are used to enable SVID#0 alternate mode processing

while CCG is DFP and UFP data role.

If SVID#0 alternate mode could be run with simultaneously with another alternate modes (SVID) SVID#1,

SVID#2…SVID#7 could be added. In case if SVID#0 alternate mode could not run with another alternate mode

fill just SVID#0 field.

Note: Any alternate modes added to the config table should have appropriate handler files in the firmware

sources.

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 129

7. Revision History

7.1 Document Revision History

Cypress EZ-PD™ CCGx Host SDK User Guide, Doc. No. 002-24327 Rev. *D 130

Document Title: Cypress EZ-PD™ CCGx Host SDK User Guide

Document Number: 002-24327

Revision Issue Date Origin of

Change

Description of Change

** 29/June/2018 KYS Initial release

*A 20/December/2018 KYS Updates for CCGx Host SDK Revision 3.3.0

Section 1.2: Updated list of Type-C controller families.

Section 1.3: Updated SDK feature list.

Section 1.3.1: Updated directory structure and description.

Section 3.1: Added instruction for updating PSoC Creator device packs.

Section 3.2: Updated list of reference projects.

Section 3.3: Added complete list of configuration parameters.

Section 4.5: Added section on CYPD6125-40LQXI_notebook reference

project.

Section 4.6: Added section on CYPD5126-40LQXI_notebook reference

project.

*B 29/April/2019 SIMN Updates for CCGx Host SDK Revision 3.3.1

Section 1.2: Updated list of Type-C controller families.

Section 1.3: Updated SDK feature list.

Section 1.3.1: Updated directory structure and description.

Section 3.2.2.1: Added new section describing the process of compiling

the projects with MDK toolchain.

Section 4.5: Added section on CYPD6126-96BZXI_notebook reference

project.

*C 12/June/2019 KYS Section 2.2.1: Updated version of PSoC Creator required by the SDK.

Section 3.1: Removed section describing procedure to obtain new device

updates.

Section 3.2: Removed note stating that CCG3 firmware is in maintenance

mode as these projects have been updated as part of this release.

Section 3.2.2: Added new steps describing how to resolve build errors

due to missing PSoC Creator components.

*D 10/July/2020 KYS Updates for CCGx Host SDK Revision 3.4

Section 1.3: Updated SDK directory structure.

Section 2.2: Updated list of tool dependencies.

Section 4.5: Added section on CCG6DF and CCG6SF projects.

Section 5.4: Added flash map information for CCG6DF and CCG6SF.

Section 5.5: Added bootloader flow for CCG6DF and CCG6SF

Section 5.6: Updated firmware flow to show newly added tasks.

