. oL

_%E CYPRESS

Copyrights

Embedded in Tomorrow

M

Ila

—
——
—
.
—. T
———
———————
——

—

¥ CYPRESS

Embedded in Tomorrow™

Cypress EZ-PD™ CCGx SDK User Guide
Revision 3.0.0

Doc. No. 002-12541 Rev. *A

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone (USA): 800.858.1810
Phone (Intl): 408.943.2600
WWW.Cypress.com

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

http://www.cypress.com/

Embeaded nTomorow” Copyrights

© Cypress Semiconductor Corporation, 2016. This document is the property of Cypress Semiconductor Corporation and its
subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced
in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically
stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If
the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress
governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license
(without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form,
to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization,
and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers
and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are
infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is
prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without
further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described
in this document. Any information provided in this document, including any sample design information or programming code,
is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and
test the functionality and safety of any application made of this information and any resulting product. Cypress products are
not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of
weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems
(including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other
uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”).
A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause
the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you
shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses
of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM,
and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more
complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their
respective owners.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

£ CYPRESS

Embedded in Tomorrow

Embedded in Tomorrow”

1. L Yo 11T o) o T 4
1.1 USB Type-C and POWET DEIIVETY..........uuiiieiiiiiiiie ettt eeeeeeeeeeeeeneees 4

1.2 EZ-PD™ Type-C CONLIOIEIS. .. .ceiiiiiiiiiie e e iiiiie e setitie e e e st e e e e et e e e e s sntteeeeeeeeeeeeeeeeeeeeees 4

1.3 (O101C) S] B | RO UOUOPUPPPPRRTT 4

2, 8510 Q[153 = 1] = 1) o R 8
21 ST Q1) =1 = 1T o SR 8

2.2 ST (G I T ¢= o) - SR 8

2.3 [LoTol I B I=ToT=T g o =T a o[- SR 8

24 Hardware DEPENAENCIES.uuuuiiiiie it e e e e e e e e e e aa e aees 9

3. Getting Started With CCGX.......ciiiiiicriirircccrr e rrrssssrre s rss s e s s sssnr e s s s s s e e s s nr e e e s e s nn s s s nnnnnnn 10
3.1 Using the Reference ProjECES.........ooii it 10

3.2 Updating CCGX Configuration............cuuiiiiiiiiiiei it s s 18

4, Customizing the Firmware Application..........ccccciieeccemmmrnnscscrr e 31
4.1 SOIULION SEIUCIUME.eeiiii it e e st e e e e et bae e e e aaaaeees 31

4.2 (0107 €7 o) (=Y oo o S PSSR 33

4.3 (107 € 1C I\ o) (=Y o To o S5 SPURSRURRPRPPP 39

4.4 CCG3 Type C to DP or HDMI/DVI/VGA DONGIE......ccccuviiieeeiiiiiieee e eeieeee e eeeeeeeeeeeeeeeeeees 44

4.5 CCG3 POWET AAPTET....ccoiiiiiieie et e e e e e e e e e e e e e ea e e e aaeeeaas 47

4.6 CCG3 Charge-Through DONGIE.........coiiiiiiiiiie e e e e e 51

4.7 USB-PD Specification ReVISIONS...........cccccuuiiiiiiiiiiieeeee et 55

5. Firmware ArchiteCture...... ... s 56
5.1 FIrmware BIOCKS.cooieee et e e e e e e e e e e eeeaas 56

5.2 SDK USAGE MOEL......ciiiiiiiiiiie ittt et e e e et e e e s et e e e e e nnnbeeaeeaaaaeees 57

5.3 Firmware VErsiONINgG........ooooii oot e e e e e e e s 58

54 FIash MemOry Map........cceoiiiiiiaie et a e e e e e e 60

5.5 1= ToTo] 1o =T [T PP 60

5.6 FIirmware OPeration...........ooiii it e e e e e e e e e 61

6. FIrMWare APIS.... ..o s s s e s e e e e mmn i n e 63
6.1 F Y o IS0 001 4= R PUPPPRPPPN 63

6.2 AP USage EXamPIES.ottt 76

6.3 Alternate Mode Handling...........oooiiiiiii e 86
ReVISION HISTOIY...... e s e mm s s e e e s e e e e e s s n e e e 91
Document ReVISION HISTOMY.........uuuiiiiiiiiiiiiee et e e e e e e e e e e e e es 91

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Embedded in Tomorrow

1. Introduction

=
CYPRESS

Embedded in Tomorrow™

1.1 USB Type-C and Power Delivery

USB Type-C is the new USB-IF standard that solves several challenges faced by today's Type-A and Type-B cables and
connectors. USB Type-C uses a slimmer connector (measuring only 2.4 mm in height) to enable increasing miniaturization of
consumer and industrial products. The USB Type-C standard is gaining rapid support by enabling small form-factor, easy-to-
use connectors, and cables that can transmit multiple protocols. In addition, it offers power delivery up to 100 W — a
significant improvement over the 7.5 W for previous standards.

1.1.1 USB Type-C Highlights

® New reversible connector measuring only 2.4 mm in height.

® Compliant with USB Power Delivery Specification, providing up to 100 W.

" Double the bandwidth of USB 3.0, increasing to 10 Gbps with SuperSpeedPlus USB 3.1.

= Combines multiple protocols in a single cable, including DisplayPort™, PCle®, or Thunderbolt™.

1.2 EZ-PD™ Type-C Controllers
Cypress offers the EZ-PD line of Type-C controllers, which currently include four product families:

® EZ-PD™ CCGH1: Industry’s First Programmable Type-C Port Controller

" EZ-PD™ CCG2: Industry’s Smallest Programmable Type-C Port Controller
® EZ-PD™ CCG3: Industry’s Most Integrated Type-C Port Controller

® EZ-PD™ CCG4: Industry’s First Dual-Port Type-C Port Controller

Visit the Cypress Type-C Controller web page for more details on these product families and a feature comparison.

1.3 CCGx SDK

The CCGx Software Development Kit (SDK) is a software solution that allows users to harness the capabilities of the CCGx
Type-C controllers.

This version of the CCGx SDK supports use of the CCG3 and CCG4 parts. The following applications are supported by the
SDK:

® CCG3 and CCG4 based Dual Role solutions such as PD port controllers for notebooks and desktops.

® CCG3 based power adapter port controller solution.

® CCG3 based Display Port (DP) Dongle port controller solution.

® CCG3 based Charge through Dongle (CTD) port controller solution.

The SDK provides a firmware stack compatible with Type-C and USB-PD specifications, along with the necessary drivers
and software interfaces required to implement applications using the CCG3 and CCG4 controllers.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

http://www.cypress.com/products/usb-type-c-and-power-delivery
http://www.cypress.com/products/ez-pd-ccg4-two-port-usb-type-c-controller-power-delivery
http://www.cypress.com/products/ez-pd-ccg3-type-c-port-controller-pd
http://www.cypress.com/products/ez-pd-ccg2-type-c-cable-controller
http://www.cypress.com/products/ez-pd-ccg1-type-c-port-controller

Embedded in Tomorrow

The key features for CCGx notebook port controller solution are:

Supports USB-PD protocol based on the PD 3.0 specification for CCG3 (CYPD3125-40LQXI) and CCG4PD3
(CYPD4126-40LQXI and CYPD4226-40LQXI) parts.

Supports USB-PD protocol based on the PD 2.0 specification for CCG4PD2 parts (CYPD4125-40LQXI and
CYPDA4225-40LQXI).

Supports integrated Rp, Rd resistors on CC1/2 pins.

Supports dead battery termination.

Integrated system-level ESD protection for exposed pins.

Integrated bootloader to support firmware update over I°C.

Over-Voltage Protection (OVP) and Over-Current Protection (OCP). Only CCG3 based solution has internal OCP
support.

The key features for CCG3 power adapter port controller solution are:

USB-PD Protocol as per PD 2.0 specification.

USB-PD power contract negotiation as provider.

PFET/NFET selection for producer FETs based on status of GPIO 7.

Capability of in-system firmware upgrade through the CC in UFP mode.

Twin firmware images to allow continued system functionality in case of flashing firmware.
Over-Voltage Protection (OVP) and Over-Current Protection (OCP).

The key features for CCG3 Display Port Dongle port controller solution are:

USB-PD Protocol as per PD 2.0 specification.

USB-PD power contract negotiation as consumer.

Ability to function as Type-C to DP (4-Lane) or Type-C to HDMI/VGA/DVI (4-Lane) based on state of GPIO pin 23.
Capability of in-system firmware upgrade over USB (HID Class) in firmware and bootloader mode.

Over-Voltage Protection (OVP).

Internal bill-board device enumeration.

Dual firmware images to allow continued system functionality in case of flashing firmware.

The key features for CCG3 Charge Through Dongle port controller solution are:

USB-PD Protocol as per PD 3.0 specification.

USB-PD power contract negotiation as dual role port.

Ability to function as Type-C to HDMI/VGA/DVI (2-Lane) Dongle.

Capability to be producer when a power adapter is attached to down-stream CCG2 port controller.
Capability of in-system firmware upgrade over USB (HID Class) in firmware and bootloader mode.
Internal bill-board device enumeration.

Dual firmware images to allow continued system functionality in case of flashing firmware.
Capability of in-system firmware upgrade of the CCG2 port controller via the USB interface.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

—— ¢ CYPRESS

Embedded in Tomorrow™

The CCGx SDK consists of several basic components as shown in Figure 1.

Figure 1: CCGx SDK Components

PD stack and HPI in pre -compiled library form
Firmware sources for other blocks
Reference Application

Source Code

¢ Release Notes
Documentation e SDK User Guide
¢ API Reference Guide (CHM and PDF)

Firmware Binaries e HEX and CYACD files for Notebook Application

The SDK also includes reference projects implementing standard Type-C applications and documentation that guides the
user in customizing existing applications or creating new applications.

SDK Directory Structure

At the top level, the following folders are present:

® Documentation: The Documentation folder contains the SDK documentation including release notes, user guide, and
API reference guide.

® Firmware: The Firmware folder contains the firmware stack sources, reference projects, and pre-built firmware binaries.
o binaries:

e Pre-built CCG3 firmware binary for the CYPD3120-40LQXI part that matches the reference design
documented in the CCG3 datasheet.

e Pre-built firmware binaries for the CYPD3123-40LQXI part that control the upstream port of the Charge-
Through Dongle reference application.

e Pre-built CCG3 firmware binary for the CYPD3125-40LQXI part that matches the hardware design of the
CY4531 Kkit.

e Pre-built CCG3 firmware binary for the CYPD3135-40LQXI part that matches the reference design
documented in the CCG3 datasheet.

e Pre-built CCG4 firmware binaries for the CYPD4125-40LQXI, CYPD4126-40LQXI, CYPD4225-40LQXI and
CYPDA4226-40LQXI parts that matches the hardware design of the CY4541 kit.

o projects: The projects folder contains the sources and PSoC Creator workspaces for the port controller designs
based on CYPD3120-40LQXI, CYPD3123-40LQXI, CYPD3125-40LQXI, CYPD3135-40LQXI, CYPD4125-40LQXI
CYPD4225-40LQXI, CYPD4126-40LQXI and CYPD4226-40LQXI.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

http://www.cypress.com/documentation/development-kitsboards/cy4541-ez-pd-ccg4-evaluation-kit?source=search&cat=software_tools
http://www.cypress.com/ccg3datasheet
http://www.cypress.com/documentation/development-kitsboards/cy4531-ez-pd-ccg3-evaluation-kit?source=search&cat=software_tools
http://www.cypress.com/ccg3datasheet

Embedded in Tomorrow

o lib: The lib folder contains the USB-PD stack and Host Processor Interface (HPI) module in a pre-compiled library
format.

NOTE: This directory is made available for reference. Each reference project has a copy of the relevant libraries
added to it locally.

o src: The src folder contains the sources for the CCGx firmware stack organized by the firmware module. Sources

are provided for all modules except the core USB-PD stack and HPI. This directory is made available for reference.
Each reference project has a copy of the src directory is added to it locally.

NOTE: This directory is made available for reference. Each reference project has a copy of the src directory added
to it locally.

Figure 2 shows the installed directory structure of the CCGx SDK, along with descriptions for all of the important folders.

Figure 2:CCGx SDK Directory Structure

EZ-PD CCGX SDK

CCG2 CCG2 SDK Directory
CCG3-CCG4 CCG3 and CCG4 SDK Directory
Documentation Documentation: User guide, API guide etc.
Firmware
binaries Pre-built firmware binaries
CYPD2122-24L0OXI_ctd ds Binary for CYPD2122-24LQXI CTD downstream port controller
——CYPD3120-40LQOXI dp_dongle Binary for CYPD3120-40LQXI DP dongle port controller
——CYPD3123-40LOXI ctd us Binary for CYPD3123-40LQXI CTD upstream port controller
——CYPD3125-40LQXI notebook Binary for CYPD3125-40LQXI notebook port controller
——CYPD3135-40LQOXI power adapter Binary for CYPD3135-40LQOXI power adapter port controller
——CYPD4125-40LQOXI notebook Binary for CYPD4125-40LQOXI notebook port controller
——CYPD4126-40LQXI notebook Binary for CYPD4126-40LQXI notebook port controller
——CYPD4225-40LQXI_notebook Binary for CYPD4225-40LQXI notebook port controller
——CYPD4226-40LQOXI_notebook Binary for CYPD4226-40LQOXI notebook port controller
—1ib PD stack and HPI libraries (Reference only)
ccg3 Libraries for CYPD31xx-40LQXI
ccg4 dualport Libraries for CYPD42x5-40LQXTI
ccg4_singleport Libraries for CYPD41x5-40LQXI
ccg4pd3_dualport Libraries for CYPD42x6-40LQXI
ccg4pd3_singleport Libraries for CYPD41x6-40LQXI
——projects Reference Projects
CYPD3120-40LOXI dp dongle DP dongle project for CYPD3120-40LQXI part
——CYPD3123-40LOXI ctd us CTD upstream project for CYPD3123-40LQXI part
——CYPD3125-40LQXI_ notebook Notebook project for CYPD3125-40LQXI part
——CYPD3135-440LQOXI power adapter Power adapter project for CYPD3135-40LQXI part
——CYPD4125-40LQXI notebook Notebook project for CYPD4125-40LQXI part
——CYPD4126-40LQXI notebook Notebook project for CYPD4126-40LQXI part
——CYPD4225-40LOXI_notebook Notebook project for CYPD4225-40LQXI part
——CYPD4226-40LQOXI notebook Notebook project for CYPD4226-40LQXI part
src Firmware Stack Sources (Reference only)
app Application layer
ar slave Alpine Ridge I2C slave interface
—hpiss HPI protocol headers
—pd_common PD stack headers
—pd hal PD block low level drivers
scb Serial communication block driver
system Low level drivers, firmware update, timer
usb USB drivers (CCG3 only)

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Embedded in Tomorrow

2. SDK Installation

e

==# CYPRESS

Embedded in Tomorrow”

2.1 SDK Installation

Once installed, the directory structure will be as shown in Figure 2Error: Reference source not found.

2.1.1 Copy the Firmware files

The firmware sources and reference projects are installed Read-Only under the Windows “Program Files” folder by default.
Compiling the projects while they are located in “Program Files” may fail if User Account Control (UAC) is activated in the
system. Also, it is desirable to leave the original source files untouched in case you wish to revert to a clean copy to undo
any source changes you may have made.

PSoC Creator allows creating copies of the reference projects and workspaces via link in Start Page or using Code
Examples Dialog. Refer to Section 3.1 for more details.

You can also make a copy of all the files under the “Firmware” folder, to create a working copy that you can modify. Make
sure that the copied files are not read-only.

2.2 SDK Limitations

1. The CYPD3120-40LQXI_dp_dongle, CYPD3123-40LQXI_ctd_us and CYPD3135-40LQXI_power_adapter projects
provided for CCG3 are firmware only projects. There are no hardware reference designs with schematic and BOM
for these applications available yet for end customers. The pin assignments used in the CCG3 devices for these
example projects closely match the reference application diagrams in the CCG3 datasheet. Cypress is working on
making reference designs with schematic and BOM for these example projects available in the future.

2. CYPD3123-40LQXI parts are not yet available and so CYPD3120-40LQXI parts can be used for the same. Please
note that the boot-loader is different for the project and shall require firmware download via SWD before USB
flashing can be enabled.

3. CYPD4126-40LQXI and CYPD4226-40LQXI parts are pin compatible with CYPD4125-40LQXI and CYPD4225-
40LQXI respectively and CY4541 kit (with the silicon replaced) can be used for evaluation.

2.3 Tool Dependencies

2.3.1 PSoC Creator

Cypress’s Type-C controllers are based on Cypress’s PSoC® 4 programmable system-on-chip architecture, which includes
programmable analog and digital blocks, an ARM® Cortex®-MO0 core, and internal flash memory.

The PSoC Creator IDE is used for configuring the CCG3 and CCG4 devices, to develop and compile the firmware
applications and optionally to program the devices using SWD.

This version of the SDK requires PSoC Creator 3.3 DP1 (build 9674) or higher.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

http://www.cypress.com/documentation/development-kitsboards/cy4541-ez-pd-ccg4-evaluation-kit?source=search&cat=software_tools
http://www.cypress.com/ccg3datasheet

Embedded in Tomorrow

This version of PSoC Creator can be installed and used on a computer along with previous versions of PSoC Creator.

The PSoC Creator release includes the GNU ARM compiler tools required to compile the CCGx firmware applications.

2.3.2 EZ-PD Configuration Utility

The CCGx devices are shipped with a pre-programmed bootloader that allows the firmware on the device to be updated
through an I°C interface, the CC channel or the USB interface, which is part of the Type-C interface.

The EZ-PD Configuration Utility is a Windows-based application, which can be used to program the CCGx devices on
Cypress-provided kits (DVKs and EVKs) through the bootloader interface.

The EZ-PD Configuration Utility relies on a Cypress USB controller, which can connect to the CCGx device through I12C for
programming. Therefore, it will only work with the Cypress-provided kits or other hardware, which includes the Cypress USB
— I2C bridge devices.

The EZ-PD Configuration Utility is also used for creating custom configurations for the CCGx firmware application, which
includes aspects such as the supported power profiles, protection schemes, and so on.

This version of the CCGx SDK requires the latest EZ-PD Configuration Utility Beta version, which includes support for
programming and configuring the CCG3 and CCG4 devices.

2.4 Hardware Dependencies

Cypress provides a set of kits, which can be used to test and evaluate the SDK functionality.

® The CY4531 EZ-PD™ CCG3 Evaluation Kit can be used to evaluate this version of the SDK with the CCG3 devices
® The CY4541 EZ-PD™ CCG4 Evaluation Kit can be used to evaluate this version of the SDK with the CCG4
devices.

® Schematics and hardware design guidelines for the Charge-Through Dongle application will be released soon by
Cypress.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

http://www.cypress.com/documentation/development-kitsboards/cy4541-ez-pd-ccg4-evaluation-kit
http://www.cypress.com/documentation/development-kitsboards/cy4531-ez-pd-ccg3-evaluation-kit

3. Getting Started with CCGx

=
CYPRESS

Embedded in Tomorrow™

3.1 Using the Reference Projects

As Error: Reference source not foundFigure 1Figure 2shows, the SDK includes reference projects for the target applications
that can be used to obtain a jump-start in the process of developing a CCGx application.

This version of SDK provides the following reference projects for the following applications:

1. CYPD3120-40LQXI_dp_dongle: This project implements a single Type-C port controller for DP dongle application
using the CYPD3120-40LQXI device. This project supports PD 2.0 specification.

2. CYPD3123-40LQXI_ctd_us: This project implements the upstream PD port controller for a PD 3.0 enabled Charge-
Through Dongle application.

3. CYPD3125-40LQXI_notebook: This project implements a single Type-C port controller for notebooks using the
CYPD3125-40LQXI device. This project supports PD 3.0 specification.

4. CYPD3135-40LQXI_power_adapter: This project implements a single Type-C port controller for power adapters
using the CYPD3135-40LQXI device. This project supports PD 2.0 specification.

5. CYPD4125-40LQXI_notebook: This project implements a single Type-C port controller for notebooks using the
CYPD4125-40LQXI device. This device supports PD 2.0 specification. The implementation supports all of the
features of the dual-port project with only one difference - the target device supports only a single port.

6. CYPD4225-40LQXI_notebook: This project implements a dual Type-C port controller for notebooks using the
CYPD4225-40LQXI device. This device supports PD 2.0 specification. Each of the ports on the device can be
configured and function independently with full capabilities.

7. CYPDA4126-40LQXI_notebook: This project implements a single Type-C port controller for notebooks using the
CYPD4126-40LQXI device. This device is similar to CYPD4125-40LQXI with PD 3.0 specification support.

8. CYPD4226-40LQXI_notebook: This project implements a dual Type-C port controller for notebooks using the
CYPD4225-40LQXI device. This device is similar to CYPD4125-40LQXI with PD 3.0 specification support.

9. Each reference project is provided in the form of a PSoC Creator workspace. The workspace can be opened using
the PSoC Creator and the projects can be customized and compiled.

Note: These projects are designed to work with specific devices mentioned above. Changing the target part number using
Device Selector will cause the firmware build to fail.

3.1.1 Copying the Project with PSoC Creator

PSoC Creator allows SDK example projects to be copied to a different location without affecting the original installed files.
There are mainly two ways of doing this: using the Start Page to copy the workspaces and using the Code Examples.

From Start Page

The SDK example projects are listed under Kits->EZ-PD CCGx SDK on the Start Page. Click on the workspace name to
copy it. When copying the workspace, the complete workspace directory along with all the projects associated with the
workspace are copied to the selected destination location. PSoC Creator automatically opens the copied workspace after
completing the copy. Figure 3 shows the startup page for Creator.

Embeaded n fomorow” Getting Started with CCGx

Figure 3: PSoC Creator Startup Page

Eile Edit ‘iew Project Build Debug Tools MWindow Help

BNaGdd o & B X oAk M
e m:ﬁ‘l\’; f .'\ =

" Start Page | - 4bx @
— . @
= 0
/ Z i’ -;_ﬂ-‘i‘z—‘-—' . 5
PSoC® Creator =
Embedded in Tormanow” %

Examples and Kits

Find Code Evample ...
= Kits

= EZ-PD CCGx SDK
Ed] CvPD3120-40L01_dp_dongle.cyvrk.
E] CYPD 31 23-40L0H1_ctd_us.cywrk,
E] CvPD3125-40L0X1_notebook. cywrk
EJ] CvPD3135-40L0X1_pawer_adapter. ok,
Ed] CvPD 41 25-40LQH1_noteboak. eyl
Ed] CvPD 41 26-40LQHI_noteboak. eyl
E] CYPD4225-40L0XI_notebook. cywrk
EJ] CvPD4226-40L0XI_natebook. ok

m

Product Information

PSalC Creator
PSaC Programrmer
FSaolC 3

PSaC 4 .
PSalC BLP

FSaC 4 BLE

FRoC BLE i

Ready 0 Errars 0%arnings 0 Motes

Note: If Start Page is not open, it can be accessed via View->Other Windows->Start Page.

From Code Examples

PSoC Creator lists the SDK examples under the Code Examples Dialog. The dialog can be accessed via File->Code
Example ... or during new Project creation.

Figure 4 shows the example projects from Code Examples Dialog. The required Device Family can be selected to narrow
down the list of examples and the required project can be copied by clicking the Create Project button. When using Code
Examples Dialog to copy the project, the complete project directory and the selected project shall be copied. It should be
noted that the workspace and the files outside the project directory are not copied. All files required for the SDK examples
projects are under the project directory and so shall not have any impact.

Note: The noboot project shall not be present in the newly created workspace and shall require to be explicitly added to the
workspace. But, since the noboot project is under the example project directory, it is also copied when the example project
is created.

Create Project option also allows to create a new project based on existing example projects. Figure 5 shows how to create
a new Project based on example projects.

Note: When copying via Create Project option, a wrong device part number may get selected. In this case, the user is
expected to change the part number to correct one using Device Selector Dialog.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

CYPRESS
Embeaded n fomorow” Getting Started with CCGx

Figure 4: PSoC Creator Code Examples Dialog

Find Code Example

Py

Device family: | CCG4 v]

Filter by -

CYPD4125-40LQ¥_notebook
CYPD4126-40LQ¥_notebook

| niote s}

CYPD4226-40L QX notebook

Ducumentatiun]z Sample Code 4 P

s

[

S —
e —

T T -
EEEEEE LTI

" e ik

Ry ey

* ol e oty i i e ey =
i e]
s s e o e
—— -
e —

Create Project I [Cancel

Figure 5: PSoC Creator Create Project Dialog

Create Project - CYPD3120-40LQXIT

Select project template
Chooge a schematic termplate or start pour design with a kit or example project.

1101|| Code example
10| Chooze from our library of code examples.

Empty schematic
Create a full custom design by adding functionality from the comporent catalog.

< Back

” MNest >][e

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

12

Embedded in Tomorrow

Getting Started with CCGx

3.1.2 Compiling the Project with PSoC Creator

This section walks you through the procedure to open the reference projects and build them using PSoC Creator. The
CYPD4225-40LQXI project is used as an illustration in the following descriptions.

1. Navigate to the project folder using Windows Explorer. The project folder contents will look as shown in Figure 6.

2. The CYPD4225-40LQXI_notebook.cywrk file is the PSoC Creator workspace file that can be opened using the
PSoC Creator IDE. If you have installed multiple Creator versions, ensure that the appropriate PSoC Creator
version is used to open the workspace.

Figure 6: Contents of the Reference Project Folder

Mame

Bootloader
COFMan

lib
noboot,cydsn
sFC
TopDesign
cmigee.ld
crlgec_11d
crnlgec_2.0d
config.h
cyapicallbacks.h

|| CYPD3125-40LOX]_notebook. cydwer
&F CYPDIL25-40L0%]_notebook.cypri

e

3. Once you open the workspace, note that there are two projects:

a. CYPD4225-40LQXI_notebook.cydsn: This is the main firmware project for the application. This application is
designed to work on top of the bootloader pre-programmed on the CCG4 device. It also creates two copies of
the firmware binary that will be stored in different banks (regions) of the CCG4 device flash so that the system
can implement a fail-safe firmware upgrade mechanism. More details on this project are provided in later
sections.

b. noboot.cydsn: The main firmware project in CYPD4225-40LQXI_notebook.cydsn does not support runtime
debugging through the SWD interface. The noboot.cydsn is a debug-enabled version of the same firmware
application, which does not depend on the bootloader. As run-time debugging is only of interest to customers
who have access to the SWD interface on the CCG4 device, this firmware overwrites the complete device flash
and expects that the device will be programmed through SWD.

NOTE: If the project was copied using Code Examples, then only the main project shall be seen on the workspace. The
noboot.cydsn project can be added to the workspace using Add Existing Project option.

4. The CYPD4225-40LQXI_notebook.cydsn project is set as the default project for the workspace. Choose the Build
notebook menu option from the Build menu or the pop-up menu obtained by right-clicking on the project name.

5. Ensure that the compiler Toolchain is set to ARM GCC 4.9-2015-q1-update. This can be verified / modified in the
Build settings for the project. The Build Settings Dialog can be opened by right clicking the corresponding project.
Figure 7 shows the Build Settings Dialog.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

13

=

' CYPRESS
Embeaded n fomorow” Getting Started with CCGx

Figure 7: Project Build Settings Dialog

Build Settings P et

Configuration: [Debug [Active] = I
Toolchain: | ARM GCC 4.9-2015-q1-update - CortexhDd
=+ CvPDA1 25-40L0x] _noteboak, 4 Code Generation -
+ Code Generation Struct Return Method Systern Default

i +- Dehug Werbose Asm False
I - Customizer 4 General
| = ARM GCC 4.9-201 501 -upds Additional Include Directaries Sarchpd hal; Asrchapp: erehpd_ =
| + General Create Listing File True
| + - Azgembler Default Char Unsigrned Falze
| 22 Coripiler | Generate Debugging Information True
I +- Linker Freproceszor Definitions DEBEUG
| Strict Compilation Falze
| Warninn | ewel Hinh i
|

Additional Include Directories

Additional directories to add to the compiler's include paths; uze zemi-colon delimited
lit if mare than one.

-mcpli=cartex-mi -mthumb #fho-main - harehpd_hal | srehapp - ssrehpd_comman -

| harchaypztem - herehech -l herehpizs <L verchapphalt_mode | erchan_slave 4 harchush
- Acommor -l | Generated_SourcedPSolC4 A a -alh=${0utputDirk/$i CompileFile). st -g
-0 DEBUG w'all 2fermor -ffunction-zections -finline-functions -0 -flko -fat-bo-objects -
4 1 b | fro-strict-aliazing

oK || eeob || concel

Figure 8: Pop-up Window for Project Write Permissions

PSoC Creator Info scc.MO014 @

er PSoC Creator needs permission to perform the "Make Writable™ action. Do
you wish to allow this an the files: CNCCGx SDK 0.9.0
‘fwlprojects\CYPD4225-40L Qxlnotebook. cydsninotebook.cyprj

Show Details > Yes] l Mo

6. You may receive a pop-up window asking for permission to make the project file writeable, as shown in Figure 8.
Select Yes to allow the project build to go through. The complete build process may take about two to three
minutes. The output window at the bottom of the IDE will look as shown in Figure 9 at the end of the build process.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

=

' CYPRESS
Embeaded n fomorow” Getting Started with CCGx

Figure 9: Output Window after the Build is Complete

]

Show output from: All r =K

QOutput | Motice List

arm-none-eabi-ar.exe -rs .\CortexMO\ARM GCC 423\Debug\notebook l.a .\CortexMO\ARM GCC 493\Debug\cyfitter cfg l.o .\CortexMO\AR! »
arm-none-eabi-ar.exe: creating .\CortexMO\ARM GCC_493\Debugi\notebock 1.a

arm-none-eabi-gcc.exe -Wl,--start-group -o .\CortexMO\ARM GCC_493\Debugh\notebook 1.elf .\CortexMO\ARM GCC_493\Debug\dpm.o .\Co:
arm-none-eabi-ar.exe -rs .\CortexMO\ARM GCC_493\Debug\notebook 2.a .\CortexMO\ARM GCC_493\Debug\cyfitter_cfg_2.o .\CortexMO\AR
arm-none-eabi-ar.exe: creating .\CortexMO\ARM GCC_493\Debugi\notebock 2.a

arm-none-eabi-gcc.exe -Wl,--start-group -o .\CortexMO\ARM GCC_493\Debug\notebook 2.elf .\CortexMO\ARM GCC_ 493\Debug\dpm.o .\Co:
cyelftool.exe -B "C:\CCGx SDK 0.9.0\fw\projects\CYPD4225-40LQXI\notebook.cydsn\CortexM0\ARM GCC_493\Debug\notebook 1.elf" --fli
cyelftool.exe -B "C:\CCGx SDK 0.9.0\fw\projects\CY¥PD4225-40LQXI\notebook.cydsn\CortexM0\ARM GCC_493\Debug\notebook 2.elf" --fl:
cyelftool.exe -M "C:\CCGx SDK 0.9.0\fw\projects\CYPD4225-40LQXI\notebook.cydsn\CortexMO\ARM GCC_493\Debug\notebook 1.slf" "C:\(
cyelftool.exe -3 "C:N\CCGx 5D31 0.9.0\fw\projects\CYPD4225-40LQXI\notebook. cydsn\CortexM0O\ARM GCC_493\Debug\notebook_1l.elf"
Flash used: 59648 of 131072 bytes (45.5 %). Bootleoader: 5120 bytes. Application: 54016 bytes. Metadata: 512 bytes.

SRAM used: 7616 of 8192 bytes (93.0 %). S5tack: 2048 bytes. Heap: 0 bytes.

777777777777777 Build Succeeded: 02/25/2016 19:57:23 ———————————————

4 [m

T 3

7. Now, navigate to the project folder using Windows Explorer to locate the compiled firmware binaries. Navigate to

the CYPD4225-40LQXI_notebook.cydsn\CortexMO\ARM GCC 493\Debug folder for the output files. The
following three files are the most important output files generated by the build process:

a. CYPD4225-40LQXI_notebook.hex: This is an SWD programmable binary file in the Intel Hex format that
combines the bootloader as well as both copies of the notebook port controller firmware application.

b. CYPD4225-40LQXI_notebook_1.cyacd: This binary file contains the notebook firmware application to be
placed in the lower memory bank (region) of the CCG4 device. The format of the file is documented here. The
EZ-PD Configuration Utility accepts firmware binaries in the cyacd format and programs them to the CCG4
device using the I1°C slave interface provided by the bootloader (or firmware itself).

c. CYPD4225-40LQXI_notebook_2.cyacd: This binary file contains the notebook firmware application to be
placed in the upper memory bank of the CCG4 device.

Programming CCGx using the EZ-PD Configuration Utility

This section provides step-by-step instructions for updating the firmware with the EZ-PD Configuration Utility, using the
CY4541 kit for illustration. However, this procedure remains the similar for other supported CCGx device families. CCG3
Power adapter requires CC line programming and needs to be connected to the Type-C port via CY4541 kit, CY4531 kit.
CCG3 DP Dongle can be connected directly to the PC via Type-C port or via CY4541 kit or CY4531 kit. Refer to the Ez-PD
Configuration Utility User Manual for detailed instructions for all applications.

1.

Power up the CY4541 kit (the base board of the kit needs to be externally powered) and connect the CCG4
daughter board to the host computer using the USB Mini-B to A cable provided with the kit.

2. Wait for driver detection and binding for the USB-Serial controller on the CY4541 kit. The driver for this controller

Cypr

can be obtained by searching on Windows Update. Once the driver binding is successful, a “USB-Serial (Dual
Channel) Vendor 1” device will be listed under ‘Universal Serial Bus Controllers’ in the Device Manager window.
See Figure 10 for the expected device listing.

ess EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

15

http://www.cypress.com/documentation/software-and-drivers/ez-pd-configuration-utility
http://www.cypress.com/documentation/software-and-drivers/ez-pd-configuration-utility
http://www.cypress.com/documentation/development-kitsboards/cy4531-ez-pd-ccg3-evaluation-kit?source=search&cat=software_tools
http://www.cypress.com/documentation/development-kitsboards/cy4541-ez-pd-ccg4-evaluation-kit?source=search&cat=software_tools
http://www.cypress.com/documentation/development-kitsboards/cy4531-ez-pd-ccg3-evaluation-kit?source=search&cat=software_tools
http://www.cypress.com/documentation/development-kitsboards/cy4541-ez-pd-ccg4-evaluation-kit?source=search&cat=software_tools
http://www.cypress.com/documentation/development-kitsboards/cy4541-ez-pd-ccg4-evaluation-kit?source=search&cat=software_tools
http://www.cypress.com/knowledge-base-article/format-cyacd-file-relating-psoc-35-bootloaders

Embeaded n fomorow” Getting Started with CCGx

Figure 10: Device Manager View Showing USB-Serial Bridge Device

A Computer Management (Local a-£ Metwork adapters -
4 m System Tools || 1 G- £ Bluetooth Device (Personal Area Network)
> @ Task Scheduler -2 Bluetooth Device (RFCOMM Protocol TOI)
> 2] Event Viewer % Cisco AnyConnect Secure Mobility Client Virtual Miniport Adapter for Windows x4
> gl Shared Folders £ DW1530 Wireless-M WLAN Half-Mini Card
> d Local Users and Groups

: Intel(R) 82579LM Gigabit Network Connection

o @S‘:_\.' Performance 4|7 Other devices
i Device Manager || | e i Broadcom USH w/swipe sensor
a4 =5 Storage |1 e iy Mass Storage Controller
=f Disk Management || | e i@ Unknown device o
> :::;; Services and Applications - i Portable Devices

T Ports (COM & LPT)

>-D Processors

o T 5D hast adapters

b j Smart card readers

b -%| Sound, video and game controllers

.> »C— Storage controllers

b M| Systermn devices

a a Universal Serial Bus controllers

..... § Generic USB Hub

..... § Generic USB Hub

..... § Generic USB Hub

..... § Generic USB Hub

----- i Intel(R) 6 Series/C200 Series Chipset Family USB Enhanced Host Controller - 1C2D
----- i Intel(R) 6 Series/C200 Series Chipset Family USB Enhanced Host Controller - 1C26
..... i USB Composite Device

..... i USB Composite Device

..... i USB Composite Device

..... @ USB Root Hub

..... §_USB Root Hub

f_ i USB-5erial (Dual Channel) Vendor1 -)

..... U USB-5erial (Dual Channel) Vendor MFG

| I @ USB-Serial Adapter i

m

< | 1 |

3. If the automatic driver installation does not succeed, you can download and use the Cypress USB Serial Windows
Driver Installer. Refer to the USB-Serial Windows Driver Installation Guide document too.

4. Open the EZ-PD Configuration Utility GUI. If the device driver binding is successful, the GUI should report one
device connected on the lower border of the Ul as shown in Figure 11.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A 16

http://www.cypress.com/?docID=45724
http://www.cypress.com/documentation/software-and-drivers/usb-serial-software-development-kit
http://www.cypress.com/documentation/software-and-drivers/usb-serial-software-development-kit

CYPRESS
Embeaded n fomorow” Getting Started with CCGx

Figure 11: Configuration Utility Detecting the Connected CCG4 EVK

{3 E2-PD Configuration ity == Fon ===

File Took Help
BESs= BEO

Qo0 Fage

CYPRESS'S USB TYPE-C
SOLUTIONS

USE Type-Cis the new USE-IF standard that solves several challenges faced while usang today's Type-A and Type-B cabies and connectons. USE
Tupe-Cwies o sEmmer conmector - measusing ordy 2 Lmem in height - to sllow for incressing minsarusization of consumer and industeal products, The
USE Type.C standard is geining sapid suppert by enabling small form-factor, easy-to-use conmectors and cables with the ability fo fransmit multiple | =
peotocols and offer power delivery up to 100 W. Cypress offers the EZ-FD™ famdly of USE Type-C controllers with an integrated Type-C transceiver
and a programmatle ARME Conex®-2i0 core. These controBers help you bung Type-C comphant cabies, cables, noteboaks, tablets and monstons o
ket fastes. Moce information on these devices can be found here: hitp. 'www cypreis.; a0

The EZ-PD Confipismation Utility i o Windews application that allews userns 1o configure the parameters of a Type-C device implemented usang the
Cypress EZ-PD™ controllers. The iool also allows firwware updates io be flashed onto the controller

UsH Typs-L Mot Bridge
L] Cypress USB 1o | | Cypeesa Type-C
‘Serial Bridge | ™| OFP Coniroller

| [I

S8 Typs-C Dwvice

Cypreas Type-C
UFP Controlies

CC

Heg | Message
Wiaiking o dervice 1o anter PD Contrnct with port pavtnar

Ermor: Could ret establish PO comtmet v \
I | Seveka |

5. Go to Tools > Firmware Update. The utility detects and identifies the device at this stage. A firmware update dialog
appears at the end of this process (see Figure 12).

6. When you click on the Notebook node in the device tree, the Ul displays information about the CCGx device and
the current firmware running on it.

Figure 12: Firmware Update Dialog

3 Firmware Update @
Fimware path 1: C:\Program Files (<86]\Cypress\EZ-PD CCGx SDK\2.1\Fimware'binaries\CYPD422 [|
Firmware path 2: C]
Select target:

B Devices Part Number: CYPD4225-40LQX]
B USB-Serial [Dual Channel] (0) Device Family: CCG4
= NOTEBOOK Application Type: NOTEBOOK
PORT(O}DRP Running Fimware: FW:2 (10.0263)
PORT(1}DRP
Altemate Firmware: Invalid
¥ Refresh [Bootloader Flashing [Program] [Cancel]
Ready

7. Navigate to the folder containing the firmware binaries generated during the firmware build, and select the

CYPD4225-40LQXI_notebook_1.cyacd and CYPD4225-40LQXI_notebook_2.cyacd files in the two firmware path
options in the dialog.

Note: The firmware is designed such that notebook_1 image will allow notebook_2 to be updated and vice versa.
Selecting both files will allow the utility to update using the appropriate file based on the currently running firmware.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

17

Embedded n omorrow Getting Started with CCGx

8. On the CCGx device, it is possible to update the firmware while the device is in PD contract. Hence, the utility does
not automatically reset the device at the end of the firmware update sequence. You must do a manual reset or
power cycle to activate the newly programmed firmware.

9. After the device is reset, use either the Tools > Read from Device or Tools > Firmware Update option to bring up
a dialog that can show the current firmware version. If the firmware project from the SDK is used without any
changes, the new running firmware version should match the version of firmware downloaded, as shown in Figure
13. The running firmware can be FW1 or FW2 depending on the firmware version, which was running prior to the
update operation.

10. The CCGx bootloader is designed such that it loads the last programmed firmware binary (irrespective of the
firmware version). If desired, you can repeat steps 4 through 8 to update the firmware in the second bank too.

Figure 13: Firmware Versions after Update Operation

Read From Device IEI
Select target:
= Devices Part Number: CYPD4225-40L0XI
= |USB-Seral [Dual Channel] {0) Device Family: CCG4
= NOTEBOOK Application Type: NOTEBOOK
PORTID-DRP (Running Fimware: FW:2(1.0.0.263))
FORT{1}-DRP
Altemate Firmware: FW:1(0.0.0.183)
&3 Refresh] Bootloader Read Read ‘ [Cancel
Ready

3.2 Updating CCGx Configuration

The CCGx firmware design uses a configuration table, which specifies several parameters that control device functionality.
These parameters include:

® The VDM responses sent by the device for DISCOVER_ID, DISCOVER_SVID, and DISCOVER_MODE requests
when it is functioning as a UFP.

® The power profiles supported by the device as a provider and as a consumer.

® The various alternate mode configurations currently supported by CCGx as a DFP (only DisplayPort alternate mode
is supported currently).

" The port roles supported by the device (Source/Sink/Dual Role).

" Enable/disable flags and parameters that control the overvoltage and overcurrent protection schemes implemented
by CCGx.

These parameters are stored in a configuration table so that they can be updated/customized without updating the firmware.

Each copy of the CCGx notebook firmware (notebook_1 and notebook_2) contains its own embedded configuration table.
For safety reasons, the firmware does not update the current configuration. You can update the configuration for the
alternate image and then switch control to it, to run with the new configuration.

Configuration using the EZ-PD Configuration Utility

The utility provides an interactive GUI through which all of the contents of the configuration table can be updated.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A 18

CYPRESS
Embedded in Tomaron” Getting Started with CCGx

Figure 14: PD Port Configuration using EZ-PD Configuration Utility

3 EZ-PD Configuration Utility =l = =

Eile Tools Help

EseBED

Configuration
5 CCGx corfiguration L Parameters Value
Device Parameters N Port role Dual Role -
= Port 0 Default port role Source -
= Discover |dentity Cument level n -
Device IDs
SVID Corfiguration |s source battery connected No -
= PDO A Iz gink battery connected No -
= Source PDO 1 Sink USB suspend Ne M
Source PDO 0 Sink: USE communication Yes -
Source PDO 1
Source PDO 2 Rp - Rd toggle Tes T
Source PDO 2 Rp supported Diefault - 1.54 - 3A -
= Sink PDO L Is source extemally powered No -
ank FOOD Is sink extemally powered No -
Sink PDO 1
Sink PDO 2 Try source enable Yes -
Sink PDO 3 Cable discovery enable Yes =
Sink PDO 4 Dead battery enable Yes -
Error recovery enable Yes .
DP Mode Parameters
Power Protections DR _Swap response ACCEPT -
= Port 1 PR_Swap response ACCEPT -
= Discover ldentity - VCOMN_Swap response ACCEPT -
Help | Message
Device Connected: 1 [CCG4: Notebook(Type - Peripheral)|

Figure 14 shows a snapshot of the Ul screens used for configuring the CCGx notebook solution as an example. The entire
device configuration is completed by navigating through all of the nodes shown on the left side window of the UI.

Refer to the Configuration Utility User Manual for a description of the various configuration screens provided by the utility.
Each Ul screen also provides tool-tips that guide you through the process of defining the configuration.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

http://www.cypress.com/file/183686/download

Embedded in Tomorrow

Getting Started with CCGx

Table 1: List of CCG3/CCG4 Notebook Configuration Parameters

Configuration Parameter

Default Value

Change Allowed

Device Parameters

Manufacturer Info “Cypress” Can be changed. Valid only for PD 3.0
configurations.

Device IDs

USB host support Yes Not allowed

USB device support No Not allowed

Modal operation supported No This gets changed when an SVID is added

USB Vendor Id 0x04B4 Can be changed

Product type Peripheral Not allowed

USB-ID compliance test ID 0 Can be changed

USB Product ID F640 for CCG3 Can be changed

F6CO for CCG4

Bcd device 0 Can be changed

SVID Configuration

SVID None Can be changed

Mode None Can be changed

Source PDOs

Source PDO 0 5V@3A Not recommended

Source PDO 1 IV@3A Can be changed based on hardware capabilities
Source PDO 2 15V @3A Can be changed based on hardware capabilities
Source PDO 3 20V@3A Can be changed based on hardware capabilities
Sink PDOs

Sink PDO 0 5V@09A Current can be changed

Sink PDO 1 Variable PDO 7 V Can be changed based on hardware capabilities

to21 V@09 A

Port Information

Port role Dual role Can be changed

Default port role Source Can be changed

Current level 3A Can be changed

Is source battery connected No Can be changed based on hardware capabilities
Is sink battery connected No Can be changed based on hardware capabilities
Sink USB suspend No Not recommended

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

20

Embeaded n fomorow” Getting Started with CCGx

Configuration Parameter Default Value Change Allowed
Sink USB communication Yes Can be changed
Rp-Rd Toggle Yes Not recommended if port role is “Dual role”
Rp supported Default, 1.5A and Can be changed
3.0A
Is source externally No Can be changed
powered
Is sink externally powered No Can be changed
DRP preferred role Source Can be changed
Cable discovery enable Yes Can be changed
Dead battery enable Yes Can be changed
Error recovery enable Yes Not recommended
DR_SWAP response ACCEPT Can be changed
PR_SWAP response ACCEPT Can be changed
VCONN_SWAP response ACCEPT Can be changed
FRS Enable FRS receive Can be changed. Valid only for PD 3.0
configurations.

DP Mode Parameters
Modes supported CDEF Can be changed

Power Protections

Over Voltage Protection Enable Not recommended

Over Current Protection Enable Not recommended

OVP Threshold 20% Can be changed in the range of 10 % to 50 %

OVP debounce period 1us Not allowed

OCP Threshold CCG4: 0 Not allowed for CCG4. Can be changed in the range
CCG3: 20% of 10 % to 50 % for CCG3.

OCP debounce period CCG4: 0 ms Not allowed for CCG4. Can be changed for CCG3.
CCG3: 1 ms

OCP off time 0 Not allowed

OCP retry count 0 Not allowed

OCP sample period 0 Not allowed

User Parameters

Parameters 1 to 8 00 Can be changed to any value

Table 1 shows the list of configuration parameters supported by the CCGx notebook firmware, along with the default values
and restrictions on changing them. Note that changing the Source PDO configuration is not recommended while using the
EVKs, because the default settings correspond to the actual kit hardware configuration.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Embedded in Tomorrow

Getting Started with CCGx

Table 2: List of CCG3 Power Adapter Configuration Parameters

Configuration Parameter

Default Value

Change Allowed

Device Parameters

Manufacturer Info “Cypress” Can be changed. Valid only for PD 3.0
configurations.

Device IDs

USB host support No Not allowed

USB device support No Not allowed

Modal operation supported Yes This gets changed when an SVID is added
USB Vendor Id 0x04B4 Can be changed

Product type Undefined Not allowed

USB-ID compliance test ID 0 Can be changed

USB Product ID F640 Can be changed

Bcd device 0 Can be changed
SVID Configuration

SVID 0x04B4 Not allowed

Mode 0x00000001 Not recommended
Source PDOs

Source PDO 0 5V@ 3A Not recommended

Source PDO 1 IV@3A Can be changed based on hardware capabilities
Source PDO 2 15V@ 3A Can be changed based on hardware capabilities
Source PDO 3 20V@ 3A Can be changed based on hardware capabilities
Port Information

Port role Source Not allowed

Default port role Source Not allowed

Current level 3A Can be changed

Is source battery connected No Not allowed

Is sink battery connected No Not allowed

Sink USB suspend No Not recommended

Sink USB communication No Not recommended

Rp-Rd Toggle No Not allowed

Rp supported Default, 1.5A and Can be changed

3.0A

Is source externally Yes Not allowed

powered

Is sink externally powered No Not allowed

DRP preferred role Source Not allowed

Cable discovery enable Yes Can be changed

Dead battery enable No Not allowed

Error recovery enable Yes Not recommended

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

22

Embedded in Tomorrow

Getting Started with CCGx

Configuration Parameter

Default Value

Change Allowed

DR_SWAP response ACCEPT Not recommended
PR_SWAP response REJECT Can be changed
VCONN_SWAP response REJECT Can be changed
FRS enable None Not recommended
Power Protections

Over Voltage Protection Enabled Not recommended

Over Current Protection

Polling Method

Not recommended

QOVP Threshold 20% Can be changed in the range of 10 % to 50 %
QOVP debounce period 1us Not allowed

OCP Threshold 20% Can be changed in range of 10% to 50 %
OCP debounce period 1ms Can be changed

OCP off time 100 ms Can be changed

OCP retry count 3 Can be changed

OCP sample period 0 Not allowed

User Parameters

Parameters 1 to 8 00 Can be changed to any value

Table 2 shows the list of configuration parameters supported by the CCG3 power adapter firmware, along with the default
values and restrictions on changing them.

Table 3: List of CCG3 DP Dongle Configuration Parameters

Configuration Parameter Default Value Change Allowed
Device Parameters
Manufacturer Info “Cypress” Can be changed. Valid only for PD 3.0
configurations.
Device IDs
USB host support No Not allowed
USB device support Yes Not allowed
Modal operation supported Yes This gets changed when an SVID is added
USB Vendor Id 0x04B4 Can be changed
Product type AMA Not allowed
USB-ID compliance test ID 0 Can be changed
USB Product ID 3120 Can be changed
Bcd device 0 Can be changed
AMA VDO
Hardware version 0 Can be changed
Firmware version 0 Can be changed
SSTX1 directionality support Fixed Can be changed
SSTX2 directionality support Fixed Can be changed

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Embedded in Tomorrow

Getting Started with CCGx

Configuration Parameter

Default Value

Change Allowed

SSRX1 directionality support Fixed Can be changed
SSRX2 directionality support Fixed Can be changed
VConn power W Can be changed
VConn required Yes Can be changed
VBUS required Yes Can be changed
USB version USB 2.0 Can be changed
Billboard Only
SVID Configuration
SVID FFO1 Not recommended
Mode 00001405 Not recommended
Sink PDOs
Sink PDO 0 5V@09A Current can be changed
Port Information
Port role Sink Not recommended
Default port role Sink Not recommended
Current level Default Not recommended
Is source battery connected No Not recommended
Is sink battery connected No Can be changed based on hardware capabilities
Sink USB suspend No Not recommended
Sink USB communication Yes Can be changed
Rp-Rd Toggle No Not recommended
Rp supported None Not recommended
Is source externally powered No Not recommended
Is sink externally powered No Not recommended
DRP preferred role None Not recommended
Cable discovery enable No Not allowed
Dead battery enable Yes Not recommended
Error recovery enable Yes Not recommended
DR_SWAP response REJECT Not recommended
PR_SWAP response REJECT Not recommended
VCONN_SWAP response REJECT Can be changed
FRS enable None Not recommended. Valid only for PS 3.0
configurations.
Billboard Parameters
Billboard type Internal BB Not recommended
device
Billboard enable BB always Can be changed
enabled

Billboard programmer
support

Programming
interface

Not recommended

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

24

Embedded in Tomorrow

Getting Started with CCGx

Configuration Parameter

Default Value

Change Allowed

enabled

Billboard timeout

600 s

Can be changed

Billboard power settings

Bus powered

Can be changed

Billboard container ID
settings

Generate based
on device UID

Can be changed

Billboard VConn power
setting

1w

Can be changed

Billboard serial number

Generate based

Can be changed

setting on device UID
Billboard Settings
VID 04B4 Changes when the Device ID field is updated
PID 3120 Changes when the Device ID field is updated
Manufacturer Cypress Can be changed
Semiconductor
Product Type-C DP Can be changed
Dongle
Configuration Billboard Can be changed
Configuration
Billboard interface Billboard Can be changed
Interface

HID interface

Control Interface

Can be changed

Additional info URL

http://www.cypre
ss.com/Type-C/

Can be changed

Preferred mode

0

Can be changed

Alternate Mode 0

“Type-C
Alternate Mode”

Can be changed

DP Mode Parameters

Modes supported C Can be changed
Preferred DP Mode 4-lane Can be changed
DisplayPort
Power Protections
Over Voltage Protection Enabled Not recommended
Over Current Protection Disable Not recommended
OVP Threshold 20% Can be changed in the range of 10 % to 50 %
OVP debounce period 0 Not allowed
OCP Threshold 0 Not recommended
OCP debounce period 0 Not recommended
OCP off time 0 Not allowed
OCP retry count 0 Not allowed
OCP sample period 0 Not allowed
User Parameters
Parameters 1 to 8 00 Can be changed to any value

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

25

Embedded in Tomorrow

Table 3 shows the list of configuration parameters supported by the CCG3 DP Dongle firmware, along with the default values

Getting Started with CCGx

and restrictions on changing them.

Table 4: List of CCG3 Charge Through Dongle Upstream Configuration Parameters

Configuration Parameter

Default Value

Change Allowed

Device Parameters

Manufacturer Info “Cypress” Can be changed. Valid only for PD 3.0
configurations.

Device IDs

USB host support No Not allowed

USB device support Yes Not allowed

Modal operation supported Yes This gets changed when an SVID is added

USB Vendor Id 0x04B4 Can be changed

Product type AMA Not allowed

USB-ID compliance test ID 0 Can be changed

USB Product ID 0xF649 Can be changed

Bcd device 0 Can be changed

AMA VDO

Hardware version 0 Can be changed

Firmware version 0 Can be changed

SSTX1 directionality support Fixed Can be changed

SSTX2 directionality support Fixed Can be changed

SSRX1 directionality support Fixed Can be changed

SSRX2 directionality support Fixed Can be changed

VConn power 1w Can be changed

VConn required Yes Can be changed

VBUS required Yes Can be changed

USB version [USB 3.1] Gen 1 Can be changed
and USB 2.0

SVID Configuration

SVID FFO1 Not recommended

Mode 00001405 Not recommended

Source PDOs

Source PDO 0 5V@09A Not recommended

Sink PDOs

Sink PDO 0 5V@09A Not recommended

Port Information

Port role Dual Role Not recommended

Default port role Sink Not recommended

Current level Default Not recommended

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

26

Embedded in Tomorrow

Getting Started with CCGx

Configuration Parameter

Default Value

Change Allowed

Is source battery connected No Can be changed
Is sink battery connected No Can be changed based on hardware capabilities
Sink USB suspend No Not recommended
Sink USB communication Yes Can be changed
Rp-Rd Toggle Yes Can be changed
Rp supported Default, 1.5A Can be changed
and 3.0A
Is source externally powered Yes Can be changed
Is sink externally powered Yes Can be changed
DRP preferred role None Can be changed
Cable discovery enable No Not allowed
Dead battery enable Yes Not recommended
Error recovery enable Yes Not recommended
DR_SWAP response REJECT Can be changed
PR_SWAP response REJECT Can be changed
VCONN_SWAP response REJECT Can be changed

FRS enable

FRS transmit

Can be changed. Valid only for PD 3.0
configurations.

Billboard Parameters

Billboard type Internal BB Not recommended
device

Billboard enable BB always Can be changed
enabled

Billboard programmer Programming Not recommended

support interface
enabled

Billboard timeout 600 s Can be changed

Billboard power settings

Bus powered

Can be changed

Billboard container ID
settings

Generate based
on device UID

Can be changed

Billboard VConn power
setting

1w

Can be changed

Billboard serial number

Generate based

Can be changed

setting on device UID
Billboard Settings
VID 04B4 Changes when the Device ID field is updated
PID F649 Changes when the Device ID field is updated
Manufacturer Cypress Can be changed
Semiconductor
Product Type-C DP Can be changed
Dongle
Configuration Billboard Can be changed
Configuration

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

27

Embeaded n fomorow” Getting Started with CCGx

Configuration Parameter

Default Value

Change Allowed

Billboard interface

Billboard
Interface

Can be changed

HID interface

Control Interface

Can be changed

Additional info URL

http://www.cypre
ss.com/Type-C/

Can be changed

Preferred mode

0

Can be changed

Alternate Mode 0

“Type-C
Alternate Mode”

Can be changed

DP Mode Parameters

Modes supported D Can be changed
Preferred DP Mode Multi-function Can be changed
DisplayPort
Power Protections
Over Voltage Protection Enabled Not recommended
Over Current Protection Disable Can be changed
OVP Threshold 20% Can be changed in the range of 10 % to 50 %
OVP debounce period 0 Not allowed
OCP Threshold 0 Can be changed
OCP debounce period 0 Can be changed
OCP off time 0 Not allowed
OCP retry count 0 Not allowed
OCP sample period 0 Not allowed
User Parameters
Parameters 1 to 8 00 Can be changed to any value

Table 4 shows the list of configuration parameters supported by the CCG3 Charge Through Dongle upstream firmware,

along with the default values and restrictions on changing them.

The various fields under Port Information are inter-related, and should be updated to be mutually consistent. Table 5 shows

the allowed variations and restrictions on various parameter values across different kinds of CCG applications.

Table 5: Port Information Variability across Applications

Parameter DRP Application DFP Application UFP Application
Port role Dual role Source Sink
Default port role Variable Source Sink
Current level Variable Variable Variable
Is source battery connected Variable Variable No
Is sink battery connected Variable No Variable
Sink USB suspend Variable No Variable
Sink USB communication Variable No Variable
Rp-Rd Toggle Yes No No
Rp supported Variable Variable None

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

28

Embedded in Tomorrow

Getting Started with CCGx

Parameter DRP Application DFP Application UFP Application

Is source externally powered Variable Variable No

Is sink externally powered Variable No Variable
Try source enable Variable No No

Cable discovery enable Variable Variable No

Dead battery enable Variable Variable Variable
Error recovery enable Variable Variable Variable
DR_SWAP response Variable Variable Variable
PR_SWAP response Variable REJECT REJECT
VCONN_SWAP response Variable Variable Variable

Table 6 describes the extended source capabilities message parameters. Extended source capabilities message is
supported by all port controllers with Source configuration either in Dual role or Source only mode. This message is used
only when both port partners are in PD 3.0 contract.

Table 6: Extended Source Capabilities Parameters

Configuration Parameter

Default Value

Change Allowed

SCEDB Configuration

XID 0 Can be changed
FW Version 0 Can be changed
HW Version 0 Can be changed
Voltage regulation load step 150 Not allowed
slew rate (mA/us)

Voltage regulation load step 25 Can be changed
magnitude (%IoC)

Holdup Time (ms) 3 Can be changed
LPS compliant No Can be changed
PS1 compliant No Can be changed
PS2 compliant No Can be changed
Low touch current EPS No Can be changed
Ground pin Not supported Can be changed
Touch temp Default Can be changed
Source Inputs-External No external Can be changed
supplies supply

Source Inputs-Internal No Can be changed
batteries

Hot swappable batteries Can be changed
Fixed batteries 0 Can be changed
Peak Current

Percentage overload (%) Can be changed
Overload period (ms) 0 Can be changed

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

29

Embedded n omorrow Getting Started with CCGx

Configuration Parameter Default Value Change Allowed
Duty cycle (%) 0 Can be changed
Vbus voltage droop No Can be changed

After all the parameters are defined, click on the ‘Save’ button (or go to File > Save As) to save a copy of the configuration
to the disk. The configuration is stored in the form of an XML file. The utility also generates two additional output files that
help the user in deploying the configuration.

1. Acyacd file is generated, which can be used to program the new configuration data to the device. The EZ-PD utility
itself uses the cyacd file for device programming.

2. A .c file is generated, which can be included in the firmware project to compile a new binary that embeds the
desired configuration. More details on the use of this file are provided in later sections of this guide.

After the configuration is saved, use the Tools > Configure Device option to program the configuration to the device. As
mentioned above, the configuration update applies to the current alternate firmware image. The utility issues a warning if the
alternate firmware version is older than the current version, and you have the option of aborting the configuration update at
this stage.

Resetting the device after a configuration update will cause the device to start running the alternate firmware, which was
programmed with a new configuration.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

4. Customizing the Firmware Application

Embedded in Tomorrow™

As shown in section 3.2, a major part of the CCGx application functionality can be modified without having to change any of
the firmware sources.

Any changes to the hardware design around the CCGx device will, however, require changes to the firmware sources
implementing the application. This chapter walks through the process of updating the firmware implementation to work with a
different hardware design.

Note: As the firmware sources and reference projects are installed in the Program Files folder, it is not recommended that
you make changes to the original installed version of these files. You can create a copy of the Firmware folder from the SDK
installation, and use the copy for making any changes. This will ensure that you have a clean version of the files that you can
revert to as well. Refer to section 3.1.1for more details.

Since the target application remains the same, it is expected that the changes are limited to aspects such as the mechanism
for voltage selection, FET control, data path MUX/Switch control, and so on. This does not involve changes to the core
functionality implemented by the CCGx device.

4.1 Solution Structure

The CCGx solution structure is shown in Figure 15. The figure uses the CYPD4125-40LQXI_notebook workspace as
reference. The source and header files used in the solution are grouped into different folders.

Figure 15: CCGx Notebook Solution Structure

Workspace Explarer (2 projects) v X
@i

[z} Wearkspace 'CYPD4125-40L 0¥ _notebook' (2 Projects)

EIEI Project 'CYPDA125-40LQXI_notebook' [CYPDA4125-40LQXIT]

W
-\ TopDesign.cysch E
j.:) CYPD4125-40L 33T _notebook.cydwr R

[=H T Header Files I

-Q alt_mode é
B app E
FHE) hpiss T
-Q pd_commaon

EHED pd_hal §
EHE e =
-Q&tion g

B+ systemn

[=H Source Files

-uj alt_maode

E-D app

FHE) pd_hal

-uj solution

FHED) systemn

#H2) Generated_Source

I'_—'l--EI Project 'noboot’ [CYPD4125-40L QAT

synsay

Embedded in Tomorrow Customizing the Firmware Application

. Solution: The solution folders contain header and source files that provide user configurations, user hardware-
specific functions and custom code modules. It is expected that these files will need to be changed to match the hardware
design and requirements for all customer implementations. The solution-level sources include:

o config.h: Header file that enables/disables firmware features and provides macros or function mappings for
hardware-specific functions such as FET control and voltage selection.

o alt_modes_config.h: Header file that selects the alternate modes that are supported by the firmware when CCGx is
a Downstream Facing Port (DFP) or Upstream Facing Port (UFP).

o stack _params.h: This header file defines a number of properties that are used to customize the PD stack operation.

o config.c: This source file contains the default run-time configuration for the CCGx notebook application and has
been generated using the EZ-PD Configuration Utility.

o datamux_ctrl.c: This source file contains the functions that control the Type-C data switch that connects the Type-C
data pins to the USB and DisplayPort controllers in the system.

o main.c: This source file contains the main application entry point.

. app: The app folders contain header and source files that implement the device policy decisions such as power
contract negotiation roles, port role management, power protection schemes, Vendor Defined Message (VDM) handling, and
so on. The default implementation provided in the source form uses the configuration table and runtime customizations
provided by the EC to handle these tasks. The files can be updated if there is a need to change the way policy decisions are
implemented by the CCG firmware. The app source files include:

o app.c: This is the top-level application source file that connects the PD stack to the alternate modes manager as
well as the solution level code.

o pdo.c: This source file implements the Power Data Object (PDO) and Request Data Object (RDO) handlers that
define the power contract negotiation rules.

o psource.c: This source file implements the power source-related state machines and tasks.
o psink.c: This source file implements the power sink related state machines and tasks.

o swap.c: This source file implements the various swap request handlers.

o vdm.c: This source file implements the handlers for VDMs received by the CCG device.

. pd_hal: The pd_hal folders header and source files that implement the low level drivers for the PD stack. The
header file definitions should not be modified as these are used by the PD stack library and conflicting definitions can result
in undefined behavior. The pd_hal level sources include:

o hal_ccgx.c: This source file implements Over Voltage Protection (OVP) and Over Current Protection (OCP) tasks,
which are specific to the CCG device architecture.

. alt_mode: This folder contains header and source files that implement the alternate mode manager functions for
when CCG is functioning as DFP and when CCG is functioning as UFP.

u hpiss: This folder contains the header files providing the serial communication block (SCB) driver and Host
Processor Interface (HPI) protocol interfaces. The actual I2C driver and HPI code is provided in library form. The header file
definitions should not be modified as these are used by the HPI stack library and conflicting definitions can result in
undefined behavior.

= pd_common: Since the PD stack is provided in the library form, the pd_common folder only contains header files
that provide data structure definitions and function declarations for the PD stack. The header file definitions should not be
modified as these are used by the PD stack library and conflicting definitions can result in undefined behavior.

u system: This folder contains the base system-level functionality such as GPIO, soft timer implementation, flash
driver, and firmware upgrade handlers. The header file definitions should not be modified as these are used by the PD and
HPI stack libraries and conflicting definitions can result in undefined behavior.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

32

Embedded in Tomorrow Customizing the Firmware Application

4.2 CCG4 Notebook

421 PSoC Creator Schematic

Figure 16: PSoC Creator Schematic for CCG4 Notebook

W WVBUS P CTRL P [= EC_INT
HVBUS C_CTRL P 126 GFG[a

A VBUS_DISCHARGE_P1

VBUS MON_P1 6 [+ FW_LED PDSS_PDF?TLII_RK_DLKIWQI]
A G PDSS_PORTO_TX_CLK[_}&
e WSELZ P1 PDSS _PORTO SAR CLK%}FI

OCP_FAULT _P1 [Ab+t

~IWBUS OVP_TRIP_P1

HPI IF Bootloadabla 1 MUX CTRL
12C Bootloadable 12C

Slava Mastar

Most aspects of the hardware design around the CCG4 device are captured in the schematics associated with the
PSoC Creator firmware project.

The PSoC Creator schematic can be found in the TopDesign.cysch file, which is part of each PSoC Creator project. Double-
click on this file to open the schematic editor window (see Figure 16).

The schematic shows how internal resources of the CCG4 device are used in the design. This includes all the internal clocks
used by the design, the various serial interfaces, and all the GPIO pins used to communicate with external elements.

The analog input pins of the CCG4 device are shown with a red wire connected to it on the right side. See the
VBUS_MON_P1 signal for example.

Digital input pins are shown with a green wire connected to it on the right side. See the OCP_FAULT_P1 signal for example.

Digital output pins are shown with the corresponding pin mapping annotated on the left side. See the VBUS_P_CTRL_P1
signal for example.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A 33

Embedded in Tomorrow Customizing the Firmware Application

Table 7 shows the various schematic elements used in the CCG4 notebook project. The selection of some of these elements
is fixed due to the capabilities of the CCG4 device and the bootloader design. The table also points out the changes allowed

in the schematic design.

Table 7: Schematic Elements in CCG4 Notebook Design

Schematic Element

Description

Changes Allowed

Bootloadable_1

This is a software block, which
interacts with the bootloader on the
CCG4 device.

No changes should be made
to this element.

CCG4 to configure the Parade Type-
C Interface switch on the CY4541 kit.

HPL_IF This is an I2C slave block through No changes are allowed as
which the CCG4 communicates with the HPL_IF is also used by
the Embedded Controller in the the bootloader which is fixed.
Notebook design.

MUX_CTRL This is an 1°C master block used by This block can be changed /

replaced by other
mechanisms (such as
GPIOs), which can control
the interface switch on the
target design.

PDSS_PORTO0_RX_CLK

This is an internal clock that is used
for the RX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORTO0_TX_CLK

This is an internal clock that is used
for the TX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORTO0_SAR_CLK

This is an internal clock that is used
for the analog portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT1_RX_CLK

This is an internal clock that is used
for the RX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT1_TX_CLK

This is an internal clock that is used
for the TX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORT1_SAR_CLK

This is an internal clock that is used
for the analog portion of the USB-PD
block.

No changes are allowed.

controller on the notebook.

EC_INT This is an output pin used to interrupt No changes are allowed as
the Embedded Controller when there EC_INT is also used by boot-
is a state change. loader.

12C_CFG This is an input pin used to select the No changes are allowed as
12C slave address used on the HPI EC_INT is also used by boot-
interface. loader.

HPD_P1 This is the Hotplug Detect output pin This pin can be removed if

HPD P2 from CCG4 to the DisplayPort DisplayPort is not used. If

used, the pin mapping
cannot be changed.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

34

Embedded in Tomorrow

Customizing the Firmware Application

Schematic Element

Description

Changes Allowed

FW_LED This is the firmware activity LED pin. Actual control is via the GPIO
module APIs. See the
APP_FW_LED_ENABLE
compile-time option for more
information.

VSEL1_P1 These are output pins used to select These can be changed

VSEL2 P1 the source voltage to be provided on based on the voltage

- the Type-C port. selection mechanism in the
VSEL1_P2 target hardware.
VSEL2_P2

VBUS_P_CTRL_P1
VBUS_P_CTRL_P2
VBUS_C_CTRL_P1
VBUS_C_CTRL_P2

Output pins used to control the
provider and consumer FETs in the
design.

These can be changed
based on the FET control
mechanism in the target
hardware.

VBUS_DISCHARGE_P1
VBUS_DISCHARGE_P2

Output pins used to control the VBus
discharge path in the design.

These can be changed
based on the discharge
control mechanism in the
target hardware.

VBUS_MON_P1
VBUS_MON_P2

Input pins used to monitor the voltage
on VBus.

No changes are allowed as
the connectivity to the
internal comparators is fixed.

OCP_FAULT_P1
OCP_FAULT_P2

Input pins that notify CCG4 that an
overcurrent condition has been
detected.

These can be removed if
OCP fault detection circuitry
is not available. If used, the
names of the pins should not
be changed. However, any
available GPIO can be used
for this purpose.

VBUS_OVP_TRIP_P1
VBUS_OVP_TRIP_P2

Output pins from CCG4 that are used
for a fast turn-off of the VBus supply
in case of overvoltage.

These can be removed if
OVP trip functionality is not
used. If used, the names of
the signals and their pin
mapping should not be
changed.

Closely associated with the schematic is the Design Wide Resources (DWR) view, which maps each schematic element to a
pin, clock, or hardware block on the CCG4 device. Open the CYPD4125-40LQXI_notebook.cydwr file to see the DWR
settings for the project.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Embedded in Tomorow” Customizing the Firmware Application

Figure 17. DWR Project Settings

notebookcydwr 4 ~ab x|

==&
fiffREEQSE

FW_LED P24
g
P31z
Pa[T]
P21E]

P CYPD4225-40LQXIT P
7 40-QFN-2xPD-DRP cca1 E

HPD_P2
12C_CFG MUX_CTRL:scl
VSEL1_P1 MUX_CTRL:sdal
VSEL1_P2 VSEL2_F2
OCP_FAULT_P1 VSEL2_P1

VCONN_MON_F2

VBUS_OVP_TRIP_F2

o] ef <]]| c]efefc]<|c][cc]<]c|c]c]c]e
el el <] <|c]]| clefefc]<]<[c|c]<]c|c]c]e]e
NI S S EH RN I I SHEH R S R I <)

@ Pins | (D Clodks Interrupts | % System | &| Drectives |. (] Flash Security b

As shown in Figure 17, the DWR view has several tabs, which configure aspects such as pin mapping, interrupt mapping,
clock selection, flash security, and so on. It is recommended that you restrict any changes to the DWR to the pin mapping
view. Do not change the clock, interrupt, system, or flash configurations. Even in the pin mapping editor, the changes should
be subject to the constraints outlined in Table 7.

4.2.2 Updating Code to Match the Schematic

If you make changes in the schematic or pin mapping, you must make corresponding changes in the firmware code that
manages these schematic elements.

All of the schematic-dependent code for the notebook application is implemented in the following files:

1. CYPD4125-40LQXI_notebook.cydsn/config.h: This file defines macros that perform hardware-dependent actions
such as selecting source voltage and turning FETs ON/OFF. These are implemented as macros because all of
these actions involve simple GPIO updates on the CY4541 kit. If required, add a source file, which implements
more complex functions to perform these actions.

Note: There is a similar config file in the noboot.cydsn project folder as well. If debugging is used, the
schematic-dependent changes should be replicated there as well.

2. common/datamux_ctrl.c: This source file implements a pair of functions that control the Type-C interface switch on
the board to select between USB and DisplayPort connections. The default implementation of these functions uses
the MUX_CTRL I12C master block within CCG4.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

36

Embedded in Tomorrow

Compile Time Options

The CCG4 Notebook port controller application supports a set of features that can be enabled/disabled using compile time
options. These compile time options are set in the config.h header file that you can find under the solution folder, and are

summarized in Table 8.

Customizing the Firmware Application

Table 8: Compile Time Options for CCG4 Notebook Application

scheme. Even if the OVP feature is
enabled using this definition, it can be
disabled at run-time using the
configuration table.

Option Description Values
Enable flag for the internal comparator- 1 for OVP enable
VBUS OVP ENABLE
- = based Over Voltage Protection (OVP) 0 for OVP disable

VBUS OCP_ ENABLE

Enable flag for the external load switch
based Over Current Protection (OCP)
scheme.

1 for OCP enable
0 for OCP disable

VBUS_OVP TRIP ENABLE

Enable flag for a direct supply trip
capability from CCG hardware on OVP
event. Enabling this requires appropriate
circuitry on the target hardware.

1 for OVP-TRIP enable
0 for OVP-TRIP disable

SYS DEEPSLEEP ENABLE

Enable flag for the low power module
which keeps CCG in Deep Sleep mode at
all possible times.

1 for low power enable
0 for low power disable

DFP_ALT MODE_ SUPP

Enable flag for Alternate mode support
when CCG is a DFP.

1 for alternate mode enable
0 for alternate mode disable

DP DFP SUPP

Enable flag for DisplayPort support when
CCG is a DFP.

1 for DisplayPort enable
0 for DisplayPort disable

APP FW LED ENABLE

Enable flag for firmware activity LED
indication. When enabled, the user LED
blinks at 1 second intervals and the user
switch cannot be used.

Since the LED uses the SWD_IO GPIO, it
is necessary to disable it if debugging via
SWD.

This LED can be used for development
support but is recommended to be left in
the OFF state to save power in
production designs.

1 for LED enable
0 for LED disable

Source Voltage Selection

Refer to the APP_VBUS_SET_XX_PX macros in the CYPD4125-40LQXI_notebook.cydsn/config.h file to implement the

source voltage selection scheme.

On the CY4541 board, the supported source voltages are 5V, 9V, 15V, and 20 V and a pair of VSEL GPIOs are used to
select between them (separate VSEL used for each port).

For example, setting the source voltage on P1 to 15 V is done by the following macro:

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

37

Embedded in Tomorrow Customizing the Firmware Application

/* Function/Macro to set Pl source voltage to 15V. */
#define APP VBUS SET 15V P1
{

VSEL1 P1 Write(0);

VSEL2 Pl Write(1);

s -

}

The implementation of this macro can be changed to use the correct mechanism for voltage selection on the target
hardware. You can implement the macros for the voltages that are supported from among 5V, 9V, 12V, 13V, 15V, 19V,
and 20 V. The implementation for any unsupported voltage can be left as NULL.

FET Control

The provider, consumer, and VBUS discharge FET controls are implemented using the following macros:
. APP _VBUS SRC_FET ON PX - Turn provider FET ON

. APP VBUS SRC FET OFF PX - Turn provider FET OFF

. APP VBUS SNK FET ON PX - Turn consumer FET ON

. APP VBUS SNK FET OFF PX - Turn consumer FET OFF

. APP _DISCHARGE FET ON PX - Turn VBus Discharge FET ON

- APP DISCHARGE FET OFF PX — Turn VBus Discharge FET OFF

Data Switch / MUX Control

The data switch / MUX control is implemented using the following two functions:

1. mux_ctrl_init: Initialize the MUX / Switch hardware and isolate the Type-C data pins from the USB and DisplayPort
connections (ISOLATE mode).

/* Initialize the MUX control SCB block. */
bool mux ctrl init (uint8 t port);

2. mux_ctrl_set_cfg: Configure the data switch to enable the desired data path. The cfg parameter selects between
ISOLATE, USB, 2-lane DisplayPort + USB, and 4-Lane DisplayPort modes. The polarity parameter specifies the
Type-C connection orientation.

/* Update the data mux settings as required. */
bool mux ctrl set cfg(uint8 t port, mux select t cfg, uint8 t polarity);

These functions are currently implemented using a CCG4 internal 1>C master block to communicate with two different Parade
PS8740B switches on the CY4541 kit. These implementations can be changed to make use of the appropriate means for
MUX control on the target hardware.

4.2.3 Updating the Default Configuration

The CCG4 notebook firmware project has an embedded default configuration in the common\config.c file. The contents of
this file can be replaced with that of the .c source file generated by EZ-PD Configuration Utility. Once all of the source
changes are completed, rebuild the project to generate the customized binaries.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A 38

Embedded in Tomorrow

4.3 CCG3 Notebook

Customizing the Firmware Application

4.3.1 PSoC Creator Schematic

Figure 18: PSoC Creator Schematic for CCG3 Notebook

VBUS P _CTRL.P1 [EC_INT =W LED
VEUS G CTRL-P1 12C CFG = [« HPD
VBUS DISCHARGE F1
LE MO P PDSS_PDHTD_HK_CLKIE}-:
- =] 1
FIVSEL P DSS_PDRTU_TK_CL}iE]
’ [=] 1
WSELZ. P1 D55 PORTO SAR CLKlEI-—_
PDSS PORTO SWAP CLK[}&
L1 2 F
HPI_IF Bootlvadable 1 MUIEECTR"
120 Bootloadable
SiEve Masber

Most aspects of the hardware design around the CCG3 device are captured in the schematics associated with the
PSoC Creator firmware project.

The Creator schematic can be found in the TopDesign.cysch file, which is part of each Creator project. Double-click on this
file to open the schematic editor window (see Figure 18Error: Reference source not found).

The schematic shows how internal resources of the CCG3 device are used in the design. This includes all of the internal
clocks used by the design, the various serial interfaces and all of the GPIO pins used to communicate with external
elements.

Table 9 shows the various schematic elements used in the CCG3 notebook project. The selection of some of these elements
is fixed due to the capabilities of the CCG3 device and the bootloader design. The table also points out the changes allowed
in the schematic design.

Table 9: Schematic Elements in CCG3 Notebook Design

Schematic Element Description Changes allowed

Bootloadable 1 This is a software block which

interacts with the boot-loader on the

No changes should be made
to this element.

CCG3 device.

HPL_IF This is an I2C slave block through No changes are allowed as
which the CCG3 communicates with the HPL_IF is also used by
the Embedded Controller in the the boot-loader which is
Notebook design. fixed.

MUX_CTRL This is an I1°C master block used by This block can be changed /

CCGS3 to configure the Parade Type-
C Interface switch on the CY4531 kit.

replaced by other
mechanisms (such as
GPIOs) which can control the
interface switch on the target
design.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A 39

Embedded in Tomorrow

Customizing the Firmware Application

Schematic Element

Description

Changes allowed

PDSS_PORTO_RX_CLK

This is an internal clock that is used
for the RX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORTO_TX_CLK

This is an internal clock that is used
for the TX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORTO_SAR_CLK

This is an internal clock that is used
for the analog portion of the USB-PD
block.

No changes are allowed.

the Type-C port.

EC_INT This is an output pin used to interrupt No changes are allowed as
the Embedded Controller when there EC_INT is also used by boot-
is a state change. loader.

I2C_CFG This is an input pin used to select the No changes are allowed as
I°C slave address used on the HPI EC_INT is also used by boot-
interface. loader.

HPD This is the Hotplug Detect output pin This pin can be removed if
from CCG3 to the DisplayPort DisplayPort is not used. If
controller on the notebook. used, the pin mapping

cannot be changed.

FW_LED This is the firmware activity LED pin. Actual control is via the GPIO

module APIs. See the
APP_FW_LED _ENABLE
compile-time option for more
information.

VSEL1_P1 These are output pins used to select These can be changed

VSEL2 P1 the source voltage to be provided on based on the voltage

selection mechanism in the
target hardware.

Closely associated with the Schematic is the Design Wide Resources (DWR) view, which maps each schematic element to a
pin, clock, or hardware block on the CCG3 device. Open the CYPD3125-40LQXI_notebook.cydwr file to see the DWR

settings for the project.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Embedded in Tomorrow Customizing the Firmware Application

Figure 19: Design Wide Resource (DWR) View

“notebook.cydwr & | b x
Nam Port e Lock
[J| \ae1_1F23017 P3[5] v |37 &
| \ep1_1F:aday P3[4] - 36 ~
| \mux_eTar.: se1y P1[2] v |3 i
[1] vwx_crae: saay P1[3] - |10 <
[=c_mt P3[2] v 34 ~
]| zw_zen p2(0] - |15 M
(| men P3[3] v |35 &
veus_c_cTRLo [EX] | r2c_cre P2[(1] v |16 ~
veus_c_cTrut [E3) | vsers_ea Po[1] v |28 v
popt [B] vseti_e1]| vserz_ex 20[0] |27 <
pojo) [B] vseLz_p1

xaes B3

P28 25

Pals] 24

P2l 23

wu_crrLse [P11 e

P -

4 Pins | () Clods | # mntempts | B9 System | Z Directives | &] Flash Seaurity b

As shown in Figure 19, the DWR view has several tabs, which configure aspects such as pin mapping, interrupt mapping,
clock selection, flash security, and so on. It is recommended that you restrict any changes to the DWR to the pin mapping
view. Do not change the clock, interrupt, system, or flash configurations. Even in the pin mapping editor, the changes should
be subject to the constraints outlined in Table 9.

4.3.2 Updating Code to Match the Schematic

If you change the schematic or pin mapping, you must make corresponding changes in the firmware code that manages
these schematic elements.

All of the schematic-dependent code for the notebook application is implemented in the following files:

1. CYPD3125-40LQXI_notebook.cydsn/config.h: This file defines macros that perform hardware-dependent actions
such as selecting source voltage and turning FETs ON/OFF. These are implemented as macros because all of
these actions involve simple GPIO or device register updates on the CY4531 kit. If required, the user can add a
source file which implements more complex functions to perform these actions.

Note: There is a similar config file in the noboot.cydsn project folder as well. If debugging is being used, the
schematic dependent changes should be replicated there as well.

2. common/datamux_ctrl.c: This source file implements a pair of functions that control the Type-C interface switch on
the board to select between USB and DisplayPort connections. The default implementation of these functions uses
the MUX_CTRL 12C master block within CCG3.

Compile Time Options

The CCG3 Notebook port controller application supports a set of features that can be enabled/disabled using compile time
options. These compile time options are set in the config.h header file that you can find under the solution folder, and are
summarized inTable 10 Table 10.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A 41

Embedded in Tomorrow

Customizing the Firmware Application

Table 10: Selectable Firmware Features in CCG3 Notebook Application

Pre-processor Switch

Description

Values

VBUS_OVP_ ENABLE

Enable overvoltage Protection handling
on VBus. This feature can be turned off
using the configuration table, even if it
is enabled here.

1 for VBus OVP enable
0 for VBus OVP disable

VBUS_OVP_AUTO CONTROL ENABLE

Enable automatic FET control by
hardware when an OVP event is
detected.

1 for automatic
hardware cut-off

0 for firmware cut-off

SYS DEEPSLEEP ENABLE

Enable flag for the low power module
which keeps CCG in deep sleep mode
at all possible times.

1 for low power enable
0 for low power disable

DFP_ALT MODE_ SUPP

Enable Alternate Mode handling when
CCGis DFP.

1 for alternate mode
enable

0 for alternate mode
disable

DP DFP SUPP

Enable DisplayPort Alternate mode
when CCG is DFP. This requires
DFP_ALT_MODE_SUPP.

1 for DisplayPort
enable

0 for DisplayPort
disable

APP FW LED ENABLE

Enable flag for firmware activity LED
indication. When enabled, the user
LED blinks at 1 second intervals and
the user switch cannot be used.

Since the LED uses the SWD_10
GPIO, it is necessary to disable it if
debugging via SWD.

This LED can be used for development
support but is recommended to be left
in the OFF state to save power in
production designs.

1 for LED enable
0 for LED disable

Source Voltage Selection

Refer to the APP_VBUS_SET_XX_PX macros

source voltage selection scheme.

On the CY4531 board, the supported source voltages are 5V, 9V, 15V, and 20 V and a pair of VSEL GPIOs are used to

select between them (separate VSEL used for each port).

For example, setting the source voltage on P1 to 15 V is done by the following macro:

/* Function/Macro to set Pl source voltage to 15V.

#define APP VBUS SET 15V Pl

{

}

VSEL1 P1 Write(0);
VSEL2 P1 Write(l);

*/

in the CYPD3125-40LQXI_notebook.cydsn/config.h file to implement the

~ -

The implementation of this macro can be changed to use the correct mechanism for voltage selection on the target

hardware. The user can implement the macros for the voltages that are supported from among 5V, 9V, 12V, 13V, 15V,
19V, and 20 V. The implementation for any unsupported voltage can be left as NULL.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

42

Embedded in Tomorrow Customizing the Firmware Application

FET Control

The provider, consumer, and VBUS discharge FET controls are implemented using the following macros:
. APP VBUS SRC FET ON PX - Turn provider FET ON

. APP VBUS SRC_FET OFF PX - Turn provider FET OFF

. APP VBUS SNK FET ON PX - Turn consumer FET ON

. APP VBUS SNK FET OFF PX - Turn consumer FET OFF

- APP DISCHARGE FET ON PX — Turn VBus Discharge FET ON

. APP DISCHARGE FET OFF PX - Turn VBus Discharge FET OFF

. Data Switch / MUX Control

The data switch / MUX control is implemented using the following two functions:

1. mux_ctrl_init: Initialize the MUX/Switch hardware and isolate the Type-C data pins from the USB and DisplayPort
connections (ISOLATE mode).

/* Initialize the MUX control SCB block. */
bool mux ctrl init(uint8 t port);

2. mux_ctrl_set_cfg: Configure the data switch to enable the desired data path. The cfg parameter selects between
ISOLATE, USB, 2-lane DisplayPort + USB and 4-Lane DisplayPort modes. The polarity parameter specifies the
Type-C connection orientation.

/* Update the data mux settings as required. */
bool mux ctrl set cfg(uint8 t port, mux select t cfg, uint8 t polarity);

These functions are currently implemented using a CCG3 internal I1>°C master block to communicate with two different Parade
PS8740B switches on the CY4531 kit. These implementations can be changed to make use of the appropriate means for
MUX control on the target hardware.

4.3.3 Updating the Default Configuration

The CCG3 notebook firmware project has an embedded default configuration in the common\config.c file. The contents of
this file can be replaced with that of the .c source file generated by EZ-PD Configuration Utility. After all the source changes
are completed, rebuild the project to generate the customized binaries.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A 43

Embedded in Tomorrow

Customizing the Firmware Application

44 CCG3 Type C to DP or HDMI/DVI/VGA Dongle

CCG3 TypeC to DP or HDMI/DVI/VGA Dongle is Alternate Mode Adapter which can connect a TYPE-C Display Source to DP
or HDMI/DVI/VGA Display Sink. It is a bus powered device and can be powered either from VBUS or VCONN. Dongle FW
uses a GPIO to determine Display side configuration i.e. DP or HDMI/DVI/VGA. Dongle uses integrated SBU-AUX switch,
AUX pull- up/pull-down resistors and billboard controller. It supports FW update interface over HID interface.

441 PSoC Creator Schematic

Figure 20: PSoC Creator Schematic for CCG3 Dongle

PDSS_PORTO RX_CLK[J¢
Bootloadable 1 12 MHz

Bootloadabl FAHED
ootloadable PDSS PORTO TX-CLK[}

&S00 kHz

w| DP - CONFIG_SELECT

FDSS_PORTO SAR CLK[&

1MHz

Open TopDesign.cysch file in the PSoC creator project to access dongle’s schematic. Schematic contains hardware
resources used by dongle such as clocks, Hot Plug Detect 10 etc.

Figure 21Error: Reference source not found shows the various schematic elements used in the CCG3 dongle project. The
selection of some of these elements is fixed due to the capabilities of the CCG3 device and the bootloader design. The table
also points out the changes allowed in the schematic design.

Table 11: Schematic Elements in CCG3 Dongle Design

Schematic Element Description Changes allowed

Bootloadable_1 This is a software block which No changes should be made

interacts with the boot-loader on the
CCG3 device.

to this block.

HPD

This is Hot Plug Detect |0 which is
used by dongle to detect HPD Plug,
Unplug and IRQ events.

No changes are allowed as
this GPIO is routed to internal
HPD hardware block.

DP_CONFIG_SELECT

This is a GPIO which is used by
dongle to choose between DP and
HDMI/DVI/VGA configuration. Dongle
FW samples the state of this IO in
initialization sequence. If state of 10 is
detected as low, FW chooses
HDMI/DVI/VGA configuration.
Otherwise (float/high) it chooses DP
configuration.

No changes are allowed as
FW functionality depends on
this GPIO.

PDSS_PORTO0_RX_CLK

This is an internal clock that is used
for the RX portion of the USB-PD
block.

No changes are allowed.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

44

Embedded in Tomorrow Customizing the Firmware Application

Schematic Element Description Changes allowed
PDSS_PORTO_TX_CLK This is an internal clock that is used No changes are allowed.
for the TX portion of the USB-PD
block.
PDSS_PORTO0_SAR_CLK This is an internal clock that is used No changes are allowed.
for the analog portion of the USB-PD
block.

Closely associated with the Schematic is the Design Wide Resources (DWR) view, which maps each schematic element to a

pin, clock, or hardware block on the CCG3 device. Open the CY{D3120-40LQXI_dp_dongle.cydwr file to see the DWR
settings for the project.

Figure 21: Design Wide Resource (DWR) View

Name Port Pin Lock

DP_CONFIG_SELECT P2[4] |™ |23 | Fl

Ood

HED B3[3] |7 |35 > BV

CYPD3120-40LAXIT ==
40-QFN =

s [oo smcr

ddd44§89848§¢

~(;§ PinsJ (9 Clocks # Interrupts . % System 2! Directives j Flash Security qp

As shown in Figure 21Error: Reference source not found, the DWR view has several tabs, which configure aspects such as
pin mapping, interrupt mapping, clock selection, flash security, and so on. It is recommended to not change the clock,

interrupt, system, or flash configurations. Even in the pin mapping editor, the changes should be subject to the constraints
outlined in Error: Reference source not found.

4.4.2 Compile Time Options

The CCG3 Dongle application supports a set of features that can be enabled/disabled using compile time options. These
compile time options are set in the config.h header file, and are summarized in Table 12Error: Reference source not found.

Table 12: Selectable Firmware Features in CCG3 Dongle Application

Pre-processor Switch Description Values

VBUS OVP ENABLE Enable over\(oltage Protection handling 1 for VBus OVP enable

- = on VBus. This feature can be turned off 0 for VBus OVP disable
using the configuration table, even if it
is enabled here.

SYS DEEPSLEEP ENABLE Engble flag for the .Iow power module 1 for low power enable
- - which keeps CCG in deep sleep mode 0 for low power disable
at all possible times.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

45

Embedded in Tomorrow Customizing the Firmware Application

Pre-processor Switch

Description

Values

CCG_BB ENABLE

Enable billboard functionality. This
feature can be turned off using the
configuration table, even if it is enabled
here.

1 for billboard enable
0 for billboard disable

FLASHING MODE USB_ENABLE

Enable FW update interface over USB
HID. It is recommended to not disable
this option as USB is the only interface
available for FW update in dongle. If
CCG_BB_ENABLE is 0, this option
gets automatically disabled.

1 for FW update
interface enable

0 for FW update
interface disable

FLASH ENABLE NB MODE

Enable non-blocking flash row update
feature. CCG3 supports non-blocking
row update which allows other
interfaces to be active while device’s
flash is being updated.

1 for non-blocking FW
update

0 for blocking FW
update

DP_GPIO CONFIG_SELECT

Enable GPIO bases selection of
Display configuration: DP or
HDMI/DVI/VGA.

1 for GPIO based
selection

0 for fixed
configuration: DP only

4.4.3 Functional Overview

3. CCG3 Dongle implements 4 lane TYPE-C to DP or HDMI/DVI/VGA alternate mode adapter. Display configuration is
selected based on GPIO 23. Dongle updates Discover Mode response based on GPIO status. In DP mode, dongle

advertises DP Pin E Configuration and in HDMI/DVI/VGA mode it advertises Pin C Configuration.

4. It has integrated billboard controller. Billboard related configuration can be updated through configuration table

update. Dongle advertises HID interface along with billboard interface which is used for FW update.

5. It has integrated SBU-AUX switch which is used to connect SBU-AUX lines based on CC polarity. Refer source file

datamux_ctrl.c.

6. It has integrated AUX pull-up/pull-down resistors. Value of the resistors applied depends on Display configuration:

DP or HDMI/DVI/VGA. Refer datamux_ctrl.c.

7. It uses HPD hardware block to receive and queue multiple HPD events i.e. Plug, Unplug and IRQ.

4.4.4 Updating the Default Configuration

The CCG3 dongle firmware project has an embedded default configuration in the common\config.c file. The contents of this
file can be replaced with that of the .c source file generated by EZ-PD Configuration Utility. After all the source changes are

completed, rebuild the project to generate the customized binaries.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

46

Embedded in Tomorrow Customizing the Firmware Application

4.5 CCG3 Power Adapter

451 PSoC Creator Schematic

Figure 22: PSoC Creator Schematic for CCG3 Power Adapter

FET TYPE DETECT 0] Bootioadable 1 PDSS PORTO RX E;LK_IE—‘
Bootloadable
SIVSELT P1 PDS5. PORTO TX CL}iIm:"‘I
JveeL2 P POSS PORTO_ SAR_CLK[o

VBUS: MON: P ffmet

Open TopDesign.cysch file in the PSoC creator project to access power adapter’s schematic. Schematic contains hardware
resources used by power adapter such as clocks, voltage selection 10s etc.

Figure 22Error: Reference source not found shows the various schematic elements used in the CCG3 power adapter
project. The selection of some of these elements is fixed due to the capabilities of the CCG3 device and the bootloader
design. The table also points out the changes allowed in the schematic design.

Table 13: Schematic Elements in CCG3 Power Adapter Design

Schematic Element Description Changes allowed
Bootloadable_1 This is a software block which No changes should be made
interacts with the boot-loader on the to this element.
CCGS3 device.
PDSS_PORTO0_RX_CLK This is an internal clock that is used No changes are allowed.
for the RX portion of the USB-PD
block.
PDSS_PORTO_TX_ CLK This is an internal clock that is used No changes are allowed.
for the TX portion of the USB-PD
block.
PDSS PORT0_SAR_CLK This is an internal clock that is used No changes are allowed.
for the analog portion of the USB-PD
block.
VSEL1_P1 These are output pins used to select These can be changed
VSEL2 P1 the source voltage to be provided on based on the voltage
- the Type-C port. selection mechanism in the
target hardware.
VBUS_MON_P1 Input pin used to monitor the voltage No changes are allowed as
on VBus. the connectivity to the
internal comparators is fixed.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

47

I

YPRESS

Embedded in Tomorow” Customizing the Firmware Application

FET_TYPE_DETECT_IO Input pin used to detect type of No change is allowed as FW
voltage provider FETs. behavior depends on this 10.

If the 10 is floating, then
NFETSs are being used. If the
10 is grounded, then PFETs
are being used.

Closely associated with the Schematic is the Design Wide Resources (DWR) view, which maps each schematic element to a
pin, clock, or hardware block on the CCG3 device. Open the CYPD3135-40LQXI_power_adapter.cydwr file to see the DWR
settings for the project.

Figure 23: Design Wide Resource (DWR) View

power_adapter.cydwr & 4Pk X

Name / Port Pin Lock

<]

<]

<]

EIRIEIE]
EKIRIEIR]
<|

VLS DECHARGE

ooz Fo[1] VEELI_F1
4 N) PO VEELZ P
f==3} XRes
e CYPD3135-40LQXIT =
FET_TYPE_DETECT_ID P FIs] | 24
3 PN 4U'QFN FIi4] VBUS_MON_F1

1
ELn
snue
ALBH
Paoy
Pan
oo

=
1
z
=
&
B

DEBLE
a

Wﬁs}\@dods}\;fmmm}\lﬁsmem}\% DiecﬁvesFlawSeunty 4 b

As shown in Error: Reference source not found, the DWR view has several tabs, which configure aspects such as pin
mapping, interrupt mapping, clock selection, flash security, and so on. It is recommended that you restrict any changes to the
DWR to the pin mapping view. Do not change the clock, interrupt, system, or flash configurations. Even in the pin mapping
editor, the changes should be subject to the constraints outlined in Error: Reference source not found.

4.5.2 Updating Code to Match the Schematic

If you change the schematic or pin mapping, you must make corresponding changes in the firmware code that manages
these schematic elements.

All of the schematic-dependent code for the power adapter application is implemented in the following file:

8. CYPD3135-40LQXI_power_adpater.cydsn/config.h: This file defines macros that perform hardware-dependent
actions such as selecting source voltage and turning FETs ON/OFF. These are implemented as macros because all
of these actions involve simple GPIO or device register updates. If required, the user can add a source file which
implements more complex functions to perform these actions.

Note: There is a similar config file in the noboot.cydsn project folder as well. If debugging is being used, the
schematic dependent changes should be replicated there as well.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

48

Embedded in Tomorrow Customizing the Firmware Application

Compile Time Options

The CCG3 power adapter port controller application supports a set of features that can be enabled/disabled using compile
time options. These compile time options are set in the config.h header file that you can find under the solution folder, and
are summarized in Error: Reference source not found.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

49

Embedded in Tomorrow Customizing the Firmware Application

Table 14: Selectable Firmware Features in CCG3 Power Adapter Application

Pre-processor Switch

Description

Values

VBUS_OVP_ ENABLE

Enable overvoltage Protection handling
on VBus. This feature can be turned off
using the configuration table, even if it
is enabled here.

1 for VBus OVP enable
0 for VBus OVP disable

VBUS OCP_ ENABLE

Enable overcurrent protection on VBus.
This feature can be turned off using the
configuration table, even if it is enabled
here.

1 for VBus OCP enable

0 for VBus OCP
disable

VBUS_OCP_MODE

This parameter selects various OCP
handling modes.

0: OCP is detected by
external OCP
hardware.

1: Internal OCP with
neither software
debouce nor automatic
FET control by
hardware.

2: Internal OCP with
automatic FET control
by hardware.

3: Internal OCP with
software debounce
using delay in
milliseconds from the
configuration table.

SYS DEEPSLEEP ENABLE

Enable flag for the low power module
which keeps CCG in deep sleep mode
at all possible times.

1 for low power enable
0 for low power disable

FLASHING MODE PD ENABLE

Enable FW update interface over PD.
Recommendation is to keep this
enabled as power adapter supports FW
update interface only over PD.

1 for enabling FW
update interface

0 for disabling FW
update interface

FLASH ENABLE NB MODE

Enable non-blocking flash row update
feature. CCG3 supports non-blocking
row update which allows other
interfaces to be active while device’s
flash is being updated.

1 for non-blocking FW
update

0 for blocking FW
update

Source Voltage Selection

Refer to the APP_VBUS_SET_XX_PX macros in the power_adpater.cydsn/config.h file to implement the source voltage

selection scheme.

In CCG3 power adapter FW, the supported source voltages are 5V, 9V, 15V, and 20 V and a pair of VSEL GPIOs are used

to select between them.

For example, setting the source voltage to 15 V is done by the following macro:

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

50

Embedded in Tomorrow Customizing the Firmware Application

/* Function/Macro to set source voltage to 15V. */
#define APP VBUS SET 15V _P1
{

VSEL1 P1 Write(0);

VSEL2 P1 Write(1);

~ -

}

The implementation of this macro can be changed to use the correct mechanism for voltage selection on the target
hardware. The user can implement the macros for the voltages that are supported from among 5V, 9V, 12V, 13V, 15V,
19V, and 20 V. The implementation for any unsupported voltage can be left as NULL.

FET Control

The provider and VBUS discharge FET controls are implemented using the following macros:
. APP _VBUS SRC_FET ON PX - Turn provider FET ON

. APP VBUS SRC FET OFF PX — Turn provider FET OFF

. APP DISCHARGE FET ON PX - Turn VBus Discharge FET ON

. APP DISCHARGE FET OFF PX - Turn VBus Discharge FET OFF

4.5.3 Updating the Default Configuration

The CCG3 power adapter firmware project has an embedded default configuration in the common\config.c file. The contents
of this file can be replaced with that of the .c source file generated by EZ-PD Configuration Utility. After all the source
changes are completed, rebuild the project to generate the customized binaries.

454 FW update interface

CCG3 Power Adapter supports dual FW images and non-blocking flash update feature to allow FW update without affecting
normal operation of the device. PD is the FW update interface. Host (Flashing controller) needs to swap data roles with
power adapter and enter CY FW update alternate mode before initiating FW update procedure. Power adapter bootloader
does not support any FW update interface.

4.6 CCG3 Charge-Through Dongle

4.6.1 PSoC Creator Schematic

Figure 24: PSoC Creator Schematic for CCG3 Charge-Through Dongle

Bootloadable 1 POSS PORTO_RX_CLE[1=
Bootloadable 1

POSS PORTO TX CLK 1=

EOD kHr

POSS PORTO SAR CLK[=

1 WHx

POSS PORTO-SWAP:-CLK[1=
SMHr

HPI_MASTER
12C

Master

[=HPD FRS REQ (|
[=| HUB CTRL HPI_INTR_GPIO =

[r] HY CTRL

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Embedded in Tomorrow

Most aspects of the hardware design around the CCG3 device are captured in the schematics associated with the

PSoC Creator firmware project.

The Creator schematic can be found in the TopDesign.cysch file, which is part of each Creator project. Double-click on this

Customizing the Firmware Application

file to open the schematic editor window (see Figure 24).

The schematic shows how internal resources of the CCG3 device are used in the design. This includes all of the internal
clocks used by the design, the various serial interfaces and all of the GPIO pins used to communicate with external

elements.

Table 15 shows the various schematic elements used in the CCG3 Charge-Through Dongle upstream port controller project.
The selection of some of these elements is fixed due to the capabilities of the CCG3 device and the bootloader design. The

table also points out the changes allowed in the schematic design.

Table 15: Schematic Elements in CCG3 Charge-Through Dongle Design

Schematic Element

Description

Changes allowed

Bootloadable_1

This is a software block which
interacts with the boot-loader on the
CCG3 device.

No changes should be made
to this element.

HPI_MASTER

This is an I12°C master block through
which the CCG3 communicates with
the PD port controller for the
downstream port.

The pins used can be
changed to any other 12C
(SCB) blocks on the CCG3
device.

PDSS_PORTO_RX_CLK

This is an internal clock that is used
for the RX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORTO_TX_CLK

This is an internal clock that is used
for the TX portion of the USB-PD
block.

No changes are allowed.

PDSS_PORTO_SAR_CLK

This is an internal clock that is used
for the analog portion of the USB-PD
block.

No changes are allowed.

PDSS_PORTO_SWAP_CLK

This is an internal clock that is used
for the fast role swap logic in the
USB-PD block.

No changes are allowed.

HPI_INTR_GPIO

This is an input pin used by the
downstream port controller to notify
CCG3 about downstream port state
changes.

Can be moved to other free
GPIOs on the CCG3 device.

the USB 3.0 hub in the dongle
design.

FRS_REQ This is an input pin which is used to No changes are allowed as
trigger a PD 3.0 fast-role swap from the FRS trigger pin on CCG3
the CCG3 device. is fixed.

HPD This is the Hotplug Detect input pin This pin can be removed if
from the DisplayPort driver to the DisplayPort is not used. If
CCGS3 device. used, the pin mapping

cannot be changed.

HUB_CTRL This is an output pin used to enable Should not be changed

because this pin is used by
the fixed function boot-loader
as well.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

52

Embedded in Tomorrow Customizing the Firmware Application

Schematic Element Description Changes allowed
HV_CTRL This is an output pin used to enable Can be moved to other free
the pass-through connection of the GPIOs on the CCG3 device.

downstream port power supply to the
upstream port.

Closely associated with the Schematic is the Design Wide Resources (DWR) view, which maps each schematic element to a

pin, clock, or hardware block on the CCG3 device. Open the CYPD3123-40LQXI|_ctd_us.cydwr file to see the DWR settings
for the project.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Embedded in Tomorow” Customizing the Firmware Application

Figure 25: Design Wide Resource (DWR) View

Start Page]/TopDesign.cysdﬂ Qj/dp_dnngle.cydwr ﬂ] -4k X

MName i Port Pin

Cﬁ Pins]\@ Clocks J\;;{ Interrupts]\? System]\\% Directives }@ Flash Security] 4 b

As shown in Figure 25, the DWR view has several tabs, which configure aspects such as pin mapping, interrupt mapping,
clock selection, flash security, and so on. It is recommended that you restrict any changes to the DWR to the pin mapping
view. Do not change the clock, interrupt, system, or flash configurations. Even in the pin mapping editor, the changes should
be subject to the constraints outlined in Table 15.

4.6.2 Updating Code to Match the Schematic

If you change the schematic or pin mapping, you must make corresponding changes in the firmware code that manages
these schematic elements.

All of the schematic-dependent code for the charge-through dongle application is implemented in the following files:

1. common/ctd_us_solution.c: This file makes use of the HV_CTRL GPIO to control the power circuits as required.
These operations can be changed as required based on the hardware design.

2. common/datamux_ctrl.c: This source file implements a function that controls the internal SBU MUX on the CCG3
device and the external HUB enable GPIO based on the active PD alternate modes.
Compile Time Options

The CCG3 Charge-Through Dongle upstream port controller application supports a set of features that can be
enabled/disabled using compile time options. These compile time options are set in the config.h header file that you can find
under the solution folder, and are summarized in Table 16.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

54

Embedded inTomorrow Customizing the Firmware Application

Table 16: Selectable Firmware Features in CCG3 Charge-Through Dongle Application

Pre-processor Switch Description Values

Enable overvoltage Protection handling 1 for VBus OVP enable
on VBus. This feature can be turned off | g for VBus OVP disable
using the configuration table, even if it
is enabled here.

VBUS_OVP_ ENABLE

Enable automatic FET control by 1 for automatic
VBUS OVP AUTO CONTROL ENABLE
- - - - hardware when an OVP event is hardware cut-off
detected. 0 for firmware cut-off
SYS DEEPSLEEP ENABLE Engble flag for the .Iow power module 1 for low power enable
- - which keeps CCG in deep sleep mode 0 for low power disable
at all possible times.
Enable Alternate Mode handling when 1 for alternate mode
UFP_ALT MODE SUPP
- - - CCG is UFP. enable
0 for alternate mode
disable
Enable DisplayPort Alternate mode 1 for DisplayPort
DP UFP SUPP
- - when CCG is UFP. This requires enable
UFP_ALT_MODE_SUPP. 0 for DisplayPort
disable
CCG BB _ENABLE Enable the int'ernal Billboard USB 1 for Billboard enable
device operation. 0 for Billboard disable

4.6.3 Updating the Default Configuration

The CCG3 charge through dongle firmware project has an embedded default configuration in the common\config.c file. The
contents of this file can be replaced with that of the .c source file generated by EZ-PD Configuration Utility. After all the
source changes are completed, rebuild the project to generate the customized binaries.

4.7 USB-PD Specification Revisions

The example applications provided for CCG3 and CCG4 devices support USB-PD specification revision 3.0 by default. Since
PD 3.0 support requires significant code addition, this leaves little room for the addition of customer specific code in these
applications.

It is possible to gain more space in the CCG device flash by restricting the applications to USB-PD Revision 2.0 support. The
following steps are required to switch applications between PD 3.0 and PD 2.0 support:

1.

The PD stack parameters configuration file (stack_params.h) has a few pre-processor definitions that enable PD 3.0
support in the application. The definitons CCG_PD _REV3 ENABLE, CCG_FRS_RX_ENABLE and
CCG_FRS_TX_ENABLE should be set to 0 to disable PD 3.0 support.

Two versions of the PD stack libraries are provided: libccgx_pd.a and libccgx_pd3.a. In the linker settings sections of the
build settings of the project, switch between ccgx_pd and ccgx_pd3 to switch between PD 2.0 and PD 3.0 support.

The configuration table contents for the application should be changed based on the specification version to be
supported. The SRC_PDO, SNK_PDO and DISCOVER_ID response parameters in the configuration table have fields
that are defined only for PD 3.0. These values should be adjusted as required when switching between PD revisions.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

55

= =
=2 CYPRESS o) o
Embedded in Tomorrow Customizing the Firmware Application
Error: Reference source not found Design
Error: Reference source not foundError: Reference source not foundError: Reference source not

foundpplication

Functional Overview
Error: Reference source not found Design

Error: Reference source not foundError: Reference source not foundError: Reference source not

found

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

56

= = ;
=2 CYPRESS
Embedded in Tomorrow Customizing the Firmware Application

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

57

Embedded in Tomorrow Customizing the Firmware Application

5. Firmware Architecture

——
—_—
—

e s

——

CYPRESS

Embedded in Tomorrow”

5.1 Firmware Blocks

The CCGx firmware architecture allows users to implement a variety of USB-PD applications using the CCG3 and CCG4
devices and a fully tested firmware stack. A block diagram of the CCGx firmware architecture is shown inThe CCGx
firmware architecture allows users to implement a variety of USB-PD applications using the CCG3 and CCG4 devices and a
fully tested firmware stack. A block diagram of the CCGx firmware architecture is shown inThe CCGx firmware architecture
allows users to implement a variety of USB-PD applications using the CCG3 and CCG4 devices and a fully tested firmware
stack. A block diagram of the CCGx firmware architecture is shown inThe CCGx firmware architecture allows users to
implement a variety of USB-PD applications using the CCG3 and CCG4 devices and a fully tested firmware stack. A block
diagram of the CCGx firmware architecture is shown inThe CCGx firmware architecture allows users to implement a variety
of USB-PD applications using the CCG3 and CCG4 devices and a fully tested firmware stack. A block diagram of the CCGx
firmware architecture is shown in . Figure 26. Figure 26. Figure 26. Figure 26.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

58

Embedded in Tomorow Customizing the Firmware Application

Figure 26: CCGx Firmware Block Diagram

Solution Space

External HW Control

(FET, MUX etc) Solution Specific Tasks

Application Layer

Port Alternate Low Power Host Billboard
Management Modes (Sleep) Processor | /f | Management
Type-C and USB-PD Stack Firmware Update

Hardware Adaptation Layer

Type-C & USB-FS
PD (CCG3 only)

Timer Flash SCB GPIO

12C / GPIO GPIO
Library API Source | Reference Code

The CCGx firmware architecture contains the following components:

Hardware Adaptation Layer (HAL): This includes the low-level drivers for the various hardware blocks on the CCG
device. This includes drivers for the Type-C and USB-PD block, Serial Communication Blocks (SCBs), GPIOs,
flash module, timer module and USB full speed device module (only for CCG3 Dongle).

USB Type-C and USB-PD Protocol Stack: This is the complete USB-PD protocol stack that includes the Type-C
and USB-PD port managers, USB-PD protocol layer, the USB-PD policy engine, and the device policy manager.
The device policy manager is designed to allow all policy decisions to be made at the application level, either on
an external Embedded Controller (EC) or in the CCG firmware itself.

Firmware update module: This is a firmware module that allows the device firmware maintained in internal flash to
be updated. In Notebook PD port controller applications, the firmware update will be done from the EC side
through an I12C interface.

Billboard Management: This module handles all the billboard enumeration sequences and is applicable only for
CCG3 Dongle implementations. The billboard module is used internally by the Alternate Modes modules and is not
expected to be invoked explicitly.

Host Processor Interface (HPI): The Host Processor Interface (HPI) is an 12C-based control interface that allows
an Embedded Controller (EC) to monitor and control the USB-PD port on the CCG device. The HPI is the means
to allow the PC platform to control the PD policy management.

Port Management: This module handles all of the PD port management functions including the algorithm for
optimal contract negotiations, source and sink power control, source voltage selection, port role assignment, and
swap request handling.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

59

Embedded in Tomorrow Customizing the Firmware Application

Alternate Modes: This module implements the alternate mode handling for CCG as a DFP and UFP. A fully tested
implementation of DisplayPort alternate mode with CCG as DFP is provided. The module also allows users to
implement their own alternate mode support in both DFP and UFP modes.

Low Power: This module attempts to keep the CCG device in the low-power standby mode as often as possible to
minimize power consumption.

External Hardware Control: This is a hardware design-dependent module, which controls the external hardware
blocks such as FETs, regulators, and Type-C switches.

Solution specific tasks: This is an application layer module where any custom tasks required by the user solution
can be implemented.

5.2 SDK Usage Model

Users of the CCG notebook solution must follow these steps to use the SDK components:

1.
2.
3.

5.

Load the solution workspace using PSoC Creator.
Edit the project schematics and solution configuration header file if needed.

Use the EZ-PD Configuration Utility to build the configuration table, and copy the generated C source file into the
Creator project if necessary. The configuration table can also be updated by editing the config.c file in
PSoC Creator Source Editor.

Build the application projects using the PSoC Creator. The firmware binaries will be generated in ELF, HEX, and
CYACD formats suitable for SWD programming, Miniprog, and the EZ-PD configuration utility.

Load the firmware binary onto the target hardware for evaluation and testing.

This usage flow is illustrated in Figure 27. Many of these steps, such as changing the compile time configurations and using
the EZ-PD Configuration Utility to change the configuration table, are only required if the customer wants to change the way
the application works.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

60

=

' CYPRESS
Embedded in Tomorrow Customizing the Firmware Application

Figure 27. SDK Usage Flow

(START)

o

A 4

OPEN SELECTED
WORKSPACE IN CREATOR

\ 4

OPEN SELECT Vbus / Vconn FET
CONFIG.H HEADER FILE CONTROLS
l |
USE EZ-PD CONFIG UTILITY SELECT OPTIONS FOR
TO CONFIGURE SOLUTION LEVEL SELECT DATA MUX
PARAMETERS FUNCTIONS CONTROL METHOD
GENERATE
UPDATE VDO, PDO SELECT VDM HANDLING
CONFIGURATION IN C RESPONSE DATA
SOURCE FORM OPTION

! !

IMPORT C SOURCE INTO

SOLUTION WORKSPACE BUILD FIRMWARE BINARY

!

PROGRAM CCG4 DEVICE
(SWD OR CONFIG UTILITY)

\ 4

< sToP)

5.3 Firmware Versioning

Each project has a firmware version (base version) and an application version number.

The base firmware version number shall consist of major number, minor number, and patch number in addition to an
automatically updated build number.

The base firmware version applies to the whole stack and is common for all applications and projects using the stack. The
version information can be found in the src/system/ccgx_version.h header file.

The application version shall be modified for individual customers based on requirements. This shall have a major version,
minor version, external circuit specification, and application name. This version information can be updated by users as
required, and is located in the Firmware/projects/<project_name>/common/app_version.h header file.

Note: Ensure that you do not change the application name from the value defined for the CCG application type. The
application type information is used by the EZ-PD configuration utility to interpret the configuration table content.

The version number information for each firmware shall be stored in an eight-byte data field and shall be retrieved over the
HPI interface. The following table denotes the version structure and format.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

61

Embedded in Tomorrow

Customizing the Firmware Application

Table 17: CCGx Firmware Version Structure

Bit Field

Name

Description

[15:0]

Base FW Build number

This field corresponds to base firmware version and shall be
automatically incremented during nightly build. This field should not
be manually edited.

This field is expected to be reset on every SNPP release cycle and
not modified throughout the release.

[23:16]

Base FW Patch version
number

This field corresponds to base firmware patch version number. This
field shall be updated manually by the core PD team for base
firmware releases.

This field shall be incremented for every intermediate release done
to customer or an actual patch release performed for a previous full
release.

[27:24]

Base FW Minor version
number

This field corresponds to base firmware minor version number. This
field shall be updated manually by the core PD team for base
firmware releases.

This field is generally updated once for every SNPP release cycle at
ES100 RC build. The exception is when an intermediate customer
release which breaks compatibility.

[31:28]

Base FW Major version
number

This field corresponds to base firmware major version number. This
field shall be updated manually by the core PD team for base
firmware releases.

The major number is generally updated on a major project level
change or when we have cycled through all minor numbers. The
number shall be determined at the beginning of every SNPP release
cycle.

[47:32]

Application Name /
number

This field is left for any application / customer-specific changes to be
done by applications team.

By default, this field shall be released by the base firmware version
team will have the following values:

Notebook “nb”

“ ”

Power Adapter pa

Alternate Mode Adapter (AMA) “aa”

NOTE: s information is used by Ez-PD Configuration Utility to determine the application type and should not be modified for

standard applications.

[55:48]

External circuit number

This field is left for any application / customer-specific changes to be
done by applications team. By default, this field shall be released by
the base firmware team as 0.

The circuit number values from 0x00 to Ox1F are reserved for base
firmware team. This is because base firmware team may have to
support same application on multiple platforms in the future.

[59:56]

Application minor version
number

This field is left for any application / customer-specific changes to be
done by applications team. By default, this field shall be released by
the base firmware team as 0

[63:60]

Application major version
number

This field is left for any application / customer-specific changes to be
done by applications team. By default, this field shall be released by
the base firmware team as 0

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Embedded in Tomorrow Customizing the Firmware Application

5.4 Flash Memory Map

CCGx has a 128-KB flash memory that is designated to store a bootloader, along with two copies of the firmware binary
along with the corresponding configuration table. The flash memory map for the device is shown in Figure 28.

Figure 28: CCGx Flash Memory Map

CCGx Flash Map

FW Metadata

FW2: CCG Firmware Application

FW?2 Configuration Table

FW1: CCG Firmware Application

FW1 Configuration Table

Bootloader — 12C

The bootloader in notebook and dongle applications is used to upgrade the CCGx application firmware. Bootloader in power
adapter application does not support firmware update interface. It is allocated a fixed area. This memory area can only be
written to from the SWD interface. CCG4 Notebook only supports I°C bootloader and uses 5 KB of memory. CCG3
Notebook also supports 1°C bootloader and uses 6KB of memory. CCG3 Dongle supports only USB-HID bootloader and
uses 6KB of memory.

The configuration table holds the default PD configuration for the CCG application and is located at the beginning of each
firmware binary. The size of each configuration table is 1 KB for notebook and power adapter applications. The size of each
configuration table is 2KB for dongle application to provide extra space for billboard related parameters.

The CCG firmware area is used for the main CCG firmware application. In all applications, two copies of firmware (called
FW1 and FW2) are used.

In case of CCG4, FW1 uses the space from 5 KB to 64 KB, and FW2 uses the remaining space. CCG3 FW1 uses the
space from 6 KB to 64 KB and FW2 uses the remaining space.

The metadata area holds metadata about the firmware binaries. The firmware metadata follows the definition provided by
the PSoC Creator bootloader component; and includes firmware checksum, size, and start address.

5.5 Bootloader

The Flash-based bootloader mainly functions as a boot-strap and is the starting point for firmware execution. It validates the
firmware based on checksum stored in Flash. The boot-strap also includes the flashing module in notebook and dongle
applications. The bootloader flow diagram follows.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

63

Embedded in Tomorrow

Customizing the Firmware Application

\\

YES

JUMP to FW1

JUMP to FW2

SROM FLASH START

Valid metadata

FW1 is default

Figure 29: Bootloader Flow Diagram

NO

NO

JUMP to FW2

/

JUMP to FW1

INITIALIZE BOOT INTERFACE

v

WAIT FOR FLASHING
REQUESTS

RESET REQUEST?

Since CCGx uses redundant firmware images that can update each other, it is expected that the device always has at least
one functional image that can be booted by the bootloader. The programming through bootloader capability in notebook and
dongle applications will only be used when using a CCGx part programmed with only the bootloader at factory.

As described in Chapter 3, the bootloader keeps track of the last updated firmware image through the metadata; and loads

it during start-up.

5.6 Firmware Operation

Figure 30 shows the firmware initialization and operation sequence. The notebook firmware is implemented in the form of a
set of state machines and tasks that need to be performed periodically.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

CYPRESS
Embedded in Tomorow” Customizing the Firmware Application

Figure 30: Notebook Firmware Flow Diagram

FW ENTRY

VALID CONFIGURATION

TYPE-C STATE MACHINE
TASK
PD STATE MACHINE TASK
HOST PROCESSOR
INTERFACE TASK

MARK CURRENT FIRMWARE
INVALID

CONFIGURE PERIPHERAL
BLOCKS

A 4

CONFIGURE WAKEUP
SOURCES
DEVICE RESET

ENTER LOW POWER MODE

ALTERNATE MODE TASK

UART FORWARDING TASK
(CCG3* only)

LOAD FLASH CONFIG INFO

WAIT FOR INTERRUPT
(DEEP SLEEP MODE)

EXIT LOW POWER MODE

INITIALIZE THE PD MODULES

PD IDLE TIMEOUT?

INTIALIZE INTERRUPTS DISABLE WAKEUP SOURCES

A

The code flow for the application is implemented in the common\main.c file. As can be seen from the main () function, the
implementation is a simple round-robin loop, which services each of the tasks that the application has to perform.

All of the PD management, HPI command handling, and VDM handling is encapsulated in the task handlers in the CCGx
Firmware Stack. Refer to the CCGx FW API Guide document for more details of these functions and handlers.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Embedded in Tomorrow

Customizing the Firmware Application

6. Firmware APls

-

== CYPRESS

Embedded in Tomorrow”

This section provides a summary of the APIs provided by the PD stack and other layers in the CCGx firmware solution. Only
the APIs that are expected to be used directly from user code are documented here. Refer to the APl Reference Guide for
more details on the data structures used and all of the APlIs.

6.1 API Summary
6.1.1 Device Policy Manager (DPM) API

These functions are declared in the src/pd_common/dpm.h header file.

Table 18: List of Device Policy Manager API

Function Description Parameters Return

dpm_ init Initialize the Device Policy port: Port to be initialized Call status.
Manager interface for a given app_cbk: Structure with
USB-PD port. For a dual-port function pointers that the
part, the dpm_init needs to be PD stack can call to
done separately for each port. handle various events.

dpm_start Start the PD state machine on port: Port to be enabled. Call status.
the given USB-PD port.

dpm_stop Stop the PD state machine on port: Port to be disabled Call status.

the given USB-PD port.

dpm deepsleep

Check for PD state machine idle
state and prepare for deep
sleep.

port: Port to be checked.

1 if deepsleep is
possible.

0 if PD state
machine is busy.

dpm_sleep Check for PD state machine idle port: Port to be checked. 1ifsleepis
state and prepare for sleep. possible.
0 if PD state
machine is busy.
dpm_wakeup Update the PD block after device port: Port to be re- Always returns 1.
resumes from deep sleep. enabled.
dpm_task PD state machine task. This port: Port to be serviced. Call status.

should be called periodically
from the main application.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

66

Embedded in Tomorrow

Customizing the Firmware Application

Function

Description

Parameters

Return

dpm pd command

Initiate a PD command such as
VDM, DR_SWAP etc.

port: Port on which
command is to be
initiated.

cmd: Command to be
initiated.

buf_ptr: Command
parameters.

cmd_cbk: Callback to be
called at the end of
command.

Call status.

dpm_typec command

Initiate a Type-C command such
as Rp change.

port: Port on which
command is to be
initiated.

cmd: Command to be
initiated.

cmd_cbk: Callback to be
called at the end of
command.

Call status.

dpm get info

Get the DPM status for the

port: Port whose status

Pointer to the

device. This is mainly intended is to be queried. DPM status
for use within other layers in the structure.
Cypress provided firmware
modules.
dpm update swap response Update the response that CCG port: Port whose swap Call status.
will send for various swap handler is to be
commands. changed.
value: Bitmap in the
following format.
Bits 1:0 => DR_SWAP
response
Bits 3:2 => PR_SWAP
response
Bits 5:4 =>
VCONN_SWAP response
0 => ACCEPT
1 => REJECT
2 => WAIT
3 =>
NOT SUPPORTED
dpm_update_src_cap Update the source capabilities port: Port to be updated. Call status.
PDO list. The provided values count: Number of PDOs
will replace the settings from the in list. Maximum allowed
configuration table. value is 7
pdo: Pointer to array
containing PDOs.
dpm_update_src_cap_mask Change the mask that enables port: Port to be updated. Call status.

specific source PDOs from the
list.

mask: New PDO enable
mask.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Embedded in Tomorrow

Customizing the Firmware Application

Function Description Parameters Return
dpm_update_snk_cap Update the sink capabilities PDO port: Port to be updated. Call status.
list. The provided values will count: Number of PDOs
replace the settings from the in list. Maximum allowed
configuration table. value is 7
pdo: Pointer to array
containing PDOs.
dpm_update_snk_cap_mask Change the mask that enables port: Port to be updated. Call status.
specific sink PDOs from the list. mask: New PDO enable
mask.
dpm_update snk max min Change the min/max current port: Port to be updated. Call status.
fields associated with each Sink count: Number of PDOs
PDO. in list. Maximum allowed
value is 7
max_min: Pointer to
array containing new
Min/Max operating
current values.
dpm_update port config Change the USB-PD port: Port to be updated. Call status.
configuration: port role, default role: New port role
role etc. The port should have setting.
been disabled using)
dpm_typec_command detErolle.fNe\géisfault
(DPM_CMD_PORT_DISABLE) port role for :
before the change is attempted. toggle_en: DRP toggle
enable flag
try_src_en: Try.SRC
enable flag
dpm_get polarity Get the current polarity of the port: Port to be queried. 0ifCC1is
Type-C connection connected
1ifCC2is
connected
dpm typec deassert rp rd De-assert both Rp and Rd on port: Port to be updated. Call status.
the specified PD port. channel: Channel on
which terminations are to
be disabled.
dpm update port status Update the USB-PD port status port: Port to be updated. None
that will be returned by CCG as input: Present power
part of a Get_Status response. input status
battery: Present battery
status.
dpm_update_ext_src_cap Updated the Extended Source port: Port to be updated. None
Capabilities returned by the buf_p: Pointer to buffer
CCG device. containing the extended
source capabilities.
dpm_update_frs_enable Update the Fast-Role Swap port: Port to be updated. None

feature support in the CCG PD
state machines. The change will
only take effect after a fresh
contract negotiation.

frs_rx_en: Whether FRS
receive is to be enabled.

frs_tx_en: Whether FRS
transmit is to be
enabled.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

68

Embedded in Tomorrow

Customizing the Firmware Application

6.1.2 Host Processor Interface (HPI) API

This section documents the APIs provided by the HPI firmware module. Refer to the src/hpi/hpi.h file for details. Contact

Cypress (ccg_sw@cypress.com) for access to detailed Host Processor Interface (HPI) documentation.

Table 19: List of Host Processor Interface API

Function

Description

Parameters

Return

hpi init

Initialize the HPI protocol module.
The serial block index to be used
is specified as parameter.
However, arbitrary change to the
SCB block will not work as the
SCB used in the bootloader
binary is fixed.

scb_idx: SCB index to
be used.

None

hpi send fw ready event

Send a firmware ready (device
out of reset) notification to the EC
through the HPI interface.

None

None

hpi set fixed slave addr
ess

Configure the HPI slave address
to a fixed value. If this APl is not
called, the HPI slave address is
determined based on the state of
the 12C_CFG pin.

This should be called before
hpi_init().

slave_addr: Desired
slave address minus the
read/write bit.

None

hpi set no boot mode

Force the HPI interface to run in
no-boot mode. The device will not
support any flash update
commands in this case.

This should be called before
hpi_init().

Enable: Whether to
enable no-boot mode.

None

hpi task

HPI task handler. HPI commands
are queued in ISR and handled
here. This should be called
periodically from the main
application.

None

None

hpi reg enqueue event

Send an event natification to the
EC.

section: Specifies the
PD port corresponding
to the event.

status: Type of event to
send.

length: Length of data
associated with the
event.

data: Buffer containing
event data.

true if the event
was queued.

false if event was

dropped due to
queue overflow.

hpi pd event handler

HPI handler for stack event
notifications. The solution layer
can call this function on getting
event notifications from the PD
stack.

port: Port on which
event occurred.

evt: Type of event.

data: Event data
provided by stack.

None

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

69

mailto:ccg_sw@cypress.com

Embedded in Tomorrow

Customizing the Firmware Application

Function Description Parameters Return
hpi_update_versions Update the HPI version registers. bl_version: Boot-loader None
See section 5.3 version.
fw1_version: FW1
version.
fw2_version: FW2
version.
hpi_set mode_regs Update the HPI registers that dev_mode: Device None
report device mode. mode register value.
mode_reason: Boot
mode reason register
value
hpi_update fw_locations Update the firmware locations in fw1_location: Location None
HPI registers. of FW1 image.
fw2_location: Location
of FW2 image.
hpi sleep allowed Check if the HPI interface is idle, None true if sleep is
so that device can go to sleep. allowed.
false if HPl is
busy.
hpi sleep Prepare the HPI interface for None true if sleep
device deep sleep. preparation is
completed.
false if HPI is
busy.
hpi_get_port_enable Check whether PD ports are None Port enable bit

enabled.

map.

6.1.3 Application Layer API
Table 20 lists the application layer APIs provided by the CCGx SDK. These function declarations and definitions can be

found under the src/app folder.

Table 20: List of Application Layer APIs

Function Description Parameters Return
app_init Initializes the application layer None None
for operation.
app_task Perform application layer port: Port on which the 1 if successful.
tasks. This includes VDM application task is to be 0 if failure
handling and alternate mode performed.
implementation.
app_event handler Application level handler for port: Port on which event None
PD stack events. This occurred.
upd?te? the itnttemald " evt: Type of event.
application state, and then . .
calls the solution level event d?t' kEvent data provided by
handler. stack.
app _get status Get the current application port: Port to be queried. Pointer to

status information.

application status
structure.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

70

Embedded in Tomorrow

Customizing the Firmware Application

Function Description Parameters Return
app_sleep Check whether the None true if application
application layer is ready for layer is idle.
device low power mode. false if application
layer is busy.
app_wakeup This is called after device None None
wakes up from sleep, and can
be used to restore any state
that was saved as part of
sleep entry.
system sleep Top level sleep mode entry None None
function. This should be
called from the main loop to
allow CCG device to
consume minimal power.
eval_src_cap Evaluates the source port: PD port on which SRC. None
capabilities advertised by the CAP has been received.
port partner and identifies the | sr¢_cap: Source capabilities
optimal power contract that were received.
setting. app_resp_handler: Callback
function to be called to
report decision.
eval rdo Evaluate a PD request (RDO) port: PD port on which None
received and decide whether request has been received.
to accept/reject. rdo: Received RDO value.
app_resp_handler: Callback
function to be called to
report decision.
psnk_set voltage Power sink (consumer) port: Port to be updated. None
handler for voltage change. volt_50mV: Expected VBus
Default implementation sets voltage in 50 mV units.
up the OVP voltage level
based on the provided
voltage.
psnk set current Power sink (consumer) port: Port to be updated. None
handler for operating current cur_10 mA: Expected
change. The default operating current in 10 mA
implementation does not do units.
anything.
psnk_enable Enable the power sink path. port: Port to be updated. None
psnk_disable Disable the power sink path. port: Port to be updated. None
psrc_set_voltage Set the desired voltage for port: Port to be updated. None

the power source (provider)
output. This function is
expected to make the
regulator updates as well as
set the OVP thresholds based
on the voltage.

This can be updated if the
voltage selection mechanism
should be changed.

volt_50mV: Expected VBus
voltage in 50 mV units.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

71

Embedded in Tomorrow

Customizing the Firmware Application

Function Description Parameters Return

psrc_set current Set the current level for the port: Port to be updated. None
power source output. The cur_10mA: Expected
default implementation does operating current in 10 mA
not do anything. units.

psrc_enable Enable the power source port: Port to be updated. None
output.

psrc_disable Disable the power source port: Port to be updated. None
output.

vconn _enable Enable the VConn supply. port: Port to be updated. Call status.
The VConn FET is internal to
CCG4 device.

vconn_disable Disable the VConn supply. port: Port to be updated. Call status.

vconn is present

Check whether VConn supply
is present.

port: Port to be queried.

true if VConn is
present

false if VConn is
absent.

vbus is present

Check whether VBus is
present within a specific
range.

port: Port to be queried.
volt: Expected VBus
voltage.

per: Allowed variance in
voltage as percentage of
expected voltage.

true if VConn is
present

false if VConn is
absent.

vbus_discharge_on Enable the VBus discharge port: Port to be updated. None
path.
vbus_discharge off Disable the VBus discharge port: Port to be updated. None
path.
eval dr swap Evaluate a DR_SWAP port: Port to be updated. None
request from the port partner. app_resp_handler: Callback
function to be called to
report decision.
eval pr swap Evaluate a PR_SWAP port: Port to be updated. None
request from the port partner. app_resp_handler: Callback
function to be called to
report decision.
eval vconn_ swap Evaluate a VCONN_SWAP port: Port to be updated. None
request from the port partner. app_resp_handler: Callback
function to be called to
report decision.
vdm data init Initialize the VDM handler port: Port to be updated. None

data structure with data from
configuration table.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

72

Embedded in Tomorrow

Customizing the Firmware Application

Function

Description

Parameters

Return

vdm update data

Update the VDM handler data
structure with custom data.

port: Port to be updated.

id_vdo_cnt: Number of DOs
in Discover ID response.
id_vdo_p: Array containing
the Discover ID response.
svid_vdo_cnt: Number of
DOs in Discover SVID
response.

svid_vdo_p: Array
containing the Discover
SVID response.

mode_resp_len: Total
length of all Discover Mode
responses.

mode_resp_p: Array
containing actual Discover
Mode responses.

None

eval vdm

Evaluate a received PD VDM
and respond to it.

port: Port on which VDM is
received.

vdm: Received VDM
pointer.

vdm_resp_handler:
Callback to be notified
about the VDM response.

None

app_ovp enable

Enable the Over-Voltage
Protection function.

Port: Port on which OVP is
to be enabled.

volt_50mV: Allowed
maximum voltage in 50 mV
units.

pfet: Whether the CCG
device is power source.

ovp_ch: Callback function to
be called when OVP is
detected.

None

app_ovp disable

Disable the OVP function on
a PD port.

port: Port on which OVP is
to be disabled.

pfet: Whether CCG is a
power source at this time.

None

lists the functions that the PD stack and application layer expect to be implemented at the solution level.
These functions must be implemented in the source files within the PSoC Creator project workspace. If the
target application does not require one or more of these functions; a stub implementation that does nothing

should still be provided.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

73

Embedded in Tomorrow

Customizing the Firmware Application

Table 21: Solution-level Functions

interface. The Type-C data
pins should be isolated from
the USB and DisplayPort
controller pins at this stage.

Function Description Parameters Return
mux_ctrl init Initialize the Type-C switch port: Port to be true if successful.
and corresponding control updated. false if failure

mux ctrl set cfg

Update the Type-C switch to
enable/disable the desired
USB and DisplayPort
connections.

port: Port to be
updated.

cfg: Desired data
connection mode.
polarity: Polarity of
current Type-C
connection. 0 for CC1
and 1 for CC2.

true if successful.
false if failure

sln pd event handler

This is top level handler for
system event notifications
provided by the PD stack.
The default implementation of
this function calls the HPI
event handler so that the EC
can be notified about these
events.

port: Port on which
event occurred.

evt: Type of event.

data: Event data
provided by stack.

None

app_get callback ptr

Function that returns a
structure filled with callback
function pointers for various
system events. Default
implementations for all of
these functions are provided
under the app folder, and the
structure can be initialized
with the corresponding
pointers.

port: Port to be
queried.

Pointer to structure
containing callback
function pointers. This
structure should
remain valid
throughout the device
operation.

6.1.4 Alternate Mode API

This section documents the alternate mode related API provided in the CCGx SDK. These APIs are defined in the sources

under src/app/alt_mode and are summarized in Table 22.

Table 22: List of Alternate Mode APIs

that device can enter low
power mode. Each port
has to be queried
separately.

Function Description Parameters Return
enable_vdm_task mngr Enabled the alternate port: Port to be None
mode manager. updated.
vdm task mngr deinit De-initialize the alternate port: Port to be None
mode manager. updated.
is vdm task idle Check if the alternate port: Port to be true if the manager
mode manager is idle, so queried. is idle.

false if the manager
is busy.

vdm task mngr

Alt. mode manager state
machine task. This is
called from app_task.

port: Port to be
serviced.

None

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

74

Embedded in Tomorrow

Customizing the Firmware Application

Function Description Parameters Return
eval rec vdm Evaluate VDM message port: Port to be true if VDM is to be
received. updated. ACKed.
vdm_rcv: Pointer to false if VDM is to be
received attention NACKed.

VDM.

6.1.5 Hardware Adaptation Layer (HAL) API

This section documents the API provided as part of the Hardware Adaptation Layer (HAL), which provides drivers for
various hardware blocks on the CCG device.

GPIO API

The PSoC Creator GPIO component and associated APIs can be used in all CCG projects. However, the SDK also
provides a set of special API for reduced memory footprint. These APIs are defined in the src/system/gpio.c file and are
summarized in Table 23.

Table 23: List of GPIO APlIs

Function Description Parameters Return
hsiom set config Update the IO matrix port_pin: CCG pin identifier. None
configuration for a given hsiom mode: Desired 10
pin. configuration
gpio_set_drv_mode Select GPIO drive mode port_pin: CCG pin identifier. None
for a given pin. drv_mode: Desired drive
mode
gpio_hsiom_set_config Update 10 matrix and drive port_pin: CCG pin identifier. None
mode for a given pin. hsiom_mode: Desired 10
configuration
drv_mode: Desired drive
mode
value: Desired output state
gpio_int_set config Configure interrupt port_pin: CCG pin identifier. None
associated with a given int_mode: Desired interrupt
pin. configuration.
gpio_set_value Update the output value of port_pin: CCG pin identifier. None

a given pin. The 10
configuration and drive
mode for the pin should
have been set separately.

value: Desired output state

gpio read value

Get the current state of a
given pin.

port_pin: CCG pin identifier.

true if the pin is high.
false if the pin is low.

gpio_get intr

Check if there is an active
interrupt associated with
the given pin.

port_pin: CCG pin identifier.

true if interrupt is
active.

false if interrupt is not
active.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

75

Embedded in Tomorrow

Customizing the Firmware Application

Function

Description

Parameters

Return

gpio_clear intr

Clear any interrupts
associated with the given

pin.

port_pin: CCG pin identifier.

None

12C API

The Serial Communication Block component in PSoC Creator can be used with the CCG device. However, the SDK
provides a dedicated I°C slave mode driver, which is optimized for HPI implementation. These API definitions are provided
in src/scb/i2c.c and are summarized in Table 24.

Table 24: List of 12C driver APls

Function

Description

Parameters

Return

i2c_scb _init

Initialize the 12C slave
block and set driver
parameters.

scb_index: SCB index to be used.
mode: Mode of 12C block operation.

clock_freq: Expected bit rate on the
interface.

slave_addr: Slave address to be
used.

slave_mask: Mask to be applied on
the slave address to detect 12C
addressing.

cb_fun_ptr: Callback function to be
called for read/write/error
notifications.

scratch_buffer: Pointer to scratch
buffer to be used to received
incoming data.

scratch_buffer_size: Size of scratch
buffer.

None

i2c _scb write

Write data into the 12C
block transmit FIFO.

scb_index: SCB index to be used.

source_ptr: Location of data to be
written.

size: Size of data to be written.
Should be 8 bytes or lesser.

count: Return parameter indicating
actual size of data written.

None

i2c reset

Reset the 12C block.

scb_index: SCB index to be used.

None

i2c_slave ack ctrl

Used to enable/disable
clock stretching in the
device address stage.

scb_index: SCB index to be used.

enable: Enable device address
acknowledgement.

None

i2c_scb is idle

Check whether the 12C
module is idle.

scb_index: SCB index to be used.

true if the block
is idle.

false if the block
is busy.

i2c_scb _enable wakeup

Enable 12C device
addressing as a wakeup
source from low power
mode.

scb_index: SCB index to be used.

None

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

76

Embedded in Tomorrow

Flash API

Customizing the Firmware Application

The flash API provides the core functionality used for CCG configuration and firmware updates. These are wrappers over
the PSoC Creator provided flash APIs, and implement checks to ensure that a firmware binary is not corrupted by writing
while it is being accessed. The flash related API are defined in src/system/flash.c and are summarized in Table 25.

Table 25: List of flash API

Function Description Parameters Return

flash _enter mode Enable flash updates is_enable: Whether to enable or None
through the specified disable flash access.
interface. Flash updates mode: Flash access interface
are only allowed through
one interface (12C, CC
etc.) at a time.

flash_access_enabled Check whether flash mode_s: Bitmap representing the true if fle_ish

flash interfaces to be checked. access is

access through any of the enabled

specified interfaces is

false otherwise.

enabled.
flash_set_access_limits Set limits regarding the start_row: Lowest flash row that can None
flash rows that can be be accessed.
accessed. The firmware | |ast_row: Highest flash row that can
application should be accessed.
identify the memory)
range that it is using, md_row.dMetadata row that can be
and use this API to accessed.
protect it from updates. bl_last_row: Last row used by boot-
loader. Any flash row above this
value can be read.
flash row clear Clear the contents of the row_num: Row to be cleared. Flash erase
specified flash row. status
flash row write Write the desired row_num: Flash row to be updated. Flash write
content into a flash row. | gata: Buffer containing flash data. status
This is a blocking . .
operation. cbk: Must be zero as non-blocking
writes are not supported by the
device.
flash row read Read the content of a row_num: Flash row to be read. Flash read
flash row into the status.

provided buffer.

data: Buffer to read the data into.

Timer API

The CCG firmware stack uses a soft timer implementation for various timing measurements. The soft timer granularity is 1
ms, and it uses a single hardware timer. If the timer block used is WDT (WatchDog Timer), the timers can be used across
device sleep modes; and it is possible to use a tickless implementation which reduces interrupt frequency. The soft timer
related API are defined in src/system/timer.c and are summarized in Table 26.

Table 26: List of timer API

Function Description Parameters Return

Initialize the timer module. None None
This enables the
hardware timer and
interrupt as well.

timer init

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Embedded in Tomorrow Customizing the Firmware Application

Function Description Parameters Return
timer_ start Start one soft | instance: Soft timer group or instance. true if
. Separate timer groups are maintained for successful.
timer (one each PD port. f if fai
shot). . . ' alse if failure.
id: ID of timer to be started. Timer IDs are
assigned statically.
period: Timer period in milliseconds.
cb: Timer expiry callback.
timer stop Stop a running soft timer. instance: Soft timer group or instance. None
id: ID of timer to be stopped.
timer is_ running Check whether a soft instance: Soft timer group or instance. true if running.
timer is running. id: ID of timer to be queried. false if not
running.
timer stop_all Stop all soft timers in a instance: Timer group to be stopped. None
group.
timer stop range Stop all soft timers whose instance: Timer group to be stopped. None
Ds fall in a range. start: Lowest timer ID to be stopped.
stop: Highest timer ID to be stopped.
timer num active Get number of active instance: Soft timer group or instance. Count of active
timers in a group. timers.
timer enter sleep Prepare the timer module None None
for sleep entry.

6.1.6 Firmware Update API

CCG application support firmware updates through interfaces like HPI (12C) and CC (Unstructured VDMs). The firmware
update APIs are common functions that are used by each of these protocol modules to implement the firmware update
functionality.

The firmware update related API are defined in src/system/boot.c and are summarized in Table 27.

Table 27: Firmware Update API

Function Description Parameters Return
boot_validate_ fw Validate the firmware fw_metadata: Pointer to Valid/invalid
image in device flash. metadata regarding the status.
firmware image.
boot validate configtable Validate the configuration tablg_p: P.omter to the Valid/invalid
. . configuration table. status.
table in device flash.
get_boot_mode_reason Compute the boot mode None Boot mode
reason register value by reason bitmap
validating firmware and value.
configuration tables.
boot_get_boot_seq Get the flash sequence fwid: ID of firmware binary to be Flash
number associated with a queried. sequence
given firmware binary. number value.
sys_set_device_mode Set the current firmware fw_mode: Firmware mode to be None
mode for the CCG set.
device.
sys_get device mode Get the current firmware None Current
mode for the CCG firmware mode.
device.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Embedded in Tomorrow Customizing the Firmware Application

6.2 APl Usage Examples

This section provides a few examples for the usage of the APIs documented under Section 6.1Refer to the API reference
guide for more details.

Most of the PD operations are initiated using the dpm pd command () and dpm typec command () APls. These APIs
are non-blocking, and only initiate the operation. A callback function can be passed to the API; and it will be called on
completion of the operation. Completion of these operations will require the tasks in the main loop to be executed, and
therefore, the caller cannot block waiting for the callback to arrive.

If there is a need to wait for the operation to complete and then initiate other operations, this can be done in two ways:
6. Initiate the follow-on operations from the callback function itself.

7. Modify the main loop to detect the callback arrival, and then initiate the next operation after this.

6.2.1 Boot APl Usage

The bootloader and firmware application communication in the CCGx SDK is built using the PSoC Creator Bootloader and
Bootloadable components. This section shows how the PSoC Creator bootloader and bootloadable components along with
the wrapper APIs in the SDK to transfer control from the application firmware to the bootloader or to the application in the
alternate memory bank.

Perform Device Reset

Since the order in which the bootloader prioritizes firmware images is fixed, resetting the device causes the device to boot
back into the same mode that it previously was in. The CySoftwareReset () API can be used to initiate a CCG device
reset.

/* Include relevant header files. */
#include <project.h>

void reset ccgx device (void)

{
/* Initiate device reset. */
CySoftwareReset ();

}

Jump to Bootloader

This operation is not required because firmware update and flash read functionality is provided by the application firmware
itself. Also, the bootloader is a fixed binary application which cannot be updated to include additional functionality.

However, you can use the Bootloadable component API to transfer control to the bootloader from the application
firmware. You can do this by specifying the boot type for the next run using the Bootloadable SET RUN_TYPE () macro
and then initiating a reset using CySoftwareReset ().

/* Include relevant header files. */
#include <project.h>
#include <boot.h>

void jump to bootloader (void)

{

/* Select the boot mode for the next run. */

Bootloadable SET RUN TYPE (CCG_BOOT MODE RQT SIG);
/* Initiate device reset. */

CySoftwareReset () ;

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

http://www.cypress.com/documentation/component-datasheets/bootloader-and-bootloadable
http://www.cypress.com/documentation/component-datasheets/bootloader-and-bootloadable

Embedded in Tomorrow Customizing the Firmware Application
Jump to Alternate Firmware

As described in Chapter 5, the CCGx firmware projects are set up such that they generate two copies of the application
firmware. While both of these copies are expected to be equivalent, there may be cases where you need to use a fixed
backup firmware along with a dynamically updated primary firmware. In such cases, it would be desirable to transfer control
to the backup firmware in order to update the primary firmware.

The APIs shown in Section can also be used to transfer control to the alternate firmware binary. You will need to determine
the identity of the current firmware binary (FW1 or FW2) and then initiate the switch accordingly.

/* Include relevant header files. */

#include <project.h>

#include <boot.h>

void jump to alternate fw(void)

{
/* Set the next boot mode based on the current FW ID. */

if (sys_get device mode() == SYS FW MODE FWIMAGE 1)

{
Bootloadable_SET_RUN_TYPE(CCG_FW2_BOOT_RQT_SIG);

Bootloadable_SET_RUN_TYPE(CCG_FWl_BOOT_RQT_SIG);
}

/* Initiate device reset. */
CySoftwareReset () ;
}

GPIO API Usage

All of the APIs provided by the PSoC Creator Pins component can be used in CCGx firmware solutions. In addition to these,
specific APIs to perform common GPIO functions are provided in the CCGx SDK. The list of GPIO APlIs is provided in
Section .

Configuring a CCGx Pin as an Edge Triggered Interrupt Input

The gpio hsiom set config() APl is used to set the I/O mapping and drive mode settings for a given CCGx pin. The
gpio_int set config() APl is used to enable interrupt functionality on a CCGx pin. The following code snippet shows
how the pin P3[1] on CCGx can be configured as an input signal triggering interrupts on a falling edge.

/* We are using P3.1 as the interrupt pin. */
#define INTR GPIO PORT PIN (GPTO_PORT 3 PIN 1)

/* The ISR vector number corresponds to PORT3. */
#define CCGX_PORT3 INTR_NO (3u)

/* ISR for the GPIO interrupt. */
CY ISR(gpio_isr)

{
/* Clear the interrupt. */

gpio_clear intr (INTR GPIO PORT PIN);

/* Custom interrupt handling actions here. */

.7

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A 80

http://www.cypress.com/documentation/component-datasheets/pins

CYPRESS
Embedded in Tomorrow Customizing the Firmware Application

/* Function to configure and enable the interrupt. */
void configure intr input(void)

{
/* Configure the IO modes for the pin. */

gpio_hsiom set config (INTR GPIO PORT PIN,
HSIOM MODE GPIO, GPIO DM HIZ DIGITAL, false);

/* Configure the interrupt mode for the pin. */
gpio int set config(INTR GPIO PORT PIN,
GPIO_ INTR FALLING) ;

/* Set the ISR routine and enable the interrupt. */
CyIntSetVector (CCGX PORT3 INTR NO, gpio isr);
CyIntEnable (CCGX PORT3 INTR NO) ;

Connecting a pin to the internal ADC

Refer to the CCGx device datasheet to identify pins that can be connected to the internal ADC blocks through the Analog
MUX configuration. The hsiom set config () APl can be used to connect a specific pin to the ADC.

#define VBUS MON PORT PIN (GPIO PORT 3 PIN 1)

void connect vbus mon to adc (void)

{
/* Connect the pin to AMUXB. */

hsiom set config (VBUS MON PORT PIN, HSIOM MODE AMUXB) ;

6.2.2 Timer APl Usage

The CCGx SDK provides a soft timer module, which can be used for task scheduling. The timer APIs allow users to create
one-shot timer objects with callback notification on timer expiry.

Soft timers are identified using a single byte timer ID, and the caller should ensure that the timer ID used does not collide
with timers used elsewhere. This is facilitated by reserving the timer ID range from OxEO to OxFF for use by user application
code. These timer IDs are not used internally within the CCGx firmware stack and are safe for use.

A soft timer is started using the timer start () APl and can be aborted using the timer stop () APL

#define APP TIMER ID (0xF0)

static void timer expiry callback(uint8 t instance, timer id t id)

{
/* Start the desired task here. */

.7

/* Use a timer to schedule task to be run delay ms milliseconds later. */
void schedule task(uintlé t delay ms)
{

/* Start an application timer to wait for delay ms. */
/* Devices with two USB-PD ports support two sets of timers, and
the set to be used is selected using the first parameter. */

timer start (0, APP_TIMER ID, delay ms, timer expiry callback);

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A 81

Embedded inTomorrow Customizing the Firmware Application
6.2.3 HPD API Usage

The HotPlugDetect output pin from CCGx is used in Notebook implementations to signal interrupts from the far-end
DisplayPort (DP) peripheral to the DP controller in the Notebook system. The DP peripheral will signal HPD events to the
CCGx Notebook controller through PD messages, and CCGx will relay these HPD events to the DP controller through the
GPIO output.

The hpd transmit init() and hpd transmit sendevt () APIs are used to initialize the HPD transmit logic and to
send event notifications to the DP controller respectiVer.
/* Callback that notifies user of completion of HPD signaling. */
static void hpd callback(uint8 t port, hpd event type t event)
{
if (event == HPD_COMMAND DONE)
{

/* Requested HPD command is complete. */
}
}

/* Initialize the HPD transmit logic for USB-PD port 0, and register
the command completion callback. */

void initialize hpd logic(void)
{

hpd transmit init (0, hpd callback);
}

/* Send HPD_IRQ to the DP controller. */
void send hpd irqg(void)
{

/* Asynchronous mode: Do not wait for completion. */
hpd transmit sendevt (0, HPD EVENT IRQ, false);

6.2.4 Sleep Mode Control

The decision to enter device deep sleep mode to save power is made at the application level. The system sleep ()
function call in the main loop can be disabled if deep sleep mode entry is to be disabled.

6.2.5 DPM API Usage
Enabling a PD port

The dpm_start () API can be used to enable a PD port for operation. The dpm_init () API should have been called prior
to doing this.

bool enable pd port (uint8 t port)
{
if (dpm start(port) == 0)
{
/* DPM start failed. Handle errors. */
return (false);

}

return (true);

}

Disabling a PD port

The dpm_stop () API should not be used to directly disable a PD port, as the port might already be in contract. The
dpm_typec command () APl should be used initiate the DPM CMD PORT DISABLE command. This will ensure that the
port is disabled safely and the VBus voltage is discharged to a safe level, before the completion callback is issued.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A 82

CYPRESS
Embedded inTomorrow” Customizing the Firmware Application

static volatile bool pd disable completed = true;
static volatile bool pd disable issued

false;

/* Callback for the PD disable command. */
static void pd_port disable cb(uint8_ t port, dpm typec cmd resp t resp)
{

pd disable completed = true;

/* Other APIs can be started here, if required. */

bool disable pd port(uint8 t port)

{
/* Store state of operation. */
pd disable issued = true;
pd disable completed = false;

/* Initiate port disable. */
if (dpm_typec command(port, DPM CMD PORT_DISABLE,
pd _port disable cb) != CCG_STAT SUCCESS)

/* Handle error here. */
pd disable issued = false;
return false;

/* Port disable has been queued. We cannot block for callback.
Wait for callback in the main loop.
*/

return true;

int main ()

{
/* Init tasks here. */

.7

while (1)
{
/* Call regular task handlers (DPM, APP, HPI) here. */

if ((pd_disable issued) && (pd disable completed))

/* Port is now disabled. */

.7

pd disable issued = false;

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

83

CYPRESS
Embedded in Tomorow Customizing the Firmware Application

Sending a DISCOVER_ID VDM

The dpm pd command () API should be used to send VDMs and other PD commands to the port partner. The send
operation is non-blocking and the completion callback will notify that the operation is complete. Note that the main loop
should continue to run for proper completion of the VDM operation.

static volatile bool abort cmd = false;
static dpm pd cmd buf t cmd buf;

static void pd command cb(uint8 t port, resp status t resp,
const pd packet t *vdm ptr)

uint32 t response;

if (status == RES RCVD)
{
/* Response received. Check handshake. */
response = vdm ptr->dat[0].std vdm hdr.cmd type;
switch (response)
{
case CMD TYPE RESP ACK:
/* ACK received. */
break;
case CMD TYPE RESP BUSY:
/* BUSY received. */
break;
case CMD TYPE RESP NAK:
/* NACK received. */
break;
}

/* Next operation can be started from here. */

bool send discover id(uint8 t port)

{
/* Store state of operation. */
pd command issued = true;
pd command completed = false;

/* Format the command parameters.
Single DO with standard Discover ID command to SOP controller.
Timeout is set to 100 ms.

*/

cmd buf.cmd sop = SOP;

cmd buf.cmd do[0] OxFF008001;

cmd buf.no of cmd do = 1;

cmd buf.timeout = 100;

/* Initiate the command. Keep trying until accepted. */
while (dpm pd command(port, DPM CMD SEND VDM,

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Embedded in Tomorrow Customizing the Firmware Application
&cmd buf, pd command cb) != CCG_STAT SUCCESS)

/* Can implement a timeout/abort here. */
if (abort cmd)
return false;

}

/* Command has been queued. We cannot block for callback here. */
return true;

}
Getting Current PD Port Status

The Device Policy Manager interface layer in the CCGx PD stack maintains a status data structure that provides complete
status information about the USB-PD port.

This structure can be retrieved using the dpm get _info () APL The API returns a const pointer to a dpm_status_t
structure which includes the following status fields:

1. attach: Specifies whether the port is currently attached.

cur_port_role: Specifies whether the port is currently a Source or a Sink
cur_port_type: Specifies whether the port is currently a DFP or an UFP
polarity: Specifies the Type-C connection polarity (CC1 or CC2 being used)
contract exist: Specifies whether a PD contract exists

contract: Specifies the current PD contract (voltage and current) information.
emca_present: Specifies whether CCGx as DFP has detected a cable marker

src_sel pdo: Specifies the PDO that CCGx as source used to establish contract

© © N o o ~ w0 N

snk_sel pdo: Specifies the Source Cap that CCGx as sink accepted to establish contract

-
o

. src_rdo: Specifies the RDO that CCGx received for PD contract
11. snk_rdo: Specifies the RDO that CCGx as Sink sent for PD contract.

Issue a DR_SWAP where required

CCGx in a Notebook Port controller application is expected to function as a DFP. You can check the current port type of the
CCGx device and initiate a DR_SWAP if CCGx is a UFP, so that we can ensure that the supported alternate modes can be
enabled.

The current port type is checked as described in Section , and the dpm_pd_command() APl can be used to initiate a
DR_SWAP.

/* Function to initiate a DR _SWAP if CCGx is UFP. */
void dr swap if required()
{
const dpm status t *dpm stat = dpm get info (0);
dpm pd cmd buf t param;
ccg_status_t status;

if (dpm stat->cur port type == PRT TYPE UFP)
{

/* CCGx 1is UFP. Initiate DR SWAP.

We keep retrying while the PD port is in a busy state. */
param.cmd sop = SOP;
do {
status = dpm pd command (0, DPM CMD SEND DR SWAP,
¶m, cmd callback);

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

85

CYPRESS
Embedded in Tomorrow Customizing the Firmware Application

} while (status == CCG_STAT BUSY);

}

Change the Source Capabilities

The dpm_update src cap() and dpm update src_cap mask() APIs can be used to update the source capabilities
supported by CCGx.

At any time, CCGx can support a set of maximum seven source capabilities. These seven capabilities are maintained in the
form of a the cur_src pdo array in the dpm _status_t structure. A subset of these PDOs can be enabled at runtime
using a PDO enable bit mask setting. The current PDO enable mask value can be read from the src_pdo mask field of the
dpm_status_t structure.

The PDO enable mask can be changed using the dpm update src cap mask () API.

The set of PDOs can be changed using the dpm update src cap () APl The PDO enable mask will also need to be
updated after updating the set of PDOs.

/* Function to configure and enable a desired source PDO. */
void select source pdo(pd do t new pdo)
{
const dpm status t *dpm stat = dpm get info (0);
uint8 t index;
bool pdo found = false;

/* See if the new pdo is already part of the list. */
for (index = 0; index < dpm stat->src pdo count; index++)
{
if (dpm stat->src pdo[index].val == new pdo.val)
{
pdo found = true;
break;

if (pdo_found)
{
/* PDO found. Just enable it. */
dpm_update src cap mask (0,
(dpm stat->src pdo mask | (1 << index))):;

else

/* PDO not found, update the PDO list and enable it.
Note: For this example, we are replacing the complete list
with a single PDO. This needs be updated to retain the
other required PDOs.

*/

dpm update src cap(0, 1, &new pdo);

dpm_update src cap mask(0, 1);

}
Refer to the Alternate Mode module source for more examples of using the DPM APIs.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

86

CYPRESS
Embedded in Tomorow Customizing the Firmware Application

6.2.6 Solution Level Examples

PD Event Handling

The PD events raised by the stack are handled at the solution level in the s1n pd event handler() function. In the
normal case where policy decisions are handled through the EC, it is sufficient to pass the events onto the EC through the
HPI interface. See below for a sample implementation of the event handler.

/* Solution PD event handler */
void sln pd event handler (uint8 t port, app evt t evt, const void *data)
{
/* Pass the event onto the EC through HPI. */
hpi pd event handler (port, evt, data);
}

Application Callback Registration

The application callbacks that handle various operations requested by the PD stack are registered through a structure that
contains pointers to all the functions. The callbacks are registered using the app get callback ptr () function. A
sample implementation of this function is shown below.

/*

* Application callback functions for the DPM. Since this application

* uses the functions provided by the stack, loading with the stack defaults.
*/

const app cbk t app callback =

{

app_event handler, /* Event handler. */

psrc_set voltage, /* Source voltage update function. */
psrc_set current, /* Source current update function. */
psrc_enable, /* Enable source FET. */
psrc_disable, /* Disable source FET. */

vconn enable, /* Enable VConn supply. */

vconn disable, /* Disable VConn supply. */

vconn is present, /* Check if VConn is present. */

vbus is present, /* Check if VBus is in the expected range. */
vbus discharge on, /* Enable VBus discharge path. */
vbus discharge off, /* Disable VBus discharge path. */
psnk set voltage, /* Set sink voltage. */

psnk set current, /* Set sink current. */

psnk_enable, /* Enable sink FET. */

psnk disable, /* Disable sink FET. */

eval src_ cap, /* Evaluate source power capabilities. */
eval rdo, /* Evaluate partner power request. */
eval dr swap, /* Evaluate DR _SWAP command. */

eval pr swap, /* Evaluate PR SWAP command. */

eval vconn swap, /* Evaluate VCONN SWAP command. */
eval vdm /* Evaluate received VDM. */

}i

app cbk t* app get callback ptr(uint8 t port)

{
/* Solution callback pointer is same for all ports */
(void)port;
return ((app_cbk t *) (&app_callback));

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

-

CYPRESS
Embedded in Tomorrow Customizing the Firmware Application

Change the Source PDO selection logic

The eval src cap () callback function is invoked by the PD stack on receiving source capabilities message from the
Source. The default implementation of the same is available in src/app/pdo.c. This function can be overridden during
application callback registration (Section).

The eval src cap() and is src_acceptable snk() functions in src/app/pdo.c can be used as template and a
custom function can be implemented in the solution.

For example, If an additional check needs to be done for maximum current support in the source PDO, then this can be
done by changing the eval src cap () callback functiontomy eval src cap() .

/* Custom function to check if the source PDO is acceptable or not. */
void my is src acceptable snk(uint8 t port, pd do t* pdo src, uint8 t snk pdo idx)
{

case PDO FIXED SUPPLY:
if (fix volt == pdo snk->fixed snk.voltage)
{
compare temp = GET MAX (max min temp, pdo snk->fixed snk.op current);
if (pdo_src->fixed src.max current >= compare temp)

{

/* Added new check for absolute maximum current. */
if (pdo_src->fixed src.max current <= MY MAX SNK CURRENT)

{

op_cur power[port] = pdo snk->fixed snk.op current;

out = true;

break;

/* Function to evaluate source PDO message. */
void my eval src cap(uint8 t port, const pd packet t* src cap, app_resp cbk t

app_resp handler)

for(snk pdo index = Ou; snk pdo index < dpm->cur snk pdo count;
snk_pdo_index++)

for(src _pdo _index = Ou; src _pdo index < num src pdo; src_pdo_ index++)

{
if (my is src_acceptable snk(port, (pd do t*) (&src_ cap-
>dat [src_pdo index]),
snk _pdo_index))

}

Refer to the notebook project source files (main.c) for more examples of the solution level code.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

88

6.3.1

Embedded in Tomorrow Customizing the Firmware Application

Alternate Mode Handling

Support for USB-PD alternate modes is a critical part of the CCG firmware functionality. Support for the
DisplayPort alternate mode is pre-built into the Notebook and dongle applications. Users can add additional
alternate mode support to the firmware. The procedure to add additional alternate mode handler to the firmware
includes two steps:

Implementing the handlers for the alternate modes. This includes code that will discover UFP capabilities and
handle attention messages in a DFP role, and/or code that will receive and handle alternate mode requests as an
UFP.

Registering the alternate mode handlers with the manager.

Implementing the Alternate Mode Handlers

The CCG firmware stack provides a generic alternate mode manager which holds information about the supported
alternate modes. This manager will invoke the handler functions specific to the alternate modes registered in the
firmware application.

When CCG is a DFP, the alternate mode manager will discover whether the connected UFP supports any alternate
modes for which handlers have been registered; and then call the associated handler functions.

When CCG is a UFP, the alternate mode manager will check whether incoming VDMs correspond to any
registered alternate modes; and then call the associated handler functions.

Alternate Mode Data Structure

The alt_mode_info_t structure serves as the interface between the alternate mode manager and the handlers for
each alternate mode. An array of such structures is maintained by the alternate mode manager. This structure
incorporates the following fields:

Table 28: List of alternate mode information structure members

Field Type Description
mode_state enum alt_mode_state_t State of the alternate mode. Can be one of DISABLED,
IDLE, INIT, SEND_CMD, WAIT_FOR_RESP, FAIL or
EXIT.
sop_state[] Array of enum Alternate mode state corresponding to each PD packet
alt_mode_state_t type (SOP, SOP’ and SOP”). This is useful in cases where

the alternate mode requires any EMCA cables to support
the mode as well.

vdo_max_numb Unsigned char Maximum number of VDOs that the alternate mode
handler can handler.

alt mode id Unsigned char The alternate mode id for this mode.
vdm header pd_do_t Holds the VDM header for the received messages.
vdo Array of pd_do_t pointers Pointers to buffers where alt. mode VDOs with various

packet types should be stored. The storage is provided by
the alternate mode handler and used by the manager.

cbk Function pointer Callback used by alternate mode manager to invoke the
specific alternate mode handler.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

89

Embedded in Tomorrow

Customizing the Firmware Application

Alternate Mode Handling Flow

The alternate mode handler uses the mode state to communicate (receive/send VDM) with alternate mode

manager.

- |IDLE state is responsible for received VDM processing;

- WAIT_FOR_RESRP state is responsible for received VDM response processing;

- FAIL
- INIT

state is responsible for the failed VDM processing;

state is responsible for initialization of the alt mode (DFP only);

- EXIT state is responsible for de-initialization/exit of the alt mode (DFP only);

- SEND state should be set by alt mode to inform alt modes manager that a VDM packet is ready and should be

sent

The alternate mode handler can use internal states to process the received VDM or VDM responses. These states

to the port partner.

are not used by the alternate mode manager.

6.3.1.1 DFP Handling

When alternate mode is DFP when main DFP state machine operates with five states:

1. TheINIT

state is used to initiate alternate mode handling. This state uses in two cases:

a. When DFP alternate mode registrations is successful and we need to initiate alternate mode handling.

b. When Alt modes manager initiates asynchronous entry of the alternate mode.

C.

Vi.

Vii.

During initialization next steps should be done:

Set sop_state array variables as ALT_MODE_STATE_SEND in the dependence if SOP/SOP’/SOP”

VDMs should be send while entering the mode

Save pointers to the VDO buffer in the info structure

Assign enter mode VDOs if needed

Save alt mode DFP state machine function in the info structure
Save App command handler function in the info structure

Set alternate mode state as enter

Additional initialization code as required by the alternate mode.

2. IDLE state is used to analyze received VDM related to the alt mode. When a VDM is received, the following
steps should be completed:

a.
b.

C.

Get the received command from VDM header
Run custom analysis of the received VDM

If a response VDM should be sent after analysis, then change the internal alternate mode state in
compliance with the specific command number, fill the VDO buffer and set alternate mode state to the
SEND state.

3. WAIT_FOR_RESP state is used to process/analyze received VDM response. When VDM response is
received, next steps should be done:

a.
b.

C.

Get internal alternate mode depending on command from VDM header
Set alternate mode state to IDLE

Analyze the received VDM response

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

90

Embedded in Tomorrow Customizing the Firmware Application

d. If another VDM should be sent based on the received response, then change the internal alternate mode
state in compliance with the specific command number, fill the VDO buffer and set alternate mode state to
the SEND state.

4. FAIL state is used to make decision when sent VDM was failed (e.g. NAKed response, Good CRC was not
received etc.)

5. EXIT state is used when the alternate mode manager initiates asynchronous exit of the alternate mode. In this
case, alternate mode should send exit mode command to the port partner.

Figure 31: Alternate mode handler state machine for DFP

Get Alternate Mode
State

) 4 4 - i \ 4) 4

INIT State IDLE State LEATECRRESHONSE EXIT State FAIL State
State ‘

Get Command
(state)

\ 4

)) \ 4 \ 4
Fill alt mode info Get Command Set alt mode
structure v (state) command EXIT
Get Command
(state) ENTER CMD EXIT CMD

A Y A
Set Alt mode state
to EXIT

ATTENTION ‘ OTHER

MD ENTER CMD EXIT CMD COMMANDS

A 4

Selected command
analysis/processing

BN

_ ~

A 4

Set Alt Mode _— ~_
€—yes—< 5
State to IDLE e \\V\DM to be sent? >
ye:

Form VDM header

v

Set Alt Mode State
to SEND

6.3.1.2 UFP Handling

Alternate mode handling when CCG is UFP operates in one of two states:

1. IDLE state is used to analyze received VDMs related to the alternate mode. When a VDM is received, the
following should be done:
a. Analyze the VDM based on the alternate mode rules.
b. If the VDM received is valid and an ACK response is to be sent, then set alternate mode state to
IDLE.
c. If an alternate mode specific response is to be returned, fill the vdo array with data to be sent and set
the alternate mode state to SEND.

2. WAIT_FOR_RESP state is used to process/analyze received VDM responses. When a VDM response is
received, the following steps should be performed:
a. Getinternal alternate mode depending on command from VDM header

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A 91

=

' CYPRESS
Embedded in Tomorron” Customizing the Firmware Application

b. Set alternate mode state to IDLE

c. Analyze the response received

d. If another VDM should be sent after analysis (e.g. attention), then change the internal alternate mode
state in compliance with the specific command number, fill the VDO buffer and alternate mode state
to the SEND state.

Figure 32: Alternate mode handler state machine for UFP

Get Alternate Mode State

WAIT FOR RESPONSE IDLE State
State
Get received command Get mode state (received
response command)
Analyze command ENTER CMD Mode specific EXIT CMD UNKNOWN
command CMD
Selected
°°m|ma,“/d Set Alt Mode EXIT Set Alt Mode FAIL
e STATE STATE
rocessin
Is command ACKed? n
ye

Does response
contain VDOs?

ye

n Assign VDO

Set Alt Mode IDLE
STATE

6.3.2 Registering the Alternate Mode Handlers

1. Update the alt_modes_config.h header file in the project to include information about the alternate modes to
be supported. This file contains the following definitions which need to be updated.

a. DFP_MAX_SVID_SUPP: This constant determines the number of distinct alternate modes supported
by CCGx in a DFP role. The number should be less than or equal to 4. If this is non-zero, please
ensure that the DFP_ALT_MODE_SUPP setting in config.h is set to 1.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

92

Embedded in Tomorrow

f.

Customizing the Firmware Application

UFP_MAX_SVID_SUPP: This constant determines the number of distinct alternate modes supported
by CCGx in an UFP role. The number should be less than or equal to 4. If this is non-zero, please
ensure that the UFP_ALT_MODE_SUPP setting in config.h is set to 1.

supp_svid_tbl: This array holds the list of SVIDs for the alternate modes supported by the CCG
device in either DFP or UFP roles.

e.g: If the design supports two alternate modes with SVIDs SVID1 and SVID2, the table should be
initialized as follows:
const uintl6 t supp svid tbl[2] =
{
SVID1,
SVID2

}i

is_alt_mode_allowed: This array holds a list of pointers to functions which initialize the corresponding
alternate mode operation. The entries in this array should correspond to that in the supp_svid_tbl
array, and should provide pointers to functions which will check whether the alternate mode operation
is allowed, and then perform the appropriate initialization.

e.g.: To register handler functions for two alternate modes, the table should be configured as below:
alt mode info t*
(*const is_alt mode allowed [2]) (uint8 t, alt mode reg info t*) =
{
register svidl,
register svid2

}i

dfp_compatibility mode_table: This array serves as a registry of alternate modes supported by the
CCG firmware in a DFP role. This will be a 2-dimensional array which maps the alternate mode SVID
value to a unique alternate mode ID value which will be used by the alternate mode manager. The
array is arranged in priority order, with the first mentioned SVID being prioritized over the later ones.

e.g.: If the design supports two alternate modes with SVIDs SVID1 and SVID2, the table can be
setup as below:
const comp tbl t dfp compatibility mode table[2][2] = {
{
{sviDl, SVIDl1 ID},
{0, 0}
by
{
{0, 0},
{SVID2, SVID2 ID}

}i

ufp_compatibility_mode_table: This array is similar to the dfp_compatibility_mode_table, and applies
when CCG is in the UFP role.

Cypress EZ-PD™ CCGx SDK User Guide, Doc. No. 002-12541 Rev. *A

Revision History

Embedded in Tomorrow”

Document Revision History

Document Title: Cypress EZ-PD™ CCGx SDK User Guide
Document Number: 002-12541

Revision Issue Date Origin of Change Description of Change

** KYS Initial release

*A KNI Updates for CCGx SDK 3.0.

	Cypress EZ-PD™ CCGx SDK User Guide
	Contents
	1. Introduction
	1.1 USB Type-C and Power Delivery
	1.1.1 USB Type-C Highlights

	1.2 EZ-PD™ Type-C Controllers
	1.3 CCGx SDK

	2. SDK Installation
	2.1 SDK Installation
	2.1.1 Copy the Firmware files

	2.2 SDK Limitations
	2.3 Tool Dependencies
	2.3.1 PSoC Creator
	2.3.2 EZ-PD Configuration Utility

	2.4 Hardware Dependencies

	3. Getting Started with CCGx
	3.1 Using the Reference Projects
	3.1.1 Copying the Project with PSoC Creator
	From Start Page
	From Code Examples

	3.1.2 Compiling the Project with PSoC Creator

	3.2 Updating CCGx Configuration

	4. Customizing the Firmware Application
	4.1 Solution Structure
	4.2 CCG4 Notebook
	4.2.1 PSoC Creator Schematic
	4.2.2 Updating Code to Match the Schematic
	Compile Time Options
	Source Voltage Selection
	FET Control
	Data Switch / MUX Control

	4.2.3 Updating the Default Configuration

	4.3 CCG3 Notebook
	4.3.1 PSoC Creator Schematic
	4.3.2 Updating Code to Match the Schematic
	Compile Time Options
	Source Voltage Selection
	FET Control

	4.3.3 Updating the Default Configuration

	4.4 CCG3 Type C to DP or HDMI/DVI/VGA Dongle
	4.4.1 PSoC Creator Schematic
	4.4.2 Compile Time Options
	4.4.3 Functional Overview
	4.4.4 Updating the Default Configuration

	4.5 CCG3 Power Adapter
	4.5.1 PSoC Creator Schematic
	4.5.2 Updating Code to Match the Schematic
	Compile Time Options
	Source Voltage Selection
	FET Control

	4.5.3 Updating the Default Configuration
	4.5.4 FW update interface

	4.6 CCG3 Charge-Through Dongle
	4.6.1 PSoC Creator Schematic
	4.6.2 Updating Code to Match the Schematic
	Compile Time Options

	4.6.3 Updating the Default Configuration

	4.7 USB-PD Specification Revisions

	5. Firmware Architecture
	5.1 Firmware Blocks
	5.2 SDK Usage Model
	5.3 Firmware Versioning
	5.4 Flash Memory Map
	5.5 Bootloader
	5.6 Firmware Operation

	6. Firmware APIs
	6.1 API Summary
	6.1.1 Device Policy Manager (DPM) API
	6.1.2 Host Processor Interface (HPI) API
	6.1.3 Application Layer API
	6.1.4 Alternate Mode API
	6.1.5 Hardware Adaptation Layer (HAL) API
	GPIO API
	I2C API
	Flash API
	Timer API

	6.1.6 Firmware Update API

	6.2 API Usage Examples
	6.2.1 Boot API Usage
	Perform Device Reset
	Jump to Bootloader
	Jump to Alternate Firmware
	Configuring a CCGx Pin as an Edge Triggered Interrupt Input
	Connecting a pin to the internal ADC

	6.2.2 Timer API Usage
	6.2.3 HPD API Usage
	6.2.4 Sleep Mode Control
	6.2.5 DPM API Usage
	Enabling a PD port
	Disabling a PD port
	Sending a DISCOVER_ID VDM
	Getting Current PD Port Status
	Issue a DR_SWAP where required
	Change the Source Capabilities

	6.2.6 Solution Level Examples
	Application Callback Registration
	Change the Source PDO selection logic

	6.3 Alternate Mode Handling
	6.3.1 Implementing the Alternate Mode Handlers
	Alternate Mode Data Structure
	Alternate Mode Handling Flow
	6.3.1.1 DFP Handling
	6.3.1.2 UFP Handling

	6.3.2 Registering the Alternate Mode Handlers

	Revision History

