Test Report for ECC

Test case 1: Writing 0x5A5A5A5A into address of SRAM1 0x08010500 with correct parity when ECC is enabled.

Output: No fault is reported and ISR is not triggered. The above-mentioned address has the value that is written.

Test case 2: Writing 0x5A5A5A5A into address of SRAM1 0x08010500 with one-bit parity error when ECC error injection is enabled.

Auto correct is enabled but memory is still showing error injected data.

Test case 3: Writing 0x5A5A5A5A into address of SRAM1 0x08010500 with Two-bit parity error when ECC error injection is enabled.(non-correctable)

Go to	0x08010	500	•	~] [Mem	ory			~	-			vii					
)x0801	04Ь0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
x0801	04c0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	e8	41	00	0.0	0.0	0.0	00	00	A
x0801	04d0	00	0.0	00	00	0.0	0.0	00	00	00	00	00	00	00	00	00	00	
x0801	04e0	0.0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
x0801	04f0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
x0801	0500	1a	5a	5a	5a	00	00	00	00	00	00	00	00	00	00	00	0.0	.ZZZ
x0801	0510	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
x0801	0520	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	0.0	
x0801	0530	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	0.0	
x0801	0540	0.0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
x0801	0550	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

Test case 4: Writing 0x5A5A5A5A into address of SRAM1 0x08010500 with one-bit parity error when ECC error injection is enabled and trying read the data from same memory twice with AUTO CORRECT disabled.

```
void EnableRamEcc(void)
₽ {
                     // VALIDATING FAULT SOURCE, RAM 1 C IDX
                // SRAM O FAULT MASK AND SOURCE CONFIGURATION FOR ONE BIT STARTED
                // FAULT_STRUCTO->unMASK1.stcField.u32SOURCE = 0x04000000;
                    Cy_SysFlt_ClearStatus(FAULT_STRUCTO); // clear status (typically this process is done by boot code)
                    Cy_SysFit_SetMaskByIdx(FAULT_STRUCTO, CY_SYSFLT_RAMC1_C_ECC); // enable Fault System SRAM 0 non-correctable ECC er:
                    Cy_SysFlt_SetInterruptMask(FAULT_STRUCT0);
                    FAULT_STRUCTO->unMASK1.stcField.u32SOURCE |= 0x300000000;
                    CPUSS->unRAM1_CTL0.stcField.ulECC_EN = 1;
                    CPUSS->unRAM1_CTL0.stcField.ulECC_AUTO_CORRECT = 0;
CPUSS->unRAM1_CTL0.stcField.ulECC_INJ_EN = 1;
                    CPUSS->unECC_CTL.stcField.u25WORD_ADDR = (0x000500 >> 2);
                    CPUSS->unECC_CTL.stcField.u7PARITY = RAM_1_ONEBIT_PARITY;
                    CY_SET_REG32 (RAM_1_ADDRESS, RAM_1_DATA);
                    CY_GET_REG32 (RAM_1_ADDRESS);
                    //Cy_SysTick_DelayInUs(50);
while(!isr_triggered);
                    isr_triggered = 0;
                    pf_source = CY_GET_REG32(RAM_1_ADDRESS);
while(!isr_triggered);
```

RAM1_CTL	0x00050001				
ECC_INJ_EN	1				
ECC_AUTO_CORRECT	0				
- ECC_EN	1				
FAST_VS	0x0				
- SLOU_US	0x1				
□ RAN1_STATUS	0x0000001				
- VB_EMPTY	1				
⊞ RAM1_PWR_CTL	0xFA050003				
RAM2_CTL	0x0000000				
⊞ RAM2_STATUS	0x0000000				
RAM2_PWR_CTL	0x0000000				
⊞ RAM_PWR_DELAY_CTL	0x00000096				
ROM_CTL	0x0000001				
□ ECC_CTL	0xBA000140				
PARITY	0x5D				
- WORD_ADDR	0x000140				

During the second read operation, the fault is not triggered immediately, but getting updated to Pending Register 1.

Test Case 5: Writing 0x5A5A5A5A into address of SRAM1 0x08010500 with one-bit parity error when ECC error injection is enabled and trying read the data from same memory twice.

Note: During First read AUTO_CORRECT is enabled and second read AUTO_CORRECT is disabled.

Observations: During first time read fault is getting serviced and memory is not updated with correct data.

Observations: During second time read, fault is neither serviced nor reported to fault structure as a pending source.

