Test Report for ECC

Test case 1: Writing 0x5A5A5A5A into address of SRAM1 0x08010500 with correct parity when ECC is enabled.

Output: No fault is reported and ISR is not triggered. The above-mentioned address has the value that is written.

Test case 2: Writing 0x5A5A5A5A into address of SRAM1 0x08010500 with one-bit parity error when ECC error injection is enabled.

Auto correct is enabled but memory is still showing error injected data.

Test case 3: Writing 0x5A5A5A5A into address of SRAM1 0x08010500 with Two-bit parity error when ECC error injection is enabled.(non-correctable)

Test case 4: Writing 0x5A5A5A5A into address of SRAM1 0x08010500 with one-bit parity error when ECC error injection is enabled and trying read the data from same memory twice with AUTO_CORRECT disabled.

QRAH1_CTL	0x00050001
-... ECC_INJ_EN	1
- ... ECC_AUTO_CORRECT	0
- ECC_EN	1
--. FaST_US	0x0
… SLO\#_VS	0x1
\square RaH1_STaTUS	0x00000001
- In. EHPTY	1
ФRAH1_PVR_CTI	0xFA050003
+RaH2_CTL	0x00000000
+ RaH2_STaTUS	0x00000000
円RAH2_PVR_CTI	0x00000000
(RAH_P	0x00000096
(ROH_CTI	0x00000001
\square ECC_CTI	0xBA000140
- PhRITY	0x5D
-... पORD_ADDR	0x000140

During the second read operation, the fault is not triggered immediately, but getting updated to Pending Register 1.

Registers 1		- $7 \times$
Find: FAD	Group: FALULT	\checkmark
Name	Value	\wedge
+ STRUCT[0]_CTL	0x00000000	
-STRUCT[0]_STATUS	0x8000003C	
- VaLID	1	
--.. IDX	0x3C	
+ STRUCT[0]_Data [0]	0x08010500	
(STRUCT[0]_DATA [1]	0x00000045	
+STRUCT [0]_Data [2]	0x00000000	
+STRUCT [0]_DATA [3]	0x00000000	
-STRUCT [0]_PENDING0	0x00000001	
So.. SOURCE	0x00000001	
-STRUCT [0]_PENDING1	0x10000000	
So.. SOURCE	0x10000000	
-STRUCT [0]_PENDIHG2	0x00000000	
-a.. SOURCE	--	
+ STRUCT [0]_HASK0	0x00000000	
-STRUCT[0]_HASK1	0x30380000	
SOU. SORCE	--	
(STRUCT [0]_HASK2	0x00000000	
\pm STRUCT [0]_INTR	0x00000000	
(STRUCT[0]_INTR_SET	0x00000000	
+ STRUCT[0]_INTR_HASK	0x00000001	
(STRUCT[0]_INTR_HASKED	0x00000000	

Test Case 5: Writing 0x5A5A5A5A into address of SRAM1 0x08010500 with one-bit parity error when ECC error injection is enabled and trying read the data from same memory twice.

Note: During First read AUTO_CORRECT is enabled and second read
AUTO_CORRECT is disabled.
Observations: During first time read fault is getting serviced and memory is not updated with correct data.

Observations: During second time read, fault is neither serviced nor reported to fault structure as a pending source.

Registers 1		- $7 \times$
Find: FAD $\quad \checkmark$	Group: FAULT	\checkmark
Name	Value	\wedge
(STRUCT [0]_CTL	0x00000000	
¢STRUCT[0]_STaTUS	0x8000003C	
V. VALID	1	
-... IDE	0x3C	
(STRUCT [0]_DATA [0]	0x08010500	
\#STRUCT[0]_DATA [1]	0x00000045	
¢STRUCT[0]_DaTA [2]	0x00000000	
+ STRUCT [0]_DATA [3]	0x00000000	
-STRUCT[0]_PENDING0	0x00000001	
-a.. SOURCE	0x00000001	
-STRUCT[0]_PENDING1	0x00000000	
-... SOURCE	0x00000000	
-STRUCT[0]_PENDING2	0x00000000	
-a.. SOURCE	0x00000000	
¢ STRUCT [0]_HASK0	0x00000000	
-STRUCT[0]_HASK1	0x30380000	
So... SORCE	0x30380000	
† STRUCT [0]_HASK2	0x00000000	
\pm STRUCT [0]_INTR	0x00000000	
¢STRUCT[0]_INTR_SET	0x00000000	
¢STRUCT[0]_INTR_HASK	0x00000001	
+ STRUCT [0]_IHTR_HASKED	0x00000000	

