

CE220960 – PSoC 6 MCU BLE
Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 1

Objective

This example demonstrates over-the-air (OTA) bootloading with a PSoC® 6 MCU with Bluetooth Low Energy connectivity
(PSoC 6 BLE). The BLE stack code is shared between applications to reduce flash usage. The bootloader may download
updates to the BLE stack or to the application.

Overview

This example demonstrates how to use the “Stack and Profile” and “Profile only” options of the PSoC Creator™ BLE Component
to enable code sharing of the BLE stack between the stack and the user applications, considerably reducing the amount of flash
memory used. Additionally, it demonstrates an architecture that allows upgrading the BLE stack.

Requirements

Tool: PSoC Creator 4.2, Peripheral Driver Library (PDL) 3.0.1 with Bootloader SDK 2.10, CySmart™ 1.2.1.711

Programming Language: C (Arm® GCC 5.4.1 and Arm MDK 5.22)

Associated Parts: All PSoC 63 MCU BLE parts

Related Hardware: CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit

Hardware Setup

Set the VDD Select Switch (SW5) of the CY8CKIT-062-BLE kit to 3.3 V to fully use the RGB LED.

For BLE communications, the BLE USB dongle (CY5677) provided with the CY8CKIT-062-BLE kit is required.

Software Setup

Install the latest CySmart software on your computer to use the BLE USB dongle.

Operation

The bootloader can download a user application (App2), a stack application (App1) update, or both. Additionally, the bootloader
can transfer control to a previously downloaded user application. Table 1 shows a list of the steps to be taken depending on the
development phase of your project. When developing, it is faster to reprogram the device than to bootload an update.

Table 1. Operation Section Order

Development and Testing Field Update

Develop applications:

1. Program the PSoC 6 MCU Device

1.1. Test applications

Test Bootloader functionalities:

2. Configure CySmart

3. Switch to the Bootloader

4. Update the Stack and User Applications

5. Switch to the Bootloader

6. Switch to the User Application

Deploy an update:

1. Configure CySmart

2. Switch to the Bootloader

3. Update the Stack and User Applications

3.1. Updating the User Application

3.2. Updating the Stack and User
Application

http://www.cypress.com/
http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/documentation/software-and-drivers/peripheral-driver-library-pdl
http://www.cypress.com/documentation/software-and-drivers/cysmart-bluetooth-le-test-and-debug-tool
http://www.cypress.com/PSoC6
http://www.cypress.com/CY8CKIT-062-BLE
http://www.cypress.com/documentation/software-and-drivers/cysmart-bluetooth-le-test-and-debug-tool

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 2

Program the PSoC 6 MCU Device

1. Plug the CY8CKIT-062-BLE kit board into your computer’s USB port.

2. Build the projects in the following order: App0, App1, and App2. Any change to App0 or App1 requires subsequent projects
to be rebuilt. For more information on how to build a project or program a device, see PSoC Creator Help.

Note: In some cases, during the build process you may be prompted to replace files from your project with files from the PDL.
The PDL files are templates. Do not replace the customized files for the project. Click Cancel.

3. Set App2 as the active project and program it into PSoC 6 MCU. When App2 is built, App0 and App1 are merged into App2.
This results in all apps being programmed. Similarly, programming App1 results in App0 and App1 being programmed.

4. Confirm that the kit LED blinks green, indicating that App2 is running.

Configure CySmart

Default Bluetooth connection interval settings of the CySmart PC tool must be increased to allow enough time for flash memory
write operations during the bootloading process. This section explains how to change the default settings.

1. Connect the BLE USB dongle (CY5677) provided with the CY8CKIT-062-BLE kit to your computer.

2. Run the CySmart tool on your computer and connect to the BLE USB dongle.

3. Click Configure Master Settings.

4. Go to Connection Parameters. Change the Connection Interval Minimum, Connection Interval Maximum, and
Supervision Timeout to 15, 15, and 2000 ms, respectively, as Figure 1 shows. Click OK.

Note: Using a lower connection interval speeds up the application transmission at an increased risk of losing the connection.

These steps must be redone every time CySmart is reopened.

Figure 1. CySmart Connection Interval Settings

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 3

Switch to the Bootloader

To receive an update to either the user application or the stack application, the user application must transfer control to the stack
application, which contains the bootloader. The following methods are provided to switch to the stack application.

Switching Using IAS

The user application switches to the stack application when it receives a nonzero Immediate Alert Service (IAS) alert level. If the
CySmart PC tool is not already running, do the steps in Configure CySmart.

1. Press and release the kit user button (SW2) if the PSoC 6 MCU device is hibernating (indicated by a steady red LED).

2. In CySmart, click Start Scan to start scanning for the user application. In this example, the user application is the

“BLE Keyboard” device. When the device is listed, select it.

3. Click Connect to connect to the device.

4. Click Pair to pair with the device. The Pair button may be hidden if the CySmart window size is small.

Note: If pairing fails, disconnect from the device and clear the device list in the CySmart tool. Go back to Step 2.

5. Click No when prompted to add the device to the resolving list.

6. Click Discover All Attributes.

7. Navigate to the Immediate Alert service at the bottom of the attributes list. Click Alert Level. Enter ‘1’ in the Value text box
and click Write Value Without Response, as Figure 2 shows.

Figure 2. Using the IAS to Switch Between Applications

8. Confirm that the LED blinks white once every two seconds, indicating that the stack application is running.

Switching Using the User Button and a Hardware Reset

App0 starts after a hardware reset. It supervises the user button and switches to the stack application if the button is pressed.

1. Press the reset and user buttons at the same time.

2. Release the reset button while holding the user button down.

3. Wait until the LED starts blinking white before releasing the user button. The stack application is now running.

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 4

Switch to the User Application

The stack application switches automatically to the user application after 300 seconds of Bluetooth inactivity. The following
methods describe how to immediately transfer control to the user application.

Switching Using IAS

The stack application switches to the user application when it receives a nonzero Immediate Alert Service (IAS) alert level. If the
CySmart PC tool is not already running, perform the steps described in Configure CySmart.

1. In CySmart, click Start Scan to start scanning for the bootloader device. Select the “Bootloader BLE” device when listed.

2. Click Connect to connect to the device.

3. Click Pair to pair with the device. The Pair button may be hidden if the window size is small.

4. Click Discover All Attributes.

5. Navigate to the Immediate Alert service at the bottom and click Alert Level. Enter ‘1’ in the Value textbox and click Write
Value Without Response, as Figure 2 on page 3 shows.

6. Confirm that the LED is blinking green, indicating that the user application is running.

Switching to the User Appl icat ion Using the User But ton

1. Press and hold the kit user button for 0.5 seconds.

2. Wait until the LED starts blinking green. The user application is now running.

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 5

Update the Stack and User Applications

The stack and user applications may be updated to fix bugs or add new features. To update either application, the stack
application, which contains the bootloader, must be running and the CySmart tool must be correctly configured. See Switch to
the Bootloader and Configure CySmart.

Updating the User Appl icat ion

In most cases, only the user application needs updating. The following steps describe how to update the user application.

1. In CySmart, click Start Scan to start scanning for the bootloader device. Select the “Bootloader BLE” device when listed.

2. Click Stop Scan to stop scanning.

3. Click Update Firmware.

4. Select the Application only update option and click Next.

5. Select the new user application firmware image file (Bootloader_BLE_Upgradable_Stack_App2.cyacd2) located in the path
Bootloader_BLE_Upgradable_Stack_App2.cydsn > CortexM4 > [compiler name] > [Debug | Release]. This file is

generated when App2 is built.

6. Click Update.

7. Wait for the application firmware to be downloaded. While the firmware is downloaded, the white LED blinks twice every
two seconds.

8. Confirm that the LED is blinking green, indicating that the updated user application is installed and running.

Updating the Stack and User Appl icat ion s

A stack update may bring new features for the BLE Component. After a stack update, the user application must also be updated.
The following steps describe how to update the stack and user applications in a single operation. Note that updating the stack
application is a critical phase because it contains the bootloader.

1. In CySmart, click Start Scan to start scanning for the bootloader device. Select the “Bootloader BLE” device when listed.

2. Click Stop Scan to stop scanning.

3. Click Update Firmware.

4. Select the Application and Stack update option and click Next.

5. Select the new stack application firmware image file (Bootloader_BLE_Upgradable_Stack_App1.cyacd2) located in the path
Bootloader_BLE_Upgradable_Stack_App1.cydsn > CortexM4 > [compiler name] > [Debug | Release]. This file is

generated when App1 is built.

6. Select the new user application firmware image file (Bootloader_BLE_Upgradable_Stack_App2.cyacd2) located in the path
Bootloader_BLE_Upgradable_Stack_App2.cydsn > CortexM4 > [compiler name] > [Debug | Release]. This file is

generated when App2 is built.

7. Click Update.

8. Wait for the stack application to be downloaded. While it is being downloaded, the white LED flashes twice every two
seconds.

9. Confirm that the LED is ON in a purple color, indicating that App0 is copying the stack application from temporary storage
to its final location. This operation may take several seconds.

10. Confirm that the LED flashes white twice every two seconds indicating that the updated stack application is installed, and
the bootloader is downloading the user application.

11. Confirm that the LED is blinking green, indicating that the updated user application is installed and running.

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 6

Application Switching and LED Status Overview

Figure 3 shows an overview of how applications transfer control to one another.

The launcher application (App0) is located at the start of the user flash. Its purpose is to copy a stack update from temporary
storage to a final location. The stack application (App1) contains the bootloader. For more information, see Design and
Implementation.

Figure 3. Application Switching Overview

An overview of the LED status for each application is shown in Table 2.

Table 2. LED Status Overview

Application Color State Description

Launcher Application (App0)
Purple Steady

Copying a stack application update from temporary storage
to its final location.

Yellow Steady Stack application is invalid. Device must be reprogrammed.

Stack Application (App1)

White Blinks once every 2 seconds Bootloader is advertising.

White Blinks twice every 2 seconds
Bootloading is taking place; an application is being
received.

None OFF Bootloader is connected but not receiving an application.

Red Steady Hibernating.

User Application (App2)

Green Blinking BLE Keyboard is advertising.

None OFF BLE Keyboard is connected.

Blue Steady Caps Lock is ON.

Red Steady Hibernating.

Note: If the specified VDDD in the PSoC Creator project Design Wide Resources > System window is less than 2.7 V, only the

red LED is used in the stack and user applications. Status indicators in Table 2 that use the blue and green LEDs are not
shown.

Note: To enable the blue LED in App2, connect to PSoC 6 MCU via Bluetooth without using the BLE dongle. Press the
Caps Lock key on your keyboard or press the user button on the kit.

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 7

Design and Implementation

This example has three applications: “App0”, “App1”, and “App2”. Each application is a separate PSoC Creator project. The
projects have the following features:

• App0 is the launcher application. It copies a stack application update from temporary storage to its final location. It also
validates and starts either the stack or the user application. App0 cannot be updated by OTA bootloading.

• App1 is the stack application. It contains the bootloader and the BLE stack. The bootloader can download an update to the
stack or user application.

• Updating the stack application requires placing the update in temporary storage and switching to the launcher for copying,
because the stack cannot overwrite itself.

• App2 is the user application. It includes a BLE Component, but that Component is configured to contain only BLE profiles
without the supporting stack code. Required stack code and variables are shared from the stack application, considerably
reducing the size of the user application.

• Modifying the stack application requires recompiling the user application because the location of the stack application
functions and variables may change.

• A RAM region is reserved for stack variables; the user application cannot use this.

• The stack and the user applications transfer control between each other using either a BLE event or by pressing the kit user
and reset buttons. See Figure 3 on page 6.

• App2 demonstrates several Bluetooth services. It is based on CE215121, BLE HID Keyboard.

Comparison with the Standard BLE Bootloader

The Upgradable Stack Bootloader demonstrated in this code example has the following advantages when compared to the
standard BLE Bootloader (see CE216767):

• Lower total flash memory usage, because the BLE stack is shared between applications.

• Faster update when updating only the user application, because of the reduced size.

It also has the following disadvantages:

• The stack and user application projects both include an instance of the BLE Component. The Component CPU core

setting – Single core (Complete Component on CM0+), Single core (Complete Component on CM4), or Dual Core
(Controller on CM0+, Host and Profiles on CM4) – must be the same in both instances.

• Updating the stack and the user application takes longer than the standard BLE Bootloader update.

• The user application RAM is slightly reduced due to the memory reserved for the stack.

• Updating the stack requires the user application to also be updated, because the location of the stack functions and variables
may change.

• Updating the stack is a critical phase because it contains the bootloader. Receiving a non-functional stack application update
renders the device unusable.

http://www.cypress.com/
http://www.cypress.com/ce215121-ble-hid-keyboard-psoc-6-ble
http://www.cypress.com/ce216767

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 8

Common Files

The three projects in this code example contain common linker configuration files that control how the two CPUs in each of the
applications use flash and RAM memory. They are heavily customized versions of the Bootloader Source Development Kit
(SDK) linker files. For more information on customizing PSoC Creator projects for the Bootloader (SDK), see the PSoC 6 MCU
Bootloader SDK Guide.

Figure 4 shows an overview of how the RAM and flash memory are distributed. The actual distribution depends on the compiler
used and on the CPU core configuration of the BLE Component.

Figure 4. RAM and Flash Memory Overview

The common linker configuration files support the single-core BLE Component configuration “Complete Component on CM4” as
the default in this code example. The files include configurations for each CPU core configuration of the BLE Component. For
more information on how to change the CPU core configuration, see Appendix A.

Common linker configuration files are provided for GCC, MDK, and IAR compilers, as Table 3 shows:

Table 3. Common Linker Configuration Files

File Description

bootload_common.ld GCC linker configuration file. It is included in the bootload_cm0p.ld and bootload_cm4.ld linker script files.

bootload_mdk_common.h
MDK linker configuration file. MDK linker script files cannot include other linker script files so the necessary
symbols are defined in a C header file.

bootload_common.icf IAR linker configuration file. It is included in the bootload_cm0p.icf and bootload_cm4.icf linker script files.

Launcher Application Firmware Design

The launcher application (App0) can start the stack application (App1) or the user application (App2). Additionally, it copies a
stack application update from a temporary location to its final location if a flag is set. If the launcher is the only valid application
on PSoC 6 MCU, the device must be reprogrammed.

Figure 5 shows the launcher’s PSoC Creator project schematic.

Figure 5. Launcher Application (App0) Project Schematic

http://www.cypress.com/
http://www.cypress.com/an213924
http://www.cypress.com/an213924

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 9

The CM0+ CPU executes the launcher application. The CM4 CPU remains in Deep Sleep. Figure 6 shows the firmware flow of
the launcher application.

Figure 6. Firmware Flow of the Launcher Application (App0)

Memory Layout

Figure 7 shows the layout of the RAM and flash memory for the launcher application. The memory layout of the launcher
application is independent of the compiler used and the BLE Component configuration. The metadata row is defined in the
bootload_user.c file of the launcher and is populated with the data defined in the common linker configuration files.

Figure 7. Memory Layout of the Launcher Application (App0)

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 10

Design F i les

Table 4 lists the files used in the launcher application and describes their functionality.

Table 4. Design Firmware Files of the Launcher Application (App0)

File Description

main_cm4.c,
main_cm0p.c

Contains the main() function for each CPU. The launcher functionality is implemented in the main function of the
CM0+ CPU.

cy_bootload.c / .h Bootloader software development kit (SDK) files.

bootload_user.h Contains user-editable #define statements that control the operation and enable features in the SDK.

bootload_user.c

Defines the metadata initial values.

Contains two functions (Cy_Bootload_ReadData and Cy_Bootload_WriteData) that control access to the
internal memory for validating and copying applications.

bootload_cm0p.ld,
bootload_cm4.ld

Custom GCC linker scripts. These files place the code and data sections for each CPU as well as the bootloader
and other regions.

bootload_cm0p.scat,
bootload_cm4.scat

MDK scatter files. These files place the code and data sections for each CPU as well as the bootloader and other
regions.

bootload_cm0p.icf,
bootload_cm4.icf

IAR linker configuration files. These files place the code and data sections for each CPU as well as the bootloader
and other regions.

post_build_core1.bat Copies the resulting ELF file into the project’s root folder for merging with App1 and App2.

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 11

Stack Application Firmware Design

The stack application (App1) consists of the BLE stack and a BLE bootloader. The BLE stack code is shared with the user
application via symbol extraction from the output file of the linker using a post-build command.

The BLE_Symbols.txt file contains a list of all the BLE-related symbols to extract. It also includes symbols to enable reinitializing

the stack’s variables from the user application. An assembler file, which defines the BLE symbols and their addresses, is
generated for each CPU and placed in the user application project.

The bootloader in App1 can download an update for just the user application or for the stack and user applications. Figure 8
shows the flow of the application update process. To customize the bootload operation and enable Bootloader SDK features,
update the #define statements as needed in the bootload_user.h file. For more information on the SDK, see the Bootloader

SDK Guide.

When downloading an update for the stack project, the bootloader receives new metadata containing the final location of the
update. The update is placed in a temporary location in flash, the address of which is stored in another metadata entry. The
launcher reads both metadata entries and copies the stack from the temporary location to the final location. The metadata of the
stack application is not updated until the launcher has successfully copied it from the temporary location.

The default temporary location for the stack update is set so as to overwrite the user application. To change the temporary
location, modify the temporaryLocation variable located in the Cy_Bootload_WriteData() function of the bootload_user.c

file.

Figure 8. Stack and User Application Update Process

http://www.cypress.com/
http://www.cypress.com/an213924
http://www.cypress.com/an213924

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 12

Figure 9 shows the stack application’s project schematic.

Figure 9. Stack Application (App1) PSoC Creator Project Schematic

The RAM is partitioned to reduce the reserved space for the BLE stack. The reserved memory size depends on the compiler
used and the CPU core configuration of the BLE Component. Common BLE RAM sections are defined to store the variables
required by the stack that must be updated with the application’s settings (Clock, IPC, etc.).

Table 5 shows the tasks executed by each CPU depending on the configuration of the BLE Component.

Table 5. App1 CPU Tasks per BLE Configuration

CPU Core Configuration of
BLE Component

Cortex-M0+ Cortex-M4

Complete Component on CM0+ Bootloads a stack update or a user application update.

Supervises the user button and IAS value for
application switching.

Does nothing.

Complete Component on CM4 Does nothing. Bootloads a stack update or a user
application update.

Supervises the user button and IAS value
for application switching.

Controller on CM0+,
Host and Profiles on CM4

Services the BLE subsystem (BLESS) controller
interrupt.

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 13

Stack Code Sharing Implementat ion

GCC is the default compiler used by PSoC Creator. The following section explains the implementation of the code sharing
functionality for GCC. For MDK and IAR compilers, see Appendix B: Implementing Stack Code Sharing with MDK and IAR.

The CPU-specific linker scripts of the Bootloader SDK (bootload_cm0p.ld and bootload_cm4.ld) were modified to do the
following:

• Explicitly keep the BLE stack functions from being removed.

• Place the required RAM data of the BLE stack in specific sections to be reinitialized by the user application.

• Expand the copy and zero initialization tables to initialize stack-related variables.

• Provide memory configurations for the CPU mode of each BLE Component.

Unused functions and other elements are removed by the linker as a default; however these elements may be used by the user
application and must be explicitly retained, as shown partially in Figure 10.

Note: In this example all BLE functions are retained. Functions may be removed as needed to reduce flash usage.

Figure 10. App1 GCC Linker Script Excerpt Showing Retention of Unused BLE Stack Elements

The BLE stack requires common variables such as clock settings, values of which depend on the running application and that
are updated by the firmware. These variables must be overwritten by the user application and therefore are placed in specific
sections and order in RAM. Other BLE stack-related variables and RAM functions are placed directly after them.

The common BLE RAM sections are defined only for the CPU in BLE Component configuration. Figure 11 shows the definitions
of the common BLE RAM sections (.data and .bss) for the CM4 CPU. Highlighted entries contain variables that are overwritten
when executing the user application.

Figure 11. App1 Common BLE RAM Definition for GCC

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 14

The stack application must provide a way for the user application to reinitialize its BLE stack variables. This is realized by
expanding the copy and zero initialization tables with symbols to initialize the BLE stack-related data. Afterwards, these symbols
are exported to the user application and placed in its copy and zero initialization tables.

By default, the zero initialization table is disabled; it must be enabled. Additionally, The BLE Component requires an increased
amount of heap memory when configured with the “Stack and Profile” option. Figure 12 shows the project configuration to
increase the heap size of the stack application and enable the zero initialization table.

Figure 12. App1 Heap Size and Zero Table Definitions

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 15

Memory Layout

The memory layout of the stack application depends on the compiler used and the CPU core configuration of the BLE
Component. Figure 13 shows the layout of the RAM and flash memory using the GCC compiler and the BLE Component running
on the CM4 CPU. The BLE stack reserves 6.25 KB of RAM with this configuration.

Figure 13. Memory Layout of the Stack Application (App1)

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 16

Design F i les

Table 6 lists the files used in the stack application and describes their functionality.

Table 6. Design Firmware Files of the Stack Application (App1)

File Description

main_cm4.c,main_cm0p.c
Contains the main() function for each CPU and the required functions to reinitialize the stack’s variables.
Calls the bootloader main function or goes into the CPU Deep Sleep mode, depending on the BLE
Component configuration.

bootloader.c Contains the bootloader main and supporting functions.

ias.c / .h
Immediate Alert Service (IAS) files. Used to implement IAS for communication between BLE GAP Central and
Peripheral. When the stack application receives a non-zero value with the IAS, it switches to the user
application.

debug.c / .h UART printf implementation and LED status notification.

cy_bootload.c / .h Bootloader software development kit (SDK) files.

bootload_user.h Contains user-editable #define statements that control the operation and enable features in the SDK.

bootload_user.c

Contains user functions required by the SDK:

▪ Five functions that control communications with the bootloader host. These are also called transport
functions.

▪ Two functions, Cy_Bootload_ReadData() and Cy_Bootload_WriteData(), that control access to the
internal or external memory.

▪ Support functions for Cy_Bootload_ReadData() and Cy_Bootload_WriteData(), to perform checks on
data prior to reading or writing.

transport_ble.c / .h
Contains bootloader transport functions for the BLE Component. These functions are typically called by the
transport functions in bootload_user.c.

bootload_cm0p.ld,
bootload_cm4.ld

Custom GCC linker scripts. These files place the code and data sections for each CPU as well as the
bootloader and other regions.

bootload_cm0p.scat,
bootload_cm4.scat

MDK scatter files. These files place the code and data sections for each CPU as well as the bootloader and
other regions.

bootload_cm0p.icf,
bootload_cm4.icf

IAR linker configuration files. These files place the code and data sections for each CPU as well as the
bootloader and other regions.

post_build_core0.bat Batch file to share code from the CM0+ CPU with the user application.

post_build_core1.bat
Batch file to share code from the CM4 CPU with the user application, create the bootloadable file, and merge
App0 with App1 into a single hex file.

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 17

User Application Firmware Design

The user application (App2) demonstrates a BLE HID Keyboard. The application simulates keyboard presses and battery level.
The BLE Component is configured as Host and Profiles only. Stack functions and variables are imported from the stack
application into the BLE _core0_shared.s and BLE_core1_shared.s files, for the CM0+ and CM4 CPUs respectively.

Before using the BLE Component, the stack variables must be reinitialized. The method for initialization depends on the compiler
used:

• GCC: The startup copy and zero init table were expanded to directly initialize stack variables at startup. No explicit function
is called to reinitialize stack variables.

• MDK: The StackRAMInit() function is called in the reset handler with a return address as a parameter. This function is in

the stack application and calls the __main initialization routine from the stack application. Afterwards, execution returns to

the reset handler.

• IAR: The StackRAMInit() function is called in the reset handler. This function is in the stack application and calls the

__iar_data_init3() initialization routine from the stack application.

Figure 14 shows a flowchart of the stack reinitialization routine for all three compilers.

Figure 14. RAM Reinitialization Flow

The BLE interrupt vector must be explicitly initialized by the CPU running the BLE controller before starting the BLE Component.
The following function achieves this:

Cy_SysInt_SetVector(BLE_bless_isr_cfg.intrSrc, &Cy_BLE_BlessInterrupt);

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 18

Table 7 shows the tasks executed by each CPU depending on the configuration of the BLE Component.

Table 7. App2 CPU Tasks per BLE Configuration

CPU Core Configuration of
BLE Component

Cortex-M0+ Cortex-M4

Complete Component on CM0+ Demonstrates BLE services, as documented in
CE215121 – BLE HID Keyboard.

Switches to the stack application if the IAS value
is greater than zero.

Does nothing.

Complete Component on CM4 Does nothing. Demonstrates BLE services, as documented in
CE215121 – BLE HID Keyboard.

Switches to the stack application if the IAS value
is greater than zero.

Controller on CM0+,
Host and Profiles on CM4 Services the BLESS controller interrupt.

Stack Code Sharing Implementat ion

GCC is the default compiler used by PSoC Creator. The following section explains the implementation of the code sharing
functionality for GCC. For MDK and IAR compilers, see Appendix B: Implementing Stack Code Sharing with MDK and IAR.

The Bootloader SDK CPU-specific linker scripts (bootload_cm0p.ld and bootload_cm4.ld) were modified to do the following:

• Place the common RAM data in specific sections to overwrite the stack application’s variables.

• Expand the copy and zero init tables to reinitialize stack-related variables.

• Provide memory configurations for the CPU mode configuration of each BLE Component.

The BLE stack requires common variables, such as clock settings, values of which depend on the running application and that
are updated by the firmware. These variables must be overwritten by the user application and therefore placed in a specific
section and order in the RAM.

The placing of the common variables in the linker script is shown in Figure 15. The definition of the copy and zero init tables in
the linker script is shown in Figure 16 on page 19. Symbols that were imported from the stack application are highlighted.

Figure 15. Placement of Common Variables

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 19

Figure 16. Definition of Copy and Zero Init Tables

The zero init table is disabled by default and must be enabled. Figure 17 shows the project configuration to enable the zero init
table.

Figure 17. Zero Table Definition

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 20

Memory Layout

The memory layout of the stack application depends on the compiler used and the CPU core configuration of the BLE
Component. Figure 18 shows the layout of the RAM and flash memory using the GCC compiler and the BLE Component running
on the CM4 CPU. The BLE stack reserves 6.25 KB of RAM on this configuration. The rest of the RAM is divided between both
CPUs.

Figure 18. Memory Layout for the User Application

Design F i les

Table 8 lists the files used in the user application (App2) and describes their functionality. For more information on the
implementation of the BLE HID Keyboard, see CE215121 – BLE HID Keyboard.

Table 8. App2 Design Firmware Files

File Description

main_cm4.c, main_cm0p.c
Contains the main() function for each CPU and the required external functions to reinitialize the stack
variables. Calls the host main function or goes into the CPU Deep Sleep mode depending on the CPU core
configuration of the BLE Component.

ias.c / .h
Immediate Alert Service (IAS) files. Used to implement IAS for communication between BLE GAP Central
and Peripheral. When the device receives a non-zero value with the IAS, it switches applications.

BLE_core0_shared.s,
BLE_core1_shared.s

Assembly files that contain definitions from variables and functions shared from the stack application.

bas.c / .h, common.h,
hids.c /.h, scps.c / .h
user_interace.c / .h bond.c,
debug.c, host_main.c

BLE Keyboard implementation files.

cy_bootload.c / .h Bootloader SDK files.

bootload_user.h Contains user-editable #define statements that control the operation and enable features in the SDK.

bootload_cm0p.ld,
bootload_cm4.ld

Custom GCC linker scripts. These files place the code and data sections for each CPU as well as the
bootloader and other regions.

bootload_cm0p.scat,
bootload_cm4.scat

MDK scatter files. These files place the code and data sections for each CPU as well as the bootloader and
other regions.

bootload_cm0p.icf,
bootload_cm4.icf

IAR linker configuration files. These files place the code and data sections for each CPU as well as the
bootloader and other regions.

post_build_core1.bat Batch file to create the downloadable application and to merge App0, App1, and App2 into a single hex file.

http://www.cypress.com/
http://www.cypress.com/ce215121-ble-hid-keyboard-psoc-6-ble

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 21

Design Considerations

Software Reset

When transferring control from one application to another, the recommended method is through a device software reset. This
enables each application to initialize device hardware blocks and signal routing from a known state.

You can freeze the state of I/O pins so that they are maintained through a software reset. Defined portions of SRAM are also
maintained through a software reset. For more information, see the PSoC 6 MCU: PSoC 63 with BLE Architecture Technical
Reference Manual.

Components and Settings

This section describes the PSoC Creator Components used by the launcher and stack applications, how they are used in the
design, and the non-default settings required so they function as intended. Additionally, BLE Component settings for the user
application are shown to enable code sharing.

For information on the hardware resources used by a Component, see the Component datasheet.

Launcher Appl icat ion (App0)

Table 9 lists the PSoC Creator Components used in the launcher application.

Table 9. PSoC Creator Components for the Launcher Application

Component Instance Name Purpose Non-default Settings

Pin

PIN_LED_RED

LED Status notification.

HW Connection: Unchecked

External Terminal: Checked

Initial drive state: High (1)

Max Frequency: 1 MHz

SW2 Pin Initial Drive Mode: Resistive Pull-Up

PIN_LED_GREEN

PIN_LED_BLUE

PIN_SW2

Stack Appl icat ion (App1)

Table 10 lists the PSoC Creator Components used in the stack application.

Table 10. PSoC Creator Components for the Stack Application

Component Instance Name Purpose Non-default Settings

Bluetooth Low Energy BLE

Provides communication between the
PSoC 6 MCU device and the
Bluetooth Host for bootloading and
app switching.

See Stack Application (App1) BLE Component
Configuration.

UART UART_DEB
Outputs Bluetooth-related debug
information.

Interrupt mode external.

Pin

PIN_LED_RED

LED Status notification.

HW Connection: Unchecked

External Terminal: Checked

LED Pins Drive Mode: High Impedance Digital

SW2 Pin Initial Drive Mode: Resistive Pull-Up

PIN_LED_GREEN

PIN_LED_BLUE

PIN_SW2

User Appl icat ion (App2)

Table 11 shows the required PSoC 6 BLE Component configuration to enable code sharing. For more information on the PSoC
Creator Components used in the user application, see CE215121 – BLE HID Keyboard.

Table 11. PSoC Creator BLE Component Required Setting

Component Instance Name Purpose Non-default Settings

Bluetooth Low Energy BLE Provides BLE communication support. OTA bootloading with code sharing: Profile Only

http://www.cypress.com/
http://www.cypress.com/trm218176
http://www.cypress.com/trm218176
http://www.cypress.com/ce215121-ble-hid-keyboard-psoc-6-ble

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 22

Stack Appl icat ion (App1) BLE Component Configurat ion

General Tab (see Figure 19):

▪ Maximum number of BLE connections: 1

▪ CPU core: Single core (Complete Component on CM4)

▪ Over-The-Air bootloading with code sharing: Stack and Profile

Figure 19. BLE Component, General Tab Configuration

GATT Settings Tab (see Figure 20):

▪ Generic Access, Peripheral Preferred Connection Parameters:
o Minimum Connection Interval: 0x000C
o Maximum Connection Interval: 0x000C
o Connection Supervision Timeout Multiplier: 0x00C8

The above intervals are selected to minimize bootloading time.

▪ Bootloader service for BLE bootloading

▪ Immediate Alert service for app switching

▪ Attribute MTU size (bytes): 512

Figure 20. BLE Component, GATT Settings Tab Configuration

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 23

GAP Settings Tab:

▪ Device Name: “BLE Bootloader”

▪ Peripheral Configuration 0, Advertisement packet: Local Name checked and set to Complete

▪ Security configuration 0 (see Figure 21):
o Security level: Unauthenticated pairing with encryption
o I/O capabilities: No Input No Output
o Bonding requirement: No Bonding

Figure 21. BLE Component, GAP Settings Tab Configuration

Link Layer Settings Tab:

▪ Link layer max TX and RX payload size (bytes): 251

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 24

Related Documents

Application Notes

AN210781 – Getting Started with PSoC 6 MCU
with Bluetooth Low Energy (BLE) Connectivity

Describes PSoC 6 MCU with BLE Connectivity devices and how to build your first PSoC
Creator project

AN213924 – PSoC 6 MCU Bootloader
Software Development Kit (SDK) Guide

Provides information on how to use the Bootloader SDK, as well as information on
bootloading in general

AN215671 – PSoC 6 MCU Firmware Design
for BLE Applications

Shows how to design firmware for BLE applications on PSoC 6 MCU.

PSoC 6 MCU Bootloader-Related Code Examples

CE213903 – Basic Bootloaders Describes a basic bootloader using UART, I2C or SPI communication

CE221984 – Dual-Application Bootloader Describes an I2C bootloader with two applications, with golden image mode.

CE216767 – BLE Bootloader Describes a basic BLE bootloader

CE220959 – BLE Bootloader with External Memory Describes a BLE bootloader that uses SMIF external memory

CE222802 – Encrypted Bootloader Describes a UART bootloader with application encryption and signing

PSoC Creator Component Datasheets

BLE Provides information on Bluetooth Low Energy (BLE) settings and API

UART Provides information on UART settings and API

Device Documentation

PSoC 6 MCU: PSoC 63 with BLE Datasheets PSoC 6 MCU: PSoC 63 with BLE Architecture Technical Reference Manual

Development Kit Documentation

CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit

http://www.cypress.com/
http://www.cypress.com/AN210781
http://www.cypress.com/an213924
http://www.cypress.com/an215671
http://www.cypress.com/CE213903
http://www.cypress.com/ce221984
http://www.cypress.com/ce216767
http://www.cypress.com/ce220959
http://www.cypress.com/ce222802
http://www.cypress.com/go/comp_BLE_PDL
http://www.cypress.com/go/comp_SCB_UART_PDL
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=field_related_products%3A114026&f%5B2%5D=resource_meta_type%3A583
http://www.cypress.com/CY8CKIT-062-BLE

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 25

Appendix A: CPU Core Configuration of the BLE Component

This example is configured to use the BLE Component on the CM4 CPU. Presets are available to easily switch to the CM0+ or
dual-CPU configuration.

Figure 22 shows the comparison of the reserved RAM size for the BLE stack between the GCC, MDK, and IAR compilers
depending on the BLE Component core configuration.

Figure 22. Size of Reserved RAM for the BLE Stack

The following steps describe how to change the CPU core configuration to CM0+ or dual-CPU mode.

1. Change the CPU core configuration of the BLE Component to the desired configuration in both the stack and user application
schematics.

2. Set the interrupts to the appropriate CPUs in the user and stack applications.

2.1. Set the BLE interrupt to the CM0+ CPU.

2.2. Set all other interrupts of this example to the CM4 CPU if using the dual-CPU mode; else set them to the CM0+ CPU.

3. If the BLE Component is on the CM0+ CPU:

3.1. Move the bootloader folder located in the CM4 folder of the stack application into the CM0+ folder.

3.2. Move the host files folder located in the CM4 folder of the user application into the CM0+ folder.

The following steps depend on the compiler used:

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 26

GCC Compiler

4. Configure the linker scripts.

4.1. Open the bootload_common.ld linker script of the launcher application project.

4.2. Enable the desired configuration by opening/closing the appropriate comment blocks, as Figure 23 shows.

Figure 23. Linker Script BLE Configuration

4.3. Copy the contents of the modified linker script and paste them in the bootload_common.ld linker scripts of the stack

and user applications.

4.4. Repeat Step 4.2 for the bootload_cm0p.ld and bootload_cm4.ld linker scripts of the stack and user application.

5. Set the heap size and enable the zero init table.

5.1. Open the build settings of the stack application and set the preprocessor directives, as Table 12 shows.

Table 12. GCC Preprocessor Directives of the Stack Application

CPU Core Configuration
of BLE Component

CM0+ Compiler Preprocessor
Directives

CM4 Compiler Preprocessor
Directives

BLE on CM0+

DEBUG;
CY_CORE_ID=0;
__HEAP_SIZE=0x4000;
__STARTUP_CLEAR_BSS_MULT
IPLE

DEBUG;
CY_CORE_ID=0;

BLE on Dual CPU

DEBUG;
CY_CORE_ID=0;
__HEAP_SIZE=0x2500;
__STARTUP_CLEAR_BSS_MULT
IPLE

DEBUG;
CY_CORE_ID=0;
__HEAP_SIZE=0x4000;
__STARTUP_CLEAR_BSS_MULTIPLE

5.2. Click OK.

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 27

5.3. Open the build settings of the user application and set the preprocessor directives, as Table 13 shows.

Table 13. GCC Preprocessor Directives of the User Application

CPU Core Configuration
of BLE Component

CM0+ Compiler Preprocessor
Directives

CM4 Compiler Preprocessor
Directives

BLE on CM0+

DEBUG;
CY_CORE_ID=0;
__STARTUP_CLEAR_BSS_MU
LTIPLE

DEBUG;
CY_CORE_ID=0;

BLE on Dual CPU

DEBUG;
CY_CORE_ID=0;
__STARTUP_CLEAR_BSS_MU
LTIPLE

DEBUG;
CY_CORE_ID=0;
__STARTUP_CLEAR_BSS_MULTIPLE

5.4. Click OK.

6. Clean and Build all projects.

MDK Compiler

4. Configure the scatter files.

4.1. Open the bootload_mdk_common.h header file of the launcher application project.

4.2. Change the #define BLE_CM4 line to the desired BLE configuration.

4.3. Copy the contents of the modified header file and paste them in the bootload_mdk_common.h header files of the stack
and user applications.

5. Set the heap size and disable the MicroLib library.

5.1. Open the build settings of the stack application and set the assembler command line flags, as Table 14 shows.

Table 14. MDK Assembler Command Line Custom Flags of the Stack Application

CPU Core Configuration
of BLE Component

CM0+ Assembler Command
Line Custom Flags

CM4 Assembler Command Line
Custom Flags

BLE on CM0+
--pd "__HEAP_SIZE SETA
0x4000"

BLE on Dual CPU
--pd "__HEAP_SIZE SETA
0x2500"

--pd "__HEAP_SIZE SETA
0x4000"

5.2. Go to Linker settings of the CM0+ CPU set the Use MicroLib option to ‘false’. Do the same for the CM4 CPU if the

BLE Component is on dual-CPU mode.

5.3. Click OK.

5.4. Open the build settings of the user application and repeat Steps 5.2 and 5.3.

6. Update the linker options to keep the stack.

6.1. Open the build settings of the stack application.

6.2. Update the linker command line custom flags of both CPUs to keep the linker from optimizing the stack out. See the
BLE Stack Keep Command List.txt file located in the stack application project for the required commands for the CPU
core configuration of each BLE Component.

6.3. Click OK.

7. Clean and Build all projects.

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 28

IAR Compiler

4. Modify the linker configuration files.

4.1. Open the bootload_common.icf linker configuration file of the launcher application project.

4.2. Change the define symbol BLE_CM4 = 1; line to the desired BLE configuration.

4.3. Copy the contents of the modified linker configuration file and paste them in the bootload_common.icf linker
configuration files of the stack and user applications.

5. Set the heap size.

5.1. Right-click the CM0+ stack application project and select Options.

5.2. Go to the Linker settings and to the Config tab.

5.3. Set the configuration file symbol definitions as shown in Table 15.

Table 15. IAR Configuration File Symbol Definitions of the Stack Application

CPU Core Configuration
of BLE Component

CM0+ Configuration File
Symbol Definitions

CM4 Configuration File
Symbol Definitions

BLE on CM0+ __HEAP_SIZE=0x4000

BLE on Dual CPU __HEAP_SIZE=0x2500 __HEAP_SIZE=0x4000

5.4. Click OK.

5.5. Right-click the CM4 stack application project and select Options.

5.6. Repeat Steps 5.2 to 0.

6. Update the linker options to keep the stack.

6.1. Right-click the CM0+ stack application project and select Options.

6.2. Go to the Linker settings and to the Input tab.

6.3. Update the symbol list to keep the stack from being optimized out. See the BLE Stack Keep Command List.txt file
located in the stack application project for the required commands for the CPU core configuration of each BLE
Component.

6.4. Click OK.

6.5. Right-click the CM4 stack application project and select Options.

6.6. Repeat Steps 6.2 to 6.3 to configure the linker settings for the CM4 CPU.

7. Clean and Build all projects.

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 29

Appendix B: Implementing Stack Code Sharing with MDK and IAR Compilers

Applications generated by IAR and MDK compilers use special routines to initialize the RAM. These routines limit the amount of
reserved RAM that can be saved in comparison with GCC, and require the user application to call a function from the stack
application to reinitialize the RAM, and afterwards return to the user application.

Figure 22 on page 25 shows the comparison of the reserved RAM size for the BLE stack between the GCC, MDK, and IAR
compilers depending on the CPU core configuration of the BLE Component.

MDK Compiler

The CPU-specific scatter files of the Bootloader SDK (bootload_cm0p.scat and bootload_cm4.scat) were modified to do the
following:

• Separate the stack and heap from the RAM data to reduce the reserved RAM size for the BLE stack.

• Place the common configuration variables in a specific section to be overwritten by the user application.

Unused sections are removed by the linker. Stack functions may be used by the user application and not by the stack application.
These functions must be explicitly kept to not be removed. Command line custom flags on the linker are used to keep the stack
from being removed. See the BLE Stack Keep Command List.txt file located in the stack application project for the required
commands for the CPU core configuration of each BLE Component.

The BLE stack requires common variables, such as clock settings, values of which depend on the running application and that
are updated by the firmware. These variables must be overwritten by the user application and therefore placed in a specific
section and order in the RAM.

The separation of the stack and heap from the RAM data and the definition of the Common BLE RAM section is made only if
the BLE Component runs on the specific CPU. Figure 24 shows the definition of the Common BLE RAM section and the
separation of the stack and heap from the RAM data for CM4.

Figure 24. Common BLE RAM Definition for MDK

The stack application must provide a way for the user application to reinitialize its BLE stack variables. This is realized by
providing the StackRAMInit() function, which requires a return address as a parameter. The MicroLib library must be disabled

for RAM reinitialization to work.

The return address is stored in the CyReturnToBootloadableAddress global variable. This variable is in the common RAM

and is set to ‘0’ after every reset.

StackRAMInit() calls the scatterload function to initialize the RAM of the stack application. Afterwards, scatterload calls the

_platform_pre_stackheap_init weak function, which has been redefined to return to the user application using

CyReturnToBootloadableAddress.

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 30

IAR Compiler

The CPU-specific linker configuration files of the Bootloader SDK (bootload_cm0p.icf and bootload_cm4.icf) were modified to
do the following:

• Separate the stack and heap from the RAM data to reduce the reserved RAM size for the BLE stack.

• Place common configuration variables in a specific section to be overwritten by the user application.

Unused sections are removed by the linker. Stack functions may be used by the user application and not by the stack application.
These functions must be explicitly kept to not be removed. The Keep symbols list in the linker input settings is used to keep the
stack from being removed. See the BLE Stack Keep Command List.txt file located in the stack application project for the required

commands for the CPU core configuration of each BLE Component.

The BLE stack requires common variables, such as clock settings, values of which depend on the running application and that
are updated by the firmware. These variables must be overwritten by the user application and therefore placed in a specific
section and order in the RAM.

The separation of the stack and heap from the RAM data and the definition of the Common BLE RAM section is made only if
the BLE Component runs on the specific CPU. Figure 25 shows the definition of the Common BLE RAM section and the
separation of the stack and heap from the RAM data for CM4.

Figure 25. Common BLE RAM Definition for IAR

The stack application must provide a way for the user application to reinitialize its BLE stack variables. This is realized by
providing the StackRAMInit() function. In comparison with the MDK implementation, this variable requires no parameters.

StackRAMInit() calls the __iar_data_init3() function to initialize the RAM of the stack application. Afterwards, the function

returns to the user application.

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 31

Document History

Document Title: CE220960 – PSoC 6 MCU BLE Upgradable Stack Bootloader

Document Number: 002-20960

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 6097169 CFMM 03/13/2018 New code example

*A 6317430 MKEA 09/30/2018
Corrected errors when changing BLE Component configurations. Minor
document updates.

http://www.cypress.com/

 PSoC 6 MCU BLE Upgradable Stack Bootloader

www.cypress.com Document No. 002-20960 Rev.*A 32

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos | Blogs | Training |
Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court

 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress
under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and
treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual
property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing
the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its
copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly
through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed
by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.
Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security
measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as
unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only
for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses
where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety
or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages,
and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

