(infineon

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product

portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

www.infineon.com

A,

was CYPRESS

~agp” EMBEDDED IN TOMORROW™

ModusToolbox™

Document Number: 002-29893 Rev. *C

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
WWW.Cypress.com

http://www.cypress.com/

= CYPRESS

> EMBEDDED IN TOMORROW™ COpyrIght

© Cypress Semiconductor Corporation, 2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries,
including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is
owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all
rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a
written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable
license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and
reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software
in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware
product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make,
use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or
compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely
secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability
arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these
materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the
extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not
assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this
document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the
user of this document to properly design, program, and test the functionality and safety of any application made of this information and any
resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended
for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems
(including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the
failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect
its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or
other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended
Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, ModusToolbox, WICED, PSoC, CapSense, EZ-USB,

F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of
Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 2

Contents

& CYPRESS

- EMBEDDED IN TOMORROW"™

O 1 4 o Yo [U o3 {0] A USSR 6
A VA o o Y TSR 1Y T [ES 1o Lo | o1)PPt 6
111 RETEIEINCE FIOWS. ...t e e e e e et e e e e e e e et et et eeeesea bt b e et eeeesesatbaeeeaeeessansbeneeaaeeaaas 6

1.1.2 [(o To 11 o3 £t

1.2 High-Level What is Included
1.21 ModusToolbox Installer
1.2.2 Online Content

1.3 About this Guide

A € 1= o To JS] =T (=T (PP UPT TP PPRTPRRN 8
2.1 Install and CONfIQUIE SOTIWAIEeiiiiiiie ettt s b e e st et e e aa bt e e sbb et e et b e e e anbe e e e nsbneeeabbeeenne 8
2.1 1 GUI SEE-UP INSIFUCTIONS ..eteeieiitiee et ete ettt e e e st e skt e e ek e e e st e e e s s e e e ek re e e e st et e e sann e e e e e reeenannn e e e nannes 8
2.1.2 CLI Set-UP INSITUCLIONSuiiiiiiii e ettt e et e e e e ettt e e e e e ettt e e e e e e satbaeaeaeeessatbsaeeeaeeesasasaseeaeeesasnereneeas 8
P €1 o o 1=« TP PP PP OPPPPOPPPTIN 9
221 GUI DOCUMENTALIONeeiieei ittt ettt ettt et e e oo ek b bttt e e e e e e aab b e et e e e e e e s an bbbt e e e e e e e s nbbbeeeeaeasaansnbnneeaeeeaaannnnes
2.2.2 Command Line Documentation
PR B O (= o (I A o] o] ToF=1 (o] L PO PT P PPPRR PRI
231 Project Creator GUI
2.3.2 project-creator-Cli................. .
b TR T o 11 0 (o o 1= OO PP PP OP PP
2.4 Update BSPS and LIDFAriEsS.oooiiiiiiiiiii ettt ettt e e e e ettt e e n et e e bt e e et b e e nte e e e nnaree s
24.1 o] = TV Y =T g = To =T O OO PP PP PP PPPRPOTPION
2.4.2 MAKE GELIDS ... e ettt e e e oottt e e e e e ekt b et e e e e e e e s ab bt et e e e e e e e bbb ne e e e e e e e nneneeaeas
2.5 Configure Settings for Devices, Peripherals, and LIDraries ... 15
251 CoNnfiQUrator GUI TOOIS.ueiiiiiiiiiiiie ettt ettt e e e e et e s e s s e e e e annn e e e nnnees 15
2.5.2 CoNfIQUIALOr CLI TOOISttt ettt e oottt e e e e e e s et bt et e e e e e e s aabbbaeeeee e e aannnneeeeaeesaannenes 16
P I VY (=3 Y o] o] o= Vo] o I @2 Lo [TP PP PRSP PPPR PRI 17
2.7 (21011 o = oo = T g TF=TaTo L= o 10 o [PP ERR O 17
b 5 R § [T o101 |] PP RP 17
2.7.2 EXPOIt t0 @NONET IDEottt e et e e st e e ettt e e st et e e s hb bt e e ettt e e nnne e e e nanneeean 18
2.7.3 USE COMMANG LINE ...ttt e oo ettt e e e e e skt b et e e e e e e e s abbb et e e e e e e e nbbbaeeeee e e s nnnaneeeeas 18
3 MOAUSTOOIDOX SOFIWAIE OVEIVIBW ...ceiiiiiieiiiii ettt ettt e e e e ettt e e e e e e e e be et e e e e e e e e eaeseeeaeaeaasasseeeeaeeaaannsaneeeaaeaaannees 19
I 70 B B T (=Tt (o] A 1 (U [(U (= PSP UPPPPPPPPRN 20
311 (Do To W] LT a1 ¢= 1 o] o [FS USRS UPRRRN 20
7% 0 o To] S U T UUPPRRTRIN 21
o T o 0T (¥ o V=T Yo 01T OO TP U PP OU PP PPPPPPI 22
3.2.1 GENETAl PRIIOSOPRYeieieiiiie ettt e ket e e h et n et eas 22
3.2.2 INStall PACKAGE VEISIONINGieiiiiieie ettt e e e e e ettt e e e e e e s nbb e et e e e e e e antbeeeeaaeeaan 23

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 3

e

ws CYPRESS

> EMBEDDED IN TOMORROW™ Contents

3.23 Multiple TOOIS VErsions INSTAIEAcocueiiiiiiee et e et s e e snnee s 23
3.2.4 Specifying AILErNAte TOOIS VEISIONiiiiiiiiiiiiii et e et e e e e e et e e e e e s aa bbb e e e e e e e annnenes 23
3.25 Tools and Configurators VEISIONINGuieeeceiiiiiiiieeeee s eeiiiie et e e e e e astb et e e e e sassatbaaeeaaeessatbbaeeaaeesaassssssesaaeesasnnsnns 25
3.2.6 GItHUD LIDrari@S VEIrSIONING c.oea ittt ettt e e e e e ettt e e e e e e s e tbeaeeeeeeeaannnnseeeaaeeaannnens 25
3.2.7 DependencieS BEtWEEN LIDIAIIEScoi i ittt e e et e e e e e et e e e e e e e e aneb e e e eaaeeean 26
3.3 INSTAlIAtION RESOUICES.ciiiiiiieiiee e e ettt e e e e et e e e e e e e bt e e e e e e sastbte e e e ee e e e et bebeeeeeeeaansatbeeeeaeeaasntaeeeeeeeaansntsnneeeeeeennnsnn 27
331 BUIld SYStEM INFIASIFUCTUIEeeiiiiiii ettt e et e e et e s e e e st e e nnnn e e s nnnneeean 27
3.3.2 Program and DEDUQG SUPPOIT.......uueiiiieeiiiiiei et e et e e e e e e e e st e e e e e e e s aatb e e e e e e s s satbaeseaaeessansbaeseaaeaains 27
e TR B =l 1 Y 1 5 OSSO OU PPN
3.34
335
3.3.6
3.4 Enablement Software
3.4.1 Code Examples
3.4.2 Board Support Packages and Kits
343 MIAAIBWAE ...ttt ekttt ekt e bt ekt e b et ekt e bt b e e e b ettt s
3.4.4 LOW-LEVEI RESOUITES ...ttt ettt ettt ettt e ettt e ekt e e s a bt e ettt e e st et e e s ab et e e ettt e e snne e e e nanneeean
4 MOAUSTOOIDOX BUIIA SYSTEIM .ottt ettt e e ettt e e bt e ek bt e e st bt e e sabb e e e et b e e e e anbn e e e snnneeeabbeeennes 36
o © V= oV SO UPRRRT
4.2 Application Types
43 BSPS..cooociiiiiiieie
4.4 make getlibs
o T o o L T T T T T T U TR OP PO PP PPR PR
4.5 Adding source files
45.1 Auto-Discovery
4.6 Pre-builds and POSE-DUIIASuiie et e ettt s e et et e e 39
A S ol = o I=Ta o I [T o 0T RO PP PPPRPP 40
S B NV | oo Lo 1Y LI 1= 1o =) £ PP 40
4.8.1 GENETAl MBKE TAIGELS .. .eeiiiiiiiieiiiiii e ittt ettt e e sttt e o bt e e e ek b et e e aabe e e e sabb e e e e bb et e e aate e e e nnnneeeabbeeenne 40
4.8.2 IDE MAKE TaAIQOES. .. eitieieeee ettt e oottt e e e oottt et e e o4 o ek bbb ettt e e e e e s aeb e et e e e e e e annbb e et e e e e e e snntbeeeeeaeeeantbbeeeaaeaannn 41
TR B o To | SRV = LI I U (0 =1 £ PR P PRRTPRIIN 41
4.8.4 ULIIIEY MAKE TaITEIS .. i i ieteieiiitiie ettt site ettt ettt e skt e et e e st e e e skt e e e s s et e e s abe e e e et n e e e e aann e e e snnneeeanneeennes 42
4.9 Available MaKe VariabIes......... ... oottt e ettt e e e et e e e e et b e e e e e e e et baa e e e e e aan 42
49.1 Basic Configuration Make VariabIes............ouuiiiiiiiiiiii e 42
4.9.2 Advanced Configuration Make Variables............c.oooiiiiiiii e 43
4.9.3 BSP MaKE VANADIES......coiiiiiiiiiii et 44
4.9.4 GetliDS MAKE VAIADIES. ittt e e e e e ettt et e e e e e e nat e e e e e e e e e anebeeeeaaeeaaneees 44
4.9.5 Path Make VariabIEso oottt e e e ettt e e e e e e st b et e e e e e e e ntbreeeaaeeaan 45
4.9.6 Miscellaneous MaKe VariahIleSooouiiiiiiie et e e 46
R =T o =T o IS0] o] o o] g == Tod ¢ To [1SS OO PPP PR 47
LT A O 1V 4T PR OPUPRRPPRN a7
I T P g I T =T PP OPTPPPPTPRN 47
5.2.1 PSOC 6 VS. WICED BIUBTOOTN.euiiiiiiiiiiiiiei ettt e e e e e sttt a e e e e e s atbaeteaaeessnsbaeeeaaeeeann 47
5.3 PSOC B BSPS ..ttt b e R b £ £ e oAbt e Ee e oAb e e o b et e b e e bt e e b et e b e e e b e e e be e e bt e nbeeenee s 48
5.3.1 CYDSP.C /N & CYDSP _IYPES.H oot areas 48
5312 KB ettt E e h et e bt b e e et e e e s 48
5.3.3] 10| TP T U PO PP TP TOTPTPTPTN 49

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 4

A

ws CYPRESS

N> EMBEDDED IN TOMORROW Contents

5.3.4 COMPONENT_BSP_DESIGN_MODUSciiiiiititiiieaiie ettt ettt et ntee b e sbe e s b e sbeeabeeanaeeanee s 49
LR S o =T o L ST U UT U OPPPPPRTPRTIN 49
LR JLC T 1oL PP PO PO OO TP PSP PP PU PP P R OU PP PPRTPTIN 49
5.3.7 20T 1o W T 1T 2= 14 o] o [P STU USRS 49
5.3.8 Overriding the BSP Configuration FilESuuiiiiiiii et e e 49
5.3.9 Creating @ BSP fOr YOUF BOAIT.uuiiiiiiiieiiie ettt ettt 50
5.4 WICED BIUetooth BSPS (PIALIOIMIS)veeiiiiiiieiiiiie ittt e e e s e s e e e et e e s e s nnnneeeas 51
54.1 Selecting an alterNAtIVE BSPouiiiiiiiii e e e a e e e arraa s 51
54.2 (01013 (o] 1 4 = 1T TP ET PSP PPPPPPRPPRTON 51
LV o T E] A LT T O TP PTP PP PPPPPP 53
L A O 1V = YT SR TOUUPURPPRN 53
6.2 Create YOUr OWN MANITEST.c.uiiiiiiiiieiii ettt e e ettt e bt e e bt e e bt e e b e e et e e e b e e et e e e ne e nbeeenee s 53
6.2.1 Overriding the Standard SUPEr-ManIfESTuiiiiiiiieiii e e 53
6.2.2 CUSIOM SUPEI-MAEINITESTeeieiiiee ettt et e e e s ettt e e e e e e s et b eeeeaaeeeaanbbbaeeaeeesaannbneeeeaeesannnrnns 53
6.2.3 o To=ET] [T PO PSPPSR 54
(S 7o 0} o1] o o T - PSP OP PP 54
(S I U][0 To @ 11T g TSI 0] 0 1(=] o | S PP PPUPUPPTPN 55
6.4 ACCESS PriVALE REPOSIIOMIESeieiieiieiiittee ettt e ettt ettt e e ettt e ettt e s st be e e e ot bt e e s sbe e e e aa b et e e et bt e e e sbe e e e aabe e e e anbb e e e nnbneeennnreeean 55
6.5 MaAnNIfESt XIML FlE STIUCTUIE......eei ittt e ettt e e oo ettt e e e e e e e tbeteeeaee e e e saaeeeeaaeesaasnsseeeeaeeeaannsaneeeaaeeaannees 56
6.5.1 Super Manifest
6.5.2 Board Manifest .
(SRS B AN o] o 1 Y = g1 £= 2] S TP PRRTRPIN
6.5.4 MiIddIEWArE MEANITEST........uiiiiiiitii ittt ettt b e bt b et e e b et et e e ne e e nteeene s 65
A = o Yol g A 1Yo [(o TN | SO POUPPPRRRRON 69
4% I O 1V = 41 PRSP PPRPPRN 69
A |] o] g A (o TN =Tl [oL OPUPPPPTPN 69
S T = (o To L 4 (o YA T @o o [T PP PPRPTPIN 71
7.3.1 L (=T (=T [] (=TT PU PP PPPR PRI 71
7.3.2 Process fOor PSOC 6 APPICALION.cciiii ittt e e e e ettt e e e e e e sntb et e e e e e e aanbeeeeaaeaaan 71
7.4 Export AR EWARM (Windows Only)
7.4.1 Prerequisites.........c..ccceennee.
7.4.2 Process for PSoC 6 Application
7.5 Export to Keil uVision 5 (Windows Only)
7.5.1 PrereqUISItes.o
7.5.2 Process for PSoC 6 Application
DOCUMENT REVISION HISTOTY ..iiiiiiiiiitiiiie ettt e e e et e e e e s et b et e e e e e e st b aeeeeeeeesatbaeeeeaeeesaatasaseaeeeesaasseaeeeeeessansneraneens 91

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 5

1 Introduction

& CYPRESS

- EMBEDDED IN TOMORROW"™

1.1 What is ModusToolbox?

The ModusToolbox software environment is a set of reference flows and products that provide an immersive development
experience for creating converged MCU and wireless systems. Cypress provides a set of multi-platform development tools and
a comprehensive suite of firmware libraries that enable you to design in the connectivity, processing, sensing, and security
functionality you need.

The ModusToolbox experience is adaptable to the way you work, eschewing proprietary tools and custom build environments in
favor of simplicity and openness. This means you choose your compiler, your IDE, your RTOS, and your ecosystem without
compromising usability or access to our industry-leading CapSense®, Bluetooth Low Energy and Mesh, Wi-Fi, security and low-
power features.

1.1.1 Reference Flows

Reference flows are Cypress documented, supported, and qualified methodologies to use ModusToolbox products. A flow is a
recipe, defining how to create applications, add middleware, configure devices, build, program and debug.

1.1.1.1 Flows Covered in this Guide

This guide covers the PSoC 6 MCU, PSoC 6 with wireless connectivity, and WICED Bluetooth flows, based on the
ModusToolbox installer tools and make build system.

1.1.1.2 Flows Not Covered in this Guide

Mbed OS and Amazon FreeRTOS flows are not covered in this guide; however, some of the tools in this guide are relevant to
those flows. Refer to https://www.mbed.com/en/ and https://aws.amazon.com/freertos/, respectively, for more details about
those flows.

1.1.2 Products

ModusToolbox products include tools and firmware that can be used individually, or as a group, to develop connected
applications for Cypress devices. Cypress understands that you want to pick and choose the ModusToolbox products you use,
merge them into your own flows, and develop applications in ways we cannot predict. That's why, unlike previous Cypress
software offerings, ModusToolbox is not a monolithic, IDE-centric software tool. Each product is individually executable (for
tools), buildable (for firmware), testable, portable, and deliverable. Products are distributed through multiple portals (for example
mbed.com, github.com, and cypress.com) to enable you to work in your preferred environment.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 6

https://www.mbed.com/en/
https://aws.amazon.com/freertos/

= CYPRESS

> EMBEDDED IN TOMORROW™ |ntrOdUCtI0n

1.2 High-Level What is Included

ModusToolbox software includes configuration tools, low-level drivers, middleware libraries, and operating system support, as
well as other packages that enable you to create MCU and wireless applications. It also provides support for various industry-
leading IDEs, including Visual Studio Code, Eclipse, IAR, and pVision. Unless specifically stated otherwise, ModusToolbox
resources are compatible with Linux®, macOS®, and Windows®-hosted environments. Some parts of ModusToolbox are
included with the installer, while others available online at the Cypress GitHub website.

See the ModusToolbox Software Overview chapter for more details about what is included as part of the ModusToolbox
software.

1.2.1 ModusToolbox Installer
The ModusToolbox installer is available from the Cypress website:

https://www.cypress.com/products/modustoolbox-software-environment

It provides the basic software to get started, including:
m Compilers (GCC, ARM)
® Build System (make, Cygwin)
® Programming and Debug Tools (OpenOCD, PyOCD)
m Configurators and Tuners

m Eclipse IDE (optional) — This is a modified version of Eclipse. It includes a Cypress-specific set of plugins that provide
convenience features for use with ModusToolbox tools.

1.2.2 Online Content
Cypress provides parts of ModusToolbox, such as libraries, drivers, and code examples, at the Cypress GitHub site:

https://github.com/cypresssemiconductorco

Typical resources available on GitHub include:
® BSPs (Board Support Packages)
m CSPs (Chip Support Packages) integrated into the BSP
m Libraries (e.g., RTOS, Drivers, Network Stacks, Graphics, etc.)

m Application Firmware (code examples)

1.3 About this Guide

This guide provides information and instructions for using the ModusToolbox software tools provided by the installer and the
make build system. This document contains the following chapters:

m Chapter 2 provides tutorials for getting started using the ModusToolbox tools.

® Chapter 3 includes an overview of all the software considered a part of ModusToolbox.

m Chapter 4 describes the ModusToolbox build system.

m Chapter 5 covers different aspects of the ModusToolbox Board Support Packages (BSPs).

® Chapter 6 explains the ModusToolbox manifest files and how to use them with BSPs, libraries, and code examples.

m Chapter 7 provides instructions for using a ModusToolbox application with various integrated development
environments (IDEs).

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 7

https://www.cypress.com/products/modustoolbox-software-environment
https://github.com/cypresssemiconductorco

2 Getting Started

&= CYPRESS

- EMBEDDED IN TOMORROW

ModusToolbox software provides various graphical user interface (GUI) and command-line interface (CLI) tools to create and
configure applications the way you want. You can use the included Eclipse-based IDE, which provides an integrated flow with all
the ModusToolbox tools. Or, you can use other IDEs or no IDE at all, and you can switch between GUI and CLI tools in various
ways to fit your design flow. Regardless of what tools you use, the basic flow for working with ModusToolbox applications
includes these tasks:

® Install and Configure Software

m Get Help
m Create Applications

m Update BSPs and Libraries

m Configure Settings for Devices, Peripherals, and Libraries

m Write Application Code

m Build, Program, and Debug

This chapter helps you get started using various ModusToolbox tools. It covers these tasks, showing both the GUI and CLI
options available.

2.1 Install and Configure Software

The ModusToolbox installer is located on the Cypress website:

https://www.cypress.com/products/modustoolbox-software-environment

The software can be installed on Windows, Linux, and macOS. Refer to the ModusToolbox Installation Guide for specific
instructions.

2.1.1 GUI Set-up Instructions

In general, the IDE and other GUI-based tools included as part of the ModusToolbox installer work out of the box without any
changes required. Simply launch the executable for the applicable GUI tool.

2.1.2 CLI Set-up Instructions

Before using the CLI tools, ensure that the environment is set up correctly.

® For Windows, the installer provides a command-line utility. Navigate to the modus-shell directory and run Cygwin.bat.
Itis located in the following directory:

<install_path>/ModusToolbox/tools_2.1/modus-shell/

® For macOS, the installer will detect if you have the necessary tools. If not, it will prompt you to install them using the
appropriate Apple system tools.

m For Linux, there is only a ZIP file, and you are expected to understand how to set up various tools for your chosen
operating system.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 8

https://www.cypress.com/products/modustoolbox-software-environment
http://www.cypress.com/ModusToolboxInstallGuide

= CYPRESS

> EMBEDDED IN TOMORROW™ Gettlng S’[al’ted

To check your installation, open the appropriate command-line shell.
m Type which make. For most environments, it should return /usr/bin/make.

® Type which git. For most environments, it should return /usr/bin/git.

If these commands return the appropriate paths, then you can begin using the CLI. Otherwise, install and configure the GNU
make and git packages as appropriate for your environment.

2.2 Get Help

In addition to this user guide, Cypress provides documentation for both GUI and CLI tools. GUI tool documentation is generally
available from the tool’s Help menu. CLI documentation is available using the tool's -h option.

2.2.1 GUI Documentation

2.2.1.1 Eclipse IDE

If you choose to use the integrated Eclipse IDE, see the Eclipse IDE for ModusToolbox Quick Start Guide for getting started
information, and the Eclipse IDE for ModusToolbox User Guide for additional details.

2.2.1.2 Configurator and Tool Guides

Each GUI-based configurator and tool includes a user guide that describes different elements, as well as how to use it. See
Installation Resources for descriptions of these tools and links to the documentation.

2.2.2 Command Line Documentation

2.2.2.1 make help

The ModusToolbox build system includes a make help target that provides help documentation. In order to use the help, you
must first run the make getlibs command in an application directory (see make getlibs for details). From the appropriate shell
in an application directory, type in the following to print the available make targets and variables to the console:

make help

To view verbose documentation for any of these targets or variables, specify them using the CY HELP variable. For example:
make help CY HELP=TOOLCHAIN

Note This help documentation is part of the base library, and it may also contain additional information specific to a BSP.

To see the various make targets and variables available, see the Available Make Targets and Available Make Variables sections
in the ModusToolbox Build System chapter.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 9

http://www.cypress.com/ModusToolboxQSG
http://www.cypress.com/ModusToolboxUserGuide

ws CYPRESS

EMBEDDED IN TOMORROW Gettlng Started

2222 CLITools

Various CLI tools include a -h option that prints help information to the screen about that tool. For example, running this
command prints output for the Project Creator CLI tool to the screen:
./project-creator-cli -h

B -/ModusToolbox/tools_2,1/project-creator - [m] X

BSP ir

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 10

CYPRESS

> EMBEDDED IN TOMORROW Getting Started

2.3 Create Applications

The ModusToolbox software provides the Project Creator as both a GUI tool and a command line tool to easily create a
ModusToolbox application, based on available BSPs and code examples. The tool clones the selected code example for the
specified BSP and puts everything required for the application into a single directory. You can then use those application files in
your preferred IDE or from the command line.

If you prefer not to use the Project Creator tools, you can use the git clone command directly.

2.3.1 Project Creator GUI

Open the Project Creator GUI tool by launching the executable file installed in the following directory by default:

<install_path>/ModusToolbox/tools_2.1/project-creator/

Project Creator 1.1 - Choose Board Support Package (BSP) — [m] *
Settings Help
Enter filter text E CYBCKIT-062-WIFI-BT
Kit Name - MCU Connectivity Device The PSoC & WiFi-BT Pioneer Kit is a low-cost hardware platform that enables design and
~ PSoC 6BSPs debug of the PSeC 62 MCU (CYBC6247BZ1-D54) and the Murata LBEESKL 10X Module
CYBCKIT-062-BLE CVBCEITAZI-BLDS3 <none> (CYW4343U WIFi + Bluetooth Combo Chip).
CYSCKIT-06252-43012 CVSC624ABZI-D44 CYW43D12COWKWEG Kit Features:
CY3CKIT-062-WIFI-BT CY3C6247BZ-D34 CYW4343WKUBG
CYSCPROTO-082-4243W CYSC624ABZI-D44 CYWA4IWKUBG *BLE V5.0
CY8CPROTO-06253-4343W CYBC6245L01-53D72 CYW4343WKUBG » Serial memary interface
CY8CPROTO-083-BLE CYBLE-416045-02 <none> *PDM-PCM digital microphone interface
* Industry-leading CapSense
CYWIPE251-43012EVB-01 CYBC6247FDI-D32 CYW43012TCOEKUEG +Ful-speed USE
CYWSP6251-43438EVB-01 CYBC6247BZ-D34 CYWA43438KUBG « [EEE 502, L1a/b/g/n WLAN

b WICED Bluetooth BSPs

Kit Contents:

* CYSCKIT-062-WIFI-BT evaluation board

TFT display shield with a 2.4° TFT display, light sensor, 6-2xis motion sensor, and
digital microphone

*USB cable

Checking if remote manifest is accessible...
Getting manifests from remote server...

100%

Processing super-manifest https: //github.com/cypresssemiconductorco fmth-super-manifest/raw/v 2. X /mtb-super-manifest.xml...

Successfully acquired the information.

Summary: -

Mext > Close

53

Note You can also use the included Eclipse-based IDE tool to launch the Project Creator GUI tool. Using this method
seamlessly exports the created application for use in the Eclipse IDE.

The Project Creator GUI tool provides a series of screens to select a BSP and code example, as well as to specify the
application name and location. As part of creating the application, the tool adds the appropriate target to the makefile and adds
the .lib file to match the selected BSP. It displays various messages during these operations. Refer to the Project Creator Guide
for more details.

Note In some cases, the project may depend on one or more other projects. In those cases, the required projects are also
created, if they don't already exist in the correct location.

2.3.2 project-creator-cli

Along with the Project Creator GUI tool, ModusToolbox software provides a project-creator-cli tool to create applications from a
command-line prompt or from within batch files or shell scripts. The tool is located in the same directory as the GUI version
(<install_path>/ModusToolbox/tools_2.1/project-creator/).

The following shows an example of running the tool with various options.
./project-creator-cli \
--board-id CY8CKIT-062-WIFI-BT \
--app-id mtb-example-psoc6-hello-world \
--user-app-name MyLED \
--target-dir "C:/cypress projects"

To see all the options available, run the tool with the —-h option.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 11

http://www.cypress.com/ModusToolboxProjectCreator

= CYPRESS

> EMBEDDED IN TOMORROW™ Gettlng S’[al’ted

In this example, the project-creator-cli tool runs the git clone command to clone the HelloWorld code example from the
Cypress GitHub server (https://github.com/cypresssemiconductorco). It also updates the TARGET variable in the makefile to
match the selected BSP (--board-id), creates a .lib file for it, and runs the make getlibs command to obtain the necessary
library files. This example also includes options to specify the name (--user-app-name) and location (--target-dir) where
the application will be stored.

2.3.3 gitclone

The Project Creator GUI and command line tools run the git clone command as part of the process of creating an
application. You can run the git clone command directly from the command line. Open the appropriate shell and type in the
following command (replace the <URL> with the appropriate URL of the repo you wish to clone):

git clone <URL>

The clone operation creates an application directory in your current location. Navigate to that directory (cd <DIR>), and find the
application makefile. This is the top-level file that determines the application build flow. To see the various make targets and
variables that you can edit in this file, refer to the Available Make Targets and Available Make Variables sections in the
ModusToolbox Build System chapter.

2.4 Update BSPs and Libraries

As part of the application creation process, the Project Creator tools update the application with BSP and library information. If
you use the git clone command, you may have to update BSP and library information as a separate process using the
Library Manager tool or from the command line using the make getlibs command. You can also update the BSP and library
information at any point in the development cycle using these tools.

2.4.1 Library Manager
As needed, use the Library Manager tool to add or remove BSPs and libraries for your application, as well as change versions

for BSPs and libraries. You can also change the active BSP. Refer to the Library Manager Guide for more details about using
this tool.

Note For WICED Bluetooth projects, the Library Manager allows BSP version changes if you open the wiced_btsdk project.
However, it does not support adding and removing shared dependencies at this time.

Open the Library Manager tool by launching the executable file installed in the following directory:

<install_path>/ModusToolbox/tools_2.1/library-manager/

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 12

https://github.com/cypresssemiconductorco
http://www.cypress.com/ModusToolboxLibraryManager

CYPRESS

EMBEDDED IN TOMORROW™

~
wa

Getting Started

If you haven’t opened the Library Manager tool before, it opens at your home directory and looks for directories with a makefile.

It also scans for available manifest files to acquire BSP/library information.

Library Manager 1.1

Settings Help
Directory: |C:/Users/CKF
Project:

Active BSP:

Enter filter text

Mo valid project found in C:/Users/CKF.

Checking if remate manifest is accessible...
Getting manifests from remote server...

Browse...

Successfully acquired the information.

S

Processing super-manifest https: /github.com/cypresssemiconductorco/mth-super-manifestfraw v 2. X fmth-super-manifest.xml...

100%

Apply

If the tool does not find your application, click the Browse... button next to the “Directory” field and navigate to where you
created it. Select the directory and click OK. The Library Manager then updates to show the selected application and the

available BSPs and libraries for it.

Library Manager 1.1
Settings Help

Directory: | C: Users/CKF/mtw2. 1/1156/hw/Hello_World

Project: C:Users/CKF fmtw2, 1/1156 /hw /Hello_World

Active BSP: | CYSCKIT-062-WIFI-BT

Enter filter text

BSPs. Libraries

Name
~ P50C 6 BSPs
CYBCKIT-062-BLE Latest 1.X release
CYBCKIT-06252-43012 Latest 1.X release
V| CYBCPROTO-062-4343W Latest 1.X release
CY8CPROTO-06253-4343W Latest 1.X release
CYBCPROTO-063-BLE Latest 1.X release
CYWSP6251-43012EVB-01 Latest 1.X release
CYWIPG251-42438EVE-01 Latest 1.X release
» WICED Bluetooth BSPs.

“ Version

Applying changes...
Makefile updated with target "CYBCKIT-062-WIFI-BT".

Successfully updated the project.

Reading project (C:Users CKF fmtw2. 1/1156 /b Hello_World) information. ..
Successfully acquired project information.

2

- [m] ped
Library Manager 1.1
Settings Help
Directory: | C:/Users/CKF fmtw2. 1/1156/btfwiced_btsdk
Project: C:/Users/CKF fmtw2, 1/1156/bt/wiced_btsdk
CYSCKIT-
T | ActiveBSP:
The PSo
;';ddjl‘;b(“ Enter filter text
KitFeatul = BSPe | Libraries
oo |Name ~ Version
g v CYWS20706WCDEVAL 2.3.0 release
* v CYW920719B2Q40EVE-01 2.3.0 release
1 V| CYW920721B2EVK-01 2.3.0 release
:F V| CYW920721B2EVK-02 2.3.0 release
] V| CYW920721B2EVK-03 2.3.0release
Kit Conte V| CYWI20735060EVE-01 2.2.0 release
{4 CVW920819EVB-02 ease
. v CYWS920819REF-KB-01 2.3.0release
v CYW920820EVE-02 2.3.0 release
V| CYW989820EVB-01 2.3.0 release
Reading project (C:/Users/CKF fmtw2, 1/1156/bt/wiced_btsdk) information. ..
Successfully acquired project information.

Browse..

CYW920818FVB-02

The Cypress CYW2208 19EVE-02 Evaluation Kit enables you to evaluate and
develop single-chip Bluetooth applications using the CYW20819, an ultra-ow-power
dual-mode Bluetooth 5.0 wireless MCU device. The CYW 20819 is a stand-alone
baseband processor with an integrated 2.4 GHz transceiver supporting BR/EDR/
BLE. Manufactured using advanced CMOS low-pawer process, the CYW20819
employs high intagration to reduce external companents, thereby minimizing the
device's footprint and cost. This kit helps evaluate device functionality and develop
applications quickly for faster time-to-market.

Kit Features:

*62-FBGA CYW20819 dual-mode (BLE/BR /EDR) Bluetooth 5.0-compliant
wireless MCU

* Arduino compatible headers for hardware expansion

*On-hoard sensors - a lsmads1 9-axis motion sensor (3D digital inear
acceleratinon sensnr 3N dinital annular rate senearand 20 dinital mannetic

Aoply

Note The next time you open the Library Manager, it will open with the most recently selected application.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

13

e

w CYPRESS

> EMBEDDED IN TOMORROW™ Gettlng S’[al’ted

The tool provides a field to select the Active BSP. It also includes two tabs to view and select BSPs and Libraries to add to (or
remove from) your application. Select one or more check boxes for the items to add, and choose an appropriate Version of
each item. Deselect check boxes for items to remove.

Library Manager 1.1 - m] %
Settings Help

Directory: |C: Users/CKF fmtw2. 1/1156 hw/Hello_World Browse. ..
Project: C: [UsersCKF fmtw2. 1/1156/hw Hello_World -

Active BSP: | CYSCKIT-082-WIFI-BT S

Enter filter

Enter filter text core-ib

BSPs Libraries The Core Library provides device agnostic utiities that all middieware can rely on, This
indudes a generic result type and some commen utility functions.
Name = Version =
» Abstraction Layers Version details: Latest 1.X release
~ Board Utils
CYBCKIT-028-TFT Latest 1.X release
V| retarget-io Latest 1.X release
rgb-led Latest 1.X release

serial-flash Latest 1.X release
~ PSoC 6 Base Libraries

Ey——
V| psocBomip

V| psocthal 1.1.1 release

s nencfmabs [

1.1.0 release

Reading project (C:/Users/ckFfm 1.0.1 release
Successfully acquired project inf
1.0.0 release

Click Apply to proceed with the changes. The status box displays various messages while applying changes, and then indicates
if the application was updated or not.

Libraries were processed. Re-evaluating libs directory...
Found 16 file(s)
libs directory search complete.

= Import complete =

Successfully updated the project.

Reading project (C:/Users/CKFfmtw2. 11260 /hw Hello_World) information...
Successfully acquired project information.

@

2.4.2 make getlibs

The Project Creator tools and the Library Manager tool run the make getlibs command to search for all .lib files in the

application directory. Each .lib file contains the library’s git URL on which the application depends. These files are parsed, and
the libraries are cloned into the application (by default in a directory named “libs”).

If youran the git clone command manually and did not use the Library Manager, then your application will only contain
default .lib files. You will need to run the make getlibs command to parse those files and clone the libraries. However, if you
want to use to a different BSP than the default provided by the code example, you must first edit the makefile to update the
TARGET variable to match the desired BSP. Then, you must add a .lib file in the /deps directory that includes a URL to the
desired BSP location.

Note Older ModusToolbox version 2.0 applications contain a /libs directory for .lib files, while newer version 2.1 applications
have a /deps directory. The build system will find .lib files in either directory, and it will import the necessary library files into the
llibs directory for all applications.

When you are ready to update your application, open the appropriate shell and run the following command in the application

directory:
make getlibs

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 14

= CYPRESS

> EMBEDDED IN TOMORROW™ Gettlng S’[al’ted

Note Any .lib file that is not a text file (for instance Windows .lib archive files) is ignored for this process.

Note The make getlibs operation may take a long time to execute as it depends on your internet speed and the size of the
libraries that it is cloning. To improve subsequent library cloning operations, a cache directory named “.modustoolbox/cache”
exists in the $HOME (Linux, macOS) and $USERPROFILE (Windows) directories.

2.5 Configure Settings for Devices, Peripherals, and Libraries

Depending on your application, you may want to update and generate some of the configuration code. While it is possible to
write configuration code from scratch, the effort to do so is considerable. ModusToolbox software provides applications called
configurators that make it easier to configure a hardware block or a middleware library.

The configurators can be run as GUIs to easily update various parameters and settings. Most can also be run as command line
tools to regenerate code as part of a script. For more information about configurators, see the Configurators section in the
ModusToolbox Software Overview chapter. Also, each configurator provides a separate document, available from the
configurator's Help menu, that provides information about how to use the specific configurator.

2.5.1 Configurator GUI Tools

By default, configurators open as GUIs when you launch their executable files, which are located in separate subdirectories the
“tools” directory:

<install_path>/ModusToolbox/tools_2.1/

In the Windows operating system for example, if you double-click the device-configurator.exe file, the Device Configurator opens
as follows:

B€ Device Configurator 2.1 - [u] X
File Edit ¥iew Help
Parameters ®
Open or create a new *.modus file to edit it.
Select an enabled resource to configure it.
Notice List [E5]
°° Erors || gk 0 Wamings U 0Tasks o Olnfos
Fix Description ~ Location

Ready

In this case, the Device Configurator opens without any application information. So, you’ll have to open the application’s device
configuration (design.modus) file, which is located in the application’s BSP.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 15

e

w CYPRESS

~agp> EMBEDDED IN TOMORROW™ Gett|ng S’[al’ted

If you use the Eclipse IDE provided with ModusToolbox, configurators are accessible from the IDE, and they will open the
appropriate application information. For example, if you select the “Device Configurator” link in the IDE Quick Panel, the tool
opens with the application’s design.modus file.

B Quick Panel = 0
~ Toals -

Library Manager

B CapSense Configurator

@& CapSense Tuner

B Device Configurator C:fUsers/CKF/mbw2.1/878/hw/Hello_World/libs/TARGET_CYBCKIT-062-WIFI-BT/COMPQNENT_BSP_DESIGN_MQDUS/design.modus - Device Configurator - m] x
File Edit View Help

@8 Device Firmware Update Tool

CYBC6247BZI-D54 | CYWA4343WKUBG CSD (CapSense, etc.) 0 (CYBSP_CSD) - Parameters (=l

B Power Estimator
i Enter filter text... E B
@8 ©sPI Configurator Peripherals | Pins | AnalogRouting | ¥ x 7o
@& Smart 1O Configurater enterfit. & | B B | & G @ | |Name Value -
) ~ Peripheral Documentation
. B2 USE Confiaurator (new confiauration) Resource (@) Configuration Help | Oen CSD Dacumentation

b Analog . ~Ben oL Jocumentation

b Communication

» Digital & | 8 bit Divider 3 clk (CYBSP_CSD_CLK_DIV) [USED] -

¥ System - Ca

v C5D (CapSense, etc.) 0 nable CapSense v

LCD Direct Drive 0 - EX‘EH.RI Tools
() CapSense Configurator | Launch CapSense Configuratar
Multi-Counter Watchdog Timer (b ~

Multi-Counter Watchdog Timer (b
Real Time Clock (RTC)

'3 Cap5ense Tuner Launch CapSense Tuner
~ CSDADC
) Enable CSDADC

¥ CSDIDAC
) Enable CSDIDAC
v Ca Capacitors
) Cmed & | P77 analog (CYBSP_CMOD) [SHARED] ~
? CintA & | P7[1] analog (CYBSP_CINA) [SHARED] o
1 LS (7) Cint8 & | P712] analog (CYBSP CINB) [SHARED] e
Notice List BE
ou Errors I 0 Warnings DUTESIG oslnfus
Fix Description ~ Location
Ready

From the Device Configurator GUI, you can launch BSP configurators such as CapSense and SegLCD. You can also run the
GUIs by launching the executable from the configurator’s install directory.

You can run a few configurators from the command line by using the appropriate make target in the application’s directory. This
method also opens the configurator with the appropriate configuration file from the application.

To launch the Device Configurator, run:
make config

To launch the Bluetooth Configurator, run:
make config bt

To launch the USB Configurator, run:
make config usbdev

2.5.2 Configurator CLI Tools

Most of the configurator GUIs can also be run from the command line. The primary use case is to re-generate source code
based on the latest configuration settings. This would often be part of an overall build script for the entire application. The
command-line configurator cannot change configuration settings. For information about command line options, run the
configurator using the -h option.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 16

= CYPRESS

> EMBEDDED IN TOMORROW™ Gettlng S’[al’ted

2.6 Write Application Code

As in any embedded development application using any set of tools, you are responsible for the design and implementation of
the firmware. This includes not just low-level configuration and power mode transitions, but all the unique functionality of your
product. As noted, you can use the ModusToolbox Eclipse IDE, your preferred IDE, or a text editor and command line tools.
ModusToolbox software is designed to enable your workflow.

Taken together, the multiple resources available to you in ModusToolbox software: BSPs, configurators, driver libraries and
middleware, help you focus on your specific application.

2.7 Build, Program, and Debug

After the application has been created, you can export it to an IDE of your choice for building, programming, and debugging.
You can also use command line tools. The ModusToolbox build system infrastructure provides several make variables to control
the build. So, whether you are using an IDE or command line tools, you edit the makefile variables as appropriate. See the
ModusToolbox Build System chapter for detailed documentation on the build system infrastructure.

Variable Description
TARGET Specifies the target board/kit. For example, CYSCPROTO-062-4343W
APPNAME Specifies the name of the application

TOOLCHAIN Specifies the build tools used to build the application

CONFIG Specifies the configuration option for the build [Debug Release]

VERBOSE Specifies whether the build is silent or verbose [true false]

ModusToolbox software is tested on these tool chains:

Variable value | Tools Host OS

GCC_ARM GNU Arm Embedded Compiler v7.2.1 Mac OS, Windows, Linux
ARM Arm compiler v6.11 Windows, Linux

IAR Embedded Workbench v8.32 Windows

In the makefile, set the TOOLCHAIN variable to the build tools of your choice. For example: TOOLCHAIN=GCC_ ARM.
There are also variables you can use to pass compiler and linker flags to the tool chain.
ModusToolbox software installs the GNU Arm tool chain and uses it by default. If you wish to use another tool chain, you must

provide it and specify the path to the tools. For example, CY COMPILER PATH=<yourpath>. If this path is blank, the build
infrastructure looks in the ModusToolbox install directory.

2.7.1 Use Eclipse IDE

When using the provided Eclipse IDE, click the Build Application link in the Quick Panel for the selected application.

B Quick Panel | ()= Variables € Expressions g Breakpoints = 0

"
} Start

~ Hello_World

&, Build Hello_World Application

@ Clean Helle_World Application

} Launches

~ Tools

Because the IDE relies on the build infrastructure, it does not use the standard Eclipse GUI to modify build settings. It uses the
build options specified in the makefile. This design ensures that the behavior of the application, its options, and the make
process are consistent regardless of the development environment and workflow.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 17

= CYPRESS

> EMBEDDED IN TOMORROW™ Gettlng S’[al’ted

2.7.2 Export to another IDE

If you prefer to use another IDE, see the Exporting to IDEs chapter for more details. When working with a different IDE, you
must manage the build using the features and capabilities of that IDE.

2.7.3 Use Command Line

2.7.3.1 make build

When all the libraries are available (after executing make getlibs), the application is ready to build. From the appropriate
shell, type the following:
make build

This instructs the build system to find and gather the source files in the application and initiate the build process. In order to
improve the build speed, you may parallelize it by giving it a -5 flag (optionally specifying the number of processes to run). For
example:

make build -j16

2.7.3.2 make program

Connect the target board to the machine and type the following in the shell:
make program

This performs an application build and then programs the application artifact (usually an .elf or .hex file) to the board using the
recipe-specific programming routine (usually OpenOCD). You may also skip the build step by using gprogram instead of
program. This will program the existing build artifact.

2.7.3.3 make debug/qdebug/attach

The following commands can be used to debug the application, as follows:
B make debug - Build and program the board. Then launch the GDB server.
B make gdebug — Skip the build and program steps. Just launch the GDB server.

B make attach — Starts a GDB client and attaches the debugger to the running target.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 18

3 ModusToolbox Software Overview

&2 CYPRESS

EMBEDDED IN TOMORROW"™

ModusToolbox software includes configuration tools, low-level drivers, middleware libraries, and operating system support, as
well as other packages that enable you to create MCU and wireless applications. It also includes an optional Eclipse IDE.
Unless specifically stated otherwise, ModusToolbox resources are compatible with Linux®, macOS®, and Windows®-hosted
environments.

The ModusToolbox installer provides resources you need to get started, such as configurators that generate code based on
your design. In addition, Cypress provides libraries and enablement software at the Cypress Semiconductor GitHub site. Some
resources will be used by all developers. Others will be used by developers in particular ecosystems.

Cypress software resources available at GitHub support one or more of the target ecosystems:

® MCU and Bluetooth SOC ecosystem — a full-featured platform for PSoC 6, Wi-Fi, Bluetooth, and Bluetooth Low Energy
application development

m Mbed OS ecosystem — provides an embedded operating system, transport security and cloud services to create
connected embedded solutions

®m Amazon FreeRTOS ecosystem — extends the FreeRTOS kernel with software libraries that make it easy to securely
connect small, low-power devices to AWS cloud services

Some resources support all ecosystems. Others are specific to a particular ecosystem. The following block diagram is not a
comprehensive list. However, it conveys the idea that, depending upon your programming domain, multiple resources are
available to you. See Installation Resources for available tools and Enablement Software for available libraries and board
support packages.

User Application ‘
ModusToolbox Software
For MCU and For Mbed OS For Amazon
Build System Bluetooth SOC FreeRTOS
Infrastructure | | | Bluetooth SDK || || AWS loT || AWS loT |
Program & ‘ SecureBoot ‘ ‘ Enterprise Security ‘ ‘ Secure Sockets ‘
Debug Support
‘ CapSense ‘ ‘ CapSense ‘ ‘ Wi-Fi ‘
Eclipse IDE ‘ USB Device ‘ ‘ Cirrent ‘ ‘ HTTPS ‘
| BLE || || codioBlE || || BLE |
Configurators
| etc. |] etc. | | etc. |
Tools
‘ Board Support Packages (BSPs) ‘
Utilities ‘ Hardware Abstraction Layer (HAL) ‘
‘ PSoC 6 Peripheral Driver Library ‘ ‘ Wi-Fi Host Driver (CYW43xx) ‘
Included in the Delivered by Delivered by a
ModusToolbox Installer |:| Cypress on GitHub |:| 3rd Party

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 19

https://www.cypress.com/modustoolbox
https://github.com/cypresssemiconductorco

= CYPRESS

R EVEDDED N TOMORROW® ModusToolbox Software Overview

3.1 Directory Structure

Refer to the ModusToolbox Installation Guide for information about installing ModusToolbox. Once it is installed, the various
ModusToolbox top-level directories are organized as follows:

v ModusToolbox
ide_2.0
v ide_2.1
docs
eclipse
tools_2.0
w tools_2.1

Note This image shows ModusToolbox versions 2.0 and 2.1 installed. Your installation may only include ModusToolbox
version 2.1. Refer to the Product Versioning section for more details.

These directories contain the following files and folders:
m ide 21

O docs — This is the top-level documentation directory. It contains various top-level documents and an html file with
links to documents provided as part of ModusToolbox. See Documentation for more information.

O eclipse (or ModusToolbox.app on macOS) — This contains the IDE. See Eclipse IDE.

m tools_2.1 — This contains all the various tools and scripts provided as part of ModusToolbox. See Tools for more
information.

3.1.1 Documentation

The /ide_2.1/docs directory contains top-level documents and an HTML document with links to all the documents included in the
installation and on the web.

3.1.1.1 Release Notes

For the 2.1 release, the release notes document is for all of the ModusToolbox software included in the installation.

3.1.1.2 Top-Level Documents

This folder also contains the Eclipse IDE documentation and this user guide. These guides cover different aspects of using the
IDE and various ModusToolbox tools.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 20

http://www.cypress.com/ModusToolboxInstallGuide

A

ws CYPRESS

g EMBEDDED IN TOMORROW™

3.11.3

Document Index Page

ModusToolbox Software Overview

The doc_landing.html file provides links to all the documents included in the installation and on the web. This file is also
available from the IDE Help menu.

ModusToolbox™ 2.1 Documentation

This page provides brief descriptions and links to various types of documentation included as part the ModusToolbox software.

Note: Many of these documents are also provided online at the IModusToolbox website. Also, some of the documents online might be more current than versions installed on disk.

Getting Started Documents

This section contains general documents to install ModusToolbox software, use the IDE, learn tips for using ModusToolbox in Eclipse, and porting applications from other Cypress

IDEs.

Name

ModusToolbox Installation Guide

ModusToolbox Release Notes

ModusToolbox User Guide

Eclipse IDE for ModusToolbox Quick
Start Guide

Eclipse IDE for ModusToolbox User
Guide

Eclipse Survival Guide

EULA

Description

This document is available online only. It describes how to install the ModusToolbox software on Windows, Linux, and
macOS

This document lists and describes features for this release of ModusToolbox. It also includes known issues and workarounds
and important design impacts you should know.

This document provides an overall user guide for ModusToolbox GUI and CLI tools, including getting started and exporting
to various |DEs, including Visual Studio Code, IAR Embedded Workbench, and Keil pVision.

This is a short step-by-step guide specifically for using the Eclipse-based IDE to create and build applications for
ModusToolbox.

This guide also focuses on the Eclipse IDE, covering more details about the IDE and software features.

This document is also online only. It offers tips on using the Eclipse environment
End user license agreement; provided on disk as part of installation.

Configurator and Tool Documents

These documents are located in the "tools" directory in each individual configurator and tool "docs" subfolder.

Name

Device Configurator Guide

Description
Covers how to enable and configure platform peripherals, such as clocks and pins, as well as standard MCU peripherals.
that do not require their own tool

3.1.2 Tools

The /tools_2.1 folder contains the following tools:

A tools 2.1
bt-configurator
capsense-configurator
cfg-backend-cli
cymcuelftool-1.0
cype-tool
device-cenfigurator
dfuh-tool
driver_media
fw-loader
goo-7.2.1
jre-1.0
library-manager
make
modus-shell
openocd
project-creator
proxy-helper
qspi-configurator
seglcd-configurator
smartie-configurator

usbdev-configurator

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

21

= CYPRESS

~amp” EMBEDDED IN TOMORROW™ ModusToolbox Software Overview

m Configurators — There are several configurators used to update various settings for different peripherals. See
Configurators.

m cfg-backend-cli — This contains backend support files used by the system. You do not need to interact with this folder.

m cymcuelftool-1.0 — This tool is used to manipulate EIf files. Refer to the CyMCUEIfTool User Guide located in the tool’s
doc folder.

m cype-tool — This is the Low Power Estimator tool.

m dfuh-tool — This tool is used to communicate with and update firmware on a PSoC 6 MCU that has already been

programmed with an application that includes device firmware update capability.
m driver_media — This folder contains WICED board drivers.

m fw-loader — This is the Firmware Loader tool used to update firmware on the programmer/debugger device on PSoC 6
MCU Kkits.

m gcc-7.2.1 — ModusToolbox software includes GCC version 7.2.1 as the preferred toolchain. See
https://www.gnu.org/software/gcc/ for information.

m jre-1.0 — This folder contains the Java Runtime Environment version provided as part of the tool. This is used by the
IDE and the backend. See https://www.java.com for more information.

m library-manager — This is the Library Manager tool.
m make — This folder contains scripts for the build system.

® modus-shell — This folder contains various helper utilities used by the system. On Windows, this contains a version of
Cygwin designed to work with ModusToolbox.

m openocd — This contains the version of the Open On-Chip Debugger used by ModusToolbox to program various
boards. For more information, refer to the Cypress Programmer User Guide.

m project-creator — Tool used to create projects. You invoke this tool when creating projects in the IDE. You can also run
this as a stand-alone tool.

® proxy-helper — This is a command-line tool for managing ModusToolbox proxy server settings.

3.2 Product Versioning

As stated previously, ModusToolbox products include tools and firmware that can be used individually, or as a group, to develop
connected applications for Cypress devices. Cypress understands that you want to pick and choose the ModusToolbox products
you use, merge them into your own flows, and develop applications in ways we cannot predict. However, it is important to
understand that each product may have more than one version. This section describes how ModusToolbox products are
versioned.

3.2.1 General Philosophy

ModusToolbox is not a single monolithic entity that is tested and distributed all together. Libraries and tools in the context of
ModusToolbox are effectively “mini-products” with their own release schedules, upstream dependencies, and downstream
dependent assets and applications.

The delivery method chosen for the libraries is GitHub. The delivery method for tools is within the ModusToolbox installation
package.

All ModusToolbox products developed by Cypress follow the standard versioning scheme:
m |f there are known backward compatibility breaks, the major version is incremented.
® Minor version changes may introduce new features and functionality, but are “drop-in” compatible.

m Patch version changes address defects. They are very low-risk (fix the essential defect without unnecessary cruft or
complexity).

Cypress recommends you lock down the tools versions used in a project makefile, along with switching to “release-X.Y.Z”
versions of the libraries as soon as you are done with initial development for your project. You may update later.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 22

https://www.gnu.org/software/gcc/
https://www.java.com/

= CYPRESS

~amp> EMBEDDED IN TOMORROW™ ModusToolbox Software Overview

3.2.2 Install Package Versioning

The ModusToolbox installation package is versioned as MAJOR.MINOR.PATCH. The file located at
<install_path>/ModusToolbox/tools_2.1/version-2.1.0.xml also indicates the build number.

Every MAJOR.MINOR version of ModusToolbox products are installed by default into <install_path>/ModusToolbox. So, if you
have multiple versions of ModusToolbox installed, they are all installed in parallel in the same ModusToolbox directory, as
follows:

v ModusToolbox
ide_2.0
v ide_2.1
docs
eclipse
teols_2.0
w tools_2.1

3.2.3 Multiple Tools Versions Installed

When you run make commands from the command line, a message displays if you have multiple versions of the “tools” directory
installed and if you have not specified a version to use.

BN ~/examples_2.1/Helle_World - [m] X

3.2.4 Specifying Alternate Tools Version

By default, the ModusToolbox software uses the most current version of the tools directory installed. That is, if you have
ModusToolbox version 2.1 and 2.0 installed, and if you launch the Eclipse IDE from the ModusToolbox 2.0 installation, the IDE
will use the tools from the “tools_2.1” directory to launch configurators and build an application. This section describes how to
specify the path to the desired version.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 23

= CYPRESS

~agp> EMBEDDED IN TOMORROW™

3.24.1 System Variable

ModusToolbox Software Overview

The overall way to specify a path other than the default “tools” directory, is to use a system variable named CY TOOLS_PATHS.
On Windows, open the Environment Variables dialog, and create a new System Variable:

New System Variable

x

Variable name: [cv_TooLs paTHg

Variable value: | C:/Users/XYZL ModusToelbox/tools_2.0

Browse Directory.. Browse File... Cancel

Note: Use a Windows style path, (that is, not like /cygdrive/c/). Also, use forward slashes. For example:

C:/Users/XYZ/ModusToolbox/tools_2.0

Use the appropriate method for setting variables in macOS

3.2.4.2 Eclipse IDE Workspace Setting

The Eclipse IDE provided with ModusToolbox includes a se

and Linux for your system.

tting to specify the tools path that applies only to a specific

workspace. Select Windows > Preferences > ModusToolbox Tools.

Preferences m} x
type filter text ModusToolbox Tools - v v

General

C/C++ Common tools location | C:\Users\XYZ\ModusToolbox\tools_2.0] | Browse...

Help

Install/Update

MCU

ModusToolbox Tools

Mylyn

Remote Development

Run/Debug

Team

Terminal

Restore Defaults Apply
@ 2 i

Then, in the Common tools location field, click the Browse.

3.2.4.3 Specific Project Makefile

To preserve a specific “tools” path for the specific project, e

.. button and navigate to the appropriate “tools” directory to use.

dit that project’s makefile, as follows:

If you install the IDE in a custom location, add the path to its
"tools X.Y" folder (where X and Y are the version number of the tools

folder).

CY TOOLS_ PATHS+=C:/Users/XYZ/ModusToolbox/tools 2.0

Note: If you are using the Eclipse IDE, you must still specify the Eclipse IDE Workspace Setting.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

24

e

w CYPRESS

R EVEDDED N TOMORROW® ModusToolbox Software Overview

3.2.5 Tools and Configurators Versioning

Every tool and configurator follow the standard versioning scheme and include a version.xml file that also contains a build
number.

3.2.5.1 Configurator Messages

Configurators indicate if you are about to modify the configuration file (for example, design.modus) with a newer version of the
configurator, as well as if there is a risk that you will no longer be able to open it with the previous version of the configurator:

{88 Device Configurator 2.1 X

An older file format was detected. The file can be safely viewed but saving the
| file in this tool will update its format making it no longer open in older tools.

Last saved with: Tools Package 1.1
Current: Tools Package 2.1 (C:/Users/xda/ModusToolbox/tools_2.1)

C:/Users/xda/Desktop/old.modus

OK

Configurators will also indicate if you are trying to open the existing configuration with a different, backward and forward
compatible version of the Configurator.

Notice List (]3]

ocl Errors | 0 Warnings B 0Tasks o4lnfcs

Fix Description ~ Location
The design file was last saved with a different version of the tools than will be used to perform code generation on save, Last saved with:

o Tools Package 2.0. Current: Tools Package 2.1.0.1205 (C:/Users/CKF/ModusToolbox/tools_2.1). designmodus
3 15 enabled. Chip startup will be slower because clock configuration cannot continue until the WL O 15 ready. ee the device —T
i datasheet for WCO startup timing. If WCO is not required during startup, consider starting it in main() for faster chip startup. CY8C6247871-D54: WCO
(i] There are reserved routing resources. See the Analeg Route Editor for more information. CYBC6247B71-D54: Routing Resources
g 9 g
i] There are reserved routing resources, See the Analeg Route Editor for maere information. CYW4343WKUBG: Routing Resources

Note: If using the command line, the build system will notify you with the same message.

3.2.6 GitHub Libraries Versioning

GitHub Libraries follow the same versioning scheme: MAJOR.MINOR.PATCH. The GiHub libraries, besides the code itself, also
provide two files in MD format: README and RELEASE. The latter includes the version and the change history.

The versioning for GitHub libraries is implemented using GitHub Tags. These tags are captured in the manifest files (see the
Manifest Files chapter for more details). The Project Creator and Library Manager tools parse these manifests and allow you to
see and select between various tags of these libraries. When selecting a particular library of a particular version, the .lib file gets
created in your project. These .lib files are a link to the specific tag. Refer to the Library Manager User Guide for more details
about tags.

Once complete with initial development for your project, Cypress recommends you switch to specific “release” tags. Otherwise,
running the make getlibs command will update the libraries referenced by the .lib files, and will deliver the latest code
changes for the major version.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 25

http://www.cypress.com/ModusToolboxLibraryManager

= CYPRESS

R EVEDDED N TOMORROW® ModusToolbox Software Overview

3.2.7 Dependencies Between Libraries

The following diagram shows the dependencies between libraries.

GitHub

\ core-lib.git 1 | bsp.git |

‘ psocehal.git l ‘ capsense.qgit |

| psoctpdigit |

| psocBmake.qit ‘

\J i Y

\ 4
release XYZ

A Y

all tags MTB Manifests
latest.release XYZ
A
Get info about
versions (tags)
Application Project
L bsp.lib Creator
All point to Update the
GitHub core-lib.lib tags
. Library
psoc6hal.lib Manager
psoc6pdl.lib

psocémake.lib

There are dependencies between the libraries. There are two types of dependencies:

3.2.7.1 Dependencies via.lib files

One library includes the other library — implemented with the .lib files included in the parent library. This way the BSP references
the core and make libraries for example. See the Library manager guide to understand more about the direct and indirect
libraries and how they are stored based upon the CY_GETLIBS_DEPS_PATH project makefile variable.

3.2.7.2 Regular C Dependencies via #include

Cypress Libraries only call the documented public interface of other Libraries. Every library declares its version in the header.
The consumer of the library including the header checks if the version is supported, and will notify via #pragma if the newer
version is required. Examples of the dependencies:

m The Device Support library (PDL) driver is used by the Middleware.

m The configuration generated by the Configurator depends on the versions of the device support library (PDL) or on the
Middleware headers.

Similarly, if the configuration generated by the Configurator of the newer version than you have installed, the notification via the
build system will trigger asking you to install the newer version of the ModusToolbox. ModusToolbox has a fragmented
distribution model. Users are allowed and empowered to update Libraries individually.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 26

o CYPRESS

> EMBEDDED IN TOMORROW ModusToolbox Software Overview

3.3 Installation Resources

The ModusToolbox installer provides required and optional core resources for any application. This section provides an
overview of the available resources:

® Build System Infrastructure

® Program and Debug Support

m Eclipse IDE
m Configurators
m Tools

m Utilities

The installer does not include enablement software such as driver libraries or middleware.

3.3.1 Build System Infrastructure

The build system infrastructure is the fundamental resource in ModusToolbox software. It serves three primary purposes:
m create an application
B create an executable

m provide debug capabilities

A makefile defines everything required for your application, including:
m the target hardware (board/board support package to use)
m the source code and libraries to use for the application
®m the build tools to use

m compiler/assembler/linker flags to control the build

The build system automatically discovers all .c, .h, .cpp, .s, .a, .o files in the application directory and subdirectories, and uses
them in the application. The makefile can also discover files outside the application directory. You can add another directory
using the CY SHAREDLIB_PATH variable. You can also explicitly list files in the SOURCES and INCLUDES make variables.

Each library used in the application is identified by a .lib file. This file contains the URL to a git repository, and a commit tag.
Cypress git repositories are on GitHub. For example, a capsense.lib file might contain the following line:

https://github.com/cypresssemiconductorco/capsense/#release-v2.0.0

The build system implements the make getlibs command. This command finds each .lib file, clones the specified repository,
checks out the specified commit, and collects all the files in a single libs directory in the application directory. Typically the make
getlibs command is invoked transparently when you create an application, although you can invoke the command directly

from a command line interface. See ModusToolbox Build System for detailed documentation on the build system infrastructure.

3.3.2 Program and Debug Support

ModusToolbox software supports the Open On-Chip Debugger (OpenOCD) using a GDB server, and supports the J-Link debug
probe. For the Mbed OS ecosystem, ModusToolbox supports Arm Mbed DAPLink.

The Eclipse IDE can program devices and establish a debug session. For programming, Cypress Programmer is available
separately. It is a cross-platform application for programming Cypress PSoC 6 devices. It can program, erase, verify, and read
the flash of the target device.

Cypress Programmer and the Eclipse IDE use KitProg3 low-level communication firmware. The firmware loader (fw-loader) is a
software tool you can use to easily switch back and forth between KitProg2 and KitProg3, if you need to do so. The fw-loader
tool is installed with the ModusToolbox software. It is also available separately in a GitHub repository.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 27

https://www.cypress.com/modustoolbox
http://openocd.org/doc/doxygen/html/index.html
https://www.cypress.com/products/psoc-programming-solutions
https://github.com/cypresssemiconductorco/Firmware-loader

= CYPRESS

~amp” EMBEDDED IN TOMORROW™ ModusToolbox Software Overview

Tool Description Documentation

Programming Tools
page, go to the
documentation tab

Cypress Programmer functionality is built into ModusToolbox Software. Cypress

Cypress Programmer . .
yp 9 Programmer is also available as a stand-alone tool.

A simple command line tool to identify which version of KitProg is on a Cypress kit, and readme.txt file in the

fw-loader easily switch back and forth between legacy KitProg2 and current KitProg3. tool directory

This tool is managed by fw-loader, it is not available separately. KitProg3 is Cypress’ low-
KitProg3 level communication/debug firmware that supports CMSIS-DAP and DAPLink (for Mbed User Guide
0S). Use fw-loader to upgrade your kit to KitProg3, if it has KitProg2 installed.

OpenOCD A Cypress-specific implementation of OpenOCD is installed with ModusToolbox software. Developer's Guide
DAPLink Support is implemented through KitProg3 DAPLink Handbook

3.3.3 Eclipse IDE

The Eclipse IDE included with ModusToolbox is a full-featured, cross-platform IDE. It includes application management, code
authoring and editing, build tools, and debug capabilities. The IDE supports the C and C++ programming languages. It includes
the GCC Arm build tools. It supports debugging via OpenOCD or J-Link. You can use the IDE to develop applications using
ModusToolbox software. The IDE is optional. See Eclipse IDE for ModusToolbox User Guide for more details.

3.3.4 Configurators

Depending on your application, you may want to update and generate some of the configuration code. While it is possible to
write configuration code from scratch, the effort to do so is considerable. ModusToolbox software provides graphical applications
called configurators that make it easier to configure a hardware block or a middleware library. For example, instead of having to
search through all the documentation to configure a serial communication block as a UART with a desired configuration, open
the appropriate configurator to set the baud rate, parity, stop bits, etc.

Each configurator is a cross-platform tool that allows you to set configuration options for the corresponding hardware peripheral
or library. When you save a configuration, the tool generates the C code or configuration file used to initialize the hardware or
library with the desired configuration.

Configurators are independent of each other, but they can be used together to provide flexible configuration options. They can
be used stand alone, in conjunction with other configurators, or as part of a complete application. All of them are installed during
the ModusToolbox installation. Each configurator provides a separate guide, available from the configurator's Help menu.

Configurators perform tasks such as:
m Displaying a user interface for editing parameters
m Setting up connections such as pins and clocks for a peripheral
m Generating code to configure middleware
Note Some configurators may not be useful for your application.
Configurators store configuration data in an XML data file that provides the desired configuration. Each configurator has a

"command line" mode that can regenerate source based on the XML data file. Configurators are divided into two types: BSP
Configurators and Library Configurators.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 28

https://www.cypress.com/products/psoc-programming-solutions
https://www.cypress.com/documentation/development-kitsboards/kitprog-user-guide
http://openocd.org/doc/doxygen/html/index.html
https://os.mbed.com/handbook/DAPLink
http://www.cypress.com/ModusToolboxUserGuide

A
W

-

CYPRESS

EMBEDDED IN TOMORROW " ModusToolbox Software Overview

The following diagram shows a high-level view of the configurators in a typical application.

Application

— GeneratedSource

—— main.c _| Bluetooth

~| Configurator
—— <cfg_name>.cybt
—— <cfg_name>.cyusbhdev 4—‘ USB

—— libs

.cl.h files

Library Configurators

 J

Configurator

L TARGET_<BSP_NAME>

L COMPONENT_BSP_DESIGN_MODUS

—— GeneratedSource >
.cl.h files
desi q _ | Device ; . Smart 1/0
[design.modus - ~| Configurator Configurator
[T T
) . _ - QSPI
—— design.cyqgspi - ~| Configurator
[T
. _ | SegLCD
—— design.cyseglcd - ™ Configurator
[
L—— design.cycapsense -« » CapSense ~
: - ~| Confi I
gurator S . CapSense
Tuner
BSP Configurators

BSP configurators configure the hardware on a specific device. This can be a board provided by Cypress, a Cypress partner, or
a board that you create that is specific to your application. Some of these configurators interact with the design.modus file to
store and communicate configuration settings between different configurators. Code generated by a BSP Configurator is stored
in a directory named GeneratedSource, which is in the same directory as the design.modus file. This is generally located in the
BSP for a given target board. BSP configurators include:

Device Configurator: Set up the system (platform) functions such as pins, interrupts, clocks, and DMA, as well as the
basic peripherals, including UART, Timer, etc. See Device Configurator Guide for more details.

CapSense Configurator: Configure CapSense hardware, and generate the required firmware. This includes tasks such
as mapping pins to sensors and how the sensors are scanned. See CapSense Configurator Guide for more details.

There is also a CapSense Tuner to adjust performance and sensitivity of CapSense widgets. See CapSense Tuner
Guide for more details.

QSPI Configurator: Configure external memory and generate the required firmware. This includes defining and
configuring what external memories are being communicated with. See QSPI Configurator Guide for more details.

Smart /O™ Configurator: Configure the Smart I/0. This includes defining and configuring what external memories are
being communicated with. See Smart /O Configurator Guide for more details.

SegLCD Configurator: Configure LCD displays. This configuration defines a matrix Seg LCD connection and allows you
to setup the connections and easily write to the display. See SeqgLCD Configurator Guide for more details.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 29

https://www.cypress.com/ModusToolboxDeviceConfig
https://www.cypress.com/ModusToolboxCapSenseConfig
https://www.cypress.com/ModusToolboxCapSenseTuner
https://www.cypress.com/ModusToolboxCapSenseTuner
https://www.cypress.com/ModusToolboxQSPIConfig
https://www.cypress.com/ModusToolboxSmartIOConfig
http://www.cypress.com/ModusToolboxSegLCDConfig

= CYPRESS

~agp> EMBEDDED IN TOMORROW™

ModusToolbox Software Overview

Library configurators support configuring application middleware. Library configurators do not read nor depend on the
design.modus file. They generally create data structures to be consumed by software libraries. These data structures are
specific to the software library and independent of the hardware. Configuration data is stored in a configurator-specific XML file
(for example, *.cybt, *.cyusbdev). Any source code generated by the configurator is stored in a GeneratedSource directory in the
same directory as the XML file. Library configurators include:

m Bluetooth Configurator: Configure Bluetooth settings. This includes options for specifying what services and profiles to
use and what features to offer by creating SDP and/or GATT databases in generated code. This configurator supports
both PSoC MCU and WICED Bluetooth applications. See Bluetooth Configurator Guide for more details.

‘Device’ Descriptor and Settings. See USB Configurator Guide for more details.

3.3.5 Tools

USB Configurator: Configure USB settings and generate the required firmware. This includes options for defining the

ModusToolbox software includes other tools that provide support for application creation, device firmware updates, and so on.
All tools are installed by the ModusToobox Installer. With rare exception each tool has a user guide located in the docs directory
beside the tool itself. Most user guides are also available online.

Other Tools Details Documentation
project-creator Create a new application. This tool is a stand-alone tool, available as a GUI and a User Guide
command-line tool (CLI).
library-manager Add, remove, or update libraries and BSP used in an application; edits the makefile User Guide
fw-loader Update KitProg communication firmware on a kit. Also available separately on GitHub readme.txt file in the
tool directory
cymcuelftool Merges CMO+ and CM4 application images into a single executable. Typically launched User Guide is in the
from a post-build script. This tool is not used by most applications. tool’s docs directory
dfuh-tool Use the Device Firmware Update Host tool to communicate with a PSoC® 6 MCU that has | User Guide
already been programmed with an application that includes device firmware update
capability. Provided as a GUI and a command-line tool. Depending on the ecosystem you
target, there may be other over-the-air firmware update tools available.
cype-tool The power estimator tool provides an estimate of the power consumed by a target device. User Guide
3.3.6 Utilities

ModusToolbox software includes some additional utilities that are often necessary for application development. In general you

use these utilities transparently.

Utility Description

GCC Supported toolchain installed by ModusToolbox.

GDB The GNU Project Debugger is installed as part of GCC.

OpenOCD The Open On-Chip Debugger provides a debugging and programming interface for embedded systems.
JRE Java Runtime Environment; required by various applications and backend processes.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

30

https://www.cypress.com/ModusToolboxBLEConfig
https://www.cypress.com/ModusToolboxUSBConfig
https://www.cypress.com/modustoolbox
http://www.cypress.com/ModusToolboxProjectCreatorGuide
http://www.cypress.com/ModusToolboxLibraryManagerGuide
https://github.com/cypresssemiconductorco/Firmware-loader
https://www.cypress.com/ModusToolboxDFUHostTool
http://www.cypress.com/ModusToolboxCyPEConfig

= CYPRESS

~amp” EMBEDDED IN TOMORROW™ ModusToolbox Software Overview

3.4 Enablement Software

This section organizes enablement software in these broad resource categories:

m Code Examples
® Board Support Packages and Kits

m Middleware

m Low-Level Resources

ModusToolbox software targets three primary software development flows:
® PSoC 6 MCU and Bluetooth SoC ecosystem development
® Mbed OS ecosystem development

® Amazon FreeRTOS ecosystem development

As discussed in Build System Infrastructure, to include a resource a starter application specifies a.lib file, which provides the
URL and commit for the required code. The build system copies the files into your application directory. This means that if you
use the Project Creator, all required files appear automatically. However, each software enablement resource from Cypress is
available separately in a GitHub repository that typically includes both source code and documentation.

BSPs typically include one or more resources automatically. For example, any BSP that targets a PSoC 6 device includes the
PDL driver library automatically. If the board supports CapSense, the BSP includes the CapSense library.

At a higher level, Cypress starter applications (code examples) include the BSP for the supported kit, along with any other
required middleware. As a result, the libraries that the example depends upon are brought into the application automatically.

Because the libraries are freely available on GitHub, you may download any library to create a local copy. You can then refer to
the library from multiple applications in your development environment, should you prefer.

Some significant resources are available as part of a supported ecosystem and not provided by Cypress. For example, the
Mbed Transport Layer Security (TLS) library or the Cordio Bluetooth stack are part of the Mbed ecosystem. You include
ecosystem-specific resources using whatever mechanism is defined in that ecosystem.

3.4.1 Code Examples

All current ModusToolbox examples can be found through the GitHub code example page. There you will find links to examples
for the Bluetooth SDK, AWS IoT, Mbed OS, and PSoC 6 MCU, among others.

ModusToolbox code examples are example applications. In the ModusToolbox build infrastructure any example application that
requires a library downloads that library automatically. Follow the directions in the code example repository to instantiate the
example. Instructions vary based on the nature of the application and the targeted ecosystem.

3.4.2 Board Support Packages and Kits

BSPs are aligned with Cypress kits; they provide files for basic device functionality. A BSP typically has a design.modus file that
configures clocks and other board-specific capabilities. That file is used by the ModusToolbox configurators. A BSP also
includes the required device support code for the device on the board. Users can modify the configuration to suit their
application. A BSP uses low-level resources to add functionality. For example, a BSP typically adds the following libraries, as
appropriate for the kit/device:

m core-lib — to implement return types and generic functionality useful for any kit
psoc6hal — to implement the ModusToolbox hardware abstraction layer
psoc6cmOp — to add a predefined CMO+ application

psocémake — to implement the build system infrastructure

capsense — if appropriate for the kit

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 31

https://github.com/cypresssemiconductorco/Code-Examples-for-ModusToolbox-Software

= CYPRESS

~agp> EMBEDDED IN TOMORROW™

ModusToolbox Software Overview

Application-specific functionality is added by the starter application makefile. For example, if the example uses the RGB LED on
a kit, it will include the rgb-led library in its makefile.

Cypress releases BSPs independently of ModusToolbox software as a whole. This search link finds all currently available BSPs
on the Cypress GitHub site.

The search results include links to each repository, named TARGET_<kit number>. For example, you will find links to
repositories like TARGET CY8CPROTO-062-4343W. Each repository provides links to relevant documentation. The following
links use this BSP as an example. Each BSP has its own documentation.

The information provided varies, but typically includes one or more of:
m an APl reference for the BSP
m alink to the associated kit page with kit-specific documentation

A BSP is specific to a board and the device on that board. For custom development, you can create or modify a BSP for your
device. See the Boards Support Packages chapter for how BSPs work and how to create your own for a custom board.

3.4.3 Middleware

This category includes any library that implements an API for a particular domain, for example capacitive sensing or an http
server. A middleware library may be created by Cypress or come from a third party. Cypress-created middleware may use the
Cypress HAL or an LLD directly. In that case, you need the corresponding driver library or BSP for the middleware to work. Any
example application that requires a library downloads that library automatically.

The Amazon FreeRTOS ecosystem provides a collection of libraries that provide significant connectivity and other capabilities
beyond the FreeRTOS kernel and its internal libraries. This includes interaction with AWS loT services. Those libraries are not
listed here.

Connectivity Description Docs MCU & | Mbed | Amazon
Middleware P BTSOC | OS |FreeRTOS
btsdk-audio
btsdk-ble
btsdk_drivers
btsdk-hid
btsdk-include The SDK features a dual-mode Bluetooth stack with stack-
and profile-level APIs for embedded BT application
btsdk-mesh development. It supports GAP, GATT, SMP, RFCOMM,
btsdk-ota SDP, AVDT/AVCT and BLE Mesh protocols, as well as
bisdi over-the-air upgrade. bsdkad
bisde-ricomm The Bluetooth SDK is factored into a collection of smaller bisck-docs v
btsdk-tools libraries, so that you can download and use those parts of
btsdk-utils the SDK neces.sary. for your a.lpphcatlon.
Follow instructions in the Project Creator tool to create a
btsdk-host-apps-bt-ble local copy of the entire Bluetooth SDK.
btsdk-host-apps-mesh
btsdk-peer-apps-ble
btsdk-peer-apps-mesh
btsdk-peer-apps-ota
Provides secure, bi-directional communication between Available
. Internet-connected devices such as sensors, actuators, . as part of
aws-iot)) Developer Guide v
embedded micro-controllers, or smart appliances and the Amazon
AWS Cloud. Supports MQTT and HTTP protocols. FreeRTOS
This library implements a collection of the most commonly
enterprise-security used Extensible Authentication Protocols (EAP) used in API Reference v
enterprise WiFi networks
http-server Provides communication functions for an HTTP server. GitHub readme v
- - General purpose middleware connectivity utilities, for See the code for
connectivity-utilities) . . - v
instance a linked_list or a json_parser each

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

32

https://github.com/cypresssemiconductorco?q=TARGET_
https://github.com/cypresssemiconductorco/TARGET_CY8CPROTO-062-4343W
https://cypresssemiconductorco.github.io/TARGET_CY8CPROTO-062-4343W/html/modules.html
https://www.cypress.com/documentation/development-kitsboards/psoc-6-wi-fi-bt-prototyping-kit-cy8cproto-062-4343w
https://github.com/cypresssemiconductorco/btsdk-audio
https://cypresssemiconductorco.github.io/btsdk-docs/BT-SDK/index.html
https://github.com/cypresssemiconductorco/btsdk-ble
https://github.com/cypresssemiconductorco/btsdk-drivers
https://github.com/cypresssemiconductorco/btsdk-hid
https://github.com/cypresssemiconductorco/btsdk-include
https://github.com/cypresssemiconductorco/btsdk-mesh
https://github.com/cypresssemiconductorco/btsdk-ota
https://github.com/cypresssemiconductorco/btsdk-rfcomm
https://github.com/cypresssemiconductorco/btsdk-tools
https://github.com/cypresssemiconductorco/btsdk-utils
https://github.com/cypresssemiconductorco/btsdk-host-apps-bt-ble
https://github.com/cypresssemiconductorco/btsdk-host-apps-mesh
https://github.com/cypresssemiconductorco/btsdk-peer-apps-ble
https://github.com/cypresssemiconductorco/btsdk-peer-apps-mesh
https://github.com/cypresssemiconductorco/btsdk-peer-apps-ota
https://github.com/cypresssemiconductorco/aws-iot
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://github.com/cypresssemiconductorco/enterprise-security
https://cypresssemiconductorco.github.io/enterprise-security/api_reference_manual/html/index.html
https://github.com/cypresssemiconductorco/http-server
https://github.com/cypresssemiconductorco/http-server/blob/master/README.md
https://github.com/cypresssemiconductorco/connectivity-utilities

= CYPRESS

~agp> EMBEDDED IN TOMORROW™

ModusToolbox Software Overview

Connectivity
Middleware

Description

Docs

MCU &
BT SOC

Mbed
oS

Amazon
FreeRTOS

=2
D
1)
[72]

The Bluetooth Low Energy Subsystem (bless) library
contains a comprehensive API to configure the BLE Stack
and the underlying chip hardware. It incorporates a

Bluetooth Core Specification v5.0 compliant protocol stack.

You may access the GAP, GATT and L2CAP layers of the
stack using the API.

APl Reference

Arm Mbed Cordio

An open source Bluetooth Low Energy (BLE) solution
offering both host and controller subsystems, with
abstraction interfaces for both RTOS and hardware. It is
part of the Mbed OS ecosystem and not provided by
Cypress.

Mbed OS
documentation

PSoC 6 Middleware

Description

Docs

MCU

Mbed
oS

Amazon
FreeRTOS

capsense

Cypress capacitive sensing solution. Capacitive sensing
can be used in a variety of applications and products
where conventional mechanical buttons can be replaced
with sleek human interfaces to transform the way users
interact with electronic systems.

API Reference

csdadc

csdidac

Enables the ADC or IDAC functionality of the CapSense
Sigma-Delta hardware block. Useful for devices that do
not include other ADC/IDAC options. The CSD HW block
enables multiple sensing capabilities on PSoC devices
including self-cap and mutual-cap capacitive touch
sensing solutions, a 10-bit ADC, IDAC, and Comparator.

API| Reference

API Reference

usbdev

The USB Device library provides a full-speed USB 2.0
Chapter 9 specification compliant device framework. It
uses the USBFS driver from PDL. The middleware
supports Audio, CDC, and HID, and other classes. Use
the USB Configurator tool to construct the USB Device
descriptor

API| Reference

The Device Firmware Update (DFU) library provides an
API for updating firmware images. You can create an
application loader to receive and switch to the new
application, and a loadable application to be transferred
and programmed.

API| Reference

Secure Boot Package

This package includes all required libraries, tools, and
sample code to provision and develop applications for
PSoC 64 MCUs.

User Guide

emeeprom

The Emulated EEPROM library provides an API to
manage an emulated EEPROM in flash. It has support for
wear leveling and restoring corrupted data from a
redundant copy.

API| Reference

Other Middleware

Description

Docs

MCU

Mbed

Amazon
FreeRTOS

freertos

FreeRTOS kernel, distributed as standard C source files
with configuration header file, for use with the PSoC 6
MCU.

FreeRTOS web

page

emwin

Segger embedded graphic library and graphical user
interface (GUI) framework designed to provide processor-
and display controller-independent GUI for any application
that needs a graphical display.

Overview

Arm Mbed TLS

A library to include cryptographic and SSL/TLS
capabilities in an embedded application. It is part of the
Mbed OS ecosystem and not provided by Cypress.

API Reference

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

33

https://github.com/cypresssemiconductorco/bless
https://cypresssemiconductorco.github.io/bless/ble_api_reference_manual/html/index.html
https://os.mbed.com/docs/mbed-os/latest/apis/bluetooth.html
https://os.mbed.com/docs/mbed-os/latest/apis/bluetooth.html
https://github.com/cypresssemiconductorco/capsense
https://cypresssemiconductorco.github.io/capsense/capsense_api_reference_manual/html/index.html
https://github.com/cypresssemiconductorco/csdadc
https://cypresssemiconductorco.github.io/csdadc/csdadc_api_reference_manual/html/index.html
https://github.com/cypresssemiconductorco/csdidac
https://cypresssemiconductorco.github.io/csdidac/csdidac_api_reference_manual/html/index.html
https://github.com/cypresssemiconductorco/usbdev
https://cypresssemiconductorco.github.io/usbdev/usbfs_dev_api_reference_manual/html/index.html
https://github.com/cypresssemiconductorco/dfu
https://cypresssemiconductorco.github.io/dfu/dfu_sdk_api_reference_manual/html/index.html
https://github.com/cypresssemiconductorco/cysecuretools
https://www.cypress.com/documentation/software-and-drivers/psoc-64-secure-mcu-secure-boot-sdk-user-guide
https://github.com/cypresssemiconductorco/emeeprom
https://cypresssemiconductorco.github.io/emeeprom/em_eeprom_api_reference_manual/html/index.html
https://github.com/cypresssemiconductorco/freertos
http://www.freertos.org/a00106.html
http://www.freertos.org/a00106.html
https://github.com/cypresssemiconductorco/emwin
https://cypresssemiconductorco.github.io/middleware-emwin/emwin_overview/html/index.html
https://tls.mbed.org/api/

= CYPRESS

~agp> EMBEDDED IN TOMORROW™

3.4.4 Low-Level Resources

ModusToolbox Software Overview

Low-level resources are related to specific device features. For example, a low-level driver (LLD) contains the API and source
code to configure and use a feature or peripheral on a device. ModusToolbox provides the Peripheral Driver Library (PDL) for
PSoC 6 devices, or the Wi-Fi Host Driver (WHD) for CYW43xx connectivity devices. Device-specific source code and header

files are included in the LLD.

In addition, Cypress provides a hardware abstraction layer (HAL). You can use the HAL for most hardware configuration. It
abstracts some of the complexities of using a low level driver directly. For example, a BSP typically uses HAL functions to
configure the hardware. In cases where your application requires driver features not supported in the HAL, you can use driver

library function calls directly. The HAL and the driver libraries are compatible.

ModusToolbox configurators also generate code (particularly configuration structures) that you can use to configure hardware.
In general, the configurators work with the PSoC 6 PDL directly and do not use the HAL. If you use a configurator to configure a

peripheral, the HAL will not modify that configuration.

This design means that you can mix and match HAL function calls, direct driver library function calls, and configurator generated

source.

The abstraction-rtos library provides a common API that retargets your call to the appropriate RTOS-specific function. This
currently supports the FreeRTOS and RTX kernels. Should you wish to use the abstraction-rtos library with a different RTOS,

you can examine the API and redirect calls to your RTOS.

Note that ModusToolbox configurators generate PDL-specific configuration structures and function calls. That code requires the
PDL to be part of the application. BSPs always include the PDL when necessary.

. MCU & Amazon
Item Details Docs BT SOC Mbed OS FreeRTOS
The Hardware Abstraction Layer (HAL) provides a high-level
interface to configure and use hardware blocks on Cypress MCUs.
psoc6hal It is a generic interface that can be used across multiple product API Reference v v v
families. The focus on ease-of-use and portability means the HAL
does not expose all of the low-level peripheral functionality
. A common API that allows code or middleware to use RTOS
abstraction-rtos features without knowing what the RTOS is APl Reference v v v
r Provides header files that declare basic types and utilities (such
core-lib as result types or ASSERT) that can be used by multiple BSPs AF| Reference v v v
. Provides a board-independent API to retarget text input/output to
retarget-io a serial UART on a kit API Reference v v v
rgb-led Provides a board-independent API to use the RGB LED on a kit AP| Reference v v v
serial-flash Provides a board-independent API to use the serial flash on a kit API| Reference v v v
Peripheral driver library for PSoC 6 devices. The library is device-
independent, so can be precompiled and used for any PSoC 6
psoc6pd MCU device or application. Included automatically by any BSP AP| Reference v v v
targeting a PSoC 6 device
Driver library for Cypress WLAN devices (CYW43xxx) that can be
easily ported to popular RTOSs such as Amazon FreeRTOS and
wifi-host-driver Mbed OS. The wifi-host-driver is included automatically by board | APl Reference N4 N4 N4
support packages that require this driver (those with CYW43xx
devices)
Prebuilt application images for the Cortex MO+ CPU of the dual-
CPU PSoC 6 devices. The images are provided as C arrays ready | See the
psoc6cmOp to be compiled as part of the Cortex M4 application. The Cortex readme file in v v N4
MO+ application code is placed to internal flash by the Cortex M4 | the repository
linker script.
This repository provides the build recipe makefiles and scripts for See the
soc6make building and programming PSoC 6 applications. You can build an readme file in v v v

application either through a command-line interface (CLI), the

Eclipse IDE, or a third-party IDE.

the repository

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

34

https://github.com/cypresssemiconductorco/psoc6hal
https://cypresssemiconductorco.github.io/psoc6hal/html/index.html
https://github.com/cypresssemiconductorco/abstraction-rtos
https://cypresssemiconductorco.github.io/abstraction-rtos/html/index.html
https://github.com/cypresssemiconductorco/core-lib
https://cypresssemiconductorco.github.io/core-lib/html/index.html
https://github.com/cypresssemiconductorco/retarget-io
https://cypresssemiconductorco.github.io/retarget-io/html/index.html
https://github.com/cypresssemiconductorco/rgb-led
https://cypresssemiconductorco.github.io/rgb-led/html/index.html
https://github.com/cypresssemiconductorco/serial-flash
https://cypresssemiconductorco.github.io/serial-flash/html/index.html
https://github.com/cypresssemiconductorco/psoc6pdl
https://cypresssemiconductorco.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html
https://github.com/cypresssemiconductorco/wifi-host-driver
https://cypresssemiconductorco.github.io/wifi-host-driver/API/index.html
https://github.com/cypresssemiconductorco/psoc6cm0p
https://github.com/cypresssemiconductorco/psoc6make

e

ws CYPRESS

~agp> EMBEDDED IN TOMORROW™

ModusToolbox Software Overview

. MCU & Amazon
Item Details Docs BT SOC Mbed OS FreeRTOS
Mbed OS hardware abstraction layer. Support for Cypress targets Mbed API
Mbed OS HAL is available from the Mbed OS archive. This HAL is part of the documentati v
. . ocumentation
Mbed ecosystem and not provided directly by Cypress.
ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 35

https://os.mbed.com/docs/mbed-os/v5.13/apis/index.html
https://os.mbed.com/docs/mbed-os/v5.13/apis/index.html

4 ModusToolbox Build System

& CYPRESS

- EMBEDDED IN TOMORROW"™

This chapter covers various aspects of the ModusToolbox build system. Refer to Using the Command Line for getting started
information about using the command line tools. This chapter is organized as follows:

m Overview
m Application Types
m BSPs

m make getlibs
®m Adding source files

® Pre-builds and post-builds

®m Program and debug

m Available make targets

m Available make variables

4.1 Overview

The ModusToolbox build system is based on GNU make. It performs application builds and provides the logic required to launch
tools and run utilities. It consists of a light and accessible set of makefiles deployed as part of every application. This structure
allows each application to own the build process, and it allows environment-specific or application-specific changes to be made
with relative ease. The system runs on any environment that has the make and git utilities. For a “how to” document about the
ModusToolbox makefile system, refer to https://community.cypress.com/docs/DOC-18994. Also, as described in the Getting
Started chapter, you can run the make help command to get details on the various targets and variables available.

The ModusToolbox Command Line Interface (CLI) and supported IDEs all use the same build system. Hence, switching
between them is fully supported. Program/Debug and other tools can be used in either the command line or an IDE
environment. In all cases, the build system relies on the presence of ModusToolbox tools included with the ModusToolbox
installer.

The tools contain a start.mk file that serves as a reference point for setting up the environment before executing the recipe-
specific build in the base library. The file also provides a get1ibs make target that brings libraries into an application. Every
application must then specify a target board on which the application will run. These are provided by the <BSP>.mk files
deployed as a part of a board support package (BSP) library.

The majority of the makefiles are deployed as git repositories (called “repos”), in the same way that libraries are deployed in the
ModusToolbox software. The library that contains the recipe makefiles is referred to as the “base library.” This is the minimum
required library to enable an application build. Together, these makefiles form the build system.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 36

https://community.cypress.com/docs/DOC-18994

o CYPRESS

N> EMBEDDED IN TOMORROW ModusToolbox Build System

4.2 Application Types

The build system supports the following application types:

® Normal app — The application consists of one application makefile. The build process creates one artifact. All prebuilt
libraries are brought in at link time. A normal application is constructed by defining the APPNAME variable in the
application makefile.

Library app — The application consists of one application makefile. The sources are built into a library. These libraries
may be linked in as part of a Normal app build. A library application is constructed by defining the LIBNAME variable in
the application makefile.

The library apps are usually placed as companions to normal apps. These normal apps specify their dependency on library apps
by including them in the SEARCH_LIBS AND INCLUDES make variable. They also drive the build process of the library apps by
defining a shared 1libs make target. For example:
SEARCH LIBS AND INCLUDES=../bspLib
shared libs:
make -C ../bspLib build -j

4.3 BSPs

An application must specify a target BSP through the TARGET variable in the makefile. Cypress provides reference BSPs for its
development kits. Use these as a reference to construct your own BSP. For more information about BSPs, refer to the Board
Support Packages chapter.

Use the Library Manager to add, update, or remove a BSP from an application. You can also add a .lib file that contains the URL
and a version tag of interest in the application.

4.4 make getlibs

When you run the make getlibs command, the build system finds all the .lib files in the application directory and performs
git clone operations on them. A .lib file contains a git URL to a library repo, and a specific tag for a version of the code.

The getlibs target finds and processes all .lib files and uses the git command to clone or pull the code as appropriate. Then,
it checks out the specific tag listed in the .lib file. The Project Creator and Library Manager invoke this process automatically.

m The getlibs target must be invoked separately from any other make target (for example, the command make
getlibs build is not allowed and the makefiles will generate an error; however, a command such as make clean
build is allowed).

m The getlibs target performs a git fetch on existing libraries but will always checkout the tag pointed to by the
overseeing .lib file.

m The getlibs target detects if users have modified the Cypress code and will not overwrite their work. This allows you
to perform some action (for example commit code or revert changes, as appropriate) instead of overwriting the
changes.

The build system also has a print1libs target that can be used to print the status of the cloned libraries.

4.4.1 repos

The cloned libraries are located in their individual git repos in the directory pointed to by the CY GETLIBS_ PATH variable (for
example, /deps). These all point to the “cypress” remote origin. You can point your repo by editing the .git/config file or by
running the git remote command.

If the repos are modified, add the changes to your source control (git branch is recommended). When make getlibs is run (to

either add new libraries or update libraries), it requires the repos to be clean. You may also use the .gitignore file for adding
untracked files when running make getlibs.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 37

= CYPRESS

~— EMBEDDED IN TOMORROW™ MOdusTOOIbOX Build System

4.5 Adding source files

Source and header files placed in the application directory hierarchy are automatically added by the auto-discovery mechanism.
Similarly, library archives and object files are automatically added to the application. Any object file not referenced by the
application is discarded by the linker.

The application makefile can also include specific source files (SOURCES), header file locations (INCLUDES) and prebuilt
libraries (LDLIBS). This is useful when the files are located outside of the application directory hierarchy or when specific
sources need to be included from the filtered directories.

4.5.1 Auto-Discovery

The build system implements auto-discovery of Cypress library files, source files, header files, object files, and pre-built libraries.
If these files follow the specified rules, they are guaranteed to be brought into the application build automatically. Auto-discovery
searches for all supported file types in the application directory hierarchy and performs filtering based on a directory naming
convention and specified directories, as well as files to ignore. If files external to the application directory hierarchy need to be
added, they can be specified using the SOURCES, INCLUDES, and LIBS make variables.

Auto-discovery of source code (source and headers) has no depth limit (it uses the “find” tool). Auto-discovery of other types of
files do have a depth limit, including:

m ibfile depth

.mk file of the selected TARGET
m device support library discovery

m configurator file discovery

The default depth limit for these files is five directories deep. They can be changed to up to nine directories deep by setting the
following options in the makefile:

CY UTILS SEARCH DEPTH=9
CY LIBS SEARCH DEPTH=9

To control which files are included/excluded, the build system implements a filtering mechanism based on directory names and
.cyignore files.

45.1.1 .cyignore

Prior to applying auto-discovery and filtering, the build system will first search for .cyignore files and construct a set of directories
and files to exclude. It contains a set of directories and files to exclude, relative to the location of the .cyignore file. The

CY IGNORE variable can also be used in the makefile to define directories and files to exclude.

Note The CY IGNORE variable should contain paths that are relative to the application root. For example, ./srcl.

45.1.2 TOOLCHAIN_<NAME>

Any directory that has the prefix “TOOLCHAIN_" is interpreted as a directory that is toolchain specific. The “NAME” corresponds
to the value stored in the TOOLCHAIN make variable. For example, an |IAR-specific set of files is located under a directory
named TOOLCHAIN_IAR. Auto-discovery only includes the TOOLCHAIN_<NAME> directories for the specified TOOLCHAIN. All
others are ignored.

45.1.3 TARGET_<NAME>

Any directory that has the prefix “TARGET_” is interpreted as a directory that is target specific. The “NAME” corresponds to the
value stored in the TARGET make variable. For example, a build with TARGET=CY8CPROTO-062-4343W ignores all TARGET_
directories except TARGET_CY8CPROTO-062-4343W.

Note The TARGET_ directory is often associated with the BSP, but it can be used in a generic sense. E.g. if application sources
need to be included only for a certain TARGET, this mechanism can be used to achieve that.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 38

= CYPRESS

~— EMBEDDED IN TOMORROW™ MOdusTOOIbOX Build System

Note The output directory structure includes the TARGET name in the path, so you can build for target A and B and both artifact
files will exist on disk.

45.1.4 CONFIG_<NAME>

Any directory that has the prefix “CONFIG_" is interpreted as a directory that is configuration (Debug/Release) specific. The
“NAME” corresponds to the value stored in the CONFIG make variable. For example, a build with CONFIG=CustomBuild
ignores all CONFIG_ directories, except CONFIG_CustomBuild.

Note The output directory structure includes the CONFIG name in the path, so you can build for config A and B and both artifact
files will exist on disk.

45.15 COMPONENT_<NAME>

Any directory that has the prefix “COMPONENT_" is interpreted as a directory that is component specific. The “NAME”
corresponds to the value stored in the COMPONENT make variable. For example, consider an application that sets
COMPONENTS+=compl. Also assume that there are two directories containing component-specific sources:

COMPONENT compl/src.c
COMPONENT comp2/src.c

Auto-discovery will only include COMPONENT_compl/src.c and ignore COMPONENT _comp2/src.c. If a specific component
needs to be removed, either delete it from the COMPONENTS variable or add it to the DISABLE COMPONENTS variable.

45.1.6 BSP Makefile

Auto-discovery will also search for a <TARGET>.mk file (aka BSP makefile). If no matching TARGET makefile is found, it will fail
to build. This makefile can also be manually specified by setting it in the CY EXTRA INCLUDES variable.

4.6 Pre-builds and Post-builds

A pre-build or post-build operation is typically a script file invoked by the build system. Such operations are possible at several
stages in the build process. They can be specified at the application, BSP, and recipe levels.

You can pre-build and post-build arguments in the application makefile. For example:
PREBUILD=command -argl -arg2

If you want to run more than one command, separate them with a semicolon (;). For example:
PREBUILD=commandl -argl; command2 -argl -arg2

The sequence of execution in a build is as follows:

1. BSP pre-build — Defined using CY BSP_ PREBUILD variable.
Application pre-build — Defined using PREBUILD variable.
Source generation — Defined using CY RECIPE GENSRC variable.
Recipe pre-build — Defined using CY RECIPE PREBUILD variable.
Source compilation and linking.
Recipe post-build — Defined using CY RECIPE POSTBUILD variable.

BSP post-build — Defined using CY BSP POSTBUILD variable.

© N o 00~ W DN

Application post-build — Defined using POSTBUILD variable.

The variable value is the relative path to the script to be executed.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 39

= CYPRESS

~— EMBEDDED IN TOMORROW™ MOdusTOOIbOX Build System

Note Pre-builds happen after the auto-discovery process. Therefore, if the pre-build steps generate any source files to be
included in a build, they will not be automatically included until the subsequent build. In this scenario, this step should use the
$ (shell) function directly in the application makefile instead of using the provided pre-build make variables. For example:

$ (shell bash ./custom _gen.sh ARGl ARG2)

4.7 Program and debug

The programming step can be done through the CLI by using the following make targets:
B program — Build and program the board.
B gprogram — Skip the build step and program the board.
® debug — Build and program the board. Then launch the GDB server.
B gdebug — Skip the build and program steps. Just launch the GDB server.

B attach — Starts a GDB client and attaches the debugger to the running target.

For CLI debugging, the attach target must be run on a separate shell instance. Use the GDB commands to debug the
application.

4.8 Available Make Targets

A make target specifies the type of function or activity that the make invocation executes. The build system does not support a
make command with multiple targets. Therefore, a target must be called in a separate make invocation. The following tables list
and describe the available make targets for all recipes.

4.8.1 General Make Targets

Target Description

all Same as build. That is, builds the application.
This target is equivalent to the build target.

getlibs Clones the repositories and checks out the identified commit.

The repos are cloned to the libs directory. By default, this directory is created in the application directory. It may be directed to
other locations using the CY GETLIBS PATH variable.

build Builds the application.

The build process involves source auto-discovery, code-generation, pre-builds, and post-builds. For faster incremental builds,
use the gbuild target to skip the auto-discovery step.

gbuild Quick builds the application using the previous build's source list.

When no other sources need to be auto-discovered, this target can be used to skip the auto-discovery step for a faster
incremental build.

program Builds the artifact and programs it to the target device.

The build process performs the same operations as the build target. Upon successful completion, the artifact is programmed to
the board.

gprogram Quick programs a built application to the target device without rebuilding.

This target allows programming an existing artifact to the board without a build step.

debug Builds and programs. Then launches a GDB server.
Once the GDB server is launched, another shell should be opened to launch a GDB client.
gdebug Skips the build and program step and does Quick Debug; that is, it launches a GDB server.
Once the GDB server is launched, another shell should be opened to launch a GDB client.
clean Cleans the /build/<TARGET> directory.
The directory and all its contents are deleted from disk.
attach Starts a GDB client and attaches the debugger to the running target.
help Prints the help documentation.

Use the CY HELP=<name of target or variable> to see the verbose documentation for a given target or a variable.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 40

e

ws CYPRESS

~— EMBEDDED IN TOMORROW™ MOdusTOOIbOX Build System

4.8.2 IDE Make Targets

Target Description

eclipse Generates Eclipse IDE launch configs (preliminary: Eclipse application).
This target expects the CY IDE PRJNAME variable to be set to the name of the application as defined in the eclipse IDE. For
example, make eclipse CY IDE PRJINAME=AppV1. If this variable is not defined, it will use the APPNAME for the launch
configs. This target also generates .cproject and .project files if they do not exist in the application root directory.

vscode Generates VS Code IDE json files (preliminary).
This target generates VS Code json files for debug/program launches, IntelliSense, and custom tasks. These overwrite the
existing files in the application directory except for settings.json.

ewarm8 Generates IAR-EW version 8 IDE .ipcf file (preliminary).
This target generates an IAR Embedded Workbench v8.x compatible .ipcf file that can be imported into IAR-EW. The .ipcf file
is overwritten every time this target is run.
Note Application generation requires python3 to be installed and present in the PATH variable.

uvisionb Generates CMSIS PDSC files for pVision v5.

This target generates a CMSIS compatible .cpdsc and .gpdsc files that can be imported into Keil pVision v5. Both files are
overwritten every time this target is run.

Note Application generation requires python3 to be installed and present in the PATH variable.

4.8.3 Tools Make Targets

Target Description

open Opens/launches a specified tool. This is intended for use by the Eclipse IDE. Use make config, config bt, or
config usbdev instead.
This target accepts two variables: CYy OPEN TYPE and CY OPEN_FILE. At least one of these must be provided. The
tool can be specified by setting the CY OPEN TYPE variable. A specific file can also be passed using the
CY OPEN FILE variable. If only CY OPEN FILE is given, the build system will launch the default tool associated with
the file’s extension.

modlibs Launches the library-manager executable for updating libraries.
The Library Manager can be used to add/remove libraries and to upgrade/downgrade existing libraries.

config Runs the Device Configurator on the target *.modus file.
If no existing device-configuration files are found, the configurator is launched to create one.

config bt Runs the Bluetooth Configurator on the target *.cybt file.

If no existing bt-configuration files are found, the configurator is launched to create one.

config usbdev Runs the USB Configurator on the target *.cyusbdev file.

If no existing usbdev-configuration files are found, the configurator is launched to create one.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 41

e

ws CYPRESS

~— EMBEDDED IN TOMORROW™ MOdusTOOIbOX Build System

4.8.4 Utility Make Targets

Target Description
progtool Performs specified operations on the programmer/firmware-loader.
This target expects user-interaction on the shell while running it. When prompted, you must specify the command(s) to
run for the tool.
bsp Generates a TARGET GEN board/kit from TARGET.
This target generates a new Board Support Package with the name provided in TARGET GEN based on the current
TARGET. The TARGET GEN variable must be populated with the name of the new TARGET. Optionally, you may define
the target device (DEVICE GEN) and additional devices (ADDITIONAL DEVICES GEN) such as radios. For example:
make bsp TARGET GEN=NewBoard DEVICE GEN=CY8C624ABZI-D44
ADDITIONAL DEVICES GEN=CYW4343WKUBG
check Checks for the necessary tools.

Not all tools are necessary for every build recipe. This target allows you to get an idea of which tools are missing if a
build fails in an unexpected way.

get app_info

Prints the app info for the eclipse IDE.

As with the get _cfg file target, the file types can be specified by setting the CY CONFIG FILE EXT variable. For
example, make get app info CY CONFIG FILE EXT="modus cybt cyusbdev”

get_env_info

Prints the make, git, and, app repo info.
This allows a quick printout of the current app repo and the make and git tool locations and versions.

printlibs

Prints the status of the library repos.

This target parses through the library repos and prints the SHA1 commit. It also shows whether the repo is clean (no
changes) or dirty (modified or new files).

4.9 Available Make Variables

The following make variables provide access to most of the available features to customize your build. They can either be
defined in the application makefile or be passed through the make invocation. For example:

make build TOOLCHAIN=GCC ARM CONFIG=CustomConfig -3j8

4.9.1 Basic Configuration Make Variables

Variable

Description

TARGET

Specifies the target board/kit (that is, BSP). For example, CYSCPROTO-062-4343W.

APPNAME

Specifies the name of the application. For example, AppV1.

This variable signifies that the application builds an artifact intended for a target board. For applications that need to build
into an archive (library), use the LIBNAME variable.

Note This variable may also be used when generating launch configs when invoking the eclipse target.

LIBNAME

Specifies the name of the library application. For example, LibV1.

This variable is used to set the name of the application artifact (prebuilt library). It also signifies that the application will build
an archive (library) that is intended to be linked to another application. These library applications can be added as
dependencies to an artifact producing application using the SEARCH_LIBS AND INCLUDES variable.

TOOLCHAIN

Specifies the toolchain used to build the application. For example, GCC_ARM.
Supported toolchains for this include GCC_ARM, IAR, and ARM.

CONFIG

Specifies the configuration option for the build [Debug Release].
The CONFIG variable is not limited to Debug/Release. It can be other values. However in those instances, the build system
will not configure the optimization flags.

Debug=Ilowest optimization, Release=highest optimization. The optimization flags are toolchain specific. If you go with your
custom config then you can manually set the optimization flag in the CFLAGS.

VERBOSE

Specifies whether the build is silent [false] or verbose [true].
Setting VERBOSE to true may help in debugging build errors/warnings.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 42

= CYPRESS

~agp> EMBEDDED IN TOMORROW™

ModusToolbox Build System

4.9.2 Advanced Configuration Make Variables

Variable Description

SOURCES Specifies C/C++ and assembly files not under the working directory.
This can be used to include files external to the application directory.

INCLUDES Specifies include paths not under the working directory.
Note These MUST NOT have -1 prepended.

DEFINES Specifies additional defines passed to the compiler.
Note These MUST NOT have -D prepended.

VFP_SELECT Selects hard/soft ABI for floating-point operations [softfp hardfp]. If not defined, this value defaults to
softfp.

CFLAGS Prepends additional C compiler flags.
Note If the entire C compiler flags list needs to be replaced, define the CY RECIPE CFLAGS make
variable with the desired C flags.

CXXFLAGS Prepends additional C++ compiler flags.
Note If the entire C++ compiler flags list needs to be replaced, define the CY RECIPE CXXFLAGS make
variable with the desired C++ flags.

ASFLAGS Prepends additional assembler flags.
Note If the entire assembler flags list needs to be replaced, define the CY RECIPE ASFLAGS make
variable with the desired assembly flags.

LDFLAGS Prepends additional linker flags.
Note If the entire linker flags list needs to be replaced, define the CY RECIPE LDFLAGS make variable
with the desired linker flags.

LDLIBS Includes application-specific prebuilt libraries.

Note If additional libraries need to be added using -1 or -L, add to the CY_RECIPE_EXTRA_LIBS make
variable.

LINKER SCRIPT

Specifies a custom linker script location.
This linker script overrides the default.
Note Additional linker scripts can be added for GCC via the LDFLAGS variable as a -L option.

PREBUILD

Specifies the location of a custom pre-build step and its arguments.
This operation runs before the build recipe's pre-build step.
Note BSPs can also define a pre-build step. This runs before the application pre-build step.

If the default pre-build step needs to be replaced, define the CY RECIPE PREBUILD make variable with
the desired pre-build step.

POSTBUILD

Specifies the location of a custom post-build step and its arguments.
This operation runs after the build recipe's post-build step.
Note BSPs can also define a post-build step. This runs before the application post-build step.

Note If the default post-build step needs to be replaced, define the CY RECIPE POSTBUILD make
variable with the desired post-build step.

COMPONENTS

Adds component-specific files to the build.

Create a directory named COMPONENT_<VALUE> and place your files. Then provide <VALUE> to this
make variable to have that feature library be included in the build.

For example, create a directory named COMPONENT_ACCELEROMETER. Then include it in the make
variable: COMPONENT=ACCELEROMETER. If the make variable does not include the <VALUE>, then that
library will not be included in the build.

Note If the default COMPONENT list must be overridden, define the CY COMPONENT LIST make variable
with the list of component values.

DISABLE COMPONENTS

Removes component-specific files from the build.

Include a <VALUE> to this make variable to have that feature library be excluded in the build. For example,
to exclude the contents of the COMPONENT_BSP_DESIGN_MODUS directory, set
DISABLE COMPONENTS=BSP DESIGN_ MODUS.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

43

= CYPRESS

~— EMBEDDED IN TOMORROW™ MOdusTOOIbOX Build System

Variable Description

SEARCH_LIBS_AND_INCLUDES | List of dependent library application paths. For example, ../bspLib.

An artifact-producing application (defined by setting APPNAME) can have a dependency on library
applications (defined by setting L.TBNAME). This variable defines those dependencies for the artifact-
producing application. The actual build invocation of those libraries is handled at the application level by
defining the shared 1libs target. For example:

shared libs:
make -C ../bspLib build -j

4.9.3 BSP Make Variables

Variable Description
DEVICE Device ID for the primary MCU on the target board/kit.
The device identifier is mandatory for all board/kits.
ADDITIONAL_DEVICES IDs for additional devices on the target board/kit.
These include devices such as radios on the board/kit. This variable is optional.
TARGET GEN Name of the new target board/kit.
This is a mandatory variable when calling the bsp make target. It is used to name the board/kit files and
directory.
DEVICE_GEN (Optional) Device ID for the primary MCU on the new target board/Kkit.

This is an optional variable when calling the bsp make target to replace the primary MCU on the board
(overwrites DEVICE).

If it is not defined, the new board/kit will use the existing DEVICE from the board/kit that it is copying from.

ADDITIONAL DEVICES_GEN (Optional) IDs for additional devices on the new target board/kit.

This is an optional variable when calling the bsp make target to replace the additional devices on the board
(overwrites ADDITIONAL DEVICES).

If it is not defined, the new board/kit will use the existing ADDITIONAL DEVICES from the board/kit that it is
copying from.

4.9.4 Getlibs Make Variables

Variable Description

CY GETLIBS NO CACHE Disables the cache when running getlibs.

To improve the library creation time, the get1ibs target uses a cache located in the user's home directory
($HOME for macOS/Linux and SUSERPROFILE for Windows). Disabling the cache allows 3rd-party
libraries to be brought in to the application using .lib files just like the Cypress libraries.

CY_GETLIBS_OFFLINE Use the offline location as the library source.

Setting this variable signals to the build system to use the offline location (Default:
<HOME>/.modustoolbox/offline) when running the "getlibs" target. The location of the offline content can be
changed by defining the CY GETLIBS OFFLINE PATH variable.

CY_GETLIBS_PATH Absolute path to the intended location of libs directory.

The library repos are cloned into a directory named, libs (default: <CY_APP_PATH>/libs). Setting this
variable allows specifying the location of the libs directory to be elsewhere on disk.

CY_GETLIBS_DEPS_PATH Absolute path to where the library-manager stores .lib files.

Setting this path allows relocating the directory that the library-manager uses to store the .lib files in your
application. The default location is in a directory named /deps (Default: <CY_APP_PATH>/deps).

Note This variable requires ModusToolbox tools_2.1 or higher.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 44

= CYPRESS

~agp> EMBEDDED IN TOMORROW™

ModusToolbox Build System

Variable

Description

CY GETLIBS CACHE PATH

Absolute path to the cache directory.

The build system caches all cloned repos in a directory named /cache (Default:
<HOME>/.modustoolbox/cache). Setting this variable allows the cache to be relocated to elsewhere on
disk. To disable the cache entirely, set the CY GETLIBS NO CACHE variable to [true].

Note This variable requires ModusToolbox tools_2.1 or higher.

CY_GETLIBS_OFFLINE_PATH

Absolute path to the offline content directory.

The offline content is used to create/update applications when not connected to the internet (Default:
<HOME>/.modustoolbox/offline). Setting this variable allows to relocate the offline content to elsewhere on
disk.

Note This variable requires ModusToolbox tools_2.1 or higher.

CY GETLIBS SEARCH PATH

Relative path to the top directory for get1ibs operation.

The getlibs operation by default executes at the location of the CY APP PATH. This can be overridden
by specifying this variable to point to a specific location.

495 Path Make Variables

Variable

Description

CY APP PATH

Relative path to the top-level of application. For example, ./

Settings this path to other than ./ allows the auto-discovery mechanism to search from a root directory
location that is higher than the app directory. For example, CY APP PATH=../../ allows auto-discovery
of files from a location that is two directories above the location of ./makefile.

CY BASELIB PATH

Relative path to the base library. For example, ./libs/psocémake

This directory must be relative to Cy APP PATH. It defines the location of the library containing the recipe
makefiles, where the expected directory structure is <CY_BASELIB_PATH>/make. All applications must set
the location of the base library.

CY EXTAPP PATH

Relative path to an external app directory. For example, ../external

This directory must be relative to CY APP_ PATH. Setting this path allows incorporating files external to
CY APP PATH.

For example, CY EXTAPP PATH=../external lets auto-discovery pull in the contents of ../external
directory into the build.

Note This variable is only supported in CLI. Use the shared 1ibs mechanism and
CY_HELP_SEARCH_LIBS_AND_INCLUDES for tools and IDE support.

CY DEVICESUPPORT PATH

Relative path to the devicesupport.xml file.

This path specifies the location of the devicesupport.xml file for the Device Configurator. It is used when the
configurator needs to be run in a multi-app scenario.

CY SHARED PATH

Relative path to the location of shared .lib files.
This variable is used in shared library applications to point to the location of external .libs files.

CY COMPILER PATH

Absolute path to the compiler (default: GCC_ARM in CY TOOLS_ DIR).
Setting this path allows custom toolchains to be used instead of the defaults. This should be the location of
the /bin directory containing the compiler, assembler, and linker. For example:

CY COMPILER PATH="C:/Program Files (x86)/IAR Systems/Embedded Workbench
8.2/arm/bin"

CY TOOLS DIR

Absolute path to the tools root directory.

Applications must specify the tools_<version> directory location, which contains the root makefile and the
necessary tools and scripts to build an application. Application makefiles are configured to automatically
search in the standard locations for various platforms. If the tools are not located in the standard location,
you may explicitly set this.

CY_BUILD LOCATION

Absolute path to the build output directory (default: pwd/build).

The build output directory is structured as /TARGET/CONFIG/. Setting this variable allows the build artifacts
to be located in the directory pointed to by this variable.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 45

= CYPRESS

~— EMBEDDED IN TOMORROW™ MOdusTOOIbOX BUild System
Variable Description
CY_PYTHON_PATH Specifies the path to the Python executable.

For make targets that depend on Python, the build system looks for a Python 3 in the user's PATH and
uses that to invoke python. If however CY_PYTHON_PATH is defined, it will use that python executable.

TOOLCHAIN_ MK PATH Specifies the location of a custom TOOLCHAIN.mk file.
Defining this path allows the build system to use a custom TOOLCHAIN.mk file pointed to by this variable.

Note The make variables in this file should match the variables used in existing TOOLCHAIN.mk files.

49.6 Miscellaneous Make Variables

Variable Description

CY_IGNORE Adds to the directory and file ignore list. E.g. ./ffilel.c ./incl

Directories and files listed in this variable are ignored in auto-discovery. This mechanism works in
combination with any existing .cyignore files in the application.

CY_SKIP_RECIPE Skip including the recipe makefiles.
This allows the application to not include any recipe makefiles and only include the start.mk file from the
tools install.

CY EXTRA INCLUDES Specifies additional makefiles to add to the build.

The application makefile cannot add additional makefiles directly. Instead, use this variable to include these
in the build. For example:

CY EXTRA INCLUDES=./customl.mk ./custom2.mk

CY_LIBS_SEARCH DEPTH Directory search depth for .lib files (default: 5).
This variable controls how deep the search mechanism in get1ibs looks for .lib files.
Note Deeper searches take longer to process.

CY UTILS SEARCH DEPTH Directory search depth for .cyignore and TARGET.mk files (default: 5).

This variable controls how deep the search mechanism looks for .cyignore and TARGET.mk files. Min=1,
Max=9.

Note Deeper searches take longer to process.

CY_IDE_PRJNAME Name of the Eclipse IDE application.

This variable can be used to define the file and target application name when generating Eclipse launch
configurations in the eclipse target.

CY_CONFIG_FILE_EXT Specifies the configurator file extension. For example, *.modus.

This variable accepts a space-separated list of configurator file extensions to search when running the
get cfg fileandget app info targets.

CY_SUPPORTED_TOOL_TYPES | Defines the supported tools for a BSP.
BSPs can define the supported tools that can be launched using the open target.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 46

5 Board Support Packages

& CYPRESS

- EMBEDDED IN TOMORROW"™

5.1 Overview

A BSP provides a standard interface to a board's features and capabilities. The APl is consistent across Cypress kits. Other
software (such as middleware or an application) can use the BSP to configure and control the hardware. BSPs do the following:

®m initialize device resources, such as clocks and power supplies to set up the device to run firmware.
m contain default linker scripts and startup code that you can customize for your board.
® contain the hardware configuration (structures and macros) for both device peripherals and board peripherals.

® provide abstraction to the board by providing common aliases or names to refer to the board peripherals, such as
buttons and LEDs.

m include the libraries for the default capabilities on the board. For example, the BSP for a kit with CapSense capabilities
includes the CapSense library.

5.2 What’s in a BSP

This section presents a quick overview of the key resources that are part of a BSP. The contents may vary for different
environments.

Each BSP is included in a directory that starts with “TARGET_" such as TARGET_CY8CKIT-062-WIFI-BT or
TARGET_CYW920819EVB-02. A basic BSP contains the following:

® <BSP_NAME>.mk — This file defines the DEVICE and other BSP-specific make variables such as COMPONENTS. These
are described in the ModusToolbox Build System chapter. It also defines board-specific information such as the device
ID, compiler and linker flags, pre-builds/post-builds, and components used with this board implementation.

®m COMPONENT_BSP_DESIGN_MODUS/design.modus — This is a configuration file (other types may also exist in a
BSP) used to define the board peripherals and system settings using a graphical configuration tool.

Note The “COMPONENT_BSP_DESIGN_MODUS” directory may not exist on all BSPs.
m README.md — A readme file that describes the board.

5.2.1 PSoC 6 vs. WICED Bluetooth

BSPs for PSoC 6 and WICED Bluetooth essentially do the same things in the same ways. The main difference between them is
where they are located. PSoC 6 BSPs are located inside the project’s /libs directory. WICED Bluetooth BSPs are located in the
wiced_btsdk project, under dev-kit/bsp.

Also, because of the structure of the wiced_btsdk project and its relationship to various WICED Bluetooth applications, it
contains all the BSPs. PSoC 6 projects generally only contain one or two BSPs.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 47

CYPRESS

g EMBEDDED IN TOMORROW™

5.3 PSoC 6 BSPs

The following shows a typical PSoC 6 BSP:

W {Ig » Hello_World [Hello_World latest-v1.X f44d06d]

FH Archives

[Includes

Z3 = build

= deps

% images

w 2% = libs

(& capsense [2.0 63af547] Cypress CapSense Middleware Library 2.0
(Zy core-lib [latest
Zy psocbemOp [latest-vl.
(&% psocbhal [latest-w1.X a0dbc08] Upload psocbhal 1.1.1.11143
(2% psochmake [lates

77] Upload core-lib 1.1.1.11109

W a8

e868] Upload psocbemOp 1.1.1.63

w1.X 5fb9bbd] Upload psoctmake 1.2.1.11109
(&% psochpdl [release-v1.4.1 0e38b78] Upload psocBpdl 1.4.1.2240
(& retarget-io [release-v1.0.0 bd38e6f] Update release note links
v [z TARGET_CYSCKIT-062-WIFI-ET [release-v1.1.0 dddf9da] Upload TARGET |
v [z COMPONENT_BSP_DESIGN_MODUS
&% GeneratedSource
|5 cyreservedresources.list

@7 design.cycapsense

&7 design.cygspi

&7 design.modus
[Zy COMPOMENT_CMOP
[Zy COMPOMENT_CM4

[Fy docs

& libs

[B} cybsp_types.h

[cybsp.c

[B} cybsp.h

[} SDIO_HOST_cfg.c
[R} SDIO_HOST cfg.h
[} SDIO_HOST.c

[B} SDIO_HOST.h

[B} system_psocB.h
| CYBCKIT-062-WIFI-BT.mk
5 EULA

5 LICENSE

[%) README.md

[#} RELEASE.md

5 versionxml

5.3.1 cybsp.c/.h & cybsp_types.h

These files contain the API interface to the board's resources.

Board Support Packages

You need to include only cybsp.h in your application to use all the features of a BSP. Call cybsp_init () from cybsp.c to

initialize the board.

The cybsp_types.h file contains the aliases (macro definitions) for all the board resources.

5.3.2 linker

Linker scripts for all supported toolchains: GCC ARM, IAR, and ARM.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

48

= CYPRESS

mm> EMBEDDED IN TOMORROW™ Board Support Packages

5.3.3 startup

Contains the startup code with the reset handler for the target device, written in assembly language for all supported toolchains:
GCC ARM, IAR, and ARM.

5.3.4 COMPONENT BSP_DESIGN_MODUS

This directory contains the configuration files (such as design.modus) for use with various BSP configurator tools, including
Device Configurator, QSPI Configurator, and CapSense Configurator. At the start of a build, the build system invokes these
tools to generate the source files in the GeneratedSource directory. See Overriding the BSP Configuration Files to learn how the
application can override this component.

5.3.5 deps

For newer ModusToolbox applications, this directory contains.lib files that specify the required libraries for the underlying device
family. These are provided by Cypress and always point to a Cypress owned repo or a repo that is sanctioned by Cypress. You
can use the make getlibs command to fetch these libraries. The Project Creator and Library Manager tools invoke make
getlibs automatically.

These files can be modified to point to specific tags or rerouted to internal repos. Cypress uses tags to denote versions when
publishing content. To lock down to a certain version of a library, ensure that the tag in the .lib file points to a specific version.
You may use the library manager to achieve this.

5.3.6 libs

This directory stores the imported library files after running make getlibs to process the .lib files. For older versions of
ModusToolbox applications, this directory also contains .lib files. The build system supports both.

All libraries are cloned by default into the libs directory in the application root. This location can be modified by specifying the
CY GETLIBS PATH variable. Duplicate libraries are checked to see if they point to the same commit and if so, only one copy is
kept in the libs directory.

5.3.7 Board Initialization

The cycfg.c file generated by the Device Configurator contains a routine init cycfg_all (). This function calls several other
routines that initialize the device with the configuration defined through the Device Configurator.

The cybsp_init () function in the cybsp.c file does not call init cycfg all(). ltcalls
the init cycfg system() function to initialize the device resources such as clocks and power supplies. You can call the
other routines (for example, init cycfg routing())inmain () if required.

Note that you need to call init cycfg routing () when you use analog resources such as CapSense and SAR ADC. See
the corresponding code examples at the Cypress GitHub webpage for details.

5.3.8 Overriding the BSP Configuration Files

The BSP sets up a default board configuration in the design.modus file. Depending on the board, it may also set up other
configuration files such as CapSense and SegLCD.

When you create an application that uses a BSP, the configuration files such as design.modus file are copied from the original
BSP repository and put into your application. You can open the local copy of the file with the appropriate configurator and modify
the configuration. However, if you recreate the application, you get a new copy of the original files and your changes are lost.

Rather than make local changes, if necessary, you can override the files in the BSP_DESIGN_MODUS component with a
different configuration. Cypress code examples often override this component to use a different configuration than the one
provided by a BSP. To do this, follow these steps:

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 49

= CYPRESS

mm> EMBEDDED IN TOMORROW™ Board Support Packages

Add the following line to the makefile in the application directory. This prevents the build from including the default
configuration files from the BSP.

DISABLE COMPONENTS+=BSP DESIGN MODUS

Create a directory for each target that you want to support at the top-level directory in your application. The directory name
must be TARGET_(board_name). For example, TARGET_CY8CPROTO-062-4343W.

Remember that the build system automatically includes all the source files inside a directory that begins
with TARGET__ followed by the target name for compilation when that target is specified in the application makefile.

Copy the design.modus file and other configuration files inside this new directory and customize as required. When you
save the changes in the configuration file(s), the source files are generated and placed under
the GeneratedSource directory.

Another way to override the configuration is to use an existing TARGET board, but update the design.modus configuration. This
can be updated directly, or another file can be used instead of the default. For the latter case:

1.

Copy the COMPONENT_BSP_DESIGN_MODUS directory to another directory (e.g.
COMPONENT CUSTOM DESIGN MODUS)

Set the make variable DISABLE COMPONENTS=BSP_ DESIGN MODUS in the application makefile to disable the inclusion of
the default design.modus and its generated sources into the build.

Add a COMPONENTS variable in the application makefile with the name of the directory (excluding the prefix of
COMPONENTS_) containing your custom copy of the configuration directory (e.g. COMPONENTS+=

CUSTOM DESIGN MODUS). (Note This mechanism is not applicable for BSPs that do not have the
COMPONENT BSP_DESIGN_ MODUS directory).

5.3.9 Creating a BSP for Your Board

Cypress provides BSPs for its boards. When you design your own board, it is likely to have a different MCU, board peripherals,
and other hardware features. You can create a custom BSP for your board to simplify interacting with your board's features.

To create your own board, do the following:

1.

2.

Locate the closest-matching BSP to your custom BSP and set that as the default TARGET for the project in the makefile.

Run the make bsp target, specifying the new board name by passing the value to the TARGET GEN variable. Optionally,
specify the new device (DEVICE_GEN) and additional devices (ADDITIONAL DEVICES_ GEN). For example:

make bsp TARGET GEN=MyBSP DEVICE GEN=CY8C624ABzZI-D44
ADDITIONAL DEVICES GEN=CYW4343WKUBG

This will create a new BSP with the provided name at the top of the application project. It will also automatically copy the
relevant startup and linker scripts based on the MPN specified by DEVICE_GEN into the newly created BSP.

O If there were any issues with the new device's configuration, open the Device Configurator to address.

O The BSP used as your starting point may have library references (for example, capsense.lib or udb-sdio-whd.lib)
that are not needed by your custom BSP. These can be deleted from the BSP.

Define or update the alias for pins in the cybsp_types.h file.

Customize the design.modus file and other configuration files with new settings for clocks, power supplies, and peripherals
as required.

Update the make TARGET variable to point to your new BSP. If you're starting from a Cypress provided example project,
you will find this in the makefile file in the root of your project.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 50

= CYPRESS

~— EMBEDDED IN TOMORROW™ Board Su pport PackaQES

6. If using an IDE, regenerate the configuration settings to reflect the new BSP. Pick the appropriate command(s) for the
IDE(s) that are being used. For example:

make vscode

Note The full list of IDEs is dependent on the make build system being used. Use make help to see all supported IDE make
targets. See also the Exporting to IDEs chapter in this document.

If you want to re-use a custom BSP on multiple applications, you can copy it into each application or you can put it into a git repo
so that you can use it just like any other BSP during application creation. See the Manifest Files chapter for information on how
to create a manifest to include your custom BSPs.

5.4 WICED Bluetooth BSPs (platforms)

All BSPs supported by BTSDK can be found in the \wiced_btsdk\dev-kit\bsp\ directory. The following shows a typical BTSDK
BSP:

W k—ﬁ- = wiced_btsdk [wiced_btsdk release-v2.3.0 ae14171]
gf;f' Binaries
B Archives
[Includes
v 2y > dev-kit
% = baselib
v [F% » bsp
v (25 TARGET_CYBT-213043-EVAL [latest-v2.X 4d68e00] Upload
~ 2y COMPONENT bsp_design_modus
[#% GeneratedSource
B design.modus
|.__k:', wiced_platfoerm.h
i CYBT-213043-EVAL.mk
5 ds2_app_on_chip_flash.hex
= LICENSE&xt
i makefile
EE', README.md
= versionxml
(&% TARGET_CYBT-213043-MESH [latest-v2 X ff2462e] Uploac
(% TARGET_CYBT-343026-EVAL [latest-v2.X 513ae66] Upload
[y TARGET_CYBT-353027-EVAL [latest-v2.X bdal307

1 Uploac

5.4.1 Selecting an alternative BSP

The application makefile has a default BSP; see TARGET. The makefile also has a list of other BSPs supported by the
application; see SUPPORTED_TARGETS. To select an alternative BSP, set TARGET as one of the supported BSPs.

5.4.2 Custom BSP

5.4.2.1 Complete BSP
To create and use a complete custom BSP that you want to use in applications, perform the following steps:

1. Select an existing BSP you wish to use as a template from the list of supported BSPs in the \wiced_btsdk\dev-kit\bsp\
directory.

2. Make a copy in the same directory and rename it. For example \wiced_btsdk\dev-kit\bsp\TARGET_mybsp.

Note This can be done in the system File Explorer and then refresh the workspace in Eclipse to see the new project. Delete
the .git subdirectory from the newly copied directory before refreshing in Eclipse. If done in the IDE, an error dialog may
appear complaining about items in the .git directory being out of sync. This can be resolved by deleting the .git subdirectory
in the newly copied directory.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 51

= CYPRESS

S ENAEDDED IN TONORROW- Board Support Packages
3. Inthe new \wiced_btsdk\dev-kit\bsp\TARGET_mybsp directory, rename the existing/original (BSP).mk file to mybsp.mk.
4. In the application makefile, set TARGET=mybsp and add it to SUPPORTED_TARGETS as well as
TARGET_DEVICE_MAP. For example: mybsp/20819A1
5. Update design.modus for your custom BSP if needed using the Device Configurator link under Configurators in the Quick
Panel.
6. Update the application makefile as needed for other custom BSP specific attributes and build the application.

5.4.2.2 Custom Pin Config Only

To create a custom pin configuration for applications using an existing BSP that supports the Device Configurator, perform the
following steps:

1.

Create a directory COMPONENT_(CUSTOM)_design_modus in the existing BSP directory. For example:
\wiced_btsdk\dev-kit\bsp\TARGET_CYW920819EVB-02\COMPONENT_my_design_modus

Copy the file design.modus from the reference BSP COMPONENT_bsp_design_modus directory under \wiced_btsdk\dev-
kit\bsp\ and place the file in the newly created COMPONENT_my_design_modus directory.

In the application makefile, add the following two lines, for example:

DISABLE COMPONENTS+=bsp design modus
COMPONENTS+=my design modus

Building of the application will generate pin configuration source code under a GeneratedSource directory in the new
COMPONENT_my_design_modus directory.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 52

6 Manifest Files

& CYPRESS

- EMBEDDED IN TOMORROW"™

6.1 Overview

Manifest files are XML files that provide lists of available boards, example code, or libraries. When you launch the Project
Creator and Library Manager, these tools search appropriate servers for manifest files. There are several manifest files,
including:

® The "super-manifest" file contains a list of Universal Record Indicators (URIs) that point to board, code example, and
middleware manifest files.

® A “board-manifest” file contains a list of the BSPs that are available in the Project Creator and Library Manager tools.
® An "app-manifest” file contains a list of all code examples available for selected BSPs.

® A “middleware-manifest” file contains a list of the available middleware (libraries). Each middleware item can have one
or more versions of that middleware available.

6.2 Create Your Own Manifest

By default, the ModusToolbox tools look for Cypress manifest files maintained on a Cypress server. So, the initial lists BSPs,
code examples, and middleware available to use are limited to the Cypress manifest files. You can create your own manifest
files on your servers or locally on your machine, and you can override where ModusToolbox tools look for manifest files.

To use your own examples, BSPs, and middleware, familiarize yourself with each of the manifest XML file structures. Then,
create manifest files for your content and a super-manifest that points to your manifest files.

6.2.1 Overriding the Standard Super-Manifest

The location of the standard super-manifest file is hard coded into all of the tools. However, you may override this location by
setting CyRemoteManifestOverride environment variable. When this variable is set, the tools use the value of this variable as
the location of the super-manifest file and the hard-coded location is ignored. For example:

CyRemoteManifestOverride=https://myURL.com/mylocation/super-manifest.xml

6.2.2 Custom Super-Manifest

In addition to the standard super-manifest file, you can specify a custom super-manifest file. This allows you to add additional
items (BSPs, code examples, libraries) along with the standard items. Do this by creating a file called manifest.loc in a hidden
directory in your home directory named .modustoolbox:

~/.modustoolbox/manifest.loc

For example, a manifest.loc file may have:

This points to the IOT Expert template set
https://github.com/iotexpert/mtb2-iotexpert-manifests/raw/master/iotexpert-super—
manifest.xml

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 53

= CYPRESS

> EMBEDDED IN TOMORROW™ Man|fest FI|eS

If this file exists, then each line in this file is treated as the URL to a super-manifest file. These are called the secondary or
custom super-manifest files. The format of these files is exactly like the standard super-manifest file. Each of the custom super-
manifest files are treated as separate super-manifest files. See the Conflicting Data section for dealing with conflicts.

6.2.3 Processing
The process for using the manifest files is the same for all tools that use the data.

The first step is to access the super-manifest file(s) to obtain a list of manifest files for each of the categories that the tool cares
about. For example, the Library Manager tool cares about the board and middleware manifests.

The second step is to retrieve the manifest data from each manifest file and merge the data into a single global data model in
the tool. See the Conflicting Data section for dealing with conflicts.

There is no per-file scoping. All data is merged before it is presented. The combination of a super manifest file and the merging
of all of the data allows various contributors, including third party contributors, to make new data available without requiring
coordinated releases between the various contributors.

The following table shows how manifests are processed:

Source Syntax Effect
valid URL (e.g., file://l ... or http:// ...) Use that URL to fetch the super-manifest.

CyRemoteManifestOverride | Fragment (e.g., my/manifests/super- Append the home directory to the front (e.g.,
manifest.xml file:/l/c/Users/benh/my/manifests/super-manifest.xml)
valid URL (e.qg., file://l ... or http:// ...) Use that URL to fetch the super-manifest.

manifest.loc .) Append the directory in which manifest.loc resides (e.g.,
Frag_ment (e.g., my/manifests/super file:/l/c/Users/benh/.ModusToolbox/my/manifests/super-
manifest.xml .

manifest.xml)
Manifest URIs valid URI (e.g., file:/// ... or http:// ...) Use that URI to fetch the manifest.

Append the directory in which source super-manifest resides

Manifest URIs from a local . .
super-manifest file fragment (e.g., my/manifests/manifest.xml) (_e.g., _ _
file:/llc/Users/benh/.modustoolbox/my/manifests/manifest.xml

Append the home directory to the front (e.g.,
file:///c/Users/benh/my/manifests/manifest.xml)

Manifest URIs from a remote
super-manifest file

fragment (e.g., my/manifests/manifest.xml)

6.2.4 Conflicting Data

Ultimately, data from all of the super-manifest and manifest files are combined into a single data collection of BSPs, code
examples, and middleware. During the collation of this data, there may be conflicting data entries. There are two types of
conflicts.

The first kind is a conflict between data that comes from the primary super-manifest (and linked manifests) and data that comes
from the custom super-manifest (and linked manifests). In this case, the data in the custom location overwrites the data from the
standard location. This mechanism allows you to intentionally override data that is in the standard location. In this case, no error
or warning is issued. It is a valid use case.

The second kind of conflict is between data coming from the same source (that is, both from primary or both from secondary). In
this case, an error message is printed and all pieces of conflicting data are removed from the data model. This is done because
in this case, it is not clear which data item is the correct one.

The following are how multiple super-manifests are handled:
m User manifests are processed first
® Multiple user manifests are treated as separate manifests
m Conflict within super-manifests; all items are discarded

m Conflicts between super-manifests; first super-manifest wins

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 54

= CYPRESS

> EMBEDDED IN TOMORROW™ Man|fest Flles

6.3 Using Offline Content

In normal mode, ModusToolbox tools look for Cypress manifest files maintained on GitHub and downloads the firmware libraries
from git repositories referenced by the manifests. If a network connection to online resources is not available, you can download
a copy of all manifests and content, and then point the tools to use this copy in offline mode. This section describes how to
download, install, and use the offline content.

1. Download modustoolbox-offline-content.zip from the Cypress website:

https://www.cypress.com/products/modustoolbox-software-environment

2. If you do not already have a hidden directory named .modustoolbox in your home directory, create one. Using Cygwin on
Windows for example:

mkdir -p "SUSERPROFILE/.modustoolbox”
3. Extract the ZIP archive to the /.modustoolbox sub-directory in your home directory. The resulting path should be:
~/.modustoolbox/offline

The following is a Cygwin on Windows command-line example to use for extracting the content:
unzip -gbod "$USERPROFILE/.modustoolbox" modustoolbox-offline-content.zip

Note If you previously installed a copy of the offline content, you should delete the existing ~/.modustoolbox/offline directory
before extracting the archive. Using Cygwin on Windows for example:

rm -rf "SUSERPROFILE/.modustoolbox/offline"

4. To use the Project Creator GUI or Library Manager GUI in offline mode, select Offline from the Settings menu (refer to the
appropriate user guide for details).

5. To use the Project Creator CLI in offline mode, execute the tool with the --off1ine argument. For example:

project-creator-cli --board-id CY8CPROTO-062-4343W --app-id mtb-example-psoc6-hello-
world --offline

6. The Project Creator and Library Manager tools execute the make getlibs command under the hood to download/update
the firmware libraries. To execute the make getlibs target in offline mode, pass the CY GETLIBS OFFLINE=true
argument:

make getlibs CY GETLIBS OFFLINE=true

To override the location of the offline content, set the CY GETLIBS OFFLINE PATH variable:
make getlibs CY GETLIBS OFFLINE=true CY GETLIBS OFFLINE PATH="~/custom/offline/content”

Refer to the ModusToolbox Build System chapter for more details about make targets and variables.

7. Once network connectivity is available, you can use the Library Manager tool to update the ModusToolbox project
previously created offline to use the latest available content. Or you can execute the make getlibs command without the
CY GETLIBS OFFLINE argument.

6.4 Access Private Repositories

You can extend the custom manifest with additional content from git repositories hosted on GitHub or any other online git server.
To access private git repositories, you must configure the git client so that the ModusToolbox Project Creator and Library
Manager tools can authenticate over HTTP/HTTPS protocols without an interactive password prompt.

To configure git credentials for non-interactive remote operations over HTTP protocols, refer to the git documentation:

m https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage

B https://git-scm.com/docs/qgit-credential-store

The simplest way is to configure a git-credential-store and save the HTTP credentials is in a plain text file. Note that this option
is less secure than other git credential helpers that use OS credentials storage.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 55

https://www.cypress.com/products/modustoolbox-software-environment
https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage
https://git-scm.com/docs/git-credential-store

= CYPRESS

> EMBEDDED IN TOMORROW™ Man|fest FI|ES

The following steps show how to configure a git client to access GitHub private repositories without a password prompt:

1. Login to GitHub and go to Personal access tokens: https://github.com/settings/tokens

2. Click Generate new token to open the New personal access token screen.
3. On that screen:

a. Type some text in the Note field.

b. Under Select scopes, click on repo.

c. Click Generate token (scroll down to see the button).

d. Copy the generated token.

4. Open an interactive shell (for example, modus-shel\Cygwin.bat on Windows), and type the following commands (replace
the user name and token with your information):

git config --global credential."https://github.com".helper store
GITHUB USER=<your-github-username>
GITHUB TOKEN=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX # generated at
https://github.com/settings/tokens
echo "https://$GITHUB USER:$GITHUB_TOKEN@github.com" >> ~/.git-credentials
After entering the commands, you can clone private GitHub repositories without an interactive user/password prompt.

Note A GitHub account password can be used instead of GITHUB TOKEN, in case the 2FA (two-factor authentication) is not
enabled for the GitHub account. However, this option is not recommended.

6.5 Manifest XML File Structure

The following sections describe the XML file structure for each type of manifest file.

6.5.1 Super Manifest

6.5.1.1 Element and Attribute Descriptions

® super-manifest — The top-level XML element that encloses a list of manifests.

® super-manifest attribute: version — The version of this schema. Default is 1.0.

® app-manifest-list — The section that lists all sources for apps (i.e., code examples).

® app-manifest — Describes a single source for apps (see the section below for details about the app-manifest file).

® board-manifest-list — The section that lists all sources for board.

m board-manifest — Describes a single source for boards (see the section below for details about the board-manifest file).

m middleware-manifest-list — The section that lists all sources for middleware.

® middleware-manifest — Describes a single source for middleware. (See the section below for details about the
middleware-manifest file).

® URI - Points to a manifest file of the correct type (based on the element that this attribute is in).

Note The app-manifest-list, app-manifest, board-manifest-list, board-manifest, middleware-manifest-list, middleware-manifest
are all optional, so you don't need to specify all of them when you want to define, say, 1 or 2 custom BSPs.

6.5.1.2 Schema

<?xml version="1.0" encoding="utf-8"?>
<|__***

* File Name: super schema.xsd

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 56

https://github.com/settings/tokens

& CYPRESS

amp” EMBEDDED IN TOMORROW™ Manifest Files
*
* Version: 1.0
*
* Description:
* This file contains super manifest schema.
*
R I I S I I b i S b I R S b S S S b S b S b b S b I 2 S b S b I b S b S S b I b S b b S b S b b b b S b S b S Sh S 2b b 2b b S 2 4
* Copyright 2018-2020, Cypress Semiconductor Corporation. All rights reserved.
* You may use this file only in accordance with the license, terms, conditions,
*

disclaimers, and limitations in the end user license agreement accompanying
* the software package with which this file was provided.
***__>
<xs:schema attributeFormDefault="qualified"
elementFormDefault="qualified"
xml:lang="EN"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
version="1.0">
<!-- URI constraints
- starts with http(s) |file|ftp://
- w/o whitespaces
-—>
<xs:simpleType name="validURI">
<xs:restriction base="xs:anyURI">
<xs:pattern value=" (https?|f(ilel|tp))://\S+"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="super-manifest">
<xs:complexType>
<xs:all>
<xs:element name="app-manifest-list" maxOccurs="1" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="app-manifest" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="uri" type="validURI" maxOccurs="1" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="board-manifest-1list" maxOccurs="1" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="board-manifest" maxOccurs="unbounded" minOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element name="uri" type="validURI" maxOccurs="1" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="middleware-manifest-list" maxOccurs="1" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="middleware-manifest" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="uri" type="validURI" maxOccurs="1" minOccurs="0"/>
</xs:sequence>

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 57

= CYPRESS

> EMBEDDED IN TOMORROW™ Man|fest Flles

</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:all>
<xs:attribute name="version" type="xs:string"/>
</xs:complexType>
</xs:element>
</xs:schema>

6.5.1.3 Example

<super-manifest version="1.0">
<app-manifest-list>
<app-manifest>
<uri>http://www.cypress.com/asset psoc/app manifest.xml</uri>
</app-manifest>
<app-manifest>
<uri>http://www.cypress.com/asset bt/app manifest.xml</uri>
</app-manifest>
</app-manifest-list>
<board-manifest-list>
<board-manifest>
<uri>http://www.cypress.com/asset psoc/board manifest.xml</uri>
</board-manifest>
<board-manifest>
<uri>http://www.cypress.com/asset bt/board manifest.xml</uri>
</board-manifest>
</board-manifest-list>
<middleware-manifest-list>
<middleware-manifest>
<uri>http://www.cypress.com/asset psoc/middleware manifest.xml</uri>
</middleware-manifest>
<middleware-manifest>
<uri>http://www.cypress.com/asset bt/middleware manifest.xml</uri>
</middleware-manifest>
</middleware-manifest-list>
</super-manifest>

6.5.2 Board Manifest

6.5.2.1 Element and Attribute Descriptions

Name Parent | Need Description

boards - required | The top-level XML element that encloses a list of boards. The list can be empty.

boards:version - optional | The version attribute specifies the schema version. Default is "1.0".

board boards | optional | A description of a single board.

id board required | A unique identifier that identifies a board. The manifest processing code will give an error if multiple
boards have the same id.

name board required | A user-friendly name for the board. This is what is displayed in the Uls.

uri board required | The URI for the git repository holding the board. Must start with "http(s)://*, “file:///*, "ftp:/I". Must
have no whitespaces

versions board required | Used to group version components. Can have one or more version element

version versions | required | An element that defines a specific version for a board. All version of a board must come from the

same git repo but they will each have a different commit string and num string (number, name, tag)

num version | required | Used to store readable format of board version

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 58

e

ws CYPRESS

~agp> EMBEDDED IN TOMORROW™

Manifest Files

Name Parent | Need Description

commit version | required | Used to store board version commit

chips board required | The chips (MCU and radio) that form the core of the board's functionality

mcu chips required | A MCU chip part number

radio chips optional | A radio chip part number

category board optional | A user-friendly text string that specifies the category for displaying this board item in a GUI. It is
expected that all board in the same category will be shown together in the library management GUI.

description board optional | An html description of the board. This is meant to be displayed in the Uls.

prov_capabilities | board optional | A list of capabilities that this board provides. The list is whitespace delimited and each item in the list
must be a valid C identifier. If this element is missing or empty, that means that this board provides
no capabilities. Only apps or middleware whose capability is empty can work with this kind of board.

documentation_url | board optional | The URI for the board documentation. Must start with "http(s)://", "file://I", "ftp:/[". Must have no
whitespaces

summary board optional | A text description of the board. This is meant to show up in Uls.

6.5.2.2 Schema

<?xml version="1.0" encoding="utf-8"?>
<!__***

* File Name: board schema.xsd

5% % X ok ok % X Xt

Version:

disclaimers,

1.0

Description:
This file contains board manifest schema.

dhkhkkhkhkhkhkhhhkhhkhAhhkhkhhkrhhkhhkhkhkhkhkhhkhkhhkrhkhkrhhkhkhhkhhkhkhhkrhhkrhhkhkhhkhkhkhkhhkhkhkrhkrhhkrkhkhkhkhkhkxx

Copyright 2018-2020, Cypress Semiconductor Corporation. All rights reserved.
You may use this file only in accordance with the license, terms, conditions,

and limitations in the end user license agreement accompanying

* the software package with which this file was provided.
***__>

<xs:schema attributeFormDefault="qualified"
elementFormDefault="qualified"

- w/o whitespaces

-—>

xml:lang="EN"

xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

version="1.0">

<!-— URI constraints
- starts with http(s) |filel|ftp://

<xs:simpleType name="validURI">
<xs:restriction base="xs:string">
<xs:pattern value=" (https?|f(ileltp))://\S+"/>
</xs:restriction>

</xs:simpleType>

<!-- commit constraints

- no

-—>

<xs:simpleType name="validCommit">
<xs:restriction base="xs:string">
</xs:restriction>

</xs:simpleType>

<!-- capabilities constraints
- whitespace-separated list

-=>

<xs:simpleType name="validCapabilities">
<xs:restriction base="xs:string">

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 59

A

w CYPRESS

amp” EMBEDDED IN TOMORROW™ Manifest Files

<xs:pattern value=" ([\w_]+(\s*[\w_]+)*)2"/>
</xs:restriction>
</xs:simpleType>
<!-- ID constraints
- whitespace-separated list
-—=>
<xs:simpleType name="validID">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:pattern value="\s*\S+\s*"/>
<xs:whiteSpace value="collapse"/>
</xs:restriction>
</xs:simpleType>
<!-- NAME constraints
- no leading/trailing whitespaces
-—>
<xs:simpleType name="validName">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:pattern value="\S+ (\s+\S+)*"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="boards">
<xs:complexType>
<xs:sequence>
<xs:element name="board" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:all>
<xs:element type="validID" name="id" maxOccurs="1" minOccurs="1"/>
<xs:element type="validURI" name="board uri" maxOccurs="1" minOccurs="1"/>
<xs:element name="category" type="xs:string" maxOccurs="1" minOccurs="0"/>
<xs:element type="validCommit" name="commit" maxOccurs="1" minOccurs="0"/>
<xs:element name="versions" maxOccurs="1" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="version" maxOccurs="unbounded" minOccurs="1">
<xs:complexType>
<xs:all>
<xs:element name="num" type="xs:string" maxOccurs="1"
minOccurs="1" />
<xs:element name="commit" type="validCommit" maxOccurs="1"
minOccurs="1"/>
</xs:all>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="chips" maxOccurs="1" minOccurs="1">
<xs:complexType>
<xs:all>
<xs:element type="xs:string" name="mcu" maxOccurs="1" minOccurs="1"/>
<xs:element type="xs:string" name="radio" maxOccurs="1" minOccurs="0"/>
</xs:all>
</xs:complexType>
</xs:element>
<xs:element type="validName" name="name" maxOccurs="1" minOccurs="1"/>
<xs:element type="xs:string" name="summary" maxOccurs="1" minOccurs="0"/>
<xs:element type="validCapabilities" name="prov capabilities" maxOccurs="1"
minOccurs="0"/>
<xs:element type="xs:string" name="description" maxOccurs="1" minOccurs="0"/>
<xs:element type="validURI" name="documentation url" maxOccurs="1"
minOccurs="0"/>

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 60

= CYPRESS

amp” EMBEDDED IN TOMORROW™ Manifest Files

</xs:all>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="version" type="xs:string"/>
</xs:complexType>
<xs:key name="id">

<xs:selector xpath="./*"/>
<xs:field xpath="id"/>
</xs:key>

</xs:element>
</xs:schema>

6.5.2.3 Example

<?xml version="1.0" encoding="UTF-8"7?>
<boards version="1.0">
<board>
<1d>CY8CPROTO-062-4343W</1id>
<board uri>http://git-ore.aus.cypress.com/asset-bt/board/cy8cproto-062-
4343w.git</board uri>

<chips>
<mcu>CY8C6247BZI-D54</mcu>
<radio>CYW4343WKUBG</radio>
</chips>

<name>CY8CPROTO-062-4343W</name>
<summary>The CY8CPROTO-062-4343W PSoC 6 Wi-Fi BT Prototyping Kit is a low-cost hardware
platform that enables design and debug of PSoC 6 MCUs. It comes with a Murata LBEE5SKL1DX
module, based on the CYW4343W combo device, industry-leading CapSense for touch buttons and
slider, on-board debugger/programmer with KitProg3, microSD card interface, 512-Mb Quad-SPI
NOR flash, PDM-PCM microphone, and a thermistor. This kit is designed with a snap-away
form-factor, allowing the user to separate the different components and features that come
with this kit and use independently. In addition, support for Digilent's Pmod interface is
also provided with this kit.</summary>
<prov_capabilities>led switch wifi bt usb device sdhc gspi capsense</prov capabilities>
<description>
<! [CDATA[
<div class="category">Kit Features:</div>

Support of up to 2MB Flash and 1MB SRAM</1i>
Dedicated SDHC to interface with WICED wireless devices.</1i>
Delivers dual-cores, with a 150-MHz Arm Cortex-M4 as the primary application
processor and a 100-MHz Arm Cortex-MO+ as the secondary processor for low-power
operations.</1li>
Supports Full-Speed USB, capacitive-sensing with CapSense, a PDM-PCM digital
microphone interface, a Quad-SPI interface, 13 serial communication blocks, 7 programmable
analog blocks, and 56 programmable digital blocks.</1i>

<div class="category">Kit Contents:</div>

<1i>PSoC 6 Wi-Fi BT Prototyping Board
<1i>USB Type-A to Micro-B cable</1li>
Quick Start Guide</1li>
"
11>
</description>
<documentation url>http://www.cypress.com/CY8CPROTO-062-4343W</documentation url>
<versions>
<version>

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 61

e

ws CYPRESS

-

</version>

EMBEDDED IN TOMORROW ™

Manifest Files

<num>Latest 1.x</num>
<commit>latest 1.x</commit>

<version>
<num>Release 1.1</num>
<commit>release 1.1</commit>

</version>

<version>
<num>Release 1.0</num>
<commit>release 1.0</commit>

</version>

</versions>
</board>

</boards>

6.5.3 App Manifest

6.5.3.1 Element and Attribute Descriptions

Name Parent | Need Description

apps - required | The top-level XML element that encloses a list of app elements. The list can be empty.

apps:version - optional | The version attribute specifies the schema version. Default is "1.0".

app apps optional | A description of a single app (i.e., code example).

id app required | A unique identifier that identifies an app. The manifest processing code will give an error if multiple
apps have the same id

name app required | A user-friendly name for the app. This is what is displayed in the UI.

uri app required | The URI for the git repository holding the app. Must start with "http(s)://", "file://I", "ftp://". Must have no
whitespaces

versions app required | Used to group version components. Can have one or more version of element

version versions | required | An element that defines a specific version for a app. All version of a app must come from the same git
repo but they will each have a different commit string and num string (number, name, tag).

num version | required | Used to store readable format of version.

commit version | required | Used to store board version commit.

desc app optional | A user-friendly text description of the app. This is meant to be displayed in the Ul.

req_capabilities | app optional | A list of capabilities that this application requires. This list is treated as an "and" list. That is, all
capabilities need to be met. The list is whitespace delimited and each item in the list must be a valid C
identifier. If this element is missing or empty, it means that this application has no capability
requirements. That is, it works with all boards.

6.5.3.2 Schema
<?xml version="1.0" encoding="utf-8" 2>
<!__***

* File Name: app_schema.xsd

L S T T N

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

Version: 1.0

Description:
This file contains application manifest schema.

disclaimers,

Cypress Semiconductor Corporation.
You may use this file only in accordance with the license,
and limitations in the end user license agreement accompanying
the software package with which this file was provided.

R R S b S S I b 2 b b Sb e S b b S b S S S b b 2b S IR S Sb b I b e S b b Sb e Sh b I Sh b S SE b Sb b I Sb S b Sb b I Sb S Sb b Sb db I 2h 2 db S b b S 3

Copyright 2018-2020,

All rights reserved.
terms, conditions,

62

A

)

-

CYPRESS

EMBEDDED IN TOMORROW™

Manifest Files

EEE RS R R SRR SRR SRS EEREE R R R R EEE SRR SRR R RS RS E R EER R R R R R QR

<xs:schema attributeFormDefault="qualified"

elementFormDefault="qualified"
xml:lang="EN"

xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

version="1.0">
<!-- URI constraints
- starts with http(s) |filel|ftp://
- w/o whitespaces
-—>
<xs:simpleType name="validURI">
<xs:restriction base="xs:string">

<xs:pattern value=" (https?|f(ile|tp))://\S+"/>

</xs:restriction>
</xs:simpleType>
<!-- commit constraints
- no
-—>
<xs:simpleType name="validCommit">
<xs:restriction base="xs:string">
</xs:restriction>
</xs:simpleType>
<!-- capabilities constraints
- whitespace-separated list
-—>
<xs:simpleType name="validCapabilities">
<xs:restriction base="xs:string">
<xs:pattern value=" ([\w_]+(\s*[\w_]+)*)2"/>
</xs:restriction>
</xs:simpleType>
<!-- ID constraints
- whitespace-separated list
-—>
<xs:simpleType name="validID">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:pattern value="\s*\S+\s*"/>
<xs:whiteSpace value="collapse"/>
</xs:restriction>
</xs:simpleType>
<!-- NAME constraints
- no leading/trailing whitespaces
-=>
<xs:simpleType name="validName">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:pattern value="\S+ (\s+\S+)*"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="apps">
<xs:complexType>
<xs:sequence>

<xs:element name="app" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:all>

<xs:element type="validName" name="name" maxOccurs="1" minOccurs="1"/>
<xs:element type="validID" name="id" maxOccurs="1" minOccurs="1"/>
<xs:element type="validURI" name="uri" maxOccurs="1" minOccurs="1"/>
<xs:element type="validCommit" name="commit" maxOccurs="1" minOccurs="0"/>

<xs:element name="versions" maxOccurs="1"

<xs:complexType>
<xs:sequence>

<xs:element name="version" maxOccurs="unbounded"

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

minOccurs="0">

minOccurs="1">

63

= CYPRESS

amp” EMBEDDED IN TOMORROW™ Manifest Files

<xs:complexType>
<xs:all>
<xs:element name="num" type="xs:string" maxOccurs="1"
minOccurs="1" />
<xs:element name="commit" type="validCommit" maxOccurs="1"
minOccurs="1"/>
</xs:all>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element type="xs:string" name="description" maxOccurs="1" minOccurs="0"/>
<xs:element type="validCapabilities" name="req capabilities" maxOccurs="1"
minOccurs="0"/>
</xs:all>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="version" type="xs:string"/>
</xs:complexType>
<xs:key name="id">
<xs:selector xpath="./*"/>
<xs:field xpath="id"/>
</xs:key>
</xs:element>
</xs:schema>

6.5.3.3 Example
<apps version="1.0">
<app>
<name>Blinky LED</name>
<id>BlinkyLED</id>
<uri>http://git-ore.aus.cypress.com/asset-psoc/apps/blinky-led.git</uri>
<commit>abcdef</commit>

<description> ... </description>
<req_capabilities>led</req_capabilities>
</app>
<app>

<name>Capsense Slider</name>
<id>CapsenseSlider</id>
<uri>http://git-ore.aus.cypress.com/asset-psoc/apps/capsense-slider.git</uri>
<versions>
<version>
<num>Latest 1.x</num>
<commit>latest 1.x</commit>
</version>
</versions>
<description> ... </description>
<req capabilities>capsense led</req capabilities
</app>
</apps>
<apps version="1.0">
<app>
<name>BLE Beacon</name>
<id>BLE Beacon</id>
<uri>http://git-ore.aus.cypress.com/asset-bt/apps/ble-beacon.git</uri>
<commit>abcdef</commit>
<description> ... </description>
<req capabilities>ble</req capabilities>

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 64

e

ws CYPRESS

~agp> EMBEDDED IN TOMORROW™

</app>
<app>

</apps>

<name>BLE MeshDimmer</name>
<id>BLE_MeshDimmer</id>
<uri>http://git-ore.aus.cypress.com/asset-bt/apps/ble-mesh-dimmer.git</uri>

<versions>

<version>
<num>Latest 1.x</num>

Manifest Files

<commit>latest 1.x</commit>

</version>

</versions>
<description>

</description>

<req capabilities>ble mesh</req capabilities>
<app>

6.5.4 Middleware Manifest

6.5.4.1 Element and Attribute Descriptions

Name Parent Need Description

middleware - required | The top-level XML element that encloses a list of middleware elements. The list can be
empty.

middleware:version | - optional | The version attribute specifies the schema version. Default is "1.0".

middleware middleware | optional | A description of a single middleware item.

id middleware | required | A unique identifier that identifies the middleware. The manifest processing code will give an
error if multiple middleware items have the same id.

name middleware | required | A user-friendly name for the middleware. This is what is displayed in the Ul.

uri middleware | required | The URI for the git repository holding the middleware.

desc middleware | optional | A user-friendly text description of the middleware item. This is meant to be displayed in the
Ul.

category middleware | optional | A user-friendly text string that specifies the category for displaying this middleware item in a
GUI. It is expected that all middleware in the same category will be shown together in the
library management GUI.

mutex_group middleware | optional | Defines that this middleware participates in a "mutual exclusive" group with the specified
name (user-friendly text). The GUI will ensure that for all middleware items in the same
mutex_group, only one can be selected at a time. Participation in the same mutex_group
can be spread across multiple middleware-manifest files.

versions middleware | optional | Used to group version components. Can have from one to unbound number of version
element

version versions required | An element that defines a specific version for a middleware item. All versions of a
middleware item must come from the same git repo but they will each have a different
commit string.

num version required | The version number for a middleware item.

commit version required | The git commit identifier for a particular version of a middleware item.

desc version optional | A user-friendly text description relevant to this specific version of the middleware item. The
GUI will show the general middleware item description AND the specific version information
for the selected version.

reg_capabilities middleware | optional | A list of capabilities that this middleware requires. This list is treated as an "and" list. That is,
all capabilities need to be met. The list is whitespace delimited and each item in the list must
be a valid C identifier. If this element is missing or empty, it means that this middleware has
no capability requirements. That is, it works with all boards.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

65

A

w CYPRESS

amp” EMBEDDED IN TOMORROW™ Manifest Files

6.5.4.2 Schema

<?xml version="1.0" encoding="utf-8"?>
<!__***

File Name: middleware schema.xsd
Version: 1.0

Description:
This file contains middleware manifest schema.

KAk hkhk Ak kA hhkhkhk Ak kA hk kA hkhkhhhkhk kA hhk Ak kA hk kA hhkhkhhkhhkhkhkhhkhhkrhkhkhkhhkhhkhkhkhhkhkhkrhkkhkhkhhkrhkkkkhkkxkkxk

Copyright 2018-2020, Cypress Semiconductor Corporation. All rights reserved.
You may use this file only in accordance with the license, terms, conditions,
disclaimers, and limitations in the end user license agreement accompanying

* the software package with which this file was provided.
KK Kk ko ok ok ok ok ok ok ok ok ok ok ok R ok ok kR A A R A A R A >

£ % X X ok o X X X

<xs:schema attributeFormDefault="qualified"
elementFormDefault="qualified"
xml:lang="EN"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
version="1.0">
<!-- URI constraints
- starts with http(s) |filel|ftp://
- w/o whitespaces
-—>
<xs:simpleType name="validURI">
<xs:restriction base="xs:string">
<xs:pattern value=" (https?|f(ile|tp))://\S+"/>
</xs:restriction>
</xs:simpleType>
<!-- commit constraints
- no
-—>
<xs:simpleType name="validCommit">
<xs:restriction base="xs:string">
</xs:restriction>
</xs:simpleType>
<!-- capabilities constraints
- whitespace-separated list
-=>
<xs:simpleType name="validCapabilities">
<xs:restriction base="xs:string">
<xs:pattern value=" ([\w_]+(\s*[\w_]+)*)2"/>
</xs:restriction>
</xs:simpleType>
<!-- ID constraints
- whitespace-separated list
-—>
<xs:simpleType name="validID">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:pattern value="\s*\S+\s*"/>
<xs:whiteSpace value="collapse"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="middleware">
<xs:complexType>
<xs:sequence>
<xs:element name="middleware" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:all>
<xs:element name="name" type="xs:string" maxOccurs="1" minOccurs="1"/>
<xs:element name="id" type="validID" maxOccurs="1" minOccurs="1"/>

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 66

CYPRESS

> EMBEDDED IN TOMORROW™ Manifest Files

<xs:element name="uri" type="validURI" maxOccurs="1" minOccurs="1"/>
<xs:element name="desc" type="xs:string" maxOccurs="1" minOccurs="0"/>
<xs:element name="category" type="xs:string" maxOccurs="1" minOccurs="0"/>
<xs:element name="mutex group" type="xs:string" maxOccurs="1" minOccurs="0"/>
<xs:element name="req capabilities" type="validCapabilities" maxOccurs="1"
minOccurs="0"/>
<xs:element name="versions" maxOccurs="1" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="version" maxOccurs="unbounded" minOccurs="1">
<xs:complexType>
<xs:all>
<xs:element name="num" type="xs:string" maxOccurs="1"
minOccurs="1" />
<xs:element name="commit" type="validCommit" maxOccurs="1"
minOccurs="0"/>
<xs:element name="desc" type="xs:string" maxOccurs="1"
minOccurs="0"/>
</xs:all>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:all>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="version" type="xs:string"/>
</xs:complexType>
<xs:key name="id">
<xs:selector xpath="./*"/>
<xs:field xpath="id"/>
</xs:key>
</xs:element>
</xs:schema>

6.5.4.3 Example

<middleware version="1.0">
<middleware>
<name>USB Device</name>
<id>USBDevice</id>
<uri>http://git-ore.aus.cypress.com/asset-psoc/middleware/usbdev.git</uri>
<desc></desc>
<category>misc</category>
<req capabilities>led usb</req capabilities>
<versions>
<version>
<num>1.0.0.0</num>
<commit>abcdef</commit>
<desc></desc>
</version>
<version>
<num>1.2.0.0</num>
<commit>123456</commit>
<desc></desc>
</version>
</versions>
</middleware>
<middleware>
<name>Retarget IO</name>

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 67

= CYPRESS

-

EMBEDDED IN TOMORROW ™ Manifest Files

<id>RetargetIO</id>
<uri>http://git-ore.aus.cypress.com/asset-psoc/middleware/retarget-io.git</uri>
<desc></desc>
<category>misc</category>
<req_ capabilities></req capabilities>
<versions>
<version>
<num>1.0.0.0</num>
<commit>abcdef</commit>
<desc></desc>
</version>
</versions>
</middleware>
<middleware>
<name>CapSense Hard-FP</name>
<id>Capsense hfp</id>
<uri>http://git-ore.aus.cypress.com/asset-psoc/middleware/capsense-hard.git</uri>
<desc></desc>
<category>misc</category>
<mutex_group>CapSense</mutex_group>
<req capabilities>capsense</req capabilities>
<versions>
<version>
<num>1.0.0.0</num>
<commit>abcdef</commit>
<desc></desc>
</version>
</versions>
</middleware>
<middleware>
<name>CapSense Soft-FP</name>
<id>Capsense_ sfp</id>
<uri>http://git-ore.aus.cypress.com/asset-psoc/middleware/capsense-soft.git</uri>
<desc></desc>
<category>misc</category>
<mutex_group>CapSense</mutex_group>
<req_capabilities>capsense</req capabilities>
<versions>
<version>
<num>1.0.0.0</num>
<commit>abcdef</commit>
<desc></desc>
</version>
</versions>
</middleware>

</middleware>

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 68

/ Exporting to IDEs

& CYPRESS

- EMBEDDED IN TOMORROW"™

7.1 Overview

This chapter describes how to export a ModusToolbox application to various supported IDEs in addition to the provided Eclipse
IDE. As noted in the ModusToolbox Build System chapter, the make command includes various targets for the following IDEs:

® Visual Studio (VS) Code —make vscode
® |AR Embedded Workbench — make ewarm8

m Keil pVision —make uvision5

7.2 Import to Eclipse

The easiest way to create a ModusToolbox application for Eclipse is to use the Eclipse IDE included with the ModusToolbox
software. ModusToolbox includes an Eclipse plugin that provides links to launch the Project Creator tool and then import the
application into Eclipse. For details, refer to the Eclipse IDE for ModusToolbox Quick Start Guide or User Guide.

If you already have a ModusToolbox application that was not created using the Eclipse IDE flow, you can import it for use in
Eclipse as follows:

1. Open the Eclipse IDE included with ModusToolbox, and select File > Import... > Other > ModusToolbox Application

Import.
Import O e
Select
g
Select an import wizard:
type filter text
(= General
(= C/Ce+
(= Git
= Install
(= Run/Debug
(= Tasks
= Team
~ [= Other
& iodusToolbox ication Import
B¢ ModusToolbox Appli Imp.
@ < Back Mext > Einish Cancel

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 69

http://www.cypress.com/ModusToolboxQSG
http://www.cypress.com/ModusToolboxUserGuide

= CYPRESS

g EMBEDDED IN TOMORROW™

Exporting to IDEs

2. Click Next >. In the Project Location field, click the Browse... button and navigate to the application’s directory.

Impert Eclipse IDE for ModusToolbex Project O X

Project information.

Enter a name for the Project Creator created project and its
directory.

Project Location: | Ci\Users\CKF\exemples_2. T\wiced_btsdk | | Browse ...

Project Name: ‘ wiced_btsdk ‘

@ < Back MNext > Cancel

3. Click Finish.

The application displays in the Eclipse IDE Project Explorer.

Note For a WICED Bluetooth application, you must repeat the import process for the separate applications, such as

RFCOMM-213043EVAL, Audio-20819EVBO02, etc.

bt - RFCOMM-213043EVAL/README.md - Eclipse IDE for ModusToolbox
File Edit Navigate Search Project Run Window Help

& Scorch Online for Code Exampl ModusToolbox Console
earch Online for Code Examples re stored ats

i |- |-G -0 - Q- ENLE 2R S@S P (D Bl to o o
|
P 245D R Ep = 8 README.md [READMEmd 52 = B Szoutinez = 8
BS v G
v 26 > RFCOMM-213043EVAL [RFCOMM A RFCOMM Exam ples A h1.RFCOMM Examples
[Includes h3. Supported board
(= build) o ~ h1. wiced_btsdk
o libs This application group demonstrates use of Bluetooth RFCOMM profiles. h2. Folder structure
&) spp.c Applications included are: h2. Building code ex
[wiced_bt_cfg.c . h2. ModusToolbox T
[makefile " SPp: h2. SDK software fea
= makefileinit = Sample app demonstrating Serial Port Profile h2. List of boards avi
read_me.bd " pbap—dlent . - h2. Application settii
¥} README.md = Sample app demonstrating Phenebook Client Profile. h2. Downloading an
v L‘-“E:' > wiced_btsdk [wiced_btsdk release * map_cllenl' X . + h2. Using BSP (platfc
4 Binaries - Sample app demonstrating Message Access Client Profile. ha. a. Selecting ar
L Archives . hé. b. Custom BS
P s v Each app directory has a read_me.txt file which provides details of the h2. Using libraries
application and usage. h2. APl Documentat
Q- E B = 8
Supported board
Eclipse IDE for = v
ModusToolbox™
= Markdown Seurce | Preview < >
New Application B Console 1 Problems Memor Mews EYRE | ™ ~h~=0

Log file(s) for this session
= TETTL I TR T Im .'_'5 iced_btsdk project (1/1): wice

&, Build RFCOMM-213043EVAL Applicz
9 Clean RFCOMM-213043EVAL Applic

~ Launches v
< >
Ere, RFCOMM-213043EVAL/README.md

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

70

= CYPRESS

~agp> EMBEDDED IN TOMORROW™

7.3 Exportto VS Code

This section describes how to export a ModusToolbox application to VS Code.

7.3.1 Prerequisites
®m ModusToolbox 2.1 software and application
® VS Code version 1.42.x or later

m VS Code extensions. Install the following:

O C/C++tools
*

C/C++ n263 @oAM k35
C/C++ IntelliSense, debugging, and code browsing.

Microsoft

O Cortex-Debug

Cortex-Debug 034
ARM Cortex-M GDB Debugger support for VSCode
marus25

7.3.2 Process for PSoC 6 Application

1. Create a ModusToolbox application.

Exporting to IDEs

2. Open an appropriate shell program (see CLI Set-up Instructions), and navigate to the application directory, and run the

following command:
make vscode

This command generates json files for debug/program launches, IntelliSense, and custom tasks.

3. Open the VS Code tool, and select File > Open Directory...

File Edit Selection View Go Debug

@ New File Cirl+N
New V ow Cirl+Shift+N
Ctrl+0
Open Folder... Cirl+K Ctri+O
Open Workspace...

Open Recent

Note On macOS, this command is File > Open...

4. Navigate to and select the application directory, and then click Select Directory.

5. Select Terminal > Run Build Task...

Terminal Help

New Terminal Ctrl +Shift+

Split Terminal Ctrl+5hift+5

Run Task...
Task... Ctrl+Shift+B

Run Active File

Run Selected Text

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

71

= CYPRESS

~agp> EMBEDDED IN TOMORROW™

6. Then, select Build:Build Debug. After building, the VS Code terminal should display messages similar to the following:

| Section Mame

ax16082608
ax1688a

Total Internal
Total Internal

Total Internal
Total Internal SRAM (Utilized)

Terminal will be reused by tasks, press any key to close it.

7. Click the “bug” icon on the left and then click the Play button.

Fle Edit Selection View) Debug Terminal Help

RUN A BUG > Launch PSoC6 CM4 (OpenOCD) v~ 4

~ VARIABLES

The VS Code tool runs in debug mode.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

Exporting to IDEs

72

= CYPRESS

~agp> EMBEDDED IN TOMORROW™ EXpOI"[Ing to IDES

File Edit Selection View Go Debug Terminal Help main.c - HelloWorld - Visual Studio Code

P Launch PSoC6 CM4 (OpenOCD

“ VARIABLES
Local

: <optimized out>

result = cybsp_init();

if (result !=

__enable_irq();

Adapter Output

v CALL STACK PAUSED ON START
main@@x10086390 main.c p o

target halted due to debug-re current mode: Thread
xP5R 01886666 pc: Ox1668486C msp: 0\060608
Info : All data matches, Flash programming skipped
target halted due to debug-request, current mode: Thread
xP5SR: e 8 pc: @ B 6a ms 77
Info : .cm4 Pt 22 uing SYSRESETREQ

Info : p . cm4 : eset detected

target halted d t current mode: Thread
~ BREAKPOINTS xPSR: ©x61800800 pc: 8x188622d0 msp: 8x82847368
% CORTEX PERIPHERALS Info : .cm@: external reset detected
> CORTEX REGISTERS
¥ releasev100* < ®0A0 [P Launch PSoC6 CM4 (OpenOCD) (HelloWorld) Ln 100, Col 1 Spaces:4 UTF8 CRIF C Win32 & 0

7.4 Export IAR EWARM (Windows Only)

This section describes how to export a ModusToolbox application to IAR Embedded Workbench and debug it with CMSIS-DAP
or J-Link.

7.4.1 Prerequisites
® ModusToolbox 2.1 software and application

® Python 3.7: Use the Windows x86-64 executable installer available at python.org:

https://www.python.org/ftp/python/3.7.6/python-3.7.6-amd64.exe

Note Add python.exe to your PATH during the installation.
® |AR Embedded Workbench version 8.42.2 or later
® PSoC 6 Kit (for example, CYSBCPROTO-062-4343W) with KitProg3 FW
m For J-Link debugging, download and install J-Link software:

https://www.segger.com/downloads/jlink/JLink_Windows.exe

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 73

https://www.python.org/ftp/python/3.7.6/python-3.7.6-amd64.exe
https://www.segger.com/downloads/jlink/JLink_Windows.exe

= CYPRESS

~agp> EMBEDDED IN TOMORROW™

7.4.2 Process for PSoC 6 Application

1. Create a ModusToolbox application.

2. Open an appropriate shell program (see CLI Set-up Instructions), and navigate to the application directory.

3. Run the following command:
make ewarm8 TOOLCHAIN=IAR

Note Alternately, you can edit the application’s makefile to specify the IAR toolchain.

An IAR connection file appears in the application directory. For example:

mtb-example-psoc6-capsense-buttons-slider-freertos.ipcf

4, Start IAR Embedded Workbench.

5. Onthe main menu, select Project > Create New Project > Empty project and click OK.

6. Browse to the ModusToolbox application directory, enter an arbitrary application name, and click Save.

« S <« Users » wvmed » CapSenseButtonsandSliderFreeRTOS v O Search CapSenseButtonsandS.. @
Organize v New folder -
§ 3D Objects () Mame Date modified Type Size

I Desktop .git 1 File folder

[Documents build 1 File folder

; Downloads images 1 File folder

J', Music libs 1 File folder

&= Pictures

Videos

a Windows (C)

W
File name: | mth-example-psoch-capsense-buttons-slider-freertos
Save as type: | Project Files (*.ewp)

 Hide Folders Save Cancel

7. After the application is created, select File > Save Workspace, enter an arbitrary workspace name and click Save.

8. Select Project > Add Project Connection and click OK.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

Exporting to IDEs

74

= CYPRESS

g EMBEDDED IN TOMORROW™

Exporting to IDEs

9. On the Select IAR Project Connection File dialog, select the .ipcf file and click Open:
* Select IAR Project Connection File
« R » Velodymyr Medvid » CapSenseButtonsandSliderFreeRTOS v | O Search CapSenseButtonsandS.. 0O
Organize v New folder = O @
I This PC () Mame - Date modified Type
J 3D Objects git File folder
I Desktop build File folder
b images File folder
peuments libs File folder
; Downloads)
) settings File folder
J’ Music D mtb-example-psoch-capsense-buttons-slider-freertos.ipcf IPCF File
&=/ Pictures
B videos
25 Windows (G)
¥ Network S E
File name: | mth-example- psoch- capsense-buttons-slider-freertos.ipcf V| IAR Project Connection File (%.j| ~
10. On the main menu, Select Project > Make.
11. Connect the PSoC 6 kit to the host PC.
12. As needed, run the fw-loader tool to make sure the board firmware is upgraded to KitProg3. See KitProg3 User Guide for
details. The tool is in the following directory by default:
<user_home>/ModusToolbox/tools_2.1/fw-loader/bin/
13. Select Project > Options > Debugger and select CMSIS-DAP in the Driver list:

Options for node "mib-example- psoct-capsense-buttons-slider-freertos”

Category Factory Settings

General Options

Static Analysis

Runtime Checking
CfC++ Compiler Setup Dowrload Images Muticore Extra Options ~ Plugins
Assembler
Output Converter Driver Bunto
Custom Buld [cmsis Dap ~ main
Build Actions

Linker
Simulator

CADI

CMSIS DAP

GDB Server

et
Jink{)-Trace

1 Stellaris
Nu-Link

PE micro

ST-LINK

Third-Party Driver

TI MsP-FET

TIXDS

[\debugger'Cypress\PSoCE\CYBCE

Cancel

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

75

CYPRESS

EMBEDDED IN TOMORROW™

N 4

14. Select the CMSIS-DAP node and switch the interface from JTAG to SWD:

Interface Breakpoints
Probe configuration file

Explicit probe corfiguration

Factory Seliings

Overmide default

CPU: Select

Multi4arget debug system
Target number [TAF or Multidiap 1D |0
Target with muttiple CPUs

CPU number on target: 0

Category:
General Options
Static Analysis
Runtime Checking
CfC++ Compiler Setup
Assembler Probe corfig
Output Converter
Custom Build ® e
Build Actions O From file
inker O Explct
Debugger
Simulator Interface
CADI
MSIS D o QTAG
GDB Server (O}
Ijet
IHink/)-Trace
T Steleris Intertace speed
Mu-Link
PE micro Adtodetect
ST-LINK
Third-Party Driver
TIMSP-FET
TIXDS

Cancel

15. Click OK.

16. Select Project > Download and Debug.

The IAR Embededed Workbench starts a debugging session and jumps to the main function.

Exporting to IDEs

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

(<] A - o X
File Edit View Project Debug Disassembly CMSIS-DAP Tools Window Help

hm@ = XE0 2 c r Q> 5 !

‘Workspace ¥ 0 X | |ARInformation Center for Arm mai x v Registers 1 w [X Disassembly v o x
Debug | \main)) f0| Fid Group: Curert CPL v Goto | [Memory
Files # - :; /% Stack sizes of user tasks in this project +/ “ [Mame Value Disassembly "
B @ mtb-example-psoc-capse.. ¥ €5 jdefine TASK CAPSENSE STACK SIZE (configMINIMAL STACK SIZE) RO 0=00000000 021000 'dode: Oxesb8 0x0a40
e th-example-psock-capsen 70 #define TASK LED_STACK_SIZE (configMINIMAL_STACK_SIZE) R1 0xEQ0DEDSS 0x1000'dce2: DxaBle

W copsense 7 R2 0x08000000 0x1000"deed: Uxf7f Oxfecd
72 /* Queue lengths of message queuss used in this project */ Rr3 0x00600305 break:
7% #define SINGLE ELEMENT QUEVE o) R4 0x00000000 0x1000 " doe8: Oxs7dl
7 RS 0x00000000 break:
i R6 0x00000000 0x1000 " doea: 0xs7d0
T[] /AR AR KR4 RA A EAR AR KA A RA AR EAR AR AR KA EAA A AR EAR KR AR RAREAA AR LA RAARRAR o T 00 e DennO0 0000
g (1 tlon Name: main() RE 0xFC120038 0x1000'def0: 0x000d' 0007
T S e PP = et D atd DeonoE - d2ae
Lg 7 . RiD 0x1000D55C 0x1000 'dcf8: 0x0800'59ec
80 n sets up user tasks and then starts - s
= 11. 0x1000D55C _asn(Bkpt 1');
82 | 000000000 CY_HALT
cycly_capsense.c ol P — 0=60000000 0x1000 'defe: Dxbe01
cyclg_clacks.c ea | « ime 0200000000
cycly_peripherals.c 85 | 0x01000000 0x1000 ' dofe: 0x4770
cycly_pins.c 86 L Ak kR B A KRR KA AR R4 KR KRR R KKK A KR AR EARE R E KA B R KA KRR int main{void)
cycly_gepi_memslote 5 81 EoEElel 0=080FFB00
oyct_routing.c 88 { 0x1000DE7B nain
cycly_system.c &9 ey_rslc_T result: 0200000001
) starup_psock_0Z_c. %0 0x00000000 result = cybsp init();
ystern_psock_cmd.c 51 0x00000000 0x1000°dd02: Oxf7fe OxEbdf
capsenss_task.c €8 000000000 if (result |= CY_RSLT_SU
F— B capsense_taskh 28} 0x00000004 0x1000 dd06: 0x2800
[&) FreeRTOSConfig h & /1 Boaxd 2 £d. Stop pregran 25188 0x1000'dd08: Dxd00l
B led_task.c Z:[] Al (result _RSLT_SUCCESS) 25188 CY_ASSERT (D) :
B led_taskh o v assERT(0) 5 25188 0x1000"dd0a: Oxf7Ef OEEE?
mainc EE } N 25188 __enable_irg():
|— O mib-example-psock-capsen e 0x1000"dd0e: Oxb662
B Output 100 /+ Enable global interrupts 4/ l=sl g ghia g = 0
101 __enable irq();
T2 0x1000'dd10: 0x2200
103 [data-types for dei 0x1000'dd12: 0x2108
los 0x1000'dd14: 0x2001
msT 0x1000°dd16: Oxf7E7 OxEE7d v
[T = oo sille
Debug Log ~ I X CallStack > ax
Lea || nein
Thu Feb 13, 2020 13:36:38: Target reset [_call _main + Ozd]
Thu Feb 13, 2020 13:36:38: DMAC/ Trace: Configuring platform side S0 component
Thu Feb 13, 2020 13:36:38; INFO: Configuring trace using 'swo o=0xE008_E002))_0002)' setting
Thu Feb 13, 2020 13:36:3% INFO: SWO trace mode is not supported by the probe (use -etl{et Trace probe) - tace is disak
v
< >

Build Debug Log < >

Ready Ln 87, Col 15 UTF-8 CAP NUM OVR BE=

76

= CYPRESS

g EMBEDDED IN TOMORROW™

Exporting to IDEs

7.4.2.1 To Use J-Link

You can use a J-Link debugger probe to debug the application.
1. Open the Options dialog and select the Debugger item under Category.

2. Then select J-Link/J-Trace as the active driver:

Options for node "mtb-example-psoct-capsense-buttons-slider-freertos”

Category Factoy Seftings
General Options
Static Analysis
Runtime Checking
C/C++ Compiler Setup Download Images Multicore Extra Options Plugins
Assembler
Output Converter Driver Runte
Custom Buid JLink/J-Trace v [main
Build Actions
Simulator
Linker CADI
CHISIS DAP
Simulator GDB Server
CcADI et
CMSIS DAP Tl Stellaris
GDB Server Mu-Link
et PE micro
- ST-LINK
I-Link/3-Tr
T g:"‘ e Third-Party Driver
ars TIMSPFET
Nu-Link TI XDS IG\debugger\Cypress\PSoCE\CYBCE| |
PE micro
STLINK
Third-Party Driver
TIMSP-FET
TI¥DS
el

3. Select the J-Link/J-Trace item under Category, and under the Connection tab, switch the interface to SWD:

Options for node "mtb-example- psoc6-capsense-buttons-slider-freertos"

Category:

Factary Settings
General Options

Static Analysis
Runtime Checking

C/C++ Compiler Setup Connection Breakpoints
Assembler Communication
Qutput Converter (® USB: Serial no:
Custom Build
Build Actions OICPAP: |IP address
Linker IF address: |aaa bbb cce.ddd Serial o
Debugger
Simulator Interface JTAG sean chain
AG s in wi i s
CADI OuTAG JTAG scan chain with multiple targets
CMSIS5 DAP i T&F number: [0
GDB Server @SN - .
et e Scan chain contains non-Am devices
TG Prccering i
TI Stellaris
Mu-Link [Log commurication
PE micro $PROJ_DIRS\cspycomm log
ST-LINK
Third-Party Driver
TIMSP-FET
TIXDS

Cancel

4. Connect a J-Link debug probe to the 10-pin adapter (needs to be soldered on the prototyping kits), and start the debugging
session.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 77

= CYPRESS

> EMBEDDED IN TOMORROW™ EXpOI’tIng to IDES

7.5 Export to Keil pVision 5 (Windows Only)

This section describes how to export ModusToolbox application to Keil pVision and debug it with CMSIS-DAP or J-Link.

7.5.1 Prerequisites
®m ModusToolbox 2.1 software and application

m Python 3.7: Use the Windows x86-64 executable installer available at python.org:

https://www.python.org/downloads/

Note Add python.exe to your PATH during the installation.

Keil pVision version 5.28 or later
® PSoC 6 Kit (for example, CYSBCPROTO-062-4343W) with KitProg3 Firmware
m For J-Link debugging, download and install J-Link software:

https://www.segger.com/downloads/jlink/JLink Windows.exe

7.5.2 Process for PSoC 6 Application
1. Create a ModusToolbox application.

2. Open an appropriate shell program (see CLI Set-up Instructions), and navigate to the application directory.

3. Run the following command:
make uvision5 TOOLCHAIN=ARM

Note Alternately, you can edit the application’s makefile to specify a toolchain.
This generates two files in the application directory:
O mtb-example-psoc6-hello-world.cpdsc
O mtb-example-psoc6-hello-world.gpdsc
The cpdsc file extension should have the association enabled to open it in Keil pVision.

4. Double-click the mth-example-psoc6-hello-world.cpdsc file. This launches Keil pVision IDE. The first time you do this, the
following dialog displays:

Missing Required Packs

Mot installed required packs for Project
‘mtb-example-psoce-hello-world™

Cypress.PSoC6_DFP.]

Do you want to install them?

5. Click Yes to install the device pack. You only need to do this once.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

78

https://www.python.org/downloads/
https://www.segger.com/downloads/jlink/JLink_Windows.exe

e

w CYPRESS

~agp> EMBEDDED IN TOMORROW™

Exporting to IDEs

6. Follow the steps in the Pack Installer to properly install the device pack.

Pack Unzip: Cypress PSoC6_DFP 1.0.0 X

License Agreement

Pleasze read the fallowing license agreement carefully.

To continue with SETUP, you must accept the terms of the Licenze Agreement. To accept the
agreement, click the check box below.

CYPRESS END USER LICEMSE AGREEMENT A

PLEASE READ THIS END USER LICENSE AGREEMENT [“Agreement”’) CAREFULLY BEFORE
DOWHNLOADING, INSTALLING, COPYIMG, OR USIMG THIS SOFTWARE AND

ACCOMPANYING DOCUMENTATION. BY DOWNLOADING, INSTALLING, COFYING OR

USING THE SOFTWARE, vOU ARE AGREEING TO BE BOUND BY THIS AGREEMENT. IF

OU DO WNOT AGREE TO ALL OF THE TERMS OF THIS AGREEMEMT, PROMPTLY RETURN
AWND DO WOT USE THE SOFTwWaRE. IFYOU HAVE PURCHASED THIS LICEWSE TO THE
SOFTWARE, ¥OUR RIGHT TO RETURN THE SOFT'WARE EXPIRES 30 DaY'3S AFTERYOUR .,

PR AT AR ARCIEE ORS TO T A kAl Dme A e e m

[| agree ta ar:‘ghe terms of the preceding License Agreement

| Cancel |

uVision

."-I Software Packs folder has been modified.
" Reload Packs?

When complete, close the Pack Installer and close the Keil pVision IDE. Then double-click the .cpdsc file again and the
application will be created for you in the IDE.

7. Right-click on the mtb-example-psoc6-hello-world directory in the pVision Project view, and select Options for Target
'<application-name>' ...

KA C\Usersiwmed\mtb-example-psech-hello-worldimtb-example-psoch-hello-world.uvprojx - pVision
File Edit View Project Flash Debug Peripherals Tools SYC5 Window Help
EELIE | | | : | &
@ M | %%‘3 mtb-example-psocs-helli $| t & ‘? @
Project [x|
=1 Project mth-example-ps
=45 mtb-example-psocs.
-5 Source gg Options for Target ‘mtb-example-psocs-hello-world'... Alt=F7
] maine Add Group...
@ TARGET_CYECP t Manage Project ltems...
@ capsense Rebuild all target files
¥ core-lib
@ psoctemOp Build Target F7
@ psocthal ¥ | Show Include File Dependencies
B2 psochpdl
G 2 retarget-io

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 79

CYPRESS

EMBEDDED IN TOMORROW™

Exporting to IDEs

8. On the dialog, select the C/C++ (AC6) tab.
a. Check that the Language C version was automatically set to c99.
b. Select "AC5-like warnings" in the Warnings drop-down list.

c. Select "-Os balanced" in the Optimization drop-down list.

Options for Target 'mtb-example-psoct-hello-world' x
Device I Target | Output | Listing I User C/C++(ACE) Iﬂsrn | Linker I Debug I Util'rtiesl

— Preprocessor Symbols

Define: I
Undefine: I

— Language / Code Generation

[~ Execute-only Code Wamings: |ACSHike Wamings vl

IOptimization: I-Os balanced ;I I [~ TumW ;]L:I)n;ll'pami:'lg;

Link-Time Optimizati |- Al Wamings
W[AL Hike Wamings

Language C: Ic‘JEl vl
Language C++: ICHBB 'I

¥ Short enums/wchar

[~ Split Load and Store Multiple [MISRA Compatible bendent [~ use RTTI
[¥ One ELF Section per Function [Read-Write Position Independent [~ Mo Auto Includes
Include | \mtb-example-psoc-hello-world; \ibs
rae | PEP =
Misc I
Controls
Compiler |xc -std=c99 ~target=am-am-none-eabi mepu=cortex-md pu=fpv4d-sp-d16 mfloat-abi=hard ¢ A
c:t".t"d fno-tti funsigned-char fshort-enums fshort-wchar
ring w

oK I Cancel Defaults Help

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 80

= CYPRESS

g EMBEDDED IN TOMORROW™

9. Select the Debug tab, and select KitProg3 CMSIS-DAP as an active debug adapter:

KA Options for Target 'mtb-example-psocé-hello-world' X

Device] Tanget] Output] Listing] User] C/C++ {ACE}] Asm] Linker Debug] Lkilities]

" Use Simulator
[~ Limit Speed to Real-Time

with restrictions Settings

* Use: |CMSIS-DAP Debugger

j Settings
A

[v Load Application at Startup
Initialization File:

| o e |

Restore Debug Session Settings

[+ Breakpoints [v Toolbox

[+ Watch Windows & Peformance Analyzer
[v System Viewer

¥ Run to main() b miain{)

[z]

v
|—“ L.oac! Models Cortex-M Debugger
Initializatic ST-Link Debugger
’— NULink Debugger
Pemicro Debugger
Stellaris ICDI
Restore) Sil abs UDA Debugger

[v Brs Altera Blaster Cortex Debugger

Tl XD5 Deby
¥ VWAt T

[+ Memoary Display [v Memory Display v System Viewer

CPUDLL: Parameter: Driver DLL: Parameter:
|SAF~!MCM3.DLL |-F~:EMAP -MPU |SAF~!MCM3.DLL |-MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
|DCM.DLL |1:(:M4 |TCM.DLL |1:<:M4

[~ Wam i outdated Executable is loaded [~ Wam if outdated Executable is loaded

Manage Component Viewer Description Files ... |

o]

Cancel

Defaults |

Help

10. Click OK to close the Options dialog.

11. Select Project > Build target.

Exporting to IDEs

Build Output

+a

compiling cy_retarget_io.G...
linking...

-\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT_CM4\TOOLCHATN ARM\cyScéxxa_cmd_dual.
-\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT CM4\TOOLCHATN ARM\cyScéxxa_cmd_dual.
-\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT_CM4\TOOLCHATN ARM\cyScéxxa_cmd_dual.

. \ljbE\TARGET:CYSCFROTO*O52*93'13]”\COMPONENT:CM']\TDOLCHAIN:ARM\CYSCGXXE cmd_dual.
-\1ibs\TARGET_CYSCPROTO-062-4343W\COMPONENT_CM4\TOOLCHAIN ARM\cyScéxxa

: warning: L6314W: No section matches pattern

\1ibs\TARGET_CYSCFROTO-062-4343W\COMFONENT_CM4\TOOLCHATN_ARM\cyScéxxa_cmd_
Program Size: Code=19988 RO-data=8386 RW-data=440 ZI-data=1037896 -
Finished: 0 information, 11 warning and 0 error messages.
".\mtb-example-psocé-hello-world_build\mtb-example-psocé-hello-world.axf" - 0 Error(s), 11 Warning(s).
Build Time Elapsed: 00:01:31

CM5IS-DAP Debugger

{
(
: warning: L&314W: No section matches pattern *(
: warning: L6314W: No section matches pattern *(
*(.cy_toc_part2).
cmd_dual.sct(225): warning: L6314W: No section matches pattern *(
-\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT CM4\TOOLCHAIN ARM\cy&céxxa_cmd dual.sct(235): warning: L6314W: No section matches pattern *(
dual.sct(245): warning: L6314W: No section matches pattern *(
-\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT CM4\TOOLCHAIN ARM\cy&céxxa_cmd dual.sct(253): warning: L6314W: No section matches pattern *(

~

.\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT CM4\TOOLCHAIN ARM\cyScéxxa cm4_dual.sct (144): warning: LE325W: Pattern *(.cy ramfunc) only matches removed unused sections.
.\1ibs\TARGET CYSCPROTO-062-4343W\COMFONENI CM4\TOOLCHAIN ARM\CyScéxxa cmé dual.sct (170): warning: L6€314W: No ssction matches pattern *
.\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT CM4\TOOLCHAIN ARM\cyScéxxa cm4 dual.sct (180): warning: L&314W: No section matches pattern *
: warning: L6314W: No s=ction matches pattern *

.cy_app_signature).
.cy_em seprom) .
.cy_sflasn user_data).
.cy_sflash nar).
.cy_sflash_public_key) .

.Cy_rtoc_part2) .
.cy_xip) .
.cy_efuse) .
.cymeta) .

CAP NUM SCRL OVR R /W

To suppress the linker warnings about unused sections defined in the linker scripts, add “6314,6329” to the Disable

Warnings setting in the Project Linker Options.

12. Connect the PSoC 6 kit to the host PC.

13. As needed, run the fw-loader tool to make sure the board firmware is upgraded to KitProg3. See KitProg3 User Guide for

details. The tool is located in this directory by default:
<user_home>/ModusToolbox/tools_2.1/fw-loader/bin/

14. Select Debug > Start/Stop Debug Session.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

81

= CYPRESS

amp” EMBEDDED IN TOMORROW™ Exporting to IDEs

15. Click Continue a few times to enter the main procedure and debug the application code.

K2 C\Users\vmed\mith-example-psoc-hella-worldymth-example-psocé-hello-world.uvpraj - pVision - O >
File Edit Wiew Project Flash Debug Peripherals Tools SVCS Window Help

NEZEd@| » DR[| | PRRR|EF/ERD JERe @-|e
PO wrFu | ORBEaR B-B-R-2-8H-| %

Registers a1 B Disassembly [|

Register I Value I: Ox10006EDC 4770 BX 1r -
=B Ox10006ED2 0000 MCVS rd,z0

R RO 0x1000 oot R -
R1 00800 101: cy_rslt_t result:
30000 102: J* Imitialize the device and board peripherals =/
103: result = cybsp_init():
104:
aAr e Mo e . E_xw_a e e e e e e - X A
L4 >
0x0800... U] mainc |] outilsh v X
(x0800... g5 | *+ intc ~
(x1000... 96 | *
(= 1000... a7 R R R AR AN A AN A AN A AN A AN AARA
OxEDD... 98 int main(void)
Ow080F... [ag |{
O 1000... 100 cy_:cslt_t result;
(x1000... 101
Ix6100... 102 /* Initialize the device and board peripherals */

- 103 result = cybsp init():

B 104
I'?'l"'"l:rrtemal 105 /* Board init failed. Stop program execution */

- 7 Mode Thread -l 106 if (result != CY_RSLT_SUCCESS)

H e meoa 107 I Fi ¥
[iE] Project | =5 Registers < o
Command o E call stack + Locals n B3
Load "C:\\Users‘\\wvmed\\mtb-example-psocé-hello-wo: Name Location/Value Type

=% main (e 10006ED int () -
< > @ result <not in scope> auto—uin'v

> ‘I T—
ASS5IGN BreakDisable BreakEnable BreakKill BreakListl QhCallstack+ Locals Memaory 1

CMSIS-DAP Debugger

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

82

CYPRESS

EMBEDDED IN TOMORROW™ EXpor‘ting to IDEs

You can view the system and peripheral registers in the SVD view.

K23 C\Users\vmed\mtb-example-psoc-hello-world\mtb-example-psoct-hello-world.uvprojx - pVisien - O *
File Edit View Project Flash Debug | Peripherals Tools SVCS Window Help
NS @ % a@| 9 o || SystemViewer »| sackup] MR a-|le oo &-|&E-| %
= ! v | cPuss 3
Ros‘-'r|@|?}'{_}l{@*{}||:>||>_ Core Peripherals >|_| |vﬁv|~x\.
CsDo
Registers 3 E Disassembly ' a E cPuss i |
DMAC
Register I Value | 0x10006EDO 4770 BX -
0x10006EDZ2 0000 MOVS bw 4
ag: { EFUSE Property Value
100: cy_rslt_t res = IDENTITY Oec00000F03 3
101: FAULT b |7
102: /% Initialize FLASHC board peripherals *;
103: result = cybs] GPIO NS F
104: v PC Ox 00
A Fe oo iz HSICM I oy oo
< > MS 0x0F
! 'E = CM4_STATUS 0x00000010
_ ; %
L] mainc | |] q_utilsh IpC M SLEEPING]
96 L LCDO - SLEEPDEEP]
o7 AR R R R R R R R R R R R R AR RR R R R R R R R R R R R R R R
N
98 int main(void) LPCOMP PWR_DONE v
X ss I PASS = CM4_CLOCK_CTL
(xDB0FFSH 100 cy rslt t res FAST_INT_DIV 0x00
0100023 101 - FDMO —
2 cwcn
[« 10006E 102 /* Initialize PERI 'E board peripherals * CMA4 INTO STATUS 0
0610000 A3 result = cybs PROFILE e o]
. A
System 105 /* Board init RO rogram execution */ o eaaarm cramic I —— |
Intemal 106 if (result != SAR 5) FAST_INT_DIV A
Mode Thread 107 { [Bits 15..8] RW (@ (x40200008) Specifies the
od e N SCB 3 v Y -
o-2 e 1na v neawDT fast clock divider (from the high frequency
[El Project | £ Registers < SDHC 4 > clock "clk_hf' to the peripheral clock W
Command SMARTIO lury 1 o
Load "C:\\Users'‘\vmed\‘\mtbh-example-psocé-hello-wor SMIFD bess‘l 6
SRSS
TCPWM 4
£
USBFS0
=
AS5IGN BreakDisable BreakEnable BreakKill BreakList BreakSet "
CMSIS-DAP Debugger t1: 0.00091820 sec L]

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 83

)

ws CYPRESS

g EMBEDDED IN TOMORROW™

7.5.2.1 To Use KitProg3 CMSIS-DAP, ULink2 and ULink Pro debuggers

1. Select the Device tab in the Options for Target dialog and check that M4 core is selected:
Options for Target 'mtb-example-psoct-gpio-interrupt’ X
Device |Targe1| Outputl Listingl User I C/C++ {.M.CG}I Asm I Lirlkerl Debugl Util'rtiesl
ISoﬂware Packs LI
Vendor: Cypress Software Pack
Device: CYS8CH247BZI-D54 Cortex-M4 Pack: IC)'DrBSS.PSoCG_DFP.1.D.D
Toolset: ARM URL: " hitp://www keil.com/pack/
Search: I
4 CYSCE247BZI-D54 :I PSoC 62 (Perfformance Line): Dual-core Cortex-M4/M0+ MCL series
with programmable digital and analog peripherals, advanced
€3 CvaC6247BZI-D34: Cortex MOp graphics, CapSense, crypto and secure boot security.
E| CY8C6247BZ1-D54: Cortex-M4
i Cv¥8C6247FDI-DO2
[CYBCE247FDI-D32
& CYBCE247FDI-D52 J
i{ CYBCE247FTI-D32
[CYBCE247WI-D34
[{ CYBCE248A71-52D14
I e
0K | Cancel | Defauts | Help
2. Select the Debug tab and click “Settings” to display the dialog Target Driver Setup:

Options for Target 'mtb-example-psocé-gpio-interrupt’

Device I Target I Output I Listing I User I C/C++ {.RCG}I Asm I Linker Debug | Ltilties I

*

Manage Component Viewer Description Files ... |

" Use Simulator with restrictions Settings | & Use: ICMSIS-DAF‘ Debugger LII Settings I
™ Limit Speed to Real-Time
¥ Load Application at Startup ¥ Run to main{) ¥ Load Application at Startup ¥ Run to main{)
Initialization File: Initialization File:
|] e |] o] Ede |
Restore Debug Session Settings —————————————————— Restore Debug Session Settings ——————————————————
¥ Breakpoints v Toolbox V¥ Breakpoints [V Toolbax
[¥ Watch Windows & Peformance Anatyzer ¥ Watch Windows
¥ Memory Display v System Viewer ¥ Memory Display ¥ System Viewer
CPU DLL: Parameter: Driver DLL: Parameter:
ISAF{MCME‘..DLL I-F{EMAF‘ -MPU ISAF{MCME‘..DLL I-I‘u'IPU
Dialog DLL: Parameter: Diglog DLL: Parameter:
pcm.DLL [pCa TcmDLL [pCa
[~ Wam if outdated Executable is loaded [~ Wam if outdated Executable is loaded

0K | Cacd | Defauts | Help

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

Exporting to IDEs

84

= CYPRESS

g EMBEDDED IN TOMORROW™

3. Onthe Target Driver Setup dialog, on the Debug tab, select the following:

m set Port to “SW”
m set Max Clock to “1 MHz”

m set Connect to “Normal”
m set Reset to “VECTRESET”
® enable Reset after Connect option

CMSIS-DAP Cortex-M Target Driver Setup

Debug |Trc|ce I Flash Downloadl Pack I

—CMSIS-DAP - JTAG/SW Adapter — — 5W Device

IC)'press MiniProg4 (CMSIS-D) = | IDCODE

| Device Name |

Serial No: [0516138B022374

Firmware Version: IZ.D.D

7 5wl Pat:fsw -]
Ma Cock [tttz <]

€ Manual Configurat

bdd | | Detete |

% Automatic Detection

SWDIO | & :46BAD2477 ARM CoreSight SW-DP

ID CODE: I

Move
el

el Device Mame: I

Update | AP

IDxDZ

— Debug
Connect & Reset Options

Connect: §Nomal

+ |fReset: BVECTRESET '

[™ Stop after Reset

Cache Options Download Options

[V Cache Code

I” Verify Code Download
¥ Cache Memory [Download to Flash

ok |

Cancel |

4. Select the Flash Download tab and select “Reset and Run” option after download, if needed:

CMSIS-DAP Cortex-M Target Driver Setup

DEbLIQI Trace Flash Download |Pack I

 Download Function

LOAD " Erase Full Chip W Program

Fi * Erase Sectors [Veri
C oo e [T

RAM for Algorithm

Start: |MBDZ€-H}D Size: | 00008000

r— Programming Algorithm

*

| Device Size | Device Type | Address Range |
CY8Choo_SFLASH_TOCZ 1k On-chip Flash 16007C00H - 16007FFFH
CY8Choo_SFLASH_PKEY 3 On-chip Flash 16005A00H - 160065FFH
CY8Choo_SFLASH_USER s On-chip Flash 16000800H - 16000FFFH
CYBChoo_WFLASH 32 On-chip Flash 14000000H - 14007FFFH
CYBCHo7_sect206KB Ll On-chip Flash 10000000H - 100FFFFFH
Start: I Size:
Add | Femove |
ok | Cancel | Help

ModusToolbox™ User Guide, Document Nu

mber: 002-29893 Rev. *C

Exporting to IDEs

85

= CYPRESS

g EMBEDDED IN TOMORROW™

5. Select the Pack tab and check if Cypress PSoC6 DFP is enabled:

Debug I Trace I Flash Download Pack |

Debug Description
Pack: Cypress.PSoC6_DFP.1.0.0

¥ Enable ™ Enable Flash Sequences

I Log Sequences: ID:"-.C‘,'P"-Imp"-new"-.KeiIiject"-.CYSCKIT—DEZ—WIFI-BT‘-.EM"-n'ltb-exampIe-psocB-gpio-inter

Configuration: I Edit... |

CMSIS-DAP Cortex-M Target Driver Setup *

QK I Cancel Help

7.5.2.2 To Use J-Link debugger

1. Make sure you have J-Link software version 6.62 or newer.

Exporting to IDEs

2. Select the Debug tab in the Options for Target dialog, select J-LINK / J-TRACE Cortex as debug adapter, and click

“Settings”:

Options for Target 'mth-example-psoc-gpio-interrupt’

Dievice I Target I Qutput I Listing I User I C/C++ {.ﬂ.CG}I Asm I Linker Debug | Litilties I

Manage Component Viewer Description Files ... |

™ Use Simulator with restrictions Settings | * Use: IJ-LINK,-"J-TH;&.CE Cortex ;I Settings I
™ Limit Speed to Real-Time
¥ Load Application at Startup ¥ Run to main() V¥ Load Application at Startup V¥ Run to main()
Initialization File: Initialization File:
| | e || = Edi |
Restore Debug Session Seftings ——————————————————— Restore Debug Session Settings ———————————————————
v Breakpaints ¥ Toolbaox | Breakpaints ¥ Toolbaz
V¥ Watch Windows & Performance Analyzer V¥ Watch Windows
V¥ Memary Display V¥ System Viewer V¥ Memary Display [V System Viewer
CPU DLL: Parameter: Driver DLL: Parameter:
[SARMCM3.DLL |-REMAP -WPU [SARMCM3.DLL | -MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
[pcmpLL [pCh4 fTcMDLL [pCh4
[Wam if outdated Executable is loaded [~ Wam f outdated Executable is loaded

oK Cancel Defautts | Help

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

86

&= CYPRESS

amp” EMBEDDED IN TOMORROW™ Exporting to IDEs

3. Click OK in the Device selection message box:

MY Cortex JLink/JTrace Target Driver Setup

Debug |Trace | Riash Download |
—J-Link # J-Trace Adapter ———— ~JTAG Device Chain

5N: || vl Move
Device: TEE Up |
HW : dil : I ol Downl
P

Bl -Link

The selected device "CYBCE247EZI-D54: CORTEX-M4" is unknown to this version of the J-Link software.

2 J-Link V6.62 Device Selection 7

Proper device selection is required to use the J-Link internal flash leaders

{ "B Please make sure that 2t least the core J-Link shall connect to, is selected,
[
for flash download or unlimited flash breskpoints.

For some devices which require 2 specizl handling, selection of the correct device is important.

o]

4. Select appropriate target in Wizard:

H SEGGER J-Link V6.62b - Target device settings *
Selected Device: CYBCExx7_CM4 Litle Endian + | Core #0 ~+

Manufacturer Device Core MumCores Flash Size RAM Size £

Cypress CYBCHxb_CM4 Cortex-M4 1 512KB + 32 K. 32KB

Cypress CYBCHxb_CM4_sect236KB Cortex-M4 1 512KB + 32 K. 32KB

Cypress CY8CHT_CMOp Cortex-MD 1 1MB + 32KB.. 32KB

Cypress CYBCET_CMOp_sect236KB Cortex-MD 1 1MB + 32KB.. 32KB

Cypress CY8CHed_CMOp_sect256KB_tm Cortex-MO 1 1TME + 32KB... 32KB

Cypress CY8CHeT_CMOp_tm Cortex MO 1ME + 32KB.. 32KB
CYECEoT_CM4 _ 1MB - 32KB

Cypress CYBCHT_CM4_sect236KB Cortex-M4 1MB+ 32KB.. 32KB

Cypress CY8ChoA_CMOp Cortex-M0 1 2MB + 32KB.. 32KB

Cypress CY8CHoA_CMOp_sect256KB Cortex-M0 1 2MB + 32KB.. 32KB

Cypress CYBCEd_CMOp_sect256KB_t.. Cortex-MO 1 2MB + 32KB.. 32KB

Cypress CYBCEA_CMOp_tm Cortex-MD 1 2MB + 32KB... 32KB

Cypress CYBCEaA_CM4 Cortex-M4 1 2MB + 32KB... 32KB

Cypress CYBChaA_CM4_sect256KB Cortex-M4 1 2MB + 32KB... 32KB

Cypress CYBL10hoox Cortex-M0 1 128 KB 16 KB v

= e an e e wan . e A . J

Cancel

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C 87

= CYPRESS

g EMBEDDED IN TOMORROW™

5. Goto Debug tab in Target Driver Setup dialog and select:

m set Port to “SW”
m set Max Clock to “1 MHz”

m set Connect to “Normal”
m set Reset to “Normal”
® enable Reset after Connect option
Cortex JLink/Trace Target Driver Setup *
Debug |T|E|ce I Flash Downloadl
—d-Link # J-Trace Adapter —————— ~ SW Device
sN: [50107842 -] IDCODE | Device Name | tove
Device: JLink SWD | & 0xEBAD2477 ARM CoreSight SW-DP Up |
Hw: [vioio ai: [veead D°W”|

FW: [J-Link V10 compiled Jan 7 2(

% Automatic Detection

€ Manual Configuration

Add I Delete | Updatel IR len: I

|0 CODE: I
Device Mame: I

Cache Options Download Options ———

[V Cache Code [~ Verify Code Download
¥ Cache Memary [~ Download to Aash

~Interface TCPAP Misc
@ USE © TCP/P HEREIE FEIES :
IP-Address Port (Auto: 0) Autodetect | ik Info |
Sean | 127 .0 .0 . 1 -]
| | Pra | JLink Crd |
State: ready

[ok | cacel | oo

Exporting to IDEs

6. Select the Flash Download tab in Target Driver Setup dialog and select “Reset and Run” option after download if needed:

Cortex JLink/JTrace Target Driver Setup

Debug I Trace FHash Download |

LORD " Erase Ful Chip ¥ Program

— Download Function RAM for Algorithm

*

53 ¢ Ve Start: |<0B026400 Size: {xB000
" Donct Erase [l Resetand Run

— Programming Algorithm

| Device Size | Device Type | Address Range |
CYBCHoo _SFLASH_TOC2 1k On-chip Flash 16007C00H - 16007FFFH
CYBCHoo_SFLASH_PKEY * On-chip Flash 16005A00H - 160065FFH
CYBCEoo_SFLASH_USER s On-chip Flash 16000800H - 16000FFFH
CYBCEoo_WFLASH 324 On-chip Flash 14000000H - 14007FFFH
CYBCEo7_sect256KB M On-chip Flash 10000000H - 100FFFFFH
Start: | Size:

Add I Remove

OK I Cancel Apply

ModusToolbox™ User Guide, Document Number:

002-29893 Rev. *C

88

= CYPRESS

g EMBEDDED IN TOMORROW™

7.5.2.3 Program External Memory
1. Download internal flash as described above.

Notice “No Algorithm found for: 18000000H - 1800FFFFH” warning.

Exporting to IDEs

2. Select the Flash Download tab in Target Driver Setup dialog and remove all programming algorithms for On-chip Flash

and add programming algorithm for External Flash SPI:

CIMSIS-DAP Cortex-M Target Driver Setup

Debug I Trace Hash Download | Pack I

— Download Function RAM for Algorithm

LORD " Frase Full Chip ¥ Program

F; ' Erase Sectors [V Verfy
" Donot Erase |V Resetand Fun

Start: | 2<08026400 Size: IMDDDEDDD

— Programming Algorthm

CY8Ckoo_SFLASH_TOC2 Onchip Flash 16007C00H - 16007FFFH
CY8CHoo_SFLASH_PKEY On-chip Flash 16005A00H - 160065FFH
CY8CHoox_SFLASH_USER On-chip Flash 16000800H - 16000FFFH
14000000H - 14007FFFH
10000000H - 100FFFFFH

CY8CEoo_WFLASH On-chip Flash
CY8CHo7_sect2BEKB On-chip Flash

Start: I[bdGDD?CDD Size: | (k00000400

o | []

oK | Cancel | Help
CMSIS-DAP Cortex-M Target Driver Setup
De-bugl Trace Flash Download |F‘E|c:k I
— Diownload Function RAM faor Algarthm
LOAD i~ Erase Ful Chip |7 Program
_F % Erase Sectors [V Verfy Start: (08026400 Size: | k00002000
i DonotEmse |¥ Resetand Run
— Programming Algorithm
Deschptiorn fice of i e Address Bange
CYBCEoo_SMIF 128M Ext. Flash SPI 18000000H - 1FFFFFFFH
Start: [(18000000 Size: |(x08000000
Add | Remaove |
ok | Cancel | Help

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

89

CYPRESS

g EMBEDDED IN TOMORROW™

3. Download flash.
Notice warnings:

O No Algorithm found for: 270000000H - 1000182FH

O No Algorithm found for: 20002000H - 10007E5BH

O No Algorithm found for: 16007COOH - 16007DFFH

7.5.2.4 Erase External Memory

Exporting to IDEs

1. Select the Flash Download tab in Target Driver Setup dialog and remove all programming algorithms for On-chip Flash

and add programming algorithm for External Flash SPI:

CMSIS-DAP Cortex-M Target Driver Setup

Debug I Trace Flash Download | Pack I

— Download Function RAM for Algorithm
LOAD " Erase Ful Chip [¥ Program
_‘F % Erase Sectors W Verffy Start: |(x08026400 Size: |2<00008000
" Donct Erese ¥ Reset and Run

P ing Algorithm

CY8CHoo_SFLASH_TOC2 On-chip Fash 16007C00H - 16007FFFH
CY8CEoo_SFLASH_PKEY On-chip Flash 16005A00H - 160065FFH

CYBCHoo_SFLASH_USER On-chip Flash 16000800H - 16000FFFH
CY8C oo _WFLASH On-chip Flash 14000000H - 14007FFFH
CYBCEo7_sect256KB On-chip Flash 10000000H - 100FFFFFH

Start: I[k‘IGDD?CDD Size: | 00000400

Add |I Remove I

ok | Caned | Help
CMSIS-DAP Cortex-M Target Driver Setup
Debug I Trace Fash Download | Pack I
— Download Function RAM for Algorithm
LOAD ~ Erase Full Chip [v Program
F % Erase Sectors [V Verify Start: | (08026400 Size: | 00003000
" Donot Erase ¥ Reset and Run
P ing Algorithm
Descrption Deyice S Deyice Address Rapoe
CY8CHoo_SMIF 128M Ext. Flash SP 18000000H - 1FFFFFFFH
Start:l[k‘l&DDDDDD Size: | (08000000
Add | Remove |
oK | Cancel | Help

2. Click Flash > Erase in menu bar.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

90

Document Revision History

A
W

-

CYPRESS

EMBEDDED IN TOMORROW"™

Document Title: ModusToolbox™ User Guide
Document Number: 002-29893

Revision Date Description of Change

** 3/24/2020 New document.

*A 3/27/2020 Updates to screen captures and associate text.
*B 4/1/2020 Fix broken links.

*C 4/13/2020 Fix incorrect link.

ModusToolbox™ User Guide, Document Number: 002-29893 Rev. *C

91

	Contents
	1 Introduction
	1.1 What is ModusToolbox?
	1.1.1 Reference Flows
	1.1.1.1 Flows Covered in this Guide
	1.1.1.2 Flows Not Covered in this Guide

	1.1.2 Products

	1.2 High-Level What is Included
	1.2.1 ModusToolbox Installer
	1.2.2 Online Content

	1.3 About this Guide

	2 Getting Started
	2.1 Install and Configure Software
	2.1.1 GUI Set-up Instructions
	2.1.2 CLI Set-up Instructions

	2.2 Get Help
	2.2.1 GUI Documentation
	2.2.1.1 Eclipse IDE
	2.2.1.2 Configurator and Tool Guides

	2.2.2 Command Line Documentation
	2.2.2.1 make help
	2.2.2.2 CLI Tools

	2.3 Create Applications
	2.3.1 Project Creator GUI
	2.3.2 project-creator-cli
	2.3.3 git clone

	2.4 Update BSPs and Libraries
	2.4.1 Library Manager
	2.4.2 make getlibs

	2.5 Configure Settings for Devices, Peripherals, and Libraries
	2.5.1 Configurator GUI Tools
	2.5.2 Configurator CLI Tools

	2.6 Write Application Code
	2.7 Build, Program, and Debug
	2.7.1 Use Eclipse IDE
	2.7.2 Export to another IDE
	2.7.3 Use Command Line
	2.7.3.1 make build
	2.7.3.2 make program
	2.7.3.3 make debug/qdebug/attach

	3 ModusToolbox Software Overview
	3.1 Directory Structure
	3.1.1 Documentation
	3.1.1.1 Release Notes
	3.1.1.2 Top-Level Documents
	3.1.1.3 Document Index Page

	3.1.2 Tools

	3.2 Product Versioning
	3.2.1 General Philosophy
	3.2.2 Install Package Versioning
	3.2.3 Multiple Tools Versions Installed
	3.2.4 Specifying Alternate Tools Version
	3.2.4.1 System Variable
	3.2.4.2 Eclipse IDE Workspace Setting
	3.2.4.3 Specific Project Makefile

	3.2.5 Tools and Configurators Versioning
	3.2.5.1 Configurator Messages

	3.2.6 GitHub Libraries Versioning
	3.2.7 Dependencies Between Libraries
	3.2.7.1 Dependencies via.lib files
	3.2.7.2 Regular C Dependencies via #include

	3.3 Installation Resources
	3.3.1 Build System Infrastructure
	3.3.2 Program and Debug Support
	3.3.3 Eclipse IDE
	3.3.4 Configurators
	3.3.5 Tools
	3.3.6 Utilities

	3.4 Enablement Software
	3.4.1 Code Examples
	3.4.2 Board Support Packages and Kits
	3.4.3 Middleware
	3.4.4 Low-Level Resources

	4 ModusToolbox Build System
	4.1 Overview
	4.2 Application Types
	4.3 BSPs
	4.4 make getlibs
	4.4.1 repos

	4.5 Adding source files
	4.5.1 Auto-Discovery
	4.5.1.1 .cyignore
	4.5.1.2 TOOLCHAIN_<NAME>
	4.5.1.3 TARGET_<NAME>
	4.5.1.4 CONFIG_<NAME>
	4.5.1.5 COMPONENT_<NAME>
	4.5.1.6 BSP Makefile

	4.6 Pre-builds and Post-builds
	4.7 Program and debug
	4.8 Available Make Targets
	4.8.1 General Make Targets
	4.8.2 IDE Make Targets
	4.8.3 Tools Make Targets
	4.8.4 Utility Make Targets

	4.9 Available Make Variables
	4.9.1 Basic Configuration Make Variables
	4.9.2 Advanced Configuration Make Variables
	4.9.3 BSP Make Variables
	4.9.4 Getlibs Make Variables
	4.9.5 Path Make Variables
	4.9.6 Miscellaneous Make Variables

	5 Board Support Packages
	5.1 Overview
	5.2 What’s in a BSP
	5.2.1 PSoC 6 vs. WICED Bluetooth

	5.3 PSoC 6 BSPs
	5.3.1 cybsp.c /.h & cybsp_types.h
	5.3.2 linker
	5.3.3 startup
	5.3.4 COMPONENT_BSP_DESIGN_MODUS
	5.3.5 deps
	5.3.6 libs
	5.3.7 Board Initialization
	5.3.8 Overriding the BSP Configuration Files
	5.3.9 Creating a BSP for Your Board

	5.4 WICED Bluetooth BSPs (platforms)
	5.4.1 Selecting an alternative BSP
	5.4.2 Custom BSP
	5.4.2.1 Complete BSP
	5.4.2.2 Custom Pin Config Only

	6 Manifest Files
	6.1 Overview
	6.2 Create Your Own Manifest
	6.2.1 Overriding the Standard Super-Manifest
	6.2.2 Custom Super-Manifest
	6.2.3 Processing
	6.2.4 Conflicting Data

	6.3 Using Offline Content
	6.4 Access Private Repositories
	6.5 Manifest XML File Structure
	6.5.1 Super Manifest
	6.5.1.1 Element and Attribute Descriptions
	6.5.1.2 Schema
	6.5.1.3 Example

	6.5.2 Board Manifest
	6.5.2.1 Element and Attribute Descriptions
	6.5.2.2 Schema
	6.5.2.3 Example

	6.5.3 App Manifest
	6.5.3.1 Element and Attribute Descriptions
	6.5.3.2 Schema
	6.5.3.3 Example

	6.5.4 Middleware Manifest
	6.5.4.1 Element and Attribute Descriptions
	6.5.4.2 Schema
	6.5.4.3 Example

	7 Exporting to IDEs
	7.1 Overview
	7.2 Import to Eclipse
	7.3 Export to VS Code
	7.3.1 Prerequisites
	7.3.2 Process for PSoC 6 Application

	7.4 Export IAR EWARM (Windows Only)
	7.4.1 Prerequisites
	7.4.2 Process for PSoC 6 Application
	7.4.2.1 To Use J-Link

	7.5 Export to Keil µVision 5 (Windows Only)
	7.5.1 Prerequisites
	7.5.2 Process for PSoC 6 Application
	7.5.2.1 To Use KitProg3 CMSIS-DAP, ULink2 and ULink Pro debuggers
	7.5.2.2 To Use J-Link debugger
	7.5.2.3 Program External Memory
	7.5.2.4 Erase External Memory

	Document Revision History

