

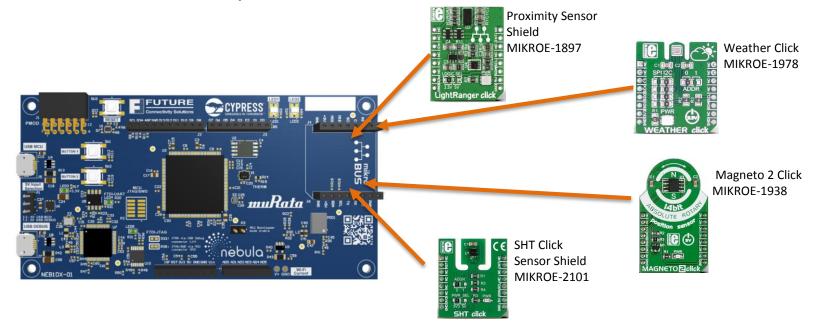
Nebula IoT Reference Design Board

The possibilities are endless!


- Use the different interfaces to add on development boards from our growing list of Future IoT ready boards
- Application Examples:
 - Sensors
 - Proximity
 - Ambient light
 - Motion
 - Temperature
 - Humidity
 - Pressure
 - Gesture Recognition
 - UVA/UVB
 - Motor Control

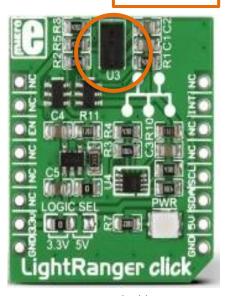
Cypress Murata Certified WiFi + Bluetooth Combo Module

- Murata 1DX certified module Part Number LBEE5KL1DX-883
- Inside is a Cypress CYW4343W Wi-Fi and Bluetooth chipset radio
- Single Band 2.4GHz 802.11 b/g/n
 - Over SDIO Interface
- Dual Mode (Classic BT + BLE) Bluetooth v4.1 + EDR Radio
 - Over UART Interface
- Single ended RF port using single antenna
- Radio Regulatory Certifications
 - USA/Canada FCC ID: VPYLB1DX IC: 772C-LB1DX
 - Europe EN300328 v1.9.1
 - 4.2. Bluetooth® Qualification QDID: 7306
- Size: 6.95 x 5.15 x 1.1 mm



Sensor add-on Shields-MikroBUS™ boards

MikroBUS™ Sensor Shield Example



Sensor add-on Shields-MikroBUS™ boards

- Shield based on ST Microelectronics' proximity sensor VL6180X
- Sensor consists of:
 - IR Emitter
 - Ambient light sensor
 - Range sensor
- Calculates distance by measuring the time it takes for a photon to travel to the nearest object and back
- Communicates with the Nebula board through mikroBUS I²C pins
- Size: 28.6 x 25.4 mm

VL6180X

Proximity Sensor Shield MIKROE-1897

How to use the LightRanger Click board with the Nebula

IoT Board

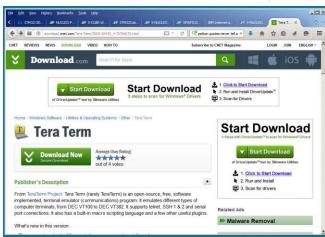
Hardware Prerequisites

• 1 x Nebula IoT development kit • 1x USB cable

(NEB1DX-01) • 1 PC

 1 x LightRanger Click board (MIKROE-1897)

LightRanger Click board


Nebula IoT Development kit

Software Prerequisites

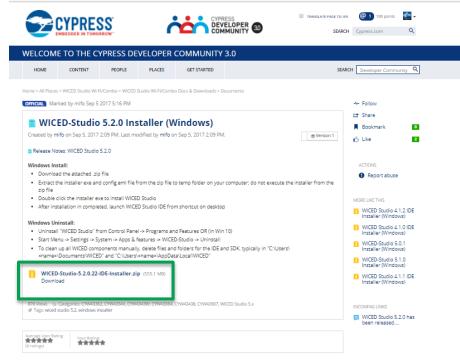
- Example code "vl6180x_test" make target built in WICED
- WICED Studio 5.2 (and later)

Download Terminal Emulator (if you don't have one)

- TeraTerm Pro is available (for free) at:
 - http://download.cnet.com/Tera-Term/3000-20432_4-75766675.html
 - Download "teraterm-4.89.exe" (or later). Run it.
 - (The current installer is in the "Tools" subdirectory of the memory stick.)

WICED Walkthrough

WICED Studio SDK: Download

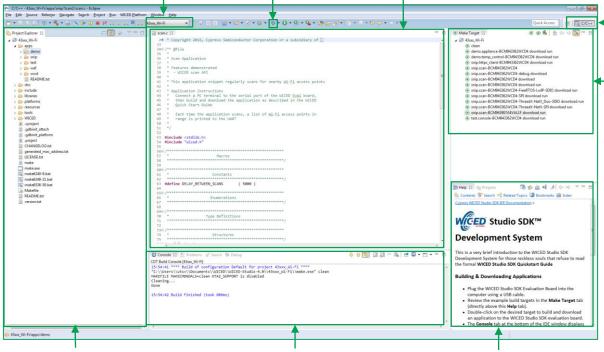

Download WICED Studio 5.2 or later:

Windows:

https://community.cypress.com/docs/DOC-13651

Linux or OS X:

https://community.cypress.com/community/wiced-wifi/wiced-wifi-documentation



WICED Studio: IDE Overview

Device Selector

Debug Icon Editor

Choose your device Launch debugger Edit the firmware

Workspace Perspective

Switch between editor and debug views

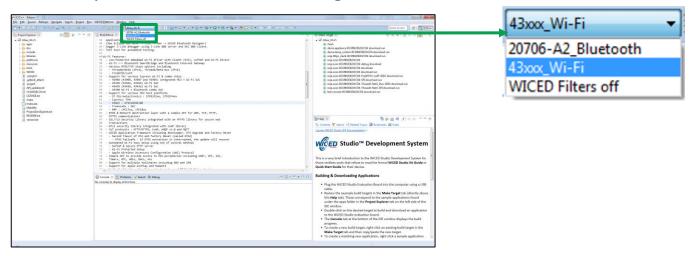
Make Target

Build your application

Project Explorer

Explore the SDK

Console Window
View the build output


Help

Learn how to build/run an application

WICED Studio SDK: Device Selection

Use the pull-down menu to change the device

Pull-down menu options:

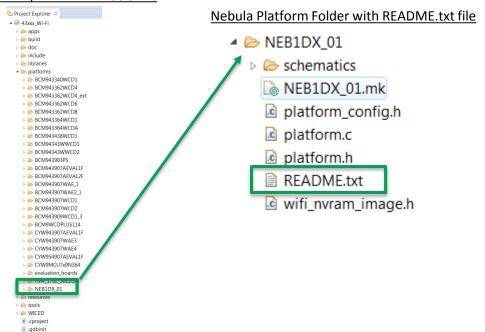
20706-A2_Bluetooth – Bluetooth (BR/EDR/BLE) SoC with ARM® Cortex®-M3
43xxx_Wi-Fi – Wi-Fi + Bluetooth Combo SoCs, Wi-Fi SoCs with integrated MCU, and Wi-Fi-only SOCs
WICED Filters off – Show all available devices

WICED Studio SDK: Example Applications

Choose the relevant sub-folder from the 43xxx_Wi-Fi -> Apps folder in the Project Explorer

- Demo Advanced applications that combine multiple WICED features
- Snip Application snippets that use various WICED APIs
- Test Manufacturing/certification-related test applications and utilities
- WAF Applications that are part of the WICED Application Framework (WAF) like bootloaders
- WWD Applications that use low-level APIs provided by the WICED Wi-Fi Driver (WWD) and do not use the WICED APIs provided by the WICED Application Framework

Read the README.txt files to learn about the contents of the respective folder

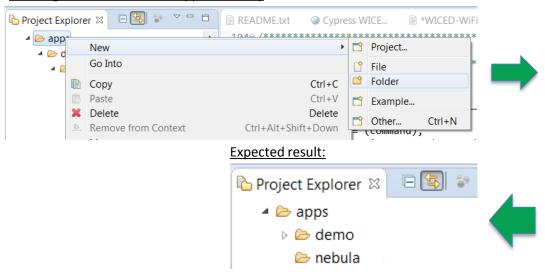


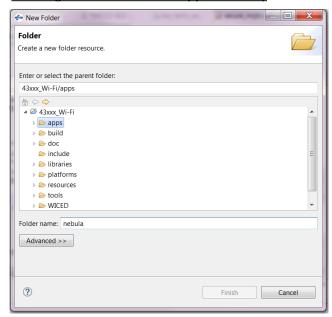
WICED Studio SDK: Platform Selection

Browse the **43xxx_Wi-Fi** device folder to the **Platforms** folder in your **Project Explorer** to view the hardware platforms available for your device.

Read the README.txt file located within the folder for every platform for details about each hardware platform.

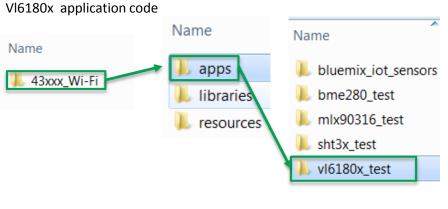
Wi-Fi/Wi-Fi + BT Platforms



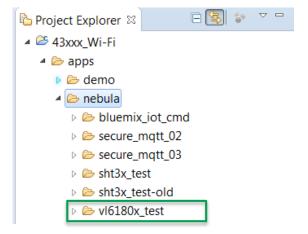

@ .gdbinit_attach

1 Create a new Folder in the *apps* folder called *nebula*.

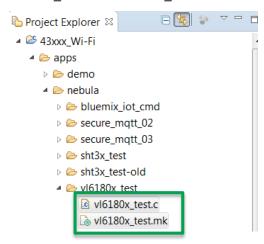
Creating a new folder in the apps directory



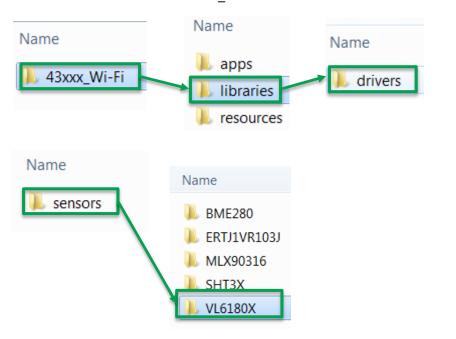
Creating a new folder in the *apps* directory

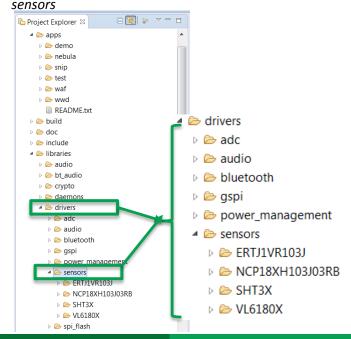


Copy the example "vl6180x_test" code into the nebula folder.


Vl6180x application is copied and pasted under 43xxx_Wi-Fi → Apps → nebulo

3 Ensure the .c and .mk files are in the directory


vl6180x Test.c and vl6180 test.mk

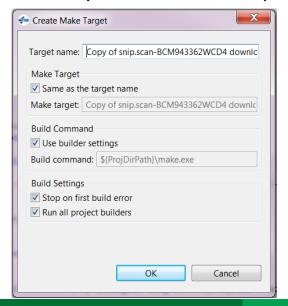


4 Copy the VL6180X drivers into the WICED directory

Driver code is located under sensor code>libraries>drivers>sensors>VL6180X

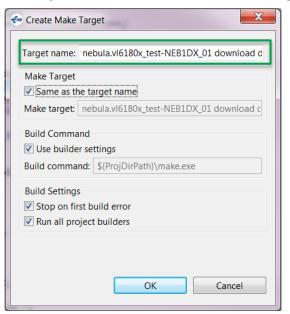


Paste it in WICED under libraries > drivers >



In the *Make Target* window rightclick and copy an example build target that ends with *download* run.

Select snip.scan-BCM943362WCD4 download run


Paste the example build target in the Make Target window. The Create Make Target window opens automatically to enable you to edit build options.

Modify the **Target name** to match the following format: <application.folder.path>-<target platform> download download_apps run and press OK.

The target name is modified to nebula.vl6180x_test-NEB1DX_01 download_apps run

You only need to include the download_apps option if you expect that the external flash needs to be updated. Since this is our first build and the Wi-Fi module firmware is a resource stored in the external flash, we need to include this to make sure it is properly programmed.

Double-click the newly created make target *nebula.vl6180x_test-NEB1DX_01* download download_apps run to build, download, and run your application.

Console window showing build output

```
☐ Console 
☐ Problems 
☐ Search 
☐ Debug

CDT Build Console [43xxx_Wi-Fi]
Building apps lookup table
Download complete
Downloading DCT ...
Download complete
Downloading Application ...
Download complete
Downloading resources filesystem ... build/nebula.vl6180x test-NEB1DX 01/filesystem.bin at sector 1 size 9
Downloading apps lookup table in wiced apps.mk ... build/nebula.vl6180x test-NEB1DX 01/APPS.bin @ 0x0000 sj
Resetting target
Target running
Build complete
Making .gdbinit
16:02:55 Build Finished (took 3m:4s.355ms)
```


Open a terminal program, observe output.

Expected result

```
COM94 - Tera Term VT
 File Edit Setup Control Window Help
 Ambient Light = 36 lux
 Nothing within detectable range.
Starting WICED vWiced_006.000.000.0043
Platform NEBIDX_01 initialised
Started ThreadX v5.6
Initialising NetX_Duo v5.7_sp2
Creating Packet pools
WLAN MAC Address : DC:EF:CA:00:71:4C
                         : w10: Oct 23 2017 03:54:15 version 7.45.98.38 (r674442 CY) FWID 01-acea29d1
                         : API: 12.2 Data: 9.10.39 Compiler: 1.29.4 ClmImport: 1.36.3 Creation: 2017-10-23 03:45:22
  -- VL6180X Proximity and Ambient Light Sensor Snippet --
 Ambient Light = 45 lux
 Nothing within detectable range.
Ambient Light = 39 lux
 Nothing within detectable range.
 Ambient Light = 407 lux
 Nothing within detectable range.
 Error reading ambient light! Err = 1
 Range = 102 mm
Error reading ambient lig
Range = 100 mm
Ambient Light = 1477 lux
Range = 142 mm
Ambient Light = 1415 lux
Range = 159 mm
Ambient Light = 1336 lux
Range = 176 mm
Ambient Light = 1285 lux
Range = 166 mm
Ambient Light = 1358 lux
Range = 168 mm
Ambient Light = 1432 lux
Range = 148 mm
 Error reading ambient light! Err = 1
  ange = 142 mm
```

Shine a flashlight near the proximity sensor on the click board and observe the ambient light reading.

Baud rate: 115200

Data: 8 bit Parity: none Stop: 1 bit

Flow control: none

THANK YOU!

