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This application note describes the steps for setting up Semper™ Secure NOR Flash memories to perform Fast Secure 

Boot. It also provides guidelines and suggestions to implement host application software for such purpose. 

1 Introduction 

Some applications, especially in automotive segment, require very fast boot-up time to respond quickly to timing critical 
messages. For example, systems inside a car listening to the Controller Area Network (CAN) bus are required to boot 
within 100 ms or faster to handle CAN bus messages. Traditional systems may satisfy this requirement easily; however, 
systems that require a secure boot find it challenging to meet such time requirements, as by the nature of the secure 
boot, firmware on different boot-up stages must be validated before they can run, which takes extra time.  

Semper Secure NOR flash devices are designed to help such applications to satisfy the secure boot-up time 
requirement. This application note describes how the flash can be set up for fast secure boot purpose and the actual 
boot flow. You can follow this application note to implement the flow. Moreover, the Semper Solution Development Kit 
(S-SDK) provides the fast-secure boot user example as described in this document. You can use the source code 
example directly if you use the S-SDK.  

It is assumed that you are familiar with Semper Secure datasheets and standard operations. For details of the 
operations, see the corresponding datasheets and application notes. 

This document uses “device” to refer to the Semper Secure flash device and “host” to refer to the paired host MCU if 
not otherwise specified.  

2 Fast Secure Boot Requirements 

The process of secure boot requires authentication of the boot code itself before the host MCU can execute it. The 
authentication includes verifying if the code storage hardware is the original hardware, and the boot code has not been 
tampered with. While there are many ways to implement the secure boot process, this application note shows one of 
the ways to perform fast secure boot.  

The objective of fast secure boot is to complete the secure boot process in a relatively fast manner, preferably within 
100 ms. This duration is measured from the system power on to the system is up and running with the boot code. The 
main steps for the fast secure boot include: 

1. Preparing the device. This is done only once during provisioning. 

2. Authenticating the flash device. 

3. Authenticating the boot code. This is an optional step with Semper Secure flash. As Semper Secure provides 
secure storage for the boot code, the code cannot be tampered with by unauthorized parties after it is programmed. 
Therefore, once the flash device is authorized. It is considered the code inside the secure storage is also intact.  

4. Reading boot code from the device or executing in place from the flash.  
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3 Preparing the Device for Fast Secure Boot 

3.1 Choosing the Correct Ordering Option 

Semper Secure has two main ordering part categories: Symmetric devices and Asymmetric devices. Due to the nature 
of asymmetric keys, it would take a much longer time for the host MCU and the flash device to complete the mutual 
authentication process. Therefore, asymmetric devices are not designed to perform fast secure boot. Symmetric 
devices use a shared secret scheme, so the secure boot process is much faster. The fast secure boot process 
described in this document applies to symmetric devices only.   

3.2 Initial Pairing with the host 

Here are the typical initial provisioning steps for pairing up a host MCU with a symmetric Semper Secure device: 

1. Validate device firmware. 

2. Use the SetInitialConfig transaction to set the initial configuration of the device. 

3. Install the Master Key (Shared Secret) on the device.  

4. Set up Region Configurations.  

5. Program Region Secret Keys. 

6. Freeze all configuration settings using the FreezeConfig transaction.  

For detailed explanations of each step, see AN228332, available with Semper Secure Early Access Program.  

Step 1 validates the device firmware: Layer 0 (L0) and Layer 1 (L1). The host can store the hash value of the L0 and 
L1 and verify the values during the fast secure boot sequence.  

Step 3 installs the shared secret onto the flash device. This shared secret is also the master key for the device. It is the 
basis of the mutual authentication between the host and the device. The shared secret is kept on the flash in a safe 
key storage, encrypted with the Composited Device Identifier (CDI). The CDI itself, is derived from the Unique Device 
Secret (UDS) and the hash value of the immutable Layer 0 firmware. In another word, the CDI is unique on each device, 
and it is not exposed to the outside world. If the shared secret can be correctly recovered from using the CDI to decrypt 
the stored value, that will prove that the flash UDS, Layer 0 Firmware are still intact. Therefore, the flash can be 
authenticated by the host.  

After the shared secret is successfully installed onto the flash, the device is ready for performing a fast secure boot 
process, assuming the boot code has already been programmed into the secure storage.  

4 Example of Fast Secure Boot Procedures 

4.1 Setting up Master Session Key 

Upon power on, the host MCU establishes the master session key with the flash device. If the master session key gets 
generated successfully, it ensures that the device CDI and shared secret are all intact.  

Figure 1 shows the steps to generate Master Session Key from the host point of view.  

 

  

http://www.cypress.com/
https://go.cypress.com/semper-secure-early-access-program


  Setting up Semper Secure Flash for Fast Secure Boot 

www.cypress.com Document Number: 002-30415 Rev. ** 3 

Figure 1. Master Session Key Generation Flow 

 

 

Here is a detailed explanation of the flow:  

1. Issue the GetCommandCounter transaction. This is an optional step. If the host has already synchronized the 

Command Counter value with the flash, this step can be omitted. If both the host MCU and the flash went through 
a Power on Reset (POR), it is necessary for the host to get the Command Counter value for the first time to start 
the secure transaction process. This is a public transaction that does not require any security parameters. 

2. Issue the CreateSessionKey transaction.  The host starts the master session key generation sequence with 

the CreateSessionKey transaction. It should be sent with the type 00h, that is, creating master_session_key. 

This transaction write packet contains a 16-byte nonce_u value, 20 bytes of security parameter, and the CRC-16 
checksum to ensure packet integrity. 

After sending the write packet, the host should monitor the interrupts or poll the Status Register to check when the 
device has completed the operation.   
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3. Read response from the device. After the device is ready, the host issues the read packet transaction to retrieve 
the result code from the device. The read packet contains nonce_v value generated by the flash. The packet also 
has the HMAC value calculated by the master session key newly generated on the flash. Before the host derives 
the master session key, it cannot validate the packet yet.  

4. Generate the master_session_key on the host. After getting the nonce_v value from the device, the host should 
calculate the master_session_key based on following formulas: 

salt (256 bits) = 0xDEADBEEF || last 28 bytes of Device Configuration Data; 

Z (256 bits) = Master_Key (i.e., Shared_Secret); 

Kdk (256 bits) = HMAC(salt, Z); 

L = 0x100 (HMAC-256) or 0x140 (AES-GCM); 

Label (64 bits) = 0x6DE8BC2177D879B2 (HMAC-256) or 0x921743DE8827864D (AES-GCM); 

Context (512 bits) = Life_cycle (16b) || 0000h || ++CmdCounter (64b) || security_parameters 

(160b) || nonce_u (128b) || nonce_v (128b); 

master_session_key = KDF (Kdk, L, Label || Context); 

After deriving the master session key, which should be the same as the one on the flash, the host can now validate 
the read packet by HMAC to ensure its authenticity.   

5. Issue StoreSessoinKey transaction. The host generates a MacTagU value from the new master session key 
according to this formula, then includes it in the write packet with type 0000h for master_session_key. 

MacTagU = HMAC(master_session_key, nonce_v||nonce_u) 

After sending the write packet, the host should monitor the interrupts or poll the Status Register to check when the 
device has completed the operation.   

6. Read response from the device. After the device is ready, the host issues the read packet transaction to retrieve 
the result code from the device. The read packet contains the MacTagV value generated by the flash. After 
validating the packet with the HMAC value, the host should compare the MacTagV with the MagTagU value. If the 
comparison passes, that means the master session key is successfully validated by both the host and the device.  

4.2 Validating Device Firmware 

After setting up the master session key, the host can issue the ValidateFW transaction to the device. This transaction 

returns an FMAC value, the calculation of which contains the hash values of L0 and L1 firmware. The host then can 
validate the stored L0 and L1 hash values to make sure they have not been tampered with. 

After these steps, the host and the device are mutually authenticated.   

4.3 Setting up Region Session Key 

Using the same steps for setting up the master session key, the host can set up the region session key with the flash 
device for the region that contains the boot code. All secure transactions between the host and the device for this region 
will be using the region session key.  

4.4 Unlocking Region for Reads 

This example shows an Execute-In-Place (XiP) from the boot code region. The secure region is set up with the access 
level as Authenticated Lock region. To perform read operations, the host must first use the region session key to unlock 
the region. It is done by the AuthenticatedUnlock transaction. After this transaction, the host can start performing 

legacy SPI or Quad SPI reads from the region for XiP.  

4.5 Authenticating Boot Code before Reading 

Furthermore, before running the boot code, the host can validate the entire boot code by issuing the 
AuthenticateMemory transaction. This transaction uses the region session key to calculate a hash value over the 

specified address range and returns the hash value to the host. The host then validates the hash value before reading 
the boot code.  
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5 Using Semper Solution SDK 

Semper Solution Development Kit (S-SDK) is a software package that is designed to help customers develop their own 
driver or directly use the provided code examples. Fast Secure Boot is one of the examples provided in the S-SDK. 
You can follow the S-SDK code example or use the platform-independent C code to perform the steps mentioned in 
this document. 

6 Conclusion 

By providing secure storage for boot code in secure regions, Semper Secure flash helps the host MCU to perform a 
fast secure boot to meet the system requirements. The process validates a pre-provisioned shared secret on both the 
host and the device sides. It can validate both the device and software integrity before the boot code is used.  

7 References  

002-26101 S35HS-T, S35HL-T Semper Secure Flash with Quad SPI Datasheets 

002-28332 AN228332 – Initial Provisioning in Cypress Semper Secure NOR Flash 

Note: These documents are available with Semper Secure Early Access Program. 
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