
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

www.cypress.com Document No. 002-30415 Rev. ** 1

AN230415

Setting up Semper Secure Flash for Fast Secure Boot

Author: Zhi Feng

Associated Part Family: S35HL-T/S35HS-T
S36HL-T/S36HS-T
S38HL-T/S38HS-T

This application note describes the steps for setting up Semper™ Secure NOR Flash memories to perform Fast Secure

Boot. It also provides guidelines and suggestions to implement host application software for such purpose.

1 Introduction

Some applications, especially in automotive segment, require very fast boot-up time to respond quickly to timing critical
messages. For example, systems inside a car listening to the Controller Area Network (CAN) bus are required to boot
within 100 ms or faster to handle CAN bus messages. Traditional systems may satisfy this requirement easily; however,
systems that require a secure boot find it challenging to meet such time requirements, as by the nature of the secure
boot, firmware on different boot-up stages must be validated before they can run, which takes extra time.

Semper Secure NOR flash devices are designed to help such applications to satisfy the secure boot-up time
requirement. This application note describes how the flash can be set up for fast secure boot purpose and the actual
boot flow. You can follow this application note to implement the flow. Moreover, the Semper Solution Development Kit
(S-SDK) provides the fast-secure boot user example as described in this document. You can use the source code
example directly if you use the S-SDK.

It is assumed that you are familiar with Semper Secure datasheets and standard operations. For details of the
operations, see the corresponding datasheets and application notes.

This document uses “device” to refer to the Semper Secure flash device and “host” to refer to the paired host MCU if
not otherwise specified.

2 Fast Secure Boot Requirements

The process of secure boot requires authentication of the boot code itself before the host MCU can execute it. The
authentication includes verifying if the code storage hardware is the original hardware, and the boot code has not been
tampered with. While there are many ways to implement the secure boot process, this application note shows one of
the ways to perform fast secure boot.

The objective of fast secure boot is to complete the secure boot process in a relatively fast manner, preferably within
100 ms. This duration is measured from the system power on to the system is up and running with the boot code. The
main steps for the fast secure boot include:

1. Preparing the device. This is done only once during provisioning.

2. Authenticating the flash device.

3. Authenticating the boot code. This is an optional step with Semper Secure flash. As Semper Secure provides
secure storage for the boot code, the code cannot be tampered with by unauthorized parties after it is programmed.
Therefore, once the flash device is authorized. It is considered the code inside the secure storage is also intact.

4. Reading boot code from the device or executing in place from the flash.

http://www.cypress.com/

 Setting up Semper Secure Flash for Fast Secure Boot

www.cypress.com Document Number: 002-30415 Rev. ** 2

3 Preparing the Device for Fast Secure Boot

3.1 Choosing the Correct Ordering Option

Semper Secure has two main ordering part categories: Symmetric devices and Asymmetric devices. Due to the nature
of asymmetric keys, it would take a much longer time for the host MCU and the flash device to complete the mutual
authentication process. Therefore, asymmetric devices are not designed to perform fast secure boot. Symmetric
devices use a shared secret scheme, so the secure boot process is much faster. The fast secure boot process
described in this document applies to symmetric devices only.

3.2 Initial Pairing with the host

Here are the typical initial provisioning steps for pairing up a host MCU with a symmetric Semper Secure device:

1. Validate device firmware.

2. Use the SetInitialConfig transaction to set the initial configuration of the device.

3. Install the Master Key (Shared Secret) on the device.

4. Set up Region Configurations.

5. Program Region Secret Keys.

6. Freeze all configuration settings using the FreezeConfig transaction.

For detailed explanations of each step, see AN228332, available with Semper Secure Early Access Program.

Step 1 validates the device firmware: Layer 0 (L0) and Layer 1 (L1). The host can store the hash value of the L0 and
L1 and verify the values during the fast secure boot sequence.

Step 3 installs the shared secret onto the flash device. This shared secret is also the master key for the device. It is the
basis of the mutual authentication between the host and the device. The shared secret is kept on the flash in a safe
key storage, encrypted with the Composited Device Identifier (CDI). The CDI itself, is derived from the Unique Device
Secret (UDS) and the hash value of the immutable Layer 0 firmware. In another word, the CDI is unique on each device,
and it is not exposed to the outside world. If the shared secret can be correctly recovered from using the CDI to decrypt
the stored value, that will prove that the flash UDS, Layer 0 Firmware are still intact. Therefore, the flash can be
authenticated by the host.

After the shared secret is successfully installed onto the flash, the device is ready for performing a fast secure boot
process, assuming the boot code has already been programmed into the secure storage.

4 Example of Fast Secure Boot Procedures

4.1 Setting up Master Session Key

Upon power on, the host MCU establishes the master session key with the flash device. If the master session key gets
generated successfully, it ensures that the device CDI and shared secret are all intact.

Figure 1 shows the steps to generate Master Session Key from the host point of view.

http://www.cypress.com/
https://go.cypress.com/semper-secure-early-access-program

 Setting up Semper Secure Flash for Fast Secure Boot

www.cypress.com Document Number: 002-30415 Rev. ** 3

Figure 1. Master Session Key Generation Flow

Here is a detailed explanation of the flow:

1. Issue the GetCommandCounter transaction. This is an optional step. If the host has already synchronized the

Command Counter value with the flash, this step can be omitted. If both the host MCU and the flash went through
a Power on Reset (POR), it is necessary for the host to get the Command Counter value for the first time to start
the secure transaction process. This is a public transaction that does not require any security parameters.

2. Issue the CreateSessionKey transaction. The host starts the master session key generation sequence with

the CreateSessionKey transaction. It should be sent with the type 00h, that is, creating master_session_key.

This transaction write packet contains a 16-byte nonce_u value, 20 bytes of security parameter, and the CRC-16
checksum to ensure packet integrity.

After sending the write packet, the host should monitor the interrupts or poll the Status Register to check when the
device has completed the operation.

DEVICEHOST

Step 2: CreateSessionKey
(nonce_u)

Step 3: Read Packet
(result, nonce_v, mac)

Step 5: StoreSessionKey
(MacTagU, mac)

Master Key already

provisioned

Generate nonce_u

Step 6: Read Packet
(result, mac)

Step 1 (optional):
GetCommandCounter

Counter Value

Generate MacTagU

Generate nonce_v

Prepare Read Packet
mac = HMAC(master_session_key,

response||result||nonce_v||Command

Counter)

Generate nonce_v

Generate master session key

Validate Packet

Generate MacTagV
If MacTagV == MacTagU

Store master_session_key in

RAM for future usage

Validate Read Packet

master_session_key is

ready

Master Key already

provisioned

Step 4:

Generate master session key

Validate Packet

http://www.cypress.com/

 Setting up Semper Secure Flash for Fast Secure Boot

www.cypress.com Document Number: 002-30415 Rev. ** 4

3. Read response from the device. After the device is ready, the host issues the read packet transaction to retrieve
the result code from the device. The read packet contains nonce_v value generated by the flash. The packet also
has the HMAC value calculated by the master session key newly generated on the flash. Before the host derives
the master session key, it cannot validate the packet yet.

4. Generate the master_session_key on the host. After getting the nonce_v value from the device, the host should
calculate the master_session_key based on following formulas:

salt (256 bits) = 0xDEADBEEF || last 28 bytes of Device Configuration Data;

Z (256 bits) = Master_Key (i.e., Shared_Secret);

Kdk (256 bits) = HMAC(salt, Z);

L = 0x100 (HMAC-256) or 0x140 (AES-GCM);

Label (64 bits) = 0x6DE8BC2177D879B2 (HMAC-256) or 0x921743DE8827864D (AES-GCM);

Context (512 bits) = Life_cycle (16b) || 0000h || ++CmdCounter (64b) || security_parameters

(160b) || nonce_u (128b) || nonce_v (128b);

master_session_key = KDF (Kdk, L, Label || Context);

After deriving the master session key, which should be the same as the one on the flash, the host can now validate
the read packet by HMAC to ensure its authenticity.

5. Issue StoreSessoinKey transaction. The host generates a MacTagU value from the new master session key
according to this formula, then includes it in the write packet with type 0000h for master_session_key.

MacTagU = HMAC(master_session_key, nonce_v||nonce_u)

After sending the write packet, the host should monitor the interrupts or poll the Status Register to check when the
device has completed the operation.

6. Read response from the device. After the device is ready, the host issues the read packet transaction to retrieve
the result code from the device. The read packet contains the MacTagV value generated by the flash. After
validating the packet with the HMAC value, the host should compare the MacTagV with the MagTagU value. If the
comparison passes, that means the master session key is successfully validated by both the host and the device.

4.2 Validating Device Firmware

After setting up the master session key, the host can issue the ValidateFW transaction to the device. This transaction

returns an FMAC value, the calculation of which contains the hash values of L0 and L1 firmware. The host then can
validate the stored L0 and L1 hash values to make sure they have not been tampered with.

After these steps, the host and the device are mutually authenticated.

4.3 Setting up Region Session Key

Using the same steps for setting up the master session key, the host can set up the region session key with the flash
device for the region that contains the boot code. All secure transactions between the host and the device for this region
will be using the region session key.

4.4 Unlocking Region for Reads

This example shows an Execute-In-Place (XiP) from the boot code region. The secure region is set up with the access
level as Authenticated Lock region. To perform read operations, the host must first use the region session key to unlock
the region. It is done by the AuthenticatedUnlock transaction. After this transaction, the host can start performing

legacy SPI or Quad SPI reads from the region for XiP.

4.5 Authenticating Boot Code before Reading

Furthermore, before running the boot code, the host can validate the entire boot code by issuing the
AuthenticateMemory transaction. This transaction uses the region session key to calculate a hash value over the

specified address range and returns the hash value to the host. The host then validates the hash value before reading
the boot code.

http://www.cypress.com/

 Setting up Semper Secure Flash for Fast Secure Boot

www.cypress.com Document Number: 002-30415 Rev. ** 5

5 Using Semper Solution SDK

Semper Solution Development Kit (S-SDK) is a software package that is designed to help customers develop their own
driver or directly use the provided code examples. Fast Secure Boot is one of the examples provided in the S-SDK.
You can follow the S-SDK code example or use the platform-independent C code to perform the steps mentioned in
this document.

6 Conclusion

By providing secure storage for boot code in secure regions, Semper Secure flash helps the host MCU to perform a
fast secure boot to meet the system requirements. The process validates a pre-provisioned shared secret on both the
host and the device sides. It can validate both the device and software integrity before the boot code is used.

7 References

002-26101 S35HS-T, S35HL-T Semper Secure Flash with Quad SPI Datasheets

002-28332 AN228332 – Initial Provisioning in Cypress Semper Secure NOR Flash

Note: These documents are available with Semper Secure Early Access Program.

http://www.cypress.com/
https://go.cypress.com/semper-secure-early-access-program

 Setting up Semper Secure Flash for Fast Secure Boot

www.cypress.com Document Number: 002-30415 Rev. ** 6

Document History

Document Title: AN230415 – Setting up Semper Secure Flash for Fast Secure Boot

Document Number: 002-30415

Revision ECN Submission
Date

Description of Change

** 6905239 06/25/2020 Initial release

http://www.cypress.com/

 Setting up Semper Secure Flash for Fast Secure Boot

www.cypress.com Document Number: 002-30415 Rev. ** 7

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Videos | Blogs
| Training| Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
An Infineon Technologies Company

 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This document,

including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the
United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph,
grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you
do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive,
nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and
reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form
externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims
of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with
Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures
implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of
a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER
SECURITY INTRUSION (collectively, “Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release
Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design
defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves
the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference
purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this
information and any resulting product. “High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage.
Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical Component” means any component of a
High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or
effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use
of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates,
distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal
injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended
or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published data sheet for the product explicitly
states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a
Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or
registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and
brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/cypressgithub
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	INFIN PMI Cypress Cover Page Letter
	002-30415
	1 Introduction
	2 Fast Secure Boot Requirements
	3 Preparing the Device for Fast Secure Boot
	3.1 Choosing the Correct Ordering Option
	3.2 Initial Pairing with the host

	4 Example of Fast Secure Boot Procedures
	4.1 Setting up Master Session Key
	4.2 Validating Device Firmware
	4.3 Setting up Region Session Key
	4.4 Unlocking Region for Reads
	4.5 Authenticating Boot Code before Reading

	5 Using Semper Solution SDK
	6 Conclusion
	7 References
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

