
 PSoC Creator Component datasheet

Rev. *A CONSULTRON 10/19/2020 4:13:00 PM

u

Features

 Simplifies the interface to a Terminal UART for a Cypress

serial UART or Cypress USBUART component.
 Uses the Cypress serial UART API calls.
 Full-Duplex serial communication.
 Optional Terminal-connected String Functions like

GetString_Filt() and GetChar_Filt().
 Optional Terminal-connected single character Menu

Command structure.

General description

The Term Component implements a simple interface on the

PsoC to a PC-based Terminal Application. The component has

both the UART and USBUART components embedded in the implementation but you select

which UART-type is used.

This version of Term allows the user to access all of the inputs, outputs and functional API

interfaces available to the Cypress UART V2.50. Therefore, user setting of the baudrate, flow

control and other features are now available.

Embedded are additional optional library/components that use the Term Component to

implement:

 String_Funcs => GetString_Filt() – Filters input characters that match the filter criteria

passed to the function to return a string. GetChar_Filt() - Filters input characters that

match the filter criteria passed to the function to return a single character.

 MenuCmds => Allows for a structure of Menu commands using optional submenus to

invoke function calls on single character input from the Terminal.

When to use Term component

Term
2.3

Term: 2.3 PSoC Component datasheet

Page 2 of 18 CONSULTRON Rev. *A

The Term Component was developed to be a “quick” change interface to use the PsoC’s UART

component or the USBUART component with very minimal SW changes in an application.

For example, if you have previously designed terminal communication SW using the UART

component (a very common practice), you can remove the UART component on the schematic

and replace it with the Term component and give the same component name. Since it

supports many of the UART component API calls, you should be able to build your project and it

should work without further modification. (Make sure the Rx and Tx pin assignments are

correct for your application.)

Later, if you chose to use the PsoC’s USBUART, just change the “UART type” parameter to “USB

UART”. Build your project. Many of the common UART API calls are supported so that the USB

port should now be useable as a UART type device.

Using the optional embedded String_Funcs and MenuCmds components simplifies creating

user interfaces using a Terminal host program on a PC.

Use of this custom component requires the designer to configure the project to reference the

component library supplied. Refer to "How to Access Custom Libraries and Components" for

methods of access available.

Device Families Supported

At this time, the following are the PsoC devices that support this component:

 PsoC5

Implementation Limitations

This version of the Term Component has the following limitations:

 The UART functional implementation should be complete. No known limitations.

 The USB_UART implementation uses some of the common UART API calls but not all. If

some of the USBUART component calls (or #defines) are needed, they can be accessed

by renaming the call to Term_instance_USBUART_usbuart_function. Table 1 has the

UART API calls supported.

PSoC Creator Component datasheet Term: 2.3

Rev. *A CONSULTRON Page 3 of 18

 This implementation favors using blocking API calls.

 If the “UART type” is selected as “USB UART”, then the following line of code needs to

be placed in the “cyapicallbacks.h” file in the #includes section:

#include <Term_instance_cyapicallbacks.h>

UART Type Setup

Term Component was originally designed to allow applications to code for the Cypress UART

V2.50. Therefore the coding and now the IO interfaces should perfectly match the Cypress

UART implementation if you select the UART Type to be “UART”.

Input-output connections

Term Component has only two IO connections (Rx and Tx) needed for serial data. As UART

type, you need to make sure the Rx and Tx pins are assigned to the correct Port and pins in

the “Design Wide Resources/Pins” tab. For example if you are using the CY8CKIT-059, the

KitProg uses P12.6 for Rx and P12.7 for Tx.

In this version of the component if you use the UART type, you can request that the Rx and Tx

pins be exposed for external connections. Additionally the other UART component pins can be

available such as the Tx Output Enable, and the CRC data support pins.

SW Considerations

There are no known special SW considerations for the “UART” type.

SW Considerations

However, the inherent USBUART calls are not 100% compatible to the UART API calls and the

USBUART allows for more low-level functionality. The version of the Term Component has a

limited set of Cypress UART V2.50 API-equivalent calls. These are the most used calls of the

UART.

Parameters and Settings

Most of the parameters and settings of this component are identical to the Cypress UART v2.50.

Refer to UART component for further information of internal implementation.

https://www.cypress.com/file/177171/download

Term: 2.3 PSoC Component datasheet

Page 4 of 18 CONSULTRON Rev. *A

Basic tab

This tab provides following parameters:

UART type

Sets UART type to use.

 UART. This is the Cypress UART v2.50 implementation.

 USB UART. This selects the USBUART v3.20 component.

Expose rx & tx pins (This parameter is not available for UART type = USB UART.)

 Normally the RX and TX pins are allocated in the Term component and are normally

hidden by default. However, by selecting the option, the user can expose these pins

external to the component.

Flow Control (rts_n & cts_n) (This parameter is not available for UART type = USB UART.)

 None. No flow control and the cts_ n and rts_n pins are not exposed

 Hardware. Flow control is used with the and cts_ n and rts_n pins.

HW TX output enable (tx_en) (This parameter is not available for UART type = USB UART.)

 Selecting this option allows the tx_en to be exposed and the pin is active high when

Term component is transmitting.

PSoC Creator Component datasheet Term: 2.3

Rev. *A CONSULTRON Page 5 of 18

CRC outputs enable (tx_data, tx_clk, rx_data, rx_clk) (This parameter is not available for UART

type = USB UART.)

 Selecting this option allows the data and clocks for both Tx and Rx for use with the serial

CRC calculation component.

Enable MenuCmds

 Selecting this option (default) enables the embedded component code for MenuCmds

to be available to the Term Component. If you were going to use multiple Terminal

ports for the user interface, disable this option and you can access the MenuCmds

component by dropping it directly into your TopDesign schematic page. Then you can

use the MenuCmds component to switch between different Terminal ports.

Enable String_Funcs

 Selecting this option (default) enables the embedded component code for String_Funcs

to be available to the Term Component. If you were going to use multiple Terminal

ports for the user interface, disable this option and you can access the String_Funcs

component by dropping it directly into your TopDesign schematic page. Then you can

use the String_Funcs component to switch between different Terminal ports.

 Note: At this time, only one instance of this component is usable. However, any

component with a _GetChar() function can use the string functions.

Advanced tab

VBUS Monitoring (default = false)

 Monitoring of the VBUS voltage detection for the USBUART type. This allows for

detection of the USB cable to be connected or disconnected. This assumes that the

PSoC is not being powered by this USB connection.

Term: 2.3 PSoC Component datasheet

Page 6 of 18 CONSULTRON Rev. *A

 This monitoring is available for UART type. Note: The standard UART communication

inherently does use a powered cable like the USB_UART. This is available for a creative

user who may want to construct an equivalent. For example, some older UART

standards have used signal such as DTR or DCE (look it up) to infer that the far-end of

the communication is powered or available for communication. Other ideas would be

creating a UDB-based HW state machine that would time-out if an expected “heart-

beat” from the other end was no longer available. Be creative if you want to use it.

IO pin external to the component (default = false = internal)

 This parameter enables external vbusdet input. If not selected, the vbusdet input is

internal to the component. This selection is only available if VBUS Monitoring = true.

 Note: Whether you chose internal or external you must select the VBUS detection pin

from the “Pins” tab in the DWR. Because a cable connection or disconnection can occur

while the PSoC is powered, this is considered “Hot-swappable”. It is a good design

practice to use the PSoC’s SIO pins (instead of GPIO pins) for connections to the “hot-

swap” connection. This minimizes the chance of damage to the PSoC.

 Choosing an external connection allows you to place HW logic to it as well as a ISR

attached to this signal in your TopDesign.

VBUS power pad (default = false)

 Only the PSoC 4200L has the ability use this feature with the USBUART type. Selecting

this without being a PSoC4200L will yield a build error.

PSoC Creator Component datasheet Term: 2.3

Rev. *A CONSULTRON Page 7 of 18

UART Params tab

This tab is not available for UART type = USB UART.

These are commonly used parameters. Refer to UART component for further information of

these parameters and settings.

https://www.cypress.com/file/177171/download

Term: 2.3 PSoC Component datasheet

Page 8 of 18 CONSULTRON Rev. *A

UART Params (Adv) tab

This tab is not available for UART type = USB UART.

These are advanced parameters. These may be used to enhance the performanceof the UART

type configuration.

Refer to UART component for further information of these parameter and settings.

https://www.cypress.com/file/177171/download

PSoC Creator Component datasheet Term: 2.3

Rev. *A CONSULTRON Page 9 of 18

USBUART Type Setup

Term Component’s intent was to allow for easy conversion from the UART SW API calls to

equivalent USBUART calls. Therefore the SW and HW interface compatibility to the USBUART is

limited. It was intended that the compatibility level can cover the greater majority of

application uses.

Input-output connections

This version of the Term Component has only two IO connections (Rx and Tx) needed for serial

data. As USBUART type, the Dp and Dn pins are automatically assigned to the only pins

supported on the PsoC5 for this internal resource.

Future versions of the Term Component may have support for other IO connections as the need

occurs.

Parameters and Settings

There is ONLY one parameter involved in setting Term Component for UART Type = “USB

UART”

Basic tab

Refer to UART Basic tab for other parameter definitions.

USBUART Params (Adv) tab

This tab allows for access to USB_UART features for HW and SW control.

Term: 2.3 PSoC Component datasheet

Page 10 of 18 CONSULTRON Rev. *A

Enable SOF output (default = false)

 Selecting this will make the sof output available for HW synchronization to other

circuits.

Enable SOF interrupt (default = false)

 Selecting this will make the SW sof interrupt available to the application.

Handle class requests in user code (default = false)

 Selecting this allows the class requests to be controlled by the application.

Handle vendor requests in user code (default = false)

 Selecting this allows the vendor requests to be controlled by the application.

Enable battery charger detection (default = false)

 Only the PSoC 4200L has the ability use this feature with the USBUART type. Selecting

this without being a PSoC4200L will yield a build error.

Generate APIs for 16-bits endpoint access (default = false)

 Only the PSoC 4200L has the ability use this feature with the USBUART type. Selecting

this without being a PSoC4200L will yield a build error.

PSoC Creator Component datasheet Term: 2.3

Rev. *A CONSULTRON Page 11 of 18

USBUART Special Application Considerations

To use the USBUART type there are a few considerations in the application that need to be

implemented.

Clock Requirements

The USBUART type needs to have some special system clocking considerations. Here is a

display of the “Design Wide Resources\Clocks\Edit Clocks…” and the highlighted required

clocking parameters.

1. The USB clock block enabled.

2. The internal IMO clock set to 24 MHz.

3. The USB clock set to IMOx2 – 48 MHz.

4. The ILO clock block enabled.

5. The ILO clock set to 100 KHz.

6. The ILO Route to 100 KHz.

Term: 2.3 PSoC Component datasheet

Page 12 of 18 CONSULTRON Rev. *A

All other clock configurations including the PLL, Master Clock and Bus Clock can be set as

needed for the application.

This special USB clocking consideration can remain in place if the Term Component is switched

to the UART type. The additional benefit is that if the IMO clock is used for the Bus Clock, the

clock accuracy is +/- 0.25%.

SW Requirements

The USBUART type uses a sub-set of UART API calls. Refer to Application Programming

Interface (API) for the list of supported API calls for the USBUART type.

One more application modification needs to be performed to support the USBUART type.

The following line of code needs to be placed in the “cyapicallbacks.h” file in the #includes

section:

#include <Term_instance_cyapicallbacks.h>

This additional line can remain in the “cyapicallbacks.h” file even if the Term Component is

switched to the UART type.

PSoC Creator Component datasheet Term: 2.3

Rev. *A CONSULTRON Page 13 of 18

Application Programming Interface (API)

The API calls used for this component are identical to those used by the UART component.

Refer to the UART component datasheet UART component for more information about these

API calls for their arguments and return values.

Note: Not all USB UART component API calls or #defines are supported directly. If needed, the

underlying component (UART or USBUART) calls or defines can be accessed by referring to it by

the Term_UART_xxx or Term_USBUART_xxx (where _xxx is the defined label).

The following table is a list of the supported API calls for each UART type.

Table 1 - Supported API calls

Type = UART Type = USBUART

Term_Start Term_Start

Term_Stop Term_Stop

Term_ReadControlRegister

Term_WriteControlRegister

Term_Init

Term_Enable

Term_SaveConfig

Term_RestoreConfig

Term_Sleep

Term_Wakeup

Term_EnableRxInt

Term_DisableRxInt

Term_RXISR

Term_SetRxAddressMode

Term_SetRxAddress1

Term_SetRxAddress2

Term_SetRxInterruptMode

Term_ReadRxData Term_ReadRxData

Term_ReadRxStatus

Term_GetChar Term_GetChar

Term_GetByte

Term_GetRxBufferSize Term_GetRxBufferSize

Term_ClearRxBuffer

Term_GetRxInterruptSource

Term_EnableTxInt

Term_DisableTxInt

https://www.cypress.com/file/177171/download

Term: 2.3 PSoC Component datasheet

Page 14 of 18 CONSULTRON Rev. *A

Term_SetPendingTxInt

Term_ClearPendingTxInt

Term_TXISR

Term_SetTxInterruptMode

Term_WriteTxData

Term_ReadTxStatus

Term_PutChar Term_PutChar

Term_PutString Term_PutString

Term_PutArray Term_PutArray

Term_PutCRLF Term_PutCRLF

Term_ClearTxBuffer Term_ClearTxBuffer

Term_SetTxAddressMode

Term_SendBreak

Term_GetTxBufferSize

Term_PutStringConst

Term_PutArrayConst

Term_GetTxInterruptSource

Term_LoadRxConfig

Term_LoadTxConfig

Term_VBusPresent* Term_VBusPresent

*This function is an equivalent USBUART function.

If the embedded String_Funcs component is used, then here is the list of API calls:

 Term_String_Funcs_SetCallbacks()

 Term_String_Funcs_Init()

 Term_String_Funcs_Start()

 Term_String_Funcs_GetString_Filt()

 Term_String_Funcs_GetChar_Filt()

 Term_String_Funcs_GetChar_Filtcc()

Refer to the MenuCmds component for function input parameters and returns.

If the embedded MenuCmds component is used, then here is the list of API calls:

 Term_MenuCmds_SetCallbacks()

 Term_MenuCmds_Init()

 Term_MenuCmds_Start()

 Term_MenuCmds_process()

 Term_MenuCmds_num_func_SetCallback()

PSoC Creator Component datasheet Term: 2.3

Rev. *A CONSULTRON Page 15 of 18

 Term_MenuCmds_search()

Refer to the MenuCmds component for function input parameters and returns.

Functional Description

Term Component is a full featured UART communication component when used as UART type =

UART. The USB UART is a simplified (and minimal) UART interface. If additional USBUART

functionality is needed, you can directly access the underlying USBUART component.

Resources

The Term Component utilizes the following resources.

UART Type

Resource Type

Fixed Func Datapath
Cells

Macro
cells

Status
Cells

Control
Cells

DMA
Channels

Interrupts GPIO

UART – 3 24 3 2 – 0 2

UART
w/vbusdet

– 3 24 4 2 – 0 3

USBUART USB 0 0 0 0 – 9 2
USBUART
w/vbusdet

USB 0 0 0 0 – 9 3

Sample Firmware Source Code

Here is some very simple sample code to write and read from the Term component.

Expected Results

It will print off the project name and the SW version with a count that increments every second

to the Terminal window. If you type characters into the Terminal window, it will be echoed to

the window.

Instructions

Drop Term component on your TopDesign schematic.

Term: 2.3 PSoC Component datasheet

Page 16 of 18 CONSULTRON Rev. *A

Rename the component to “Term”.

Configure for “UART Simple” or “USB UART”

--

< This code goes in main.c >

#include "project.h"

#include "version.h"

#include <stdio.h>

#define STRINGIFY(x) #x

#define TOSTRING(x) STRINGIFY(x)

#define SW_VER_REV_REL 2.0.0

_Bool sec_1 = 0;

//--

CY_ISR(isr_systick_0)

{

static int16_t i = 0;

 i++;

 if(i >= 1000) {sec_1 = 1; i=0; }

}

//--

int main(void)

{

char tstr[100];

 CyGlobalIntEnable; /* Enable global interrupts. */

 Term_Start();

CySysTickStart();

 CySysTickSetCallback(0,&isr_systick_0);

 for(;;)

 {

 static uint32_t count;

 char c;

 while(sec_1 == 0)

 { // loop while flag not set

 if((c= Term_GetChar()) != '\0')

PSoC Creator Component datasheet Term: 2.3

Rev. *A CONSULTRON Page 17 of 18

 {

 Term_PutChar(c);

 }

 }

 sec_1 = 0; // reset the flag

snprintf(tstr, sizeof(tstr), "%s %s count=%u", CY_PROJECT_NAME,

TOSTRING(SW_VER_REV_REL), count);

 Term_PutString(tstr);

 Term_PutString("\t\t");

count++

 }

}

/* [] END OF FILE */

--

< This code goes into cyapicallbacks.h >

#if !defined(CYAPICALLBACKS_H)

#define CYAPICALLBACKS_H

#include <Term_cyapicallbacks.h> // include other component

callbacks.

#endif /* CYAPICALLBACKS_H */

Component Changes

Version Description of changes Reason for changes/impact
2.3 Minor fixes to allow for multiple

instances.
Added more USBUART features such
as VBUS monitoring and SOF output
and interrupt.

Fixed report of issue with creating multiple instances.
Added request for pass-through of some USBUART
features.

2.2 Full functional Cypress UART (v2.50)
when UART type = UART.

Allows for more seamless use in older applications.
Embedded String_Funcs and MenuCmds components

2.1 Internal release

2.0 first release of the component

References

Term_Demo_v2_0_0.pdf

UART Component: UART component USBUART Component: USBFS component

String_Funcs Component: String_Funcs_v2_0.pdf MenuCmds Component: MenuCmds_v3_3.pdf

How to Access Custom Libraries and Components.pdf

© CONSULTRON, 2020 All Rights Reserved. CONSULTRON allows PUBLIC use of the file.

https://www.cypress.com/file/177171/download
https://www.cypress.com/file/376416/download

Term: 2.3 PSoC Component datasheet

Page 18 of 18 CONSULTRON Rev. *A

CONSULTRON allows public or commercial use of this product.
DISCLAIMER: CONSULTRON provides NO WARRANTY expressed or implied.
This product is intended for non-critical or non-safety use and can be used for educational purposes.

