

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-96201 Rev. *A Revised May 6, 2015

Features
 Fixed-function (FF) implementation for PSoC 3 and

PSoC 5LP devices

 8-, 16-, 24-, or 32-bit counter

 Up, down, or up-and-down configurations

 Optional compare output

 Optional capture input

 Enable and reset inputs for synchronizing with other components

 Continuous or one-shot run modes

General Description
The Counter component provides a method to count events. It can implement a basic counter
function and offers advanced features such as capture, compare output, and count direction
control.
For PSoC 3 and PSoC 5LP devices component can be implemented using FF blocks or UDB.
PSoC 4 devices support only UDB implementation. A UDB implementation typically has more
features than an FF implementation. If your design is simple enough, consider using FF to
conserve UDB resources for other purposes.
The following table shows the major differences between FF and UDB. For more details about
FF resources in the devices, refer to the applicable device datasheet or Technical Reference
Manual.

Feature FF UDB

Number of bits 8 or 16 8, 16, 24, or 32

Run mode Continuous or one-shot Continuous or one-shot

Counter mode Down only Up, down, or up-and-down

Enable input No (software enable only) Yes (hardware or software enable)

Capture input No Yes

Counter
3.0

Counter PSoC® Creator™ Component Datasheet

Page 2 of 41 Document Number: 001-96201 Rev. *A

Feature FF UDB

Capture mode None Rising edge, falling edge, either edge, or software
controlled

Capture FIFO No (one capture register) Yes (up to four captures)

Reset input Yes Yes

Terminal count output Yes Yes

Compare output No Yes

Compare mode None <, ≤, =, ≥, >, or software controlled

Interrupt output Yes Yes

Interrupt conditions TC TC, capture, and compare

Period register Yes Yes

Period reload Y (always reload on reset or TC) Y (reload on one or more of reset, TC, capture,
compare)

Clock input Limited to digital clocks in the clock
system

Any signal

Sampling clock input No Requires an explicit clock signal (component clock)
for sampling input signals of the component

When to Use a Counter
The default use of the Counter is to count the number of edge events on the count input.
However, there are several other potential uses of the Counter:

 Clock divider: By driving a clock into the count input and using the compare or terminal
count output as the divided clock output

 Frequency counter: By connecting a signal with a known period to the enable input of the
counter while counting the signal to measure on the count input.

 Tool to measure complementary events such as the output of a quadrature decoder
Note A Timer component is better used in situations focused on measuring the time between
events. A PWM component is better used in situations requiring multiple compare outputs with
more control features such as center alignment, output kill, and deadband outputs.

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 3 of 41

Input/Output Connections
This section describes the various input and output connections for the Counter component.
Some I/Os may be hidden on the symbol under the conditions listed in the description of that I/O.
Note All signals are active high unless otherwise specified. All inputs to the counter must be
synchronized outside of the counter.

Input
May Be
Hidden Description

clock N The functional behavior of the clock input differs for the fixed-function Counter compared
to the UDB Counter.

 For a fixed-function Counter, there is no count input. A fixed-function Counter
updates (decrements its internal counter) on every rising edge of the clock input.

 For a UDB Counter, both the clock and count input appear on the Counter symbol.
The clock is used to sample the inputs of the Counter component. The UDB Counter
is implemented as a synchronous counter that uses the clock input only as a
synchronization clock. All inputs of the Counter must be synchronized to the clock
input to avoid setup violations. This also makes sure that the edge-detect circuitry in
the UDB Counter implementation functions properly.

Count Y In a fixed-function Counter, there is no count input on the Counter symbol. A FF Counter
updates its internal count on every rising edge of the clock input.
For a UDB Counter, the Counter updates its internal counter with an edge-detect logic to
determine an update event. The source signal for the update event depends on the clock
mode of the UDB Counter. The edge-detect logic is clocked using the clock input. Both
edges of the count input must meet setup to the clock input; therefore, the maximum
count input is one-half of the clock input frequency.

 For a UDB Counter in the Up Counter or Down Counter clock mode, the edge
detect logic detects the rising edge of the count input synchronous to the clock input.
Depending on whether the Counter is configured as an up counter or down counter,
the edge detect event on the count input increments or decrements the Counter,
respectively. See Figure 5 on page 25 for a functional description of the Up/Down
Counter.

 For a UDB Counter in the Count Input and Direction clock mode, the edge-detect
logic detects the rising edge of the count input synchronous to the clock input.
Depending on the whether the "upndown" signal is a 1 or a 0, the edge-detect event
on the count input increments or decrements the Counter, respectively. See Figure 7
on page 26 for a functional description of the Counter in Count Input and Direction
clock mode.

 For a UDB Counter in the Clock with UpCnt & DwnCnt clock mode, there is no
count input. The Counter update event is determined by a combination of the edge-
detect logic on UpCnt and DwnCnt signals synchronous to the clock input. See
Figure 9 on page 28 for a functional description of the Counter in Clock with UpCnt
& DwnCnt clock mode.

Counter PSoC® Creator™ Component Datasheet

Page 4 of 41 Document Number: 001-96201 Rev. *A

Input
May Be
Hidden Description

upCnt Y Increment signal to the counter. When Clock Mode is set to Clock With UpCnt &
DwnCnt, this input is used in conjunction with the dwnCnt input and the clock input to
allow the Counter to be used as an encoder. A rising edge on this input increments the
count value.

dwnCnt Y Decrement signal to the counter. When Clock Mode of the counter is set to Clock With
UpCnt & DwnCnt, this input is used in conjunction with the upCnt input and the clock
input to allow the counter to be used as an encoder. A rising edge on this input
decrements the count value.

up_ndown Y Defines the counting direction of the counter. This input is available only if Clock Mode is
set to enable direction control (Count Input and Direction) On a rising edge of the count
input, a ‘1’ on this input causes the counter to increment, and a ‘0’ on this input causes
the counter to decrement.

reset N The reset input resets the counter to the starting value.

 For the Up Counter configuration, the starting value is zero.

 For Down Counter, Count Input and Direction, and Clock With UpCnt & DwnCnt
configurations, the starting value is set to the current period register value.

The reset input is sampled on the count/clock input.
The reset input is used to reset the control register in PSoC 3, PSoC 4, and PSoC 5LP
counter implementations, and also to implement the One-Shot Run Mode feature.
UDB one-shot mode needs a reset pulse in order to start counting. If the Counter is only
run in one-shot mode from power up, it will not start counting until reset is applied and
removed.

enable Y Hardware enable of the counter. This input is visible when the Enable Mode parameter is
set to Hardware.

capture Y Captures the current count value to a capture register or FIFO. This input is visible if the
Capture Mode parameter is set to any mode other than None. Capture may take place
on a rising edge, falling edge, or either edge applied to this input, depending on the
Capture Mode setting.
The capture input is sampled on the clock input.

Output
May Be
Hidden Description

tc N Terminal count is a synchronous output that indicates that the count value is equal to the
terminal count. The output is synchronous to the clock input of the Counter. The signal
goes high one clock cycle after the count value matches the terminal count and stays
high while the count value is equal to the terminal count.
In a fixed-function Counter, if the Counter is disabled when the count is at terminal count,
the output stays high until the Counter is re-enabled.

comp Y The compare output indicates the counter value compared to the compare value based
on the configuration in the Compare Mode parameter. The compare output goes high
after a delay of one clock cycle following the compare event.

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 5 of 41

Output
May Be
Hidden Description

interrupt N The interrupt output is driven by the interrupt sources configured in the hardware. All
sources are ORed together to create the final output signal. The sources of the interrupt
can be: Compare, Terminal Count or Capture.

Component Parameters
Drag a Counter onto your design and double-click it to open the Configure dialog.

Hardware versus Software Configuration Options
Hardware configuration options change the way the project is synthesized and placed in the
hardware. You must rebuild the hardware if you make changes to any of these options. Software
configuration options do not affect synthesis or placement. When setting these parameters
before build time you are setting their initial value, which may be modified at any time with the
API provided. Most parameters described in the following sections are hardware options. The
software options are noted as such.

Configure Tab

Counter PSoC® Creator™ Component Datasheet

Page 6 of 41 Document Number: 001-96201 Rev. *A

Resolution
The Resolution parameter defines the bit-width resolution of the Counter component. This value
may be set to 8, 16, 24, or 32 for maximum count values of 255, 65535, 16777215, and
4294967295, respectively.

Implementation
The Implementation parameter allows you to choose between a fixed-function block
implementation and a UDB implementation of the Counter. If you select Fixed Function, UDB
functions are disabled.

Period (Software Option)
The Period parameter defines the max counts value (or rollover point) for the Counter
component. This parameter defines the initial value loaded into the period register, which the
software can change at any time with the Counter_WritePeriod() API.
The limits of this value are defined by the Resolution parameter. For 8-, 16-, 24-, and 32-bit
Resolution parameters, the maximum value of the Period value is defined as (2^8) – 1,
(2^16) – 1, (2^24) – 1, and (2^32) – 1 or 255, 65535, 16777215, and 4294967295, respectively.
When Clock Mode is configured as Clock with UpCnt & DwnCnt or Count Input and Direction, the
counter is set to the period at start and any time the counter overflows or underflows. In these clock
modes, do not set the period value to all 1s or all 0s. The Counter won’t work if period is set to all 1s or all
0s. Instead, the normal practice is to keep the period value at the midpoint of the period range (for an 8-bit
counter, 0x7F). Figure 1 shows Clock Mode set to Count Input and Direction.

Figure 1. Clock Mode

0 ... 100 ... 255
CtDn CtDn CtDn

CtUp

CtUpCtUpCtUp
CtDn

Period = 100 CtDn means up_ndown = Logic low
CtUp means up_ndown = Logic high

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 7 of 41

Compare Mode (Software Option)
The Compare Mode parameter configures the operation of the comp output signal. This signal is
the status of a compare between the compare value parameter and current counter value. This
parameter defines the initial setting. You can change it at any time to reconfigure the compare
operation of the Counter component.
Compare Mode can be set to any of the following values:

 Less Than – The counter value is less than the compare value.

 Less Than Or Equal – The counter value is less than or equal to the compare value.

 Equal To – The counter value is equal to the compare value.

 Greater Than – The counter value is greater than the compare value.

 Greater Than Or Equal – The counter value is greater than or equal to the compare
value.

 Software Controlled – The compare mode can be set during run time with the
Counter_SetCompareMode() API call to any one of the other five compare modes on this
list.

Compare Value (Software Option)
The Compare Value parameter defines the initial value loaded into the compare register of the
counter. This value is used in conjunction with the Compare Mode parameter to define the
operation of the compare output.
This value can be any unsigned integer from 0 to (2^Resolution – 1), but it must be less than or
equal to the period value.

Clock Mode
The Clock Mode parameter configures how the Counter will count. This mode can be set to any
of the following values:

 Count Input and Direction – Counter is a bidirectional counter. It counts up while the
up_ndown input is high on each rising edge of the input clock and counts down while
up_ndown is low on each rising edge of the input clock.

 Clock With UpCnt & DwnCnt – Counter is a bidirectional counter. It increments the
counter for each rising edge on the upCnt input and decrements the counter for each
rising edge of the dwnCnt input, with respect to the clock input.

 Up Counter – Counter is an up counter only. It increments on a rising edge of the count
input with respect to the clock signal while the counter is enabled.

Counter PSoC® Creator™ Component Datasheet

Page 8 of 41 Document Number: 001-96201 Rev. *A

 Down Counter – Counter is a down counter only. It decrements on a rising edge of the
count input with respect to the clock signal while the counter is enabled.

Advanced Tab

Capture Mode
The Capture Mode parameter configures when a capture takes place. The capture input is
sampled on the rising edge of the clock input. This mode can be set to any of the following
values:

 None – No capture implemented. The capture input pin is hidden.

 Rising Edge – Capture the counter value on a rising edge of the capture input with
respect to the clock input.

 Falling Edge – Capture the counter value on a falling edge of the capture input with
respect to the clock input.

 Either Edge – Capture the counter value on either edge of the capture input with respect
to the clock input.

 Software Controlled –Set the mode at run time by setting the capture mode bits in the
control register Counter_CTRL_CAPMODE_MASK with the enumerated capture mode
types. These are defined in the Counter.h header file.

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 9 of 41

Enable Mode
The Enable Mode parameter configures the enable implementation of the counter. The enable
input is sampled on the rising edge of the clock input. This mode can be set to any of the
following values:

 Software Only – The Counter is enabled based on the enable bit of the control register
only.

 Hardware Only – The Counter is enabled based on the enable input only.

 Hardware and Software – The Counter is enabled if both hardware and software enables
are true.

Run Mode
The Run Mode parameter allows you to configure the Counter component to run continuously or
in one-shot mode:

 Continuous – The Counter runs continuously while it is enabled.

 One Shot – The Counter runs through a single period and stops at terminal count. After it
is reset, it begins another single cycle. On stop, for a UDB counter, it reloads period into
the count register; for a fixed-function counter, the count register remains at terminal
count.

Reload Counter
The Reload Counter parameters allow you to configure when the counter value is reloaded. The
counter value is reloaded when one or more of the following selected events occur. The counter
is reloaded with its start value on a reload event.

 On Capture – The counter value is reloaded when a capture event has occurred. By
default, this parameter is cleared. This parameter is shown only when UDB is selected for
Implementation.

 On Compare – The counter value is reloaded when a compare true event has occurred.
By default, this parameter is cleared. This parameter is shown only when UDB is selected
for Implementation.

 On Reset – The counter value is reloaded when a reset event has occurred. By default
this parameter is selected. This parameter is always shown. For a fixed-function counter,
it cannot be changed. For a UDB counter, it can be turned off.

 On TC – The counter value is reloaded when the counter has overflowed (in up count
mode) or underflowed (in down count mode). The boundaries value contains the
component clock cycle duration. By default, this parameter is selected. For a fixed-
function counter, it cannot be changed. For a UDB counter, it can be turned off.

Counter PSoC® Creator™ Component Datasheet

Page 10 of 41 Document Number: 001-96201 Rev. *A

When the clock mode is set to Clock With UpCnt & DwnCnt this option reloads to the period
value when counter is 0x00 or all 0xFF.

The following table lists the reload and terminal count conditions for the various Clock Modes of
the Counter component.

Clock Mode Terminal Count Condition
Counter Start Value and Reload Value on a

Reload Event

Fixed Function
Counter

When counter equals 0. The start and the reload value of the Counter is
the Period value of the component.

UDB Up Counter When counter equals Period value The start and the reload value of the Counter is
0.

UDB Down
Counter

When counter equals 0. The start and the reload value of the Counter is
the Period value of the component.

UDB Count Input
and Direction

When the Counter is all 1s (0xFF for 8-bit,
0xFFFF for 16-bit, 0xFFFFFF for 24-bit, or
0xFFFFFFFF for a 32 bit Counter) when it is
counting up OR when the Counter equals 0
when it is counting down.

The start and reload value of the Counter is the
Period value of the component. If there is no
reload condition, the counter wraps around and
continues counting without a counter register
reload.

UDB Clock with
UpCnt and
DwnCnt

When the Counter is all 1s (0xFF for 8-bit,
0xFFFF for 16-bit, 0xFFFFFF for 24-bit, or
0xFFFFFFFF for a 32-bit Counter) when it is
counting up OR when the Counter equals 0
when it is counting down.

The start and reload value of the Counter is the
Period value of the component. If there is no
reload condition, then the counter wraps around
and continues counting without a counter
register reload.

Interrupt
The Interrupt parameters allow you to configure the initial interrupt sources. An interrupt is
generated when one or more of the following selected events occur. This parameter defines an
initial configuration. The software can reconfigure this mode at any time.

 On TC –This parameter is always active; by default, it is not selected.

 On Capture – By default, this parameter is not selected. It is always shown, but it is only
active when the Implementation parameter is set to UDB.

 On Compare – By default, this parameter is not selected. It is always shown, but it is only
active when the Implementation parameter is set to UDB.

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 11 of 41

Clock Selection
For the Counter component:

 When the Clock Mode parameter is set to Up Counter or Down Counter, the count input
can be any signal for which the rising edges are counted. The clock input to the
component samples the count input and both the rising and falling edges must meet the
setup requirements to the clock.

 When the Clock Mode parameter is set to Count Input and Direction, the count input
can be any signal for which the rising edges are counted. The clock input to the
component samples the count input and both the rising and falling edges must meet the
setup requirements to the clock. The counter will count up or down depending on the
up_ndown input.

 When the Clock Mode parameter is set to Clock With UpCnt & DwnCnt, the upCnt and
dwnCnt rising edges are sampled with respect to the clock input. The counter counts on a
rising edge of the upCnt signal and down on the rising edge of the dwnCnt signal. Both
edges of upCnt and dwnCnt must meet setup requirements to the clock.

See the Clock component datasheet and the appropriate device datasheet for more details about
PSoC 3, PSoC 4 or PSoC 5LP clocking systems.

Fixed-Function Components
When configured to use the FF block in the device, the Counter component has the following
restrictions:

 The count input must be a digital clock from the clock system.

 If the frequency of the clock is to be the same as bus clock, the clock must actually be the
bus clock.

Open the Configure dialog of the appropriate Clock component to configure the Clock Type
parameter as Existing and the Source parameter as BUS_CLK. A clock at this frequency
cannot be divided from any other source, such as the master clock, IMO, and so on.

UDB-based Components
For PSoC 3/PSoC 5LP, you can connect any digital signal from any source to the count/clock
input. The frequency of that signal is limited to the frequency range defined in the DC and AC
Electrical Characteristics (UDB Implementation) section in this datasheet. The count input must,
at most, be half the frequency as that of the clock input in any of the Counter Clock modes.
For PSoC 4, you cannot connect a clock signal to the count input.

Counter PSoC® Creator™ Component Datasheet

Page 12 of 41 Document Number: 001-96201 Rev. *A

Placement
PSoC Creator places the Counter component in the device based on the Implementation
parameter. If it is set to Fixed Function, this component is placed in any available FF
counter/timer block. If it is set to UDB, this component is placed around the UDB array in the
best possible configuration.

Application Programming Interface
Application Programming Interface (API) routines allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.
By default, PSoC Creator assigns the instance name “Counter_1” to the first instance of a
component in a given design. You can then rename the instance to any unique value that follows
the syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “Counter.”

Functions
Function Description

Counter_Start() Sets the initVar variable, calls the Counter_Init() function, and then calls the
Enable function

Counter_Stop() Disables the Counter

Counter_SetInterruptMode() Enables or disables the sources of the interrupt output

Counter_ReadStatusRegister() Returns the current state of the status register

Counter_ReadControlRegister() Returns the current state of the control register

Counter_WriteControlRegister() Sets the bit-field of the control register

Counter_WriteCounter() Writes a new value directly into the counter register

Counter_ReadCounter() Forces a capture, and then returns the capture value

Counter_ReadCapture() Returns the contents of the capture register or the output of the FIFO

Counter_WritePeriod() Writes the period register

Counter_ReadPeriod() Reads the period register

Counter_WriteCompare() Writes the compare register

Counter_ReadCompare() Reads the compare register

Counter_SetCompareMode() Sets the compare mode

Counter_SetCaptureMode() Sets the capture mode

Counter_ClearFIFO() Clears the capture FIFO

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 13 of 41

Function Description

Counter_Sleep() Stops the Counter and saves the user configuration

Counter_Wakeup() Restores and enables the user configuration

Counter_Init() Initializes or restores the Counter according to the Configure dialog settings

Counter_Enable() Enables the Counter

Counter_SaveConfig() Saves the Counter configuration

Counter_RestoreConfig() Restores the Counter configuration

void Counter_Start(void)
Description: This is the preferred method to begin component operation. Counter_Start() sets the initVar

variable, calls the Counter_Init() function, and then calls the Counter_Enable() function.

Parameters: None

Return Value: None

Side Effects: If the initVar variable is already set, this function only calls the Counter_Enable() function.

void Counter_Stop(void)
Description: This function disables the Counter only in software enable modes.

Parameters: None

Return Value: None

Side Effects: If Enable Mode is set to Hardware Only, this function has no effect.

void Counter_SetInterruptMode(uint8 interruptSource)
Description: This function enables or disables the sources of the interrupt output.

Parameters: uint8: interrupt sources. For bit definitions, sees the Status Register section of this datasheet.

Return Value: None

Side Effects: The bit locations are different between FF and UDB. Mask #defines are provided to
encapsulate the differences.

Counter PSoC® Creator™ Component Datasheet

Page 14 of 41 Document Number: 001-96201 Rev. *A

uint8 Counter_ReadStatusRegister(void)
Description: This function returns the current state of the status register.

Parameters: None

Return Value: uint8: Current status register value. The status register bits are:
[7]: Unused (0)
[6]: FIFO not empty
[5]: FIFO full
[4]: Capture status
[3]: Underflow status
[2]: Overflow status
[1]: A0 Zero status
[0]: Compare output
For bit definitions, see the Status Register section of this datasheet.

Side Effects: Some of these bits are cleared when the status register is read. Clear-on-read bits are defined
in the Status Register section of this datasheet.

uint8 Counter_ReadControlRegister(void)
Description: This function returns the current state of the control register. It is available only if one of the

modes defined in the control register is actually used.

Parameters: None

Return Value: uint8: Current control register value. The control register bits are:
[7]: Counter Enable
[6:5]: Unused
[4:3]: Capture Mode select
[2:0]: Compare Mode select
For bit definitions, see the Control Register section of this datasheet.

Side Effects: None

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 15 of 41

void Counter_WriteControlRegister(uint8 control)
Description: This function sets the bit field of the control register. It is available only if one of the modes

defined in the control register is actually used.

Parameters: uint8: Control register bit field. The control register bits are:
[7]: Counter Enable
[6:5]: Unused
[4:3]: Capture Mode select
[2:0]: Compare Mode select
For bit definitions, see the Control Register section of this datasheet.

Return Value: None

Side Effects: None

void Counter_WriteCounter(uint8/16/32 count)
Description: This function writes a new value directly into the counter register.

Parameters: uint8/16/32: New counter value. For 24-bit Counters, the parameter is uint32.

Return Value: None

Side Effects: Overwrites the counter value. This may cause unwanted behavior on the compare output,
terminal count output, or period width. This is not an atomic write and the function may be
interrupted. The Counter should be disabled before calling this function.

uint8/16/32 Counter_ReadCounter(void)
Description: This function forces a capture then returns the capture value.

The capture that occurs is not considered a capture event and does not cause the counter to
be reset or trigger an interrupt.

Parameters: None

Return Value: uint8/16/32: Current counter value. For 24-bit Counters, the return type is uint32.

Side Effects: Returns the contents of the capture register or the output of the FIFO (UDB only).

uint8/16/32 Counter_ReadCapture(void)
Description: This function returns the contents of the capture register or the output of the FIFO (UDB only).

Parameters: None

Return Value: uint8/16/32: Current capture value. For 24-bit Counters, the return type is uint32.

Side Effects: None

Counter PSoC® Creator™ Component Datasheet

Page 16 of 41 Document Number: 001-96201 Rev. *A

void Counter_WritePeriod(uint8/16/32 period)
Description: This function writes the period register.

Parameters: uint8/16/32: New period value. For 24-bit Counters, the parameter is uint32.

Return Value: None

Side Effects: The period of the counter output does not change until the Counter is reloaded. The period
reload will occur according to the Reload Counter parameter

uint8/16/32 Counter_ReadPeriod(void)
Description: This function reads the period register.

Parameters: None

Return Value: uint8/16/32: Current period value. For 24-bit Counters, the return type is uint32.

Side Effects: None

void Counter_WriteCompare(uint8/16/32 compare)
Description: This function writes the compare register. It is available only for the UDB implementation.

Parameters: uint8/16/32: New compare value. For 24-bit Counters, the parameter is uint32.

Return Value: None

Side Effects: The compare output may change immediately depending on the value written and the current
value of the Counter.

uint8/16/32 Counter_ReadCompare(void)
Description: This function reads the compare register. It is available only for UDB implementation.

Parameters: None

Return Value: uint8/16/32: Current compare value. For 24-bit Counters, the return type is uint32.

Side Effects: None

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 17 of 41

void Counter_SetCompareMode(uint8 compareMode)
Description: This function sets the compare mode. It is available only for UDB implementation and when

software compare mode is selected.

Parameters: uint8: Enumerated compare mode. Also see the Control Register section.
Counter__B_COUNTER__LESS_THAN
Counter__B_COUNTER__LESS_THAN_OR_EQUAL
Counter__B_COUNTER__EQUAL
Counter__B_COUNTER__GREATER_THAN
Counter__B_COUNTER__GREATER_THAN_OR_EQUAL
Counter__B_COUNTER__SOFTWARE

 Return Value: None

Side Effects: The compare output may change immediately depending on the value written and the current
value of the counter.

void Counter_SetCaptureMode(uint8 captureMode)
Description: This function sets the capture mode. It is available only for UDB implementation and when the

Capture Mode parameter is set to Software Controlled.

Parameters: uint8: Enumerated capture mode. Also see the Control Register section.
Counter__B_COUNTER__NONE
Counter__B_COUNTER__RISING_EDGE
Counter__B_COUNTER__FALLING_EDGE
Counter__B_COUNTER__EITHER_EDGE
Counter__B_COUNTER__SOFTWARE_CONTROL

 Return Value: None

Side Effects: None

void Counter_ClearFIFO(void)
Description: This function clears the capture FIFO. It is available only for UDB implementation.

See UDB FIFOs in the Functional Description section of this datasheet.

Parameters: None

Return Value: None

Side Effects: None

Counter PSoC® Creator™ Component Datasheet

Page 18 of 41 Document Number: 001-96201 Rev. *A

void Counter_Sleep(void)
Description: This is the preferred routine to prepare the component for sleep. The Counter_Sleep() routine

saves the current component state. Then it calls the Counter_Stop() function and calls
Counter_SaveConfig() to save the hardware configuration.

Call the Counter_Sleep() function before calling the CyPmSleep() or the CyPmHibernate()
function. Refer to the PSoC Creator System Reference Guide for more information about
power-management functions.

Parameters: None

Return Value: None

Side Effects: For FF implementation, all registers are retained across low-power modes. For UDB
implementation, the control register and counter value register are saved and restored.
Additionally, when calling Counter_Sleep, the enable state is stored in case you call
Counter_Sleep() without calling Counter_Stop().

void Counter_Wakeup(void)
Description: This is the preferred routine to restore the component to the state when Counter_Sleep() was

called. The Counter_Wakeup() function calls the Counter_RestoreConfig() function to restore
the configuration. If the component was enabled before the Counter_Sleep() function was
called, the Counter_Wakeup() function also re-enables the component.

Parameters: None

Return Value: None

Side Effects: Calling the Counter_Wakeup() function without first calling the Counter_Sleep() or
Counter_SaveConfig() function may produce unexpected behavior.

void Counter_Init(void)
Description: Initializes or restores the component according to the customizer Configure dialog settings. It

is not necessary to call Counter_Init() because the Counter_Start() routine calls this function
and is the preferred method to begin component operation.

Parameters: None

Return Value: None

Side Effects: All registers will be set to values according to the customizer Configure dialog.

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 19 of 41

void Counter_Enable(void)
Description: Activates the hardware and begins component operation. It is not necessary to call

Counter_Enable() because the Counter_Start() routine calls this function, which is the
preferred method to begin component operation. This function enables the Counter for either
of the software controlled enable modes.

Parameters: None

Return Value: None

Side Effects: If the Enable Mode parameter is set to Hardware Only, this function has no effect on the
operation of the Counter.

void Counter_SaveConfig(void)
Description: This function saves the component configuration and nonretention registers. It also saves the

current component parameter values, as defined in the Configure dialog or as modified by
appropriate APIs. This function is called by the Counter_Sleep() function.

Parameters: None

Return Value: None

Side Effects: None

void Counter_RestoreConfig(void)
Description: This function restores the component configuration and nonretention registers. It also restores

the component parameter values to what they were before calling the Counter_Sleep()
function.

Parameters: None

Return Value: None

Side Effects: Calling this function without first calling the Counter_Sleep() or Counter_SaveConfig() function
may produce unexpected behavior.

Global Variables
Variable Description

Counter_initVar Indicates whether the Counter has been initialized. The variable is initialized to 0 and set to 1 the
first time Counter_Start() is called. This allows the component to restart without reinitialization
after the first call to the Counter_Start() routine.
If reinitialization of the component is required, then the Counter_Init() function can be called
before the Counter_Start() or Counter_Enable() function.

Counter PSoC® Creator™ Component Datasheet

Page 20 of 41 Document Number: 001-96201 Rev. *A

Conditional Compilation Information
The Counter component API files require two conditional compile definitions to handle the
multiple configurations the Counter must support. The API files must conditionally compile on the
Resolution and Implementation parameters chosen between the FF or UDB block. The two
conditions defined are based on these parameters. The API files should never use these
parameters directly but should use the two defines listed here.

Counter_DataWidth
The DataWidth define is assigned to the Resolution value at build time. It is used throughout the
API to compile in the correct data width types for the API functions relying on this information.

Counter_UsingFixedFunction
The UsingFixedFunction define is used mostly in the header file to make the correct register
assignments. This is necessary because the registers provided in the FF block are different than
those used when the component is implemented in UDBs. In some cases, this define is also
used with the DataWidth define because the FF block is limited to 16 bits maximum data width.

Sample Firmware Source Code
PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.
Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

 project deviations – deviations that are applicable for all PSoC Creator components

 specific deviations – deviations that are applicable only for this component
This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.
The Counter component does not have any specific deviations.

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 21 of 41

API Memory Usage
The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.
The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design the map file generated by the compiler can
be analyzed to determine the memory usage.

Configuration
PSoC 3 (Keil_PK51) PSoC 4 (GCC) PSoC 5LP (GCC)

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

8-bits FF Counter 257 4 N/A N/A 364 4

16-bits FF Counter 261 5 N/A N/A 364 7

8-bits UDB Counter 249 4 440 4 436 4

16-bits Up Counter 300 5 440 7 440 7

16-bits Counter with
direction

301 5 440 7 436 7

24-bits UDB Counter 291 7 456 13 448 13

32-bits UDB Up Counter 290 7 440 13 436 13

32-bits UDB Counter
UpCnt & DwnCnt

291 7 440 13 436 13

Functional Description

General Operation
The Counter component can count in one direction (either up or down) or both directions,
depending on the Clock Mode parameter setting.

 If set to Up Counter or Down Counter, the component counts in only one direction. The
counter register increments or decrements once for each rising edge on the count input
with respect to the clock input.

 If set to Clock Input and Direction or Clock With UpCnt & DwnCnt, the component can
count in both directions, based on the upCnt, dwnCnt, and up_ndown inputs. These inputs
are described in detail in the Input/Output Connections section of this datasheet.

Counter PSoC® Creator™ Component Datasheet

Page 22 of 41 Document Number: 001-96201 Rev. *A

Counter Overflow/Underflow
Counter underflow and overflow can occur in any clock mode. Bits are available in the status
register to indicate when the overflow or underflow has occurred. Bits in the mode register exist
to control whether an int is generated on these conditions.

Clock Mode Overflow occurs when Underflow occurs when

Down Counter Not defined. Interrupt generation should be
masked.

Counter register equals 0.

Up Counter Counter register equals period register Not defined. Interrupt generation
should be masked.

Clock Input and Direction Counter register equals 0xFF, 0xFFFF,
0xFFFFFF, or 0xFFFFFFFF

Counter register equals 0.

Clock With UpCnt & DwnCnt Counter register equals 0xFF, 0xFFFF,
0xFFFFFF, or 0xFFFFFFFF

Counter register equals 0.

Counter Outputs
The counter register can be monitored and reloaded. Two outputs, tc and comp, are available to
monitor the current value of the counter register and may be configured as reload events. See
the Input/Output Connections section for more details.
The counter register is reloaded from the period register. The following table shows how terminal
count and reload work for each of the Clock Mode settings:

Clock Mode tc Output is Active When Counter is Reloaded with

Down Counter One clock input cycle after the counter register
is equal to 0

Contents of the period register
as soon as the counter register
is equal to 0

Up Counter One clock input cycle after the counter register
equals the period register

Counter is reset to 0 as soon as
the counter register equals the
period register

Clock Input and Direction One clock input cycle after the counter register
rolls over to 0

None – counter rolls over

Clock With UpCnt & DwnCnt One clock input cycle after the counter register
is equal to 0

None – counter rolls over

The comp output continually indicates the counter value compared to the compare value. The
Compare Mode parameter is configurable to all of the standard modes (for example, Less Than
Or Equal, Greater Than). This can be used to create different output waveforms while the
counter is counting. The comp output is synchronous to the clock input of the Counter.

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 23 of 41

Counter Inputs
A capture operation can be done in either hardware or firmware. The current value in the counter
register is copied into either a capture register or a FIFO. Firmware can then read the captured
value at a later time.
Reset and enable features allow the Counter component to be synchronized to other
components. The Counter component counts only when enabled and not held in reset. It may be
reset or enabled by either hardware or firmware.

Counter Interrupt
An interrupt output is available to communicate event occurrences to the CPU or to other
components. The interrupt can be set to be active on a combination of one or more events. The
interrupt handler should be designed with careful consideration for determining the source of the
interrupt and whether it is edge- or level-sensitive, and clearing the source of the interrupt. The
interrupt can be cleared by reading the status register (that is, by calling the
Counter_ReadStatusRegister() API.)

Counter Registers
There are two registers: status and control. Refer to the Registers section.

Configurations
The following sections describe a few of the different Clock component configurations.

Default Configuration
When you drag a Counter component onto a PSoC Creator schematic, the default configuration
is an 8-bit, FF counter that decrements the counter register on a rising edge at the clock input.
Figure 2 shows the default component symbol and Configure dialog tabs.

Figure 2. Default Configuration

Counter PSoC® Creator™ Component Datasheet

Page 24 of 41 Document Number: 001-96201 Rev. *A

Figure 3 shows the timing diagram for the default configuration.

Figure 3. Default Configuration Waveform

clock

EN bit

counter 0xFF 0xFE0x00 0xFD

......

...... 0x01 0x00 0xFF 0xFE

tc

UDB 8-bit Up/Down Counter Configuration
In this configuration, the count register either increments or decrements on the rising edge at the
clock input, depending on the clock mode selected. If the clock mode selected is Up Counter,
the count register increments from 0 to period value. If the clock mode selected is Down
Counter, then the count register decrements from period value to 0.
Figure 4 shows the UDB 8-bit Up/Down Counter symbol and Configure dialog tabs

Figure 4. UDB 8-bit Up/Down Counter Configuration

clock

reset

countregister 0x00 0xff 0xfe 0xfd 0xfc 0xfb 0x040x030x020x010x00 0xfd 0xfc 0xfb0xff 0xfe

tc

Period = 256 count

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 25 of 41

Figure 5 shows the timing diagram for the UDB 8-bit Up/Down Counter configuration.

Figure 5. UDB 8-bit Up/Down Counter Configuration Waveform

clock

count

counter 0xFE 0xFC 0x02 0x000xFD

reset

0x01

enable

capture

CaptureFIFO 0xFE 0x03 0x02

comp

tc

0xFF 0x03 0xFF

int

Counter PSoC® Creator™ Component Datasheet

Page 26 of 41 Document Number: 001-96201 Rev. *A

Clock Input and Direction Configuration
In this configuration, the count register either increments or decrements, based on the signal to
the up_ndown input terminal. When the up_ndown input receives a high signal, the counter
increments on the rising edge of the count input. When the up_ndown input receives a low
signal, the counter decrements on the rising edge of the count input.
Figure 6 shows the Clock input and Direction configuration symbol and Configure dialog tabs

Figure 6. Clock Input and Direction Configuration

Figure 7 shows the timing diagram for the Clock Input and Direction mode configuration

Figure 7. Clock Input and Direction Mode Configuration Waveform

clock

count

counter 0x7F 0x80 0x82 0x81 0x810x81

reset

0x80

enable

Timing Diagram for Clock with Direction

up_ndown

Up Counter Down Counter Up Counter

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 27 of 41

Clock with UpCnt and DwnCnt Configuration
In this configuration, the count input is absent. The Counter either increments or decrements,
based on the signal to the upCnt and downCnt inputs.
Figure 8 shows the Clock with UpCnt & DwnCnt configuration symbol and Configure dialog
tabs

Figure 8. Clock with UpCnt and DwnCnt Mode Configuration

Counter PSoC® Creator™ Component Datasheet

Page 28 of 41 Document Number: 001-96201 Rev. *A

Figure 9 shows the timing diagram for the Clock with UpCnt & DwnCnt mode configuration

Figure 9. Clock with UpCnt and DwnCnt Mode Configuration Waveform

clock

counter 0x7F 0x80 0x80 0x7F 0x7F

reset

0x80

enable

capture

CaptureFIFO 0x80 0x7F 0x80

comp

intr

upCnt

downCnt

0x81

Event Counter Configuration
There are limitations on what signal can be applied to the count input when the Implementation
parameter is set to Fixed Function. Therefore, setting the component to UDB can make it
easier to create an event counter. In this configuration, intermittent asynchronous events can be
detected and processed to generate a pulse. The clock input is used to sample this count input
to produce a rising edge that causes the counter to increment or decrement, depending on the
Clock Mode setting. The counter register can be captured and read by the CPU to determine
the number of events that have occurred.

Clock Divider Configuration
Changing the Implementation parameter setting to UDB also enables a comp output. This
output can be used to create a clock divider with a programmable frequency and duty cycle. With
the default configuration, the comp output is a ~50-percent duty cycle clock whose frequency is
1/256 the frequency of the input clock.

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 29 of 41

Figure 10. Clock Divider Configuration

Figure 11 is an example waveform where the period is 6, the compare value is 2 and the
Compare Mode parameter is set to Less Than.

Figure 11. Clock Divider Configuration Example Waveform

Counter PSoC® Creator™ Component Datasheet

Page 30 of 41 Document Number: 001-96201 Rev. *A

Frequency Counter Configuration
Adding hardware enable allows the Counter to implement a frequency counter function. If the
enable input is driven by a known period signal, the frequency of a signal on the count input can
be determined. The math can be simplified if the Clock Mode parameter is set to Up Counter
instead of Down Counter.

Figure 12. Frequency Counter Configuration

Figure 13. Frequency Counter Configuration Example Waveform

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 31 of 41

UDB FIFOs
Each UDB datapath contains two 8-bit FIFO registers: F0 and F1 (see the applicable device
datasheet or TRM for details). Each FIFO is four bytes deep. The Counter UDB implementation
uses one of the FIFOs as a capture register. Additional FIFOs in other datapaths are used for
16-, 24- and 32-bit counters. Therefore, up to four captures can be done before the CPU must
read the capture register to avoid losing data.
If the FIFO is full, and subsequent writes occur (overflow), the new data overwrites the front of
the FIFO (the data currently being output, the next data to read).

32-bit
24-bit

16-bit
8-bit

44
88

4-byte FIFO
33
77

4-byte FIFO
22
66

4-byte FIFO
11
55

4-byte FIFO

DP8

CC

DP8

BB

DP8

AA

DP8

99

Capture Value #1 = 0x44332211
Capture Value #2 = 0x88776655
Accumulator = 0xCCBBAA99

Registers
There are several constants defined to address all of the registers. Each of the register
definitions requires either a pointer into the register data or a register address. Because different
compilers have different endian settings, use the CY_GET_REGX and CY_SET_REGX macros
for register accesses greater than 8 bits, with the _PTR definition for each of the registers. The
_PTR definitions are provided in the generated header file.

Status Register
The status register is a read-only register that contains the status bits defined for the counter.
Use the Counter_ReadStatusRegister() function to read the status register value. All operations
on the status register must use the following defines for the bit fields because these bit fields
may be different between FF and UDB implementations.
Some bits in the status register are sticky, meaning that after they are set to 1, they retain that
state until cleared when the register is read. The status data for sticky bits is registered at the

Counter PSoC® Creator™ Component Datasheet

Page 32 of 41 Document Number: 001-96201 Rev. *A

input clock edge of the counter, giving all sticky bits the timing resolution of the counter. All
nonsticky bits are transparent and read directly from the inputs to the status register.

Counter_Status (UDB Implementation)
Bits 7 6 5 4 3 2 1 0

Name RSVD FIFO Not
Empty

FIFO Full Capture Underflow Overflow Zero Cmp

Sticky N/A FALSE FALSE TRUE TRUE TRUE TRUE TRUE

Counter_Status (Fixed Function Implementation)
Bits 7 6 5 4 3 2 1 0

Name TC Capture Enable Stop RSVD RSVD RSVD RSVD

Sticky TRUE TRUE TRUE TRUE N/A N/A N/A N/A

See the chip Technical Reference Manual (TRM) for more information about registers.

Bit Name #define in header file Description

Cmp Counter_STATUS_CMP This bit goes to 1 when the compare output is high.

Zero Counter_STATUS_ZERO This bit goes to 1 when the counter value is equal to zero.

Overflow Counter_STATUS_OVERFLOW This bit goes to 1 when the counter value is equal to the period
value.

Underflow Counter_STATUS_UNDERFLOW This bit goes high when the counter value is equal to zero.

Capture Counter_STATUS_CAPTURE This bit goes to 1 whenever a valid capture event has been
triggered. This does not include software capture.

FIFO Full Counter_STATUS_FIFOFULL This bit goes to 1 when the UDB FIFO reaches the full state
defined as four entries.

FIFO Not
Empty

Counter_STATUS_FIFONEMP This bit goes to 1 when the UDB FIFO contains at least one
entry.

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 33 of 41

Mode Register
The mode register is a read/write register that contains the interrupt mask bits defined for the
counter. Use the Counter_SetInterruptMode() function to set the mode bits. All operations on the
mode register must use the following defines for the bit fields because these bit fields may be
different between FF and UDB implementations.
The Counter component interrupt output is an OR function of all interrupt sources. Each source
can be enabled or masked by the corresponding bit in the mode register.

Counter_Mode (UDB Implementation)
Bits 7 6 5 4 3 2 1 0

Name RSVD FIFO Not
Empty

FIFO Full Capture Underflow Overflow Zero Cmp

Counter_Mode (Fixed Function Implementation)
Bits 7 6 5 4 3 2 1 0

Name RSVD RSVD RSVD RSVD TC Capture Enable Stop

Bit Name #define in header file Enables Interrupt Output On

Cmp Counter_STATUS_CMP_INT_EN_MASK Compare

Zero Counter_STATUS_ZERO_INT_EN_MASK Counter register equals 0

Overflow Counter_STATUS_OVERFLOW_INT_EN_MASK Counter register overflow

Underflow Counter_STATUS_UNDERFLOW_INT_EN_MASK Counter register underflow

Capture Counter_STATUS_CAPTURE_INT_EN_MASK Capture

FIFO Full Counter_STATUS_FIFOFULL_INT_EN_MASK UDB FIFO full

FIFO Not Empty Counter_STATUS_FIFONEMP_INT_EN_MASK UDB FIFO not empty

Control Register
The control register allows you to control the general operation of the counter. This register is
written with the Counter_WriteControlRegister() function and read with the
Counter_ReadControlRegister() function. All operations on the control register must use the
following defines for the bit fields because these bit-fields may be different between FF and UDB
implementations.
Note When writing to the control register, you must not change any of the reserved bits. All
operations must be read-modify-write with the reserved bits masked.

Counter PSoC® Creator™ Component Datasheet

Page 34 of 41 Document Number: 001-96201 Rev. *A

Counter_Control (UDB Implementation)
Bits 7 6 5 4 3 2 1 0

Name Enable RSVD RSVD Capture Mode[1:0] Compare Mode[2:0]

Counter_Control (Fixed Function Implementation)
Bits 7 6 5 4 3 2 1 0

Name RSVD RSVD RSVD RSVD RSVD Oneshot RSVD Enable

Bit Name #define in header file Description / Enumerated Type

Compare
Mode

Counter_CTRL_CMPMODE_MASK The compare mode control bits define the expected compare
output operation. This bit field is configured at initialization with
the compare mode defined in the Compare Mode parameter.

 Counter__B_COUNTER__CM_LESSTHAN

 Counter__B_COUNTER__CM_LESSTHANOREQUAL

 Counter__B_COUNTER__CM_EQUAL

 Counter__B_COUNTER__CM_GREATERTHAN

 Counter__B_COUNTER__CM_GREATERTHANOREQUAL

Capture
Mode

Counter_CTRL_CAPMODE_MASK The capture mode control bits are a two-bit field that defines the
expected capture input operation. This bit field is configured at
initialization with the capture mode defined in the Capture Mode
parameter.

 Counter__B_COUNTER__CPTM_NONE

 Counter__B_COUNTER__CPTM_RISINGEDGE

 Counter__B_COUNTER__CPTM_FALLINGEDGE

 Counter__B_COUNTER__CPTM_EITHEREDGE

Enable Counter_CTRL_ENABLE This bit enables counting under software control. This bit is valid
only if the Enable Mode parameter is set to Software Only or
Hardware and Software.

Oneshot Counter_ONESHOT This bit selects between one-shot and continuous run modes

 1: One-shot mode

 0: Continuous run mode

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 35 of 41

Counter (8-, 16-, 24-, or 32-bit based on Resolution)
The counter register contains the current counter value. This register is incremented or
decremented in response to various count/clock inputs. This register may be read at any time
with the Counter_ReadCounter() function.

Capture (8-, 16-, 24-, or 32-bit based on Resolution)
The capture register contains the captured counter value. Any capture event copies the counter
register to this register. In the UDB implementation, this register is actually a FIFO. See the UDB
FIFOs section for details.

Period (8-, 16-, 24-, or 32-bit based on Resolution)
The period register contains the period value set through the Counter_WritePeriod() function and
defined by the Period parameter at initialization. The period register is copied into the counter
register on a reload event.

Compare (8-, 16-, 24-, or 32-bit based on Resolution)
The compare register contains the compare value used to determine the state of the compare
(comp) output.

Resources
Depending on the Implementation parameter Counter component uses one FF counter/timer
block or is placed throughout the UDB array. The UDB Implementation utilizes the following
resources.

Configuration
Resource Type

Datapath
Cells Macrocells Status

Cells
Control

Cells
DMA

Channels Interrupts

8-bits Up Counter 1 6 1 1 – –

8-bits Counter with direction 1 9 1 1 – –

8-bits UDB Counter UpCnt
& DwnCnt

1 11 1 1 – –

16-bits Up Counter 2 7 1 1 – –

16-bits Counter with
direction

2 9 1 1 – –

16-bits UDB Counter UpCnt
& DwnCnt

2 11 1 1 – –

24-bits Up Counter 3 6 1 1 – –

Counter PSoC® Creator™ Component Datasheet

Page 36 of 41 Document Number: 001-96201 Rev. *A

Configuration
Resource Type

Datapath
Cells Macrocells Status

Cells
Control

Cells
DMA

Channels Interrupts

24-bits UDB Counter UpCnt
& DwnCnt

3 11 1 1 – –

32-bits Up Counter 4 7 1 1 – –

32-bits UDB Counter UpCnt
& DwnCnt

4 11 1 1 – –

DC and AC Electrical Characteristics for PSoC 3
(FF Implementation)
The following values show expected performance and are based on initial characterization data.

DC Specifications
Parameter Description Conditions Min Typ Max Units

 Block current consumption 16-bit counter, at listed input
clock frequency

– – – μA

 3 MHz – 15 – μA

 12 MHz – 60 -- μA

 48 MHz – 260 – μA

 67 MHz – 350 – μA

AC Specifications
Parameter Description Conditions Min Typ Max[1] Units

 Operating frequency DC – 80.01 MHz

 Capture pulse 15 – – ns

 Resolution 15 – – ns

 Pulse width 15 – – ns

 Pulse width (external) 30 – – ns

 Enable pulse width 15 – – ns

1 Refer to the device-specific datasheet to determine the maximum frequency for a particular device.

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 37 of 41

Parameter Description Conditions Min Typ Max[1] Units

 Enable pulse width (external) 30 – – ns

 Reset pulse width 15 – – ns

 Reset pulse width (external) 30 – – ns

DC and AC Electrical Characteristics for PSoC 5LP
(FF Implementation)
The following values show expected performance and are based on initial characterization data.

DC Specifications
Parameter Description Conditions Min Typ Max Units

 Block current consumption 16-bit counter, at listed input
clock frequency

– – – μA

 3 MHz – 15 – μA

 12 MHz – 60 -- μA

 48 MHz – 260 – μA

 67 MHz – 350 – μA

AC Specifications
Parameter Description Conditions Mi

n
Typ Max Units

 Operating frequency DC – 67.01 MHz

 Capture pulse 15 – – ns

 Resolution 15 – – ns

 Pulse width 15 – – ns

 Pulse width (external) 30 – – ns

 Enable pulse width 15 – – ns

 Enable pulse width (external) 30 – – ns

 Reset pulse width 15 – – ns

 Reset pulse width (external) 30 – – ns

Counter PSoC® Creator™ Component Datasheet

Page 38 of 41 Document Number: 001-96201 Rev. *A

DC and AC Electrical Characteristics (UDB Implementation)
Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Characteristics
Parameter Description Min Typ[2] Max Units

IDD Component current consumption

8-bits UDB Up Counter – 10 – µA/MHz

8-bits UDB Counter with direction – 10 – µA/MHz

16-bits Up Counter – 16 – µA/MHz

16-bits Counter with direction – 15 – µA/MHz

24-bits UDB Up Counter – 31 – µA/MHz

32-bits UDB Up Counter – 32 – µA/MHz

AC Characteristics
Parameter Description Min Typ Max[3] Units

fCLOCK Component clock frequency

8-bits UDB Up Counter – – 39 MHz

8-bits UDB Counter with direction – – 39 MHz

16-bits Up Counter – – 33 MHz

16-bits Counter with direction – – 33 MHz

24-bits UDB Up Counter – – 29 MHz

32-bits UDB Up Counter – – 26 MHz

2. Device IO and clock distribution current not included. The values are at 25 °C.
3 The values provide a maximum safe operating frequency of the component. The component may run at higher

clock frequencies, at which point validation of the timing requirements with STA results is necessary.

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 39 of 41

Component Changes
This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

3.0.a Updated datasheet. Updated Resources section to reduce macrocells
value in UpCnt & DwnCnt modes

3.0 Redesigned Clock With UpCnt & DwnCnt
counter mode without dependency between
upCnt, downCnt signals.

Removed additional component clock delay for the
counting event.
Avoided opposite impact of dwnCnt input, when upCnt
is in high state.
Removed requirement of half frequency of component
clock for upCnt, dwnCnt inputs.

Removed PSoC 5 (non-LP) support. Device is obsolete.

Updated datasheet. Updated Functional Description section.
Updated Input/Output Connections section.
Updated Advanced Tab section.
Added UpCnt & DwnCnt mode to the Resources
section.
Updated DC and AC Electrical Characteristics for
PSoC 5LP section.

2.40.c Updated the datasheet. Updated the Functional Description section (Counter
Interrupt).
Corrected the Registers section (Mode Register).

2.40.b Updated the datasheet. Clarified UDB-based Components section.
Clarified Input/Output Connections section (count
input).
Clarified WritePeriod API side effect description.
Added a note to the FIFO section for clarity, and
updated a few numbers in the Characteristics section
for accuracy.

2.40.a Updated the default configuration waveform. Default configuration waveform shown in the counter
datasheet is wrong.

2.40 Updated datasheet with memory usage for
PSoC 4

2.30 Added MISRA Compliance section. The component does not have any specific
deviations.

2.20 Updated Counter_WriteCounter() API Issue with Counter_WriteCounter() API for fixed-
function counter.

Updated Default Configuration waveform in the
Counter datasheet.

Default configuration waveform shown in the counter
datasheet is wrong.

Counter PSoC® Creator™ Component Datasheet

Page 40 of 41 Document Number: 001-96201 Rev. *A

Version Description of Changes Reason for Changes / Impact

Updated Counter_Control register (for fixed
function) description in the datasheet.

Fixed function Counter_Control register description
was wrong.

Updated screenshots of Counter configure
window in the datasheet

Updates to remove frequency calculations field from
Counter configure window.

2.10 Customizer related updates for UDB
implementation.

The compare value is now allowed to take any values
in the full range of resolution for modes that count
both up and down.

Updated Counter_RestoreConfig() API To fix an issue with interrupt trigger after wakeup from
low power mode.

Added PSoC 5 DC and AC FF characteristics
to datasheet

2.0.a Updated Resource information in datasheet

Added additional configuration sections to
datasheet

2.0 Redesigned as a synchronous counter with
oversampling in all modes.

The architecture of the device and the tool has proven
that a synchronous design is the only viable solution.
All modes are still supported but require a clock for
oversampling.

Removed “comp” terminal from fixed-function
implementation

The implementation does not support a compare
output. The pin is now correctly hidden.

Synchronized inputs All inputs are synchronized in fixed-function
implementation, at the input of the block.

Converted Counter_GetInterruptSource()
function to a macro

The Counter_GetInterruptSource() function is exactly
the same implementation as the
Counter_ReadStatusRegister() function. To save
code space, this was converted to a macro
substitution of the Counter_ReadStatusRegister()
function.

Outputs are now registered to the component
clock

To avoid glitches on the outputs of the component it
was required that all outputs be synchronized. This is
done inside of the datapath when possible, to avoid
using too many resources.

Implemented critical regions when writing to
Aux Control registers.

CyEnterCriticalSection and CyExitCriticalSections
functions are used when writing to Aux Control
registers so that it is not modified by any other
process thread.

Added characterization data to datasheet

Minor datasheet edits and updates

PSoC® Creator™ Component Datasheet Counter

Document Number: 001-96201 Rev. *A Page 41 of 41

© Cypress Semiconductor Corporation, 2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	When to Use a Counter

	Input/Output Connections
	Component Parameters
	Hardware versus Software Configuration Options
	Configure Tab
	Resolution
	Implementation
	Period (Software Option)
	Compare Mode (Software Option)
	Compare Value (Software Option)
	Clock Mode

	Advanced Tab
	Capture Mode
	Enable Mode
	Run Mode
	Reload Counter
	Interrupt

	Clock Selection
	Fixed-Function Components
	UDB-based Components

	Placement
	Application Programming Interface
	Functions
	void Counter_Start(void)
	void Counter_Stop(void)
	void Counter_SetInterruptMode(uint8 interruptSource)
	uint8 Counter_ReadStatusRegister(void)
	uint8 Counter_ReadControlRegister(void)
	void Counter_WriteControlRegister(uint8 control)
	void Counter_WriteCounter(uint8/16/32 count)
	uint8/16/32 Counter_ReadCounter(void)
	uint8/16/32 Counter_ReadCapture(void)
	void Counter_WritePeriod(uint8/16/32 period)
	uint8/16/32 Counter_ReadPeriod(void)
	void Counter_WriteCompare(uint8/16/32 compare)
	uint8/16/32 Counter_ReadCompare(void)
	void Counter_SetCompareMode(uint8 compareMode)
	void Counter_SetCaptureMode(uint8 captureMode)
	void Counter_ClearFIFO(void)
	void Counter_Sleep(void)
	void Counter_Wakeup(void)
	void Counter_Init(void)
	void Counter_Enable(void)
	void Counter_SaveConfig(void)
	void Counter_RestoreConfig(void)

	Global Variables
	Conditional Compilation Information
	Counter_DataWidth
	Counter_UsingFixedFunction

	Sample Firmware Source Code
	MISRA Compliance
	API Memory Usage

	Functional Description
	General Operation
	Counter Overflow/Underflow
	Counter Outputs
	Counter Inputs
	Counter Interrupt
	Counter Registers

	Configurations
	Default Configuration
	UDB 8-bit Up/Down Counter Configuration
	Clock Input and Direction Configuration
	Clock with UpCnt and DwnCnt Configuration
	Event Counter Configuration
	Clock Divider Configuration
	Frequency Counter Configuration
	UDB FIFOs

	Registers
	Status Register
	Counter_Status (UDB Implementation)
	Counter_Status (Fixed Function Implementation)

	Mode Register
	Control Register
	Counter (8-, 16-, 24-, or 32-bit based on Resolution)
	Capture (8-, 16-, 24-, or 32-bit based on Resolution)
	Period (8-, 16-, 24-, or 32-bit based on Resolution)
	Compare (8-, 16-, 24-, or 32-bit based on Resolution)

	Resources
	DC and AC Electrical Characteristics for PSoC 3 (FF Implementation)
	DC Specifications
	AC Specifications

	DC and AC Electrical Characteristics for PSoC 5LP (FF Implementation)
	DC Specifications
	AC Specifications

	DC and AC Electrical Characteristics (UDB Implementation)
	DC Characteristics
	AC Characteristics

	Component Changes

