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I really wanted to title this piece ‘Of RMS and the Mean I sing’.  But wise editorial heads 
have told me more than once that quirky titles don’t draw people in, and that mock 
erudition will alienate one’s readership.  Now, I know much more about filters than I do 
about the works of George Bernard Shaw, so I finally dropped the wise-guy title and 
went with something that highlights the practical value of these five RMS-related 
nuggets: 
 
* RMS is a specific property of a defined segment of signal 
* Filtering is not the same thing as averaging 
* RMS is not always about power 
* RMS is better than Mean in a sampled system 
* You can’t filter successive RMS results to improve accuracy 
 
1 RMS is a specific property of a defined segment of signal 
 
The ‘basic’ definition of RMS is well known.  You Square some data, find the Mean 
value, then take the square Root.  Hmmm, why didn’t they call it SMR rather than 
RMS?  That’s just the RPN fan in me talking, I guess.  I must be a fan, to have spent 
quite so much on a brand-new HP-15 calculator.  But I digress. 
 
Anyway, what data should we be working with?  When someone presents you with a 
BNC socket and says “What’s the RMS value of the signal coming out of that socket?”, 
you should respond: “I assume you mean: the RMS value of the signal between two 
points in time during your asking of that question”.  It’s not just a facetious response; the 
problem is that for any unknown signal, the RMS ‘value’ can only be defined if you give 
a start and stop time for the relevant segment of signal.  If it’s a continuous-time 
(“analogue”) signal, we calculate the time integral of the square of the signal between the 
start and stop times and divide that by the time duration, before taking the square root.  
For a sampled signal you really do just take the mean value of the squares of all the 
sample points, then take that square root. 
 
If the signal is truly periodic, something rather nice happens when we set the 
measurement time equal to an integer multiple of the waveform’s period.  We get a 
number that’s independent of the phase at which we start and stop the measurement.  In 
other words, the RMS value of a periodic waveform is a characteristic constant for that 
waveform.  This is often quite a useful short-cut in calculations; in a time equal to the 
waveform period, a DC voltage equal to the RMS value delivers the same energy into a 
constant load as the signal itself does.  But I’m getting ahead of myself here... 
 
2 Filtering is not the same thing as averaging 
 



A perfect “RMS responding” measurement device should produce a completely static 
output when fed with a periodic waveform.  It should be independent of repetition 
frequency and the rate at which the measurement device’s output is sampled.  In order to 
deliver this stable RMS value, the device needs to ascertain the period of the waveform.  
If it isn’t known, can’t be determined, doesn’t exist or is changing with time, a strict 
RMS measurement is simply not possible.  But that doesn’t stop most voltmeters or 
RMS-to-DC converter ICs from giving you an answer.  You need to be rather 
circumspect about the answer in this case; it’s rather ill-defined. 
 
This is because RMS-to-DC converter ICs – which you’ll find at the front end of most 
“true RMS” voltmeters – replace the strict time-averaging process with a single-pole 
lowpass filter.  Superficially, such filtering achieves a similar job to an averaging process, 
suppressing the variation of the squared-up signal and giving you a stable answer.  And 
indeed, when run continuously on a periodic waveform, repeating at a frequency much 
higher than the cutoff frequency of the lowpass filter, you get the same result as the strict 
averaging approach gives. 
 
In fact, averaging is a very specific instance of lowpass filtering – and it happens to be 
the only form of filtering that actually gives the ‘correct’ answer for the average value of 
the applied signal between ‘now’ and ‘now minus the averaging time’.  Other lowpass 
filters can do a good job of smoothing a signal but will do a poor job of averaging it.  It’s 
possible, if not straightforward, to make an analogue filter whose impulse response 
approximates the box-car impulse response of an averager.  But we’ll see later that it’s 
infeasible to incorporate such filters into a conventional analogue RMS-to-DC converter 
design.  Dang, I’m doing the getting-ahead-of-myself thing again... 
 
An RMS-to-DC converter IC equipped with regular single-pole lowpass filtering and fed 
with an aperiodic signal produces an output that’s never exactly equal to the RMS value 
of any actual segment of the waveform.  What we’ve implemented instead is RFS, the 
square root of a filtered version of the square of the signal.  The presence of this filtering 
– and the pathologies it could introduce – is what makes RMS a great subject for Filter 
Wizard scrutiny.  Whether the pathologies are important or not does depend on the 
application to which you’ll put such a converter.  We’ll see that we can sometimes 
actually take advantage of this. 
 
3 RMS is not always about power 
 
RMS measurements are often associated with power.  You frequently see the assertion (I 
already made it) that the RMS value of a waveform is the value that, if applied to your 
load as a DC level, results in the same power dissipated in that load as is dissipated when 
you apply the signal itself.  As with many assertions, it’s only true when a bunch of 
conditions are met.  Sometimes they are not. 
 
Here’s an example.  Suppose you have two 1 ohm resistors you’re going to use as heaters 
in some experiment.  When you apply 1 Volt across such a resistor, 1 Amp flows, and 1 
Watt – 1 Joule per second – is dissipated.  Let’s apply that 1 Volt to each resistor in turn 



for 1 second at a time.  In the space of 2 seconds, each resistor dissipates 1 Joule, and we 
shouldn’t be surprised that the total power dissipated is just 1 Watt. 
 
Now let’s connect the two resistors in parallel, and apply 1 Volt for 1 second, then switch 
the voltage off for 1 second.  In the first second, each resistor throws out 1 Joule; in the 
second second, no energy is dissipated.  Total energy is 2 Joules in 2 seconds, still 1 Watt.  
This is so obvious that I’m almost apologetic for spending two paragraphs on it. 
 
Let’s calculate the RMS current in each of the cases.  For the simple waveforms here, 
that’s trivial.  In the first case, the mean of the square of the current is obviously 1 
Amp^2, so the RMS value is the obvious 1 Amp.  In the second case, the mean of the 
squared current is (4*1+0*1)/2 = 2 Amp^2, so the RMS current is 1.4142 Amp.  Eh?  
How can the RMS current be different, when we clearly dissipated the same energy over 
the experiment period in each case?  I thought same RMS meant same power? 
 
The answer is that we did not keep the value of the load constant.  The learning point 
from this is that the relationship between the RMS value of a current or voltage and the 
power dissipated in a system only applies when the constant of proportionality between 
voltage and current (OK, a pedantic way of saying ‘resistance’) doesn’t change over the 
measurement period.  In many real world situations – the connected load on the 
electricity supply in your house, or the real part of the impedance seen by your cellphone 
antenna – this isn’t true.  To measure power in such cases, you need to know both the 
current and voltage simultaneously, and integrate their product to get energy.  Under 
these circumstances, RMS measurements of just one parameter will be misleading. 
 
4 RMS is better than Mean in a sampled system 
 
About the most common way of producing a DC level that corresponds to the amplitude 
of an AC signal is to rectify the signal and then filter off the high frequency junk to leave 
the DC component, proportional to the amplitude.  AC voltmeters that work this way 
have been around since the dawn of the electronic age, and are usually called “average 
responding”, though of course they respond to the average of the absolute value of the 
signal. 
 
Rectifying an AC signal in the analogue domain is a standard electronic technique, and 
the performance impact of circuit imperfections (such as amplifier bandwidth) is well 
understood.  Dedicated RMC-to-DC converter ICs (we’ll talk about those presently) tend 
to have premium pricing, and engineers of a miserly persuasion are often tempted to 
make home-brew average-responding circuits for less critical applications, especially 
when the signals applied are close to sinusoidal. 
 
If you’re doing the calculations in the digital domain after having sampled your signal 
(this presumes that your input signal is in a frequency range that permits conversion to 
digital) it’s tempting to stick to the absolute-value method, because this is a simple 
operation to apply to a signed digital representation of a signal.  It’s also attractive 
because no extension of internal precision is required.  The absolute value of a signed 16-



bit sample is a 16-bit number, while the square of that sample requires 32 bits for its 
representation. 
 
However, once you’re in the digital domain, I’d highly recommend that you use an RMS 
technique rather than an absolute value approach.  There’s a simple reason for this.  Both 
absolute-value and squaring are non-linear operations.  When applied to sampled signals, 
such operations will result in the generation of additional frequencies that will alias round 
if at greater than half the sample rate.  Of the two methods, squaring is a benign and 
predictable operation; only the second harmonic is generated, and it’s easy to keep track 
of this.  Sampling at four times the highest signal frequency is guaranteed to prevent any 
unexpected tonal component caused by a second harmonic from landing back in your 
data set, even before you apply your junk-reducing filter.  This is particularly relevant if 
the amplitude measurement, after filtering, represents an interesting signal such as audio. 
 
In contrast, taking the absolute value of a signal creates an unbounded sequence of 
harmonics of that signal, due to the abrupt discontinuity at the zero-crossing.  Some of 
those will invariably end up back in the wanted frequency range after aliasing, however 
low the input frequency.  Under some circumstances, these aliases can be so low in 
frequency that they will actually appear as a ripple on the measurement that can’t be 
eliminated by the usual smoothing filter.  This is immediately apparent if you try to make 
a digital AM demodulator to recover audio from a sampled version of an amplitude-
modulated carrier by filtering the absolute value of the carrier waveform.  The mess of in-
band tones that results makes it unusable.  Squaring the input signal, filtering off the 
resultant second harmonic of the carrier and taking the square root of the result gives 
clean audio reproduction – I’ve tried it. 
 
5 You can’t filter successive RMS results to improve accuracy 
 
When you read the datasheets for RMS-to-DC converter ICs, they discuss the use of post-
filters to reduce the level of the output ripple that you get when the input frequency is low 
enough to ‘peep through’ the filtering process used internally.  Adding an extra pole or 
two at the output means that you can reject these unwanted frequencies with circuitry 
based on much lower capacitor values – the high-value tantalum capacitors required to 
achieve good low frequency response are often the bulkiest, largest components on the 
circuit board. 
 
This approach has a flaw.  It’s mentioned in the datasheets almost in passing, as if it isn’t 
a problem, but it is certainly something you should take into account.  The problem is 
this: if there is any significant ripple on the output of the RMS converter chip, then the 
DC value there is already wrong.  Applying a further lowpass filter doesn’t change the 
(in)accuracy of the answer, it just removes some of the pesky ripple.  But what’s the point 
of getting a more stable version of the wrong answer?  When lecturing on the use of 
filters, I use this as an example of a case where the AC signal present is not a problem to 
fix with a filter, it’s a symptom of another deeper problem for which a filter may not be 
the primary solution. 
 



The proper solution to the problem is to use better filtering within the RMS converter 
core itself – but this is essentially not possible with the standard architecture used in 
standard RMS-to-DC converter ICs.  That architecture is a brilliant invention called 
implicit RMS conversion, and it solves the dynamic range problem that would otherwise 
make analogue computation of RMS over a wide dynamic range infeasible.  This 
problem is that if you only have a small input signal (relative to the largest one that you 
want to work with), then squaring its magnitude makes it even smaller.  Handling a 
dynamic range of 90 dB at the input would require a span of 180 dB for the squared 
signal.  That’s not possible from any practical electronic circuit.  Implicit RMS 
conversion neatly avoids actually having to square the signal (done, predictably enough, 
in the explicit method) and so doesn’t need to manage very small analogue levels. 
 
However, the implicit method is a feedback system and the filtering process that cleans 
off the high frequency residual is within this feedback loop.  Formal feedback rules apply, 
for any small signal excitation around the stable operating point, and so the filter needs to 
have a transfer function that you can wrap a feedback loop around.  That essentially 
limits you to a first order filter in any practical circuit. 
 
If you use a digital implementation, sampling with an ADC and squaring the result, your 
dynamic range is limited only by the precision of the arithmetic you care to use, and this 
can be increased way beyond any value that might limit your results.  This means that the 
explicit method – square the signal, perform your chosen averaging or filtering, then take 
the square root – is the preferred way to go in the digital domain.  And this means that 
you can apply whatever filter you want.  Fast-settling, high rejection filter approaches fit 
right in here, and you can get rid of all your ripple in the squared domain before finally 
taking the square root of that now-stable answer. 
 
It’s not an either/or choice between analogue and digital approaches either.  If you’ve 
been given a brief to design an RMS-measuring system that has good accuracy for signals 
from a milliHertz to a megaHertz, without using Cola-can-sized capacitors, you should 
consider a hybrid approach.  Start with a good analogue-domain RMS-to-DC converter.  
Analog Devices and Linear Technology both have interesting parts, with distinctly 
different internal approaches to the implicit conversion paradigm.  For physically 
reasonable averaging capacitor sizes, there will be a lower limiting frequency below 
which the output ripple will be an increasing factor, and inconvenient for you if you want 
a rock-stable answer.  But don’t worry; here’s the Thing To Know about this situation: 
the RMS value of the output of this RMS converter is still correct!  Don’t make the 
mistake of trying to filter off the ripple; just feed the entire signal into the input of 
another RMS converter – this time, a digital one.  A PSoC3 would be a wonderful 
choice for this next stage, with its excellent delta-sigma ADC and fast arithmetic 
capabilities. 
 
So what you have is a hybrid, two-stage converter.  The first stage operates in the 
analogue domain; high frequencies get “turned to DC” while very low frequencies just 
come out looking like the absolute value of the input signal (that’s obvious, right?).  The 
second stage operates digitally, but doesn’t have to sample very fast, since it’s only 



handling a mixture of DC and some low frequency ripple.  Make sure that your ADC’s 
frequency response doesn’t significantly attenuate the ripple at any frequency where it’s 
important.  Then, the second stage calculates the RMS value of the output of the first 
RMS converter, explicitly and with super-fast-response digital filtering, and the result is 
the overall answer you wanted.  Small, cheap and accurate – what more do you want, 
boss? 
 
I hope this has shown you that there’s a lot more to choosing and using RMS 
measurements (and the associated filtering) than might meet the uncritical eye.  Try some 
of these techniques out and tell me how you get on.  Don’t be Mean – be Square! / 
Kendall 


