
 PSoC Creator Component datasheet

Rev. *B Revised Oct 3, 2023

Features

 Implements interface between PSoC and SerialPlot software
 Data types: int8, int16, int32, uint8, uint16, uint32, float
 Doesn’t use hardware resources

 Up to 64 channels

General description

The SerialPlot(*) component implements interface to the real-time charting software SerialPlot

[1]. Using this component, PSoC data can be easily visualized on personal computer.

Component doesn’t use any hardware, performing all operations by CPU, which is useful for

systems with little resources, such as PoC4. Multiple instances of the component can run

simultaneously in the project. Component does not have any input/output connections. It is, in

essence, a software library, performing all operations by API.

When to use SerialPlot component

Component was developed for monitoring temperature profile from multiple sensors. It can be

useful whenever digitized signals need to be visualized or saved on external computer, such as:

voltage, current or temperature monitoring, PID parameters tune-up, etc. Component is useful

for a system with limited hardware resources, such as PSoC4. Component was tested using

CY8KIT-059 PSoC5LP Prototyping Kit, CY8KIT-044 PSoC4200M Pioneer Kit and CY8KIT-042 PSoC4

Pioneer Kit. Demo projects are provided.

*
 Hereafter referred to as “Chart”

SerialPlot: interface to real-time data charts
1.0

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 2 of 22 Rev. *B

Parameters and Settings

Basic dialog provides following parameters(*):

DataFormat [Simple Binary / ASCII / Custom Frame]

Sets communication format. Valid options are: Simple Binary, ASCII and Custom Frame. Default

setting is Simple Binary. The setting can’t be changed during the run-time.

DataType [int8 / int16 / int32 / uint8 / uint16 / uint32 / float]

Sets data type. Valid options are int8, int16, int32, uint8, uint16, uint32, and float. Default value

int8. The setting can’t be changed during the run-time.

NumChannels (uint8)

Sets number of output channels. Each channel appears as a separate line on the chart. Valid

options are [1 to 64]. The value can’t be changed during the run-time. See API section for

details.

UART (string)

Sets the name of the UART, which transmits data. Component doesn’t have any UART built-in.

Component works with Creator stock UART and SCB UART components. The setting can’t be

changed during the run-time.

*
 Component was intentionally compiled using Creator 4.0 for compatibility with older versions.

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *B Page 3 of 22

Advanced dialog provides following parameters:

CheckSum (bool)

Enables checksum calculation. This option has effect only in the Custom Frame mode. Enabling

checksum increases transmission reliability but adds some overhead. Default value is false. The

setting can’t be changed during the run-time. See Implementation section for details.

FrameHeader (string)

Sets frame header(*) preamble. Frame header is a unique set of bytes inserted at the start of

each data frame, which is used for data flow synchronization. This option has effect only in the

Custom Frame mode. The value should be typed as string of 8-bit Hex characters, separated by

the comma. The length of the header can be in the range between 2 to 8 bytes. The longer

header improves transmission reliability, but increases overhead. Default value is “0xAA, 0xBB”

(2 bytes long). The setting can’t be changed during the run-time.

FrameHeaderSize (uint8)

Sets frame header size in the Custom Frame mode. The value must match the amount of

characters in the FrameHeader string. Default value is 2. The value can’t be changed during the

run-time.

*
 In the SerialPlot software it is also called “Frame Start”

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 4 of 22 Rev. *B

FrameNumPackets (uint8)

Sets number of data packets per frame in the Custom Frame mode. Default value is 1. The

number of data packets, that can fit into the frame is limited by the maximum frame size of 255

bytes. See Implementation section for details. The value can’t be changed during the run-time.

When the FrameNumPackets is 1, the SerialPlot updates the screen as soon as a new data

packet arrives. When the FrameNumPackets is greater than 1, the SerialPlot updates the screen

after all data packets in the frame have been received. This helps reducing computer CPU load

by lowering the screen update rate.

FrameSizeFormat [fixed]

Current version of the component supports only fixed frame size.

Endianness [little]

The setting is fixed to the little endian. This parameter can’t be changed.

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *B Page 5 of 22

Application Programming Interface

Function Description
Chart_Plot() Sends single data packet
Chart_PlotArray() Sends single data array packet

void Chart_Plot(data_t V1, data_t V2, … , data_t Vn)

Description: Sends one packet (column) of data samples to the COM port.

Parameters: input data list. The data_t type can be one of the following types: int8, int16,

int32, uint8, uint16, uint32 or float. The number of the arguments in the list

must be equal the number of channels. Upon compiling the project, component

generates overload version of the Plot() procedure based on the Dialog settings.

The maximum number of channels that can be plotted using this procedure is 16.

See Implementation section for details.

Return Value: none

void Chart_PlotArray(data_t * channels)

Description: Sends one packet (column) of array data to the COM port.

Parameters: channels - pointer to the data array, where each index represents a channel. The

array type must match the selected data type data_t, which can be one of the

following: int8, int16, int32, uint8, uint16, uint32 or float. The number of values

transmitted is defined by the parameter NumChannels, and not by the original

array size. The component automatically calculates the amount of bytes to

transfer based on the number of channels and selected data type. This amount,

however, can’t exceed the maximum frame size of 255. The maximum number

of channels that can be plotted using this procedure is limited to 64(*). The

procedure is not available in the ASCII mode. See Implementation section for

details.

Return Value: none

*
 The frame size and number of channels are limited by the SerialPlot 0.12.0

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 6 of 22 Rev. *B

Functional Description

The SerialPlot is open source real-time plotting software, which graphically displays data

received by computer through a serial port. It is available for Windows, Mac and Linux

platforms, and supports several data formats and multichannel operation. The application can

receive data as: (i) simple binary data stream; (ii) ASCII data in CSV format; (iii) user-defined

custom frame format. The SerialPlot software is ideal tool for displaying data produced by

microcontrollers, such as various sensors outputs, control and debugging information (Figure

1).

The Chart component implements easy interface solution between PSoC microcontrollers and

the SerialPlot software using UART. The component doesn’t include any UART blocks by itself,

requiring complimentary external UART for operation. The Chart component merely formats

the data for the UART Tx buffer, while UART handles actual transmission of the data. Such

separation allows for greater flexibility in the UART selection.

The Chart component supports many, but not all of the features available on the SerialPlot

software. It is designed to simplify data output from PSoC microprocessors to the SerialPlot

software running on personal computers. Upon compiling the project it will automatically

generate proper overload version of the API, based on the options selected in the Dialog.

Figure 1. Example of the data stream output by the SerialPlot.

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *B Page 7 of 22

Implementation

The Simple Binary format

In the Simple Binary format, data is transmitted as a stream of data packets, one at a time. Data

packet structure for single- and dual-channels transmission is shown of Figure 2.

Figure 2. Structure of data packets in the Simple Binary format, each square represents a byte:

(A)- single channel of int8 / int16 data type; (B)- 2 channels of int8 / int16 data type.

There is no option to synchronize the data stream in this mode – the loss of a single byte

catastrophically corrupts the rest of the data received. The only exception presents 1-byte

single channel transmission, where each byte corresponds to the individual data point. For that

reason the Single Binary mode is recommended only when data packet fits one byte - a single

channel of int8 or uint8 data.

Upon compiling the project, the component automatically generates overload version of the

Plot() procedure, based on the Dialog settings. See Appendix 1 for details.

The ASCII format

In the ASCII format, received data is formatted as a string of human-readable values, separated

by the comma, with each string is terminated by the standard escape sequence: [CR][LF]. For

example, when configured for the 2-channels of float data type, the output string looks like:

-1.23456E+01, 2.34567E+02[CR][LF]

Due to hard-separation of the data strings by the escape sequence, this method of data

transmission is relatively immune: a loss of a data byte doesn’t corrupt the rest of data. This

mode of operation is slow (see Performance section) due to the intermediate conversion of the

data into the human-readable form, and is not recommended. It may be useful, however, for

debugging purposes using a character Terminal. See Appendix 1 for details.

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 8 of 22 Rev. *B

The Custom Frame format

The Custom Frame is the preferred data format for transmitting data. It offers performance

comparable to the Single Binary with superior reliability. In this format the data packets are

staffed into individual frames, preceded with a frame header(*), and optional checksum byte at

the end. Several data packets can be staffed into a single frame, limited by the maximum size of

255 bytes, excluding the header and checksum byte. The SerialPlot charting software shall not

update the screen until the entire frame is transmitted. This helps reducing computer CPU load

by lowering screen update frequency when data rates are high.

The frame header allows re-synchronizing data stream if some bytes are lost or corrupted. It

consists of several unique user-selectable characters (up to 8 bytes long), for example: “0xAA,

0xBB, 0xCC, 0xDD”, which would rarely occur naturally. Longer header strengthens sync lock,

but adds overhead. The default header “0xAA, 0xBB” is 2-byte long, which is sufficient for non-

demanding applications. For example, when the number of channels is 2, selected data type is

int16 (2-byte) and number of data packets per frame is 1, the frame structure is:

Figure 3. Data stream structure in the Custom Frame format, where each square represents a byte.
Header size is 2 bytes, number of channels is 2, data type is int16 and the number of data packets

per frame is 1. (A)- checksum disabled, (B)- checksum enabled.

The optional checksum allows protection against data being lost or corrupted. If checksum

doesn’t match, the entire frame is discarded by the SerialPlot software. See Appendix 1,

Custom Frame section for details.

The Frame can carry multiple data packets, up to 255(†) bytes total, excluding the header and

checksum byte. Adding each data packet to the frame requires its own call to the Chart_Plot()

or Chart_PlotArray() procedure. The SerialPlot automatically adds the frames header and

checksum according to the settings. Individual data packets shall be transmitted on each

Chart_Plot() or Chart_PlotArray() call. However, the SerialPlot software shall not update the

screen until the entire frame has been received by computer. This helps reducing the CPU load

by lowering the screen update frequency when data rates are high. The structure of the frame

carrying several data packets is shown on Figure 4.

*
 Also referred to by the SerialPlot software as “Frame Start”.

†
 In the current version of the SerialPlot 0.12.0 the frame size is limited by 255

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *B Page 9 of 22

Figure 4. Frame structure with multiple data packets per frame, where each square represents
a byte. Header size is 2 bytes, number of channels is 2, data type is int16 and the number of

data packets per frame is 3. (A)- checksum disabled, (B)- checksum enabled.

The maximum number of data packets, that can fit the frame can be calculated as

 (

)

where DataSize - the size in bytes of the selected data type. For example, in case of 4 channels

of data type int16, the maximum number of the data packets is 31. The component performs

automatic validation that the parameters selected fit this criterion.

Features not implemented

 Data type double

 Variable frame length in Custom Frame format

 Bidirectional communication (Rx + Tx)

 USB-UART communication

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 10 of 22 Rev. *B

Performance

Component was tested using CY8KIT-059 PSoC5LP Prototyping Kit and CY8KIT-042 PSoC4

Pioneer Kit. The component performs all operation entirely by the CPU. Results for PSoC5LP are

presented below(*). Results for PSoC4 are typically ~20% slower.

The Chart_Plot() API execution time in binary modes is clearly dominated by the UART

performance, while in ASCII mode by the string formatting procedure. The fastest time is

obtained in Single Binary mode with UART Tx buffer size of 4 (hardware FIFO enabled). For

larger buffer sizes the execution time rises due to UART switching to the RAM buffer instead of

FIFO.

Table 1. Execution time (bus clocks) in Single Binary format, 1 channel.

Tx buffer size int8 int16 int32 float

4 bytes 17 62 83 83

128 bytes 47 128 196 196

Table 2. Execution time (bus clocks) in Custom Frame format, Header 2 bytes, 2 channels
(†)

.

Tx buffer size int8 int16 int32 float

4 74 2410 10730 10770

128 185 294 460 455

(†)
 Enabling checksum adds overhead 50-60 clocks.

Table 3. Execution time (bus clocks) in ASCII format, 2 channels.

Tx buffer size int8 int16 int32 float

4 12600 17000 31500 45000

128 2560 2600 3100 14000

*
 Results obtained using UART speed at 115.2k, compiler release mode with optimization set to speed

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *B Page 11 of 22

Resources

Component does not consume hardware resources. It doesn’t use interrupts, clocks or UDB.

Component does not have built-in DMA capabilities.

Sample Firmware Source Code

Several demo projects are provided, see Appendices 1 - 4 for details.

Component Changes

Version Description of changes Reason for changes/impact
0.0 Version 0.0 is the first beta release of the

component

1.0 Number of channels increased to 64.

Added multiple data packets per frame.

Added procedure Chart_PlotArray().

Added PSoC4 SCB UART support.

References

1. Serial PLOT v0.12.0, by Hasan Yavuz Özderya,
https://hackaday.io/project/5334-serialplot-realtime-plotting-software/discussion-88924

https://bitbucket.org/hyOzd/serialplot

https://hackaday.io/project/5334-serialplot-realtime-plotting-software/discussion-88924
https://bitbucket.org/hyOzd/serialplot

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 12 of 22 Rev. *B

Appendix 1

Simple Binary format

When data packet fits a single byte (1-channel of int8 or uint8 data type), the component

generates the overload version of the Plot() procedure, along with suggested SerialPlot settings:

void Chart_1_Plot(int8 V1)

{

 // Format: Simple Binary

 // Channels: 1

 // Number Type: int8

 // Endianness: Little Endian

 UART_1_PutChar(V1);

}

Suggested settings should be manually(*) copied to the SerialPlot Data Format tab (Figure 5).

Recommended size of the complimentary UART Tx buffer in this mode is 4 (hardware FIFO), see

Performance section for details.

Figure 5. SerialPlot output and data format settings: Simple Binary; Number of Channels: 1;
Number Type: int8; Endianness: Little Endian.

*
 The SerialPlot software doesn’t support remote configuration.

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *B Page 13 of 22

When the size of the data packet exceeds one byte (for example 2-channels of int8 data type),

the component generates the overload version of the procedure:

void Chart_1_Plot(int8 V1, int8 V2)

{

 // Format: Simple Binary

 // Channels: 2

 // Number Type: int8

 // Endianness: Little Endian

 int8 DataPacket[2] = {V1, V2};

 // send data packet as array of char

 UART_1_PutArray((uint8 *) DataPacket, sizeof(DataPacket));

}

Suggested settings should be manually copied to the SerialPlot Data Format tab (Figure 6). The

UART Tx buffer size should be set enough to fit all bytes in the data packet. Best performance is

achieved when data packet fits UART FIFO buffer (here is 4 bytes). See Performance section for

details.

Figure 6. SerialPlot output and data format settings: Simple Binary; Number of Channels: 2;
Number Type: int8; Endianness: Little Endian.

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 14 of 22 Rev. *B

ASCII format

Shown below is a code example of sending 2 channels of the float32-type data in ASCII format.

Upon compiling the project, based on the Dialog settings, the component generates overload

version of the Plot() procedure, along with the suggested SerialPlot settings:

void Chart_1_Plot(float32 V1, float32 V2)

{

 // Format: ASCII

 // Channels: 2

 // Delimiter: comma

 // Filter by prefix: disabled

 char abuff[36];

 sprintf(abuff, "%g,%g\r\n", V1, V2);

 UART_1_PutString(abuff);

}

Suggested settings should be manually copied to the SerialPlot Data Format tab (Figure 7). If

float data format selected, the newlib-nano Float Formatting must also be enabled in the

Project build settings. The size of the complimentary UART Tx buffer must be set to no less than

the size of the abuff[] (here is 36 bytes).

Figure 7. SerialPlot output and data format settings: ASCII data format; Number of Channels: 2;
Column Delimiter: comma; Filter by Prefix

(*)
: disabled.

*
 Filter by prefix is not supported in this version of the component

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *B Page 15 of 22

Custom Frame format

Shown below is a code example of sending 2 channels of the int16-type data in Custom Frame

format with Checksum disabled. Upon compiling the project, the component automatically

generates overload version of the procedure, along with corresponding settings for SerialPlot

software:

void Chart_1_Plot(int16 V1, int16 V2)

{

 // Format: Custom Frame

 // Frame Start: 0xAA, 0xBB

 // Channels: 2

 // Frame Size: Fixed, Size=4

 // Number Type: int16

 // Endianness: Little Endian

 // Checksum: false

 static uint16 counter = 0; // data packet counter

 uint8 FrameHeader[2] = {0xAA, 0xBB};

 int16 DataPacket[2] = {V1, V2};

 // start Frame by sending a Header

 if (counter == 0) {

 UART_1_PutArray((uint8 *) FrameHeader, sizeof(FrameHeader));

 }

 // send data packet as array of char

 UART_1_PutArray((uint8 *) DataPacket, sizeof(DataPacket));

 if (++counter == 1) { // all data packets sent

 counter = 0; // reset packet counter

 }

}

When Checksum enabled, component generates the overload version of the procedure, which

includes checksum calculation:

void Chart_1_Plot(int16 V1, int16 V2)

{

 // Format: Custom Frame

 // Frame Start: 0xAA, 0xBB

 // Channels: 2

 // Frame Size: Fixed, Size=4

 // Number Type: int16

 // Endianness: Little Endian

 // Checksum: true

 static uint16 counter = 0; // frame data packet counter

 static uint8 CS = 0; // checksum byte

 uint8 * pCS = (uint8 *) &CS; // pointer to checksum byte

 uint8 FrameHeader[2] = {0xAA, 0xBB};

 int16 DataPacket[2] = {V1, V2};

 // start Frame with a Header

 if (counter == 0) {

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 16 of 22 Rev. *B

 UART_1_PutArray((uint8 *) FrameHeader, sizeof(FrameHeader));

 }

 // sum all bytes in data packet

 uint8 * pVal = (uint8 *) &DataPacket[0]; // pointer to start byte

 int i;

 for (i=0; i<Chart_1_DataPacketSize; i++)

 {

 * pCS += * pVal++; // add bytes to checksum

 }

 // send data packet as array of char

 UART_1_PutArray((uint8 *) DataPacket, sizeof(DataPacket));

 if (++counter == 1) { // all data packets sent

 UART_1_PutChar(CS); // send check sum

 counter = 0; // reset packet counter

 CS = 0; // reset checksum

 }

}

Settings provided in the comments header should be manually copied to the SerialPlot Data

Format tab (Figure 8). The size of the complimentary UART Tx buffer in this mode should be set

to no less than the frame size.

Figure 8. SerialPlot output and settings: Custom Frame mode; Frame Start: “0xAA, 0xBB”;
#Channels: 2; Frame Size: Fixed, Size=4; Number Type: int16; Checksum: Enabled.

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *B Page 17 of 22

Appendix 2

PSoC5 basic demo

The PSoC5 project schematic using SerialPlot component is shown on Figure 9. Test data

samples are generated on clock timer and streamed to the host computer using (UDB) UART

through USB-UART bridge, built into the KitProg.

Figure 9. Project schematic.

The test data are generated on 100 Hz timer clock. The Chart component is configured for

Custom Frame format, 4 channels, int16 data type. UART_1 Tx buffer size is 128 bytes. The

SerialPlot software viewport and configuration page are shown on Figure 10.

Figure 10. SerialPlot output and settings: Custom Frame mode; Frame Start: “0xAA, 0xBB”;
#Channels: 4; Frame Size: Fixed, Size=8; Number Type: int16; Checksum: Disabled.

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 18 of 22 Rev. *B

Project essential code:

int16 v1,v2,v3,v4;

for(;;)

{

 if(isrTimer_flag != 0)

 {

 isrTimer_flag = 0;

 GenerateSignal();

 Chart_1_Plot(v1, v2, v3, v4);

 }

}

// channels data

// monitor for Timer interrupt

// reset flag

// update values v1-v4

// plot values

Figure 11. Project annotation for PSoC5 CY8CKIT-059 using PSoC Annotation library v1.0.

https://community.infineon.com/t5/Code-Examples/PSoC-Annotation-Library-v1-0/td-p/62657

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *B Page 19 of 22

Appendix 3

Array plotting demo

The PSoC5 ArrayPlot API demo is shown on Figure 12. Test data samples are generated on clock

timer and streamed to the host computer by UART_1 using the USB-UART bridge built into the

KitProg.

Figure 12. SerialPlot demo project schematic.

The test data are generated on 20 Hz timer clock. The Chart component is configured for

Custom Frame format, 32 channels, uint8 data type, checksum enabled. UART is configured for

Tx-only, buffer size 128 bytes, speed 115k.

Sample code of sending 32 channels of data at once:

uint8 Channels[32];

for(;;)

{

 if(isrTimer_flag != 0)

 {

 isrTimer_flag = 0;

 GenerateSignal();

 Chart_1_PlotArray(Channnels);

 }

}

// array of data channels

// monitor for Timer interrupt

// reset flag

// update Channels[] array

// plot array of channels

The SerialPlot viewport and settings tab are shown on Figure 13. The SerialPlot viewport is

configured for bar plot display. The SerialPlot settings a shown on the Data Format tab; they

should match the Chart component parameters (Custom Frame, 32 channels, uint8 data type,

checksum enabled). The length of the data frame is set to 32 bytes (32 channels x 1 byte). This

settings can be found on the component popup window, and manually copied to the SerialPlot

Data Format tab, Figure 14.

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 20 of 22 Rev. *B

Figure 13. SerialPlot bar plot output and settings: Custom Frame mode; Frame Start: “0xAA, 0xBB”;
#Channels: 32; Frame Size: Fixed, Size=32; Number Type: uint8; Checksum: Enabled.

Figure 14. Component Popup window shows required SerialPlot settings.

PSoC Creator Component datasheet SerialPlot: interface for real-time data charts

Rev. *B Page 21 of 22

Appendix 4

PSoC4 SCB UART demo

The PSoC4 project schematic using SerialPlot and SCB UART is shown on Figure 15. The data

samples are generated on periodic WDT interrupt and streamed to the host computer using

SCB UART through the USB-UART bridge, built into the CY8CKIT-044 Pioneer Kit.

Figure 15. PSoC4 SCB UART project schematic.

The test data are generated on 125 Hz WDT Timer0. The Chart component is configured for

Custom Frame format, 4 channels, int16 data type. The SCB UART is configured for Tx only,

115k rate, Tx buffer size set to 128 bytes. The UART output is assigned to the hidden Pin_7[1],

which is directly connected to the onboard USB-UART bridge on the CY8CKIT-044 board

(Figure 17). The SerialPlot software viewport and configuration page are shown on Figure 16.

Figure 16. SerialPlot output and settings: Custom Frame mode; Frame Start: “0xAA, 0xBB”;
#Channels: 4; Frame Size: Fixed, Size=4; Number Type: int16; Checksum Enabled: False.

SerialPlot: interface for real-time data charts PSoC Component datasheet

Page 22 of 22 Rev. *B

Project essential code:
int16 v1,v2,v3,v4;

for(;;)

{

 if(isrTimer_fla != 0)

 {

 isrTimer_flag = 0;

 GenerateSignal();

 Chart_1_Plot(v1, v2, v3, v4);

 }

}

// array of data channels

// monitor for Timer interrupt

// reset flag

// update values v1-v4

// plot values

Figure 17. Project annotation using KIT-044 v0.2 annotation component. The hidden SCB UART
Tx Pin_7[1], directly connected to the onboard USB-UART bridge, is shown in pink.

https://community.infineon.com/t5/Code-Examples/KIT-044-annotation-component-for-CY8CKIT-044-PSoC4M-Pioneer-Kit/m-p/44984#M118

