

ExcelonTM Ultra QSPI F-RAM Library User
Guide

Cypress Semiconductor

198 Champion Court

San Jose, CA 95134-1709

www.cypress.com

http://www.cypress.com/

© Cypress Semiconductor Corporation, 2007-2017. This document is the property of Cypress Semiconductor Corporation
and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or
referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United
States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as
specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable
license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source
code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your
organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through
resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents
that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software
solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the
Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this
document without further notice. Cypress does not assume any liability arising out of the application or use of any product
or circuit described in this document. Any information provided in this document, including any sample design information
or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly
design, program, and test the functionality and safety of any application made of this information and any resulting product.
Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended
for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices
or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage
(“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be
reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not
liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related
to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB,
F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a
more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their
respective owners.

Quad SPI Driver for NXP controller, Doc Rev. ** 3

1. Quad SPI Driver Details

This user guide summarizes the APIs written in spifi_fram (.h/.c) file along with the LPCExpresso/uVision Example project
provided by Cypress Semiconductors. Each function has been supplemented by user comments to help understand the
usage. Revision 1.0 of this release covers limited features of the device. The detailed feature set of Cypress’ Quad SPI F-
RAM can be found in the device datasheet. The APIs listed here are for enabling easy usage of the Quad SPI F-RAM
features and are not an official release of driver support from Cypress Semiconductors. Users are encouraged to leverage
these APIs for building their end applications.

Application Programming Interface

The QSPI F-RAM APIs are declared in \QSPI\Inc\spifi_fram.h file and declared in \QSPI\Src\spifi_fram.c. Following table
provides summary of all the supported APIs for Revision 1.0 of this release. Unless specified explicitly the description is
applicable only for the Quad SPI F-RAM device.

Sr
No API Description Notes

1
void FRAM_Write(spifiFRAM_T *,uint32_t
Addr,uint32_t *writeBuff,uint32_t bytes);

This API performs
write operation
(Opcode 0x02) to
the device

Device must be write enabled
(FRAM_WriteEnable()) prior to
writing into the device. This API
performs write of length “bytes”
bytes stored in array pointed by
“*writeBuff”, starting at location
“Addr” in the F-RAM. The API
assumes that the controller is in a
known operating mode (SPI, DPI
or QPI)

2
void FRAM_Read(spifiFRAM_T *,uint32_t
Addr,uint32_t *writeBuff,uint32_t bytes);

This API performs
read operation
(Opcode 0x03) to
the device

This API performs read of length
“bytes” bytes stored in array
pointed by “*writeBuff”, starting at
location “Addr” in the F-RAM. The
API assumes that the controller is
in a known operating mode (SPI,
DPI or QPI)

3 void FRAM_WriteEnable(spifiFRAM_T *fram);

Issues WREN (0x06)
opcode to the
device

4 void FRAM_WriteDisable(spifiFRAM_T *fram);

Issues WRDI (0x04)
opcode to the
device

5

void
FRAM_StatusRegisterWriteDisable(spifiFRAM_T
*fram,Bool_T);

This API will
set/reset the Status
register write enable
bit in Status
Register.

All these MPNs will read/write
into Status or configuration
registers.
A WREN command should be
issued for a write operation into
a register.

6 void FRAM_TBPROT(spifiFRAM_T *fram,Bool_T);
This API will
set/reset the

Quad SPI Driver for NXP controller, Doc Rev. ** 4

Sr
No API Description Notes

TBPROT bit in Status
Register.

7
void FRAM_BlockProtect(spifiFRAM_T
*fram,BLOCK_PROTECT_T BP);

This API will modify
the block protection
bits in Status
Register.

8 WIP FRAM_WIP(spifiFRAM_T *fram);

This API will return
the value of WIP bit
in Status Register.

9
void FRAM_SetLatency(spifiFRAM_T *fram,uint8_t
);

This API will update
the memory read
Latency values.

10 uint8_t FRAM_GetLatency(spifiFRAM_T *fram);

This API will return
memory read
latency values.

11
void FRAM_SetQuadMode(spifiFRAM_T
*fram,Bool_T);

This API will
enable/disable Quad
mode of device

12 uint8_t FRAM_GetQuadMode(spifiFRAM_T *fram);

This API will return
the Quad Mode bit
value in
configuration
register 1

13
FRAM_ERR_T FRAM_SetQPI(spifiFRAM_T
*fram,Bool_T);

This API will
enable/disable QPI
mode

14 void FRAM_SetIO3R(spifiFRAM_T *fram,Bool_T);

This API will
Enbale/disbale the
IO3 reset function

15
FRAM_ERR_T FRAM_SetDPI(spifiFRAM_T
*fram,Bool_T);

This API will
enable/disable DPI
mode

16
void FRAM_SetOuputImpedance(spifiFRAM_T
*fram,uint8_t OI);

This API will update
the
Outputimpedence
value in CR4 register

17
void FRAM_SetDPDPOR(spifiFRAM_T
*fram,Bool_T);

This API will
Enable/Disable the
Deep power down
on POR feature.

18
void FRAM_SetRegisterLatency(spifiFRAM_T
*fram,uint8_t);

This API will update
the register read
latency value.

Quad SPI Driver for NXP controller, Doc Rev. ** 5

Sr
No API Description Notes

19 uint8_t SpifiFram_config(spifiFRAM_T *fram);

This API will modify
all the mode bits
and reset the device
into SPI mode. Read
all the registers and
update the static
register values

The F-RAM device can be
configured in several operating
modes (SPI, DPI or QPI) and can
have several register settings.
This API is written specifically to
implement a “Go Home” feature
in case the controller faces a
miss-match of operating mode.
For eg: during a sudden power
cycle, the F-RAM device will
retain its state but the controller
will execute a power-up routine
and will not be able to
communicate with the F-RAM
device. It is recommended to
implement similar function in end
application

20
void FRAM_WriteSerialNumber(spifiFRAM_T
*,uint32_t *);

 This API will write
the Serial number
register with the
user required value

SN Register is an 8-byte
register. Read function will read
the device’s serial number and
store it in SN_Reg array of
operating_mode structure The
argument passed to Write
function must be a pointer to an
8-byte array containing value of
new Serial number

21
void FRAM_ReadSerialNumber(spifiFRAM_T
*,uint32_t *);

 This API will read
the serial number
register

Revision History

Document Revision History

Document Title: ExcelonTM Ultra QSPI F-RAM Library User Guide

Document Number: 001-00000 Rev **

Revision Issue Date Origin of

Change

Description of Change

** VINI New Spec

