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1.   Quad SPI Driver Details 

 
 

 

This user guide summarizes the APIs written in spifi_fram (.h/.c) file along with the LPCExpresso/uVision Example project 
provided by Cypress Semiconductors. Each function has been supplemented by user comments to help understand the 
usage. Revision 1.0 of this release covers limited features of the device. The detailed feature set of Cypress’ Quad SPI F-
RAM can be found in the device datasheet. The APIs listed here are for enabling easy usage of the Quad SPI F-RAM 
features and are not an official release of driver support from Cypress Semiconductors. Users are encouraged to leverage 
these APIs for building their end applications.  
  
 

Application Programming Interface 
 
The QSPI F-RAM APIs are declared in \QSPI\Inc\spifi_fram.h file and declared in \QSPI\Src\spifi_fram.c. Following table 
provides summary of all the supported APIs for Revision 1.0 of this release. Unless specified explicitly the description is 
applicable only for the Quad SPI F-RAM device. 
 
 

Sr 
No API Description Notes 

1 
void FRAM_Write(spifiFRAM_T *,uint32_t 
Addr,uint32_t *writeBuff,uint32_t bytes); 

This API performs 
write operation 
(Opcode 0x02) to 
the device 

Device must be write enabled 
(FRAM_WriteEnable()) prior to 
writing into the device. This API 
performs write of length “bytes” 
bytes stored in array pointed by 
“*writeBuff”, starting at location 
“Addr” in the F-RAM. The API 
assumes that the controller is in a 
known operating mode (SPI, DPI 
or QPI) 

2 
void FRAM_Read(spifiFRAM_T *,uint32_t 
Addr,uint32_t *writeBuff,uint32_t bytes); 

This API performs 
read operation 
(Opcode 0x03) to 
the device 

This API performs read of length 
“bytes” bytes stored in array 
pointed by “*writeBuff”, starting at 
location “Addr” in the F-RAM. The 
API assumes that the controller is 
in a known operating mode (SPI, 
DPI or QPI) 

3 void FRAM_WriteEnable(spifiFRAM_T *fram); 

Issues WREN (0x06) 
opcode to the 
device 

  

4 void FRAM_WriteDisable(spifiFRAM_T *fram); 

Issues WRDI (0x04) 
opcode to the 
device   

5 

void 
FRAM_StatusRegisterWriteDisable(spifiFRAM_T 
*fram,Bool_T); 

This API will 
set/reset the Status 
register write enable 
bit in Status 
Register.  

All these MPNs will read/write 
into Status or configuration 
registers.                                                                                               
A WREN command should be 
issued for a write operation into 
a register.  

6 void FRAM_TBPROT(spifiFRAM_T *fram,Bool_T); 
This API will 
set/reset the 
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Sr 
No API Description Notes 

TBPROT bit in Status 
Register.  

7 
void FRAM_BlockProtect(spifiFRAM_T 
*fram,BLOCK_PROTECT_T BP); 

This API will modify 
the block protection 
bits in Status 
Register.  

8 WIP FRAM_WIP(spifiFRAM_T *fram); 

This API will return 
the value of WIP bit 
in Status Register.  

9 
void FRAM_SetLatency(spifiFRAM_T *fram,uint8_t 
); 

This API will update 
the memory read 
Latency values.  

10 uint8_t FRAM_GetLatency(spifiFRAM_T *fram); 

This API will return 
memory read 
latency values.  

11 
void FRAM_SetQuadMode(spifiFRAM_T 
*fram,Bool_T); 

This API will 
enable/disable Quad 
mode of device 

12 uint8_t FRAM_GetQuadMode(spifiFRAM_T *fram); 

This API will return 
the Quad Mode bit 
value in 
configuration 
register 1 

13 
FRAM_ERR_T FRAM_SetQPI(spifiFRAM_T 
*fram,Bool_T); 

This API will 
enable/disable QPI 
mode 

14 void FRAM_SetIO3R(spifiFRAM_T *fram,Bool_T); 

This API will 
Enbale/disbale the 
IO3 reset function 

15 
FRAM_ERR_T FRAM_SetDPI(spifiFRAM_T 
*fram,Bool_T); 

This API will 
enable/disable DPI 
mode 

16 
void FRAM_SetOuputImpedance(spifiFRAM_T 
*fram,uint8_t OI); 

This API will update 
the 
Outputimpedence 
value in CR4 register 

17 
void FRAM_SetDPDPOR(spifiFRAM_T 
*fram,Bool_T); 

This API will 
Enable/Disable the 
Deep power down 
on POR feature.  

18 
void FRAM_SetRegisterLatency(spifiFRAM_T 
*fram,uint8_t); 

This API will update 
the register read 
latency value.  
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Sr 
No API Description Notes 

19 uint8_t SpifiFram_config(spifiFRAM_T *fram); 

This API will modify 
all the mode bits 
and reset the device 
into SPI mode. Read 
all the registers and 
update the static 
register values 

The F-RAM device can be 
configured in several operating 
modes (SPI, DPI or QPI) and can 
have several register settings. 
This API is written specifically to 
implement a “Go Home” feature 
in case the controller faces a 
miss-match of operating mode. 
For eg: during a sudden power 
cycle, the F-RAM device will 
retain its state but the controller 
will execute a power-up routine 
and will not be able to 
communicate with the F-RAM 
device. It is recommended to 
implement similar function in end 
application  

20 
void FRAM_WriteSerialNumber(spifiFRAM_T 
*,uint32_t *); 

 This API will write 
the Serial number 
register with the 
user required value 

SN Register is an 8-byte 
register. Read function will read 
the device’s serial number and 
store it in SN_Reg array of 
operating_mode structure The 
argument passed to Write 
function must be a pointer to an 
8-byte array containing value of 
new Serial number 

21 
void FRAM_ReadSerialNumber(spifiFRAM_T 
*,uint32_t *); 

 This API will read 
the serial number 
register  
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