
Introduction to Digital Peripherals
Dheeraj Kamath - Applications Engineer

WW 20 17

2 CYPRESS CONFIDENTIAL

Objective

▪ By the end of this training, you will

✓ Learn the digital peripherals available in Cypress’ PSoC 6

✓ Understand their basic functions

✓ Learn how to use them in an application using ModusToolbox

Hardware:

PSoC6 BLE Pioneer Kit

PSoC6 WIFI-BT Pioneer Kit

CY8CPROTO-062-4343W PSoC6 Prototyping Kit

Software:

ModusToolbox 2.1

3 CYPRESS CONFIDENTIAL

▪ Recap

▪ Quick overview: ModusToolbox 2.1

▪ Introduction

− Digital Architecture

▪ Smart-IO

▪ TCPWM

▪ SCBs

▪ Exercises

Agenda

4 CYPRESS CONFIDENTIAL

Recap

In the previous training we understood:

✓what ModusToolbox is

✓what it comprises

✓How to create a project

✓ the directory structure

✓ different tools and configurators

✓ terminologies like HAL, BSP, PDL

✓ different ecosystems supported by ModusToolbox
Hardware

Peripheral Driver Library (PDL)

Hardware Abstraction Layer (HAL)

Board Support Package (BSP)

Application

5 CYPRESS CONFIDENTIAL

ModusToolbox 2.1

▪ No longer called ModusToolbox IDE

▪ Proxy Handling Improvements

▪ Upgrades to Tools and Configurators

▪ OpenOCD 3.0

▪ Offline Support Package

▪ Support for third party IDEs

✓ IAR Embedded Workbench

✓ Keil ARM-MDK

✓ Visual Studio Code (VSCode)

What’s new?

6 CYPRESS CONFIDENTIAL

Visual Studio Code

Yes, now you
can work in
dark mode!!!

7 CYPRESS CONFIDENTIAL

Product Versioning

▪ The ModusToolbox installation

package is versioned as

MAJOR.MINOR.PATCH. The file located

at /ModusToolbox/tools_2.1/version-2.1.0.xml

also indicates the build number

▪ Multiple versions installed in parallel in

the same ModusToolbox directory

▪ Flexibility to use the version you want

✓ Using Application Makefile

✓ Set CY_TOOLS_PATH in environment

variable

88 CYPRESS CONFIDENTIAL

Introduction

9 CYPRESS CONFIDENTIAL

PSoC6 Device
Architecture

10 CYPRESS CONFIDENTIAL

PSoC6 Digital Peripherals

▪ Programmable Digital

✓ Smart-IO - programmable logic fabric that enables Boolean

operations on signals passing through it

▪ Fixed-Function Digital

✓ Timer/Counter/PWM Block (TCPWM) –

→ Timer-counter with compare

→ Timer-counter with capture

→ Quadrature decoding

→ Pulse width modulation (PWM)

✓ Serial Communication Blocks (SCB) – digital block that is

configurable as UART, I2C or SPI interfaces

✓ USB, QSPI, SD Host Controller (out of scope for this training)

2 x Smart-IO Ports

32 x TCPWM

11 CYPRESS CONFIDENTIAL

High Speed Input Output Matrix (HSIOM)

▪ Contains multiplexers to connect between the selected peripheral and the pin.

12 CYPRESS CONFIDENTIAL

Smart-IO

▪ The Smart I/O block sits between the GPIO

pins and the high-speed I/O matrix

(HSIOM) and is dedicated to a single port.

▪ Smart I/O supports:

✓ Deep Sleep operation

✓ Boolean operations without CPU intervention

✓ Asynchronous or synchronous (clocked)

operation

▪ Three selectable input sources

✓ another LUT

✓ an internal resource

✓ an external signal from a GPIO pin

13 CYPRESS CONFIDENTIAL

Smart-IO Configurator

14 CYPRESS CONFIDENTIAL

Lookup Table (LUT)

15 CYPRESS CONFIDENTIAL

Using Smart-IO in your Application

Steps:

▪ Go to design.modus file and enable Smart-IO. Use the Smart-IO configurator to define the

inputs, the outputs and the logical operations to be performed.

▪ Make use of these APIs (basic) to start the Smart-IO block

Cy_SmartIO_Init(SMARTIO_HW, &SMARTIO_config); - Initializes the SMART-IO Block

Cy_SmartIO_Enable(SMARTIO_HW); - Enables it

Refer to the code example ”Ramping LED using Smart-IO” for more information.

Note: No HAL yet, support only through PDL.

16 CYPRESS CONFIDENTIAL

Smart-IO Configurator

Exercise 1:

Configure a PWM to generate a frequency of 1Hz with 50% duty cycle. Route this signal to pin 9[0] using the Smart-IO Block.

In firmware read the output on pin 9[0] and write to LED9 (P13_7) and observe the LED blinking every second.

Exercise 2:

Create a LUT such that it functions as a 8-bit counter. Route the three output signals of the LUT to the RGB LEDs and

observe the colors as shown in the below table.

LUT3 LUT2 LUT1 Color

0 0 0 OFF

0 0 1 RED

0 1 0 GREEN

0 1 1 YELLOW

1 0 0 BLUE

1 0 1 PINK

1 1 0 INDIGO

1 1 1 WHITE

Refer mtb_02_ex01_smartio_rgb

project which implements the

solution to both the exercises.

17 CYPRESS CONFIDENTIAL

Smart-IO Configurator

Exercise 2 LUT Logic Explained:

Present State Next State

LUT4 LUT2 LUT1 LUT4 LUT2 LUT1

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 1 1 1

1 1 1 0 0 0

Refer mtb_02_ex01_smartio_rgb

project which implements the

solution to both the exercises.

18 CYPRESS CONFIDENTIAL

Timer Counter Pulse Width Modulation

• Multi-functional, configurable digital block

containing 32 counters. Each can be 16

or 32-bit wide.

• Modes:

✓ Counter – counts events, for e.g.,

number of pulse edges

✓ Timer – sets up a counter to generate

time intervals

✓ PWM – Generates pulses based on the

duty cycle, period and compare values

• Up, Down, and Up/Down counting modes

• Clock prescaling (division by 1, 2, 4, ...

64, 128)

19 CYPRESS CONFIDENTIAL

Timer Counter Pulse Width Modulation

Provides two interfaces:

▪ I/O signal interface:

❖ Consists of input triggers:

✓ Reload

✓ Start

✓ Stop

✓ Count

✓ Capture

❖ Output signals:

✓ pwm

✓ pwm_n

✓ overflow (OV)

✓ underflow (UN)

✓ capture/compare (CC)).

▪ Interrupts: Provides interrupt request signals from each

counter, based on TC or CC conditions

20 CYPRESS CONFIDENTIAL

Counter Functionality

Configurable Modes

21 CYPRESS CONFIDENTIAL

Understanding HAL

▪ It is a generic interface that can be used across multiple product families

▪ The focus is on ease-of-use and portability

API Structure

▪ _init function – Allocates a block, configures it and enables it.

▪ _free function – Disables a block, releases resources

▪ Other functions – provide block specific functionality

22 CYPRESS CONFIDENTIAL

Timer

▪ Increments/decrements a counter between 0 and the value stored in the PERIOD

register.

▪ Used for:

✓ Timing a specific delay

✓ Counting the occurrence of a specific event

23 CYPRESS CONFIDENTIAL

Using Timer in your Application

Steps:

Using HAL APIs:

First configure the timer parameters using cyhal_timer_cfg_t and then initialize and enable it as shown:

const cyhal_timer_cfg_t led_blink_timer_cfg =

{

.compare_value = 0, /* Timer compare value, not used */

.period = LED_BLINK_TIMER_PERIOD, /* Defines the timer period */

.direction = CYHAL_TIMER_DIR_UP, /* Timer counts up */

.is_compare = false, /* Don't use compare mode */

.is_continuous = true, /* Run timer indefinitely */

.value = 0 /* Initial value of counter */

};

cyhal_timer_init(&led_blink_timer, NC, NULL);

cyhal_timer_configure(&led_blink_timer, &led_blink_timer_cfg);

cyhal_timer_set_frequency(&led_blink_timer, LED_BLINK_TIMER_CLOCK_HZ);

24 CYPRESS CONFIDENTIAL

Using Timer in your Application

Additionally you can register the callback functions to be triggered when a specific event occurs using the

following APIs:

/* Assign the ISR to execute on timer interrupt */

cyhal_timer_register_callback(&led_blink_timer, isr_timer, NULL);

/* Set the event on which timer interrupt occurs and enable it */

cyhal_timer_enable_event(&led_blink_timer, CYHAL_TIMER_IRQ_TERMINAL_COUNT,

7, true);

Then you can go ahead and start the timer!

/* Start the timer with the configured settings */

cyhal_timer_start(&led_blink_timer);

25 CYPRESS CONFIDENTIAL

Using Timer in your Application

Steps:

Using PDL APIs:

First configure the timer parameters using the design.modus file and then use the following APIs to start the

timer:

/* Initialize the interrupt */

Cy_SysInt_Init(&timer_isr_config, timer_isr);

NVIC_EnableIRQ(timer_isr_config.intrSrc);

/* Start the timer */

Cy_TCPWM_Counter_Init(TIMER_HW, TIMER_NUM, &TIMER_config);

Cy_TCPWM_Counter_Enable(TIMER_HW, TIMER_NUM);

Cy_TCPWM_TriggerStart(TIMER_HW, TIMER_MASK);

26 CYPRESS CONFIDENTIAL

Counter

▪ The capture functionality increments and decrements a counter between 0 and

PERIOD. When the capture event is activated the counter value COUNTER is copied

to CC.

▪ Used for:

✓ Measuring the width of a pulse

✓ Measuring the frequency of a signal

27 CYPRESS CONFIDENTIAL

Using Counter in your Application

Steps:

Using PDL APIs (HAL not supported):

First configure the timer parameters using the design.modus file and then use the following APIs to start the
timer:

/* Start the timer */

Cy_TCPWM_Counter_Init(COUNTER_HW, COUNTER_NUM, &COUNTER_config);

Cy_TCPWM_Counter_Enable(COUNTER_HW, COUNTER_NUM);

Cy_TCPWM_TriggerStart(COUNTER_HW, COUNTER_MASK);

To read the captured values use:

Cy_TCPWM_Counter_GetCapture()

28 CYPRESS CONFIDENTIAL

Timer/Counter

Exercise 3:

Configure a timer to generate an interrupt every 1s and toggle the LED. Use only HAL APIs.

Refer mtb_02_ex04_timer_hal project which implements the solution to this exercise.

Exercise 4:

Configure a timer to generate an interrupt every 1s and toggle the LED. Use only PDL APIs.

Refer mtb_02_ex05_timer_pdl project which implements the solution to this exercise. Compare this with the previous

exercise. Which do you think was easier?

Exercise 5:

• Generate a 250 Hz signal with any duty cycle using PWM

• Use a Counter to measure counts between PWM pulses

• Print measured frequency to serial terminal using UART

Refer mtb_02_ex06_counter_dutycycle project which implements the solution to this exercise.

29 CYPRESS CONFIDENTIAL

PWM

30 CYPRESS CONFIDENTIAL

Using PWM in your Application

Steps:

Using HAL APIs:

Add the following code directly in main.c to interact with the PWM block

cyhal_pwm_init(&pwm_obj, CYBSP_USER_LED, NULL);

cyhal_pwm_set_duty_cycle(&pwm_obj, 50, 1);

cyhal_pwm_start(&pwm_obj);

Using PDL APIs:

Configure a PWM in design.modus file with the required parameters and then call the following APIs:

Cy_TCPWM_PWM_Init(PWM_HW, PWM_NUM, &PWM_config);

Cy_TCPWM_PWM_Enable(PWM_HW, PWM_NUM);

Cy_TCPWM_TriggerStart(PWM_HW, PWM_MASK);

31 CYPRESS CONFIDENTIAL

PWM

Exercise 6:

Configure a PWM to generate a frequency of 1Hz with 50% duty cycle using HAL and PDL APIs. Check if there is a conflict.

Solution key: Refer mtb_02_ex02_pwm_blinkyled project for this solution.

Exercise 7:

Configure a PWM to increase the brightness of the LED to its maximum and then decrement to its lowest. Hint: Vary the duty

cycle every 500ms to observe the output on the LED.

Solution key: Refer mtb_02_ex03_pwm_brightness_control project for this solution.

32 CYPRESS CONFIDENTIAL

Serial Communication Block

• Multi-functional, configurable digital communication block

• Can be made to function as communication components:

✓ I2C

✓ SPI

✓ UART

• Standard SPI master and slave functionality with Motorola,

Texas Instruments, and National Semiconductor protocols

Standard

• UART functionality

• Standard I2C master and slave functionality

• Trigger outputs for connection to DMA

• Multiple interrupt sources to indicate status of FIFOs and

transfers

33 CYPRESS CONFIDENTIAL

Serial Communication Block

• Universal asynchronous transmitter and receiver

• Half duplex, full duplex,, only TX and only RX modes

• Two wire – Transmit (TX) and Receive (RX)

• No Clock line

• Typically used baud rates – 9600 to 115200 bps

• Additional pins – flow control functionality

• Usually between two devices

UART

34 CYPRESS CONFIDENTIAL

Serial Communication Block

• Universal asynchronous transmitter and receiver

• Half duplex, full duplex,, only TX and only RX modes

• Two wire – Transmit (TX) and Receive (RX)

• No Clock line

• Typically used baud rates – 9600 to 115200 bps

• Additional pins – flow control functionality

• Usually between two devices

UART

35 CYPRESS CONFIDENTIAL

Serial Communication Block

• Universal asynchronous transmitter and receiver

• Half duplex, full duplex,, only TX and only RX modes

• Two wire – Transmit (TX) and Receive (RX)

• No Clock line

• Typically used baud rates – 9600 to 115200 bps

• Additional pins – flow control functionality

• Usually between two devices

• Inter-integrated circuit (IIC / I2C)

• Half duplex protocol

• Two wire – Serial Data (SDA) and Serial Clock (SCL)

• Typically used clock rates – 100 kHz to 400 kHz

• A master can talk to 127 slaves

UART I2C

36 CYPRESS CONFIDENTIAL

Serial Communication Block

• Universal asynchronous transmitter and receiver

• Half duplex, full duplex,, only TX and only RX modes

• Two wire – Transmit (TX) and Receive (RX)

• No Clock line

• Typically used baud rates – 9600 to 115200 bps

• Additional pins – flow control functionality

• Usually between two devices

• Inter-integrated circuit (IIC / I2C)

• Half duplex protocol

• Two wire – Serial Data (SDA) and Serial Clock (SCL)

• Data rates from 100 kbps to 1000kbps

• A master can talk to 127 slaves

• Serial peripheral interface

• Full duplex protocol

• Four wire –

•Master Out Slave In (MOSI)

•Master In Slave Out (MISO)

•Serial clock (SCK)

•Slave Select (SS)

• Typically used data rates – 1 Mbps to 8 Mbps

UART I2C SPI

37 CYPRESS CONFIDENTIAL

Serial Communication Block

• Universal asynchronous transmitter and receiver

• Half duplex protocol, can TX and RX data but not at the

same time

• Two wire – Transmit (TX) and Receive (RX)

• No Clock line

• Typically used baud rates – 9600 to 115200 bps

• Additional pins – flow control functionality

• Usually between two devices

• Inter-integrated circuit (IIC / I2C)

• Half duplex protocol

• Two wire – Serial Data (SDA) and Serial Clock (SCL)

• Typically used clock rates – 100 kHz to 400 kHz

• A master can talk to 127 slaves

• Serial peripheral interface

• Full duplex protocol

• Four wire –

•Master Out Slave In (MOSI)

•Master In Slave Out (MISO)

•Serial clock (SCK)

•Slave Select (SS)

• Typically used data rates – 1 Mbps to 8 Mbps

UART I2C SPI

38 CYPRESS CONFIDENTIAL

Serial Communication Block

• Universal asynchronous transmitter and receiver

• Half duplex protocol, can TX and RX data but not at the

same time

• Two wire – Transmit (TX) and Receive (RX)

• No Clock line

• Typically used baud rates – 9600 to 115200 bps

• Additional pins – flow control functionality

• Usually between two devices

• Inter-integrated circuit (IIC / I2C)

• Half duplex protocol

• Two wire – Serial Data (SDA) and Serial Clock (SCL)

• Typically used clock rates – 100 kHz to 400 kHz

• A master can talk to 127 slaves

• Serial peripheral interface

• Full duplex protocol

• Four wire –

•Master Out Slave In (MOSI)

•Master In Slave Out (MISO)

•Serial clock (SCK)

•Slave Select (SS)

• Typically used data rates – 1 Mbps to 8 Mbps

UART I2C SPI

39 CYPRESS CONFIDENTIAL

UART

Exercise 8:

 Use the project from Exercise 6 (Generate PWM signal of 100 Hz frequency with 10% duty cycle)

 Print the PWM parameters (duty cycle, compare value, period) on a PC terminal using UART

 Control PWM duty cycle from the PC (increase or decrease by 10% upon two different keypresses)

Solution key: Use mtb_02_ex06_counter_dutycycle project for reference.

Useful APIs:

Retarget-IO Middleware – cy_retarget_io_init(CYBSP_DEBUG_UART_TX, CYBSP_DEBUG_UART_RX, 115200);

Then make use of standard IO library functions like printf, sprintf etc. to read or print something to the terminal.

40 CYPRESS CONFIDENTIAL

I2C
Exercise 9:

Control PWM brightness by writing data from an I2C master (use KitProg3 as master; using Bridge Control panel (BCP) on

PC)

Solution key: Refer mtb_02_ex07_i2c_brightness_control project for this solution.

Useful APIs:

/* Allocate and initialize a I2C resource and auto select a clock */

cyhal_i2c_init(&i2c_slave, CYBSP_I2C_SDA, CYBSP_I2C_SCL, NULL);

/* Configure the I2C resource to be slave */

cyhal_i2c_configure (&i2c_slave, &i2c_slave_cfg);

/* Configure I2C slave write buffer for I2C master to write into */

cyhal_i2c_slave_config_read_buff(&i2c_slave, i2c_write_buffer, SL_WR_BUFFER_SIZE);

/* Configure I2C slave read buffer for I2C master to read from */

cyhal_i2c_slave_config_write_buff(&i2c_slave, i2c_read_buffer, SL_RD_BUFFER_SIZE);

41 CYPRESS CONFIDENTIAL

SPI

Exercise 10:

Setup PSoC as both an SPI master and slave. SPI master sends a command every second to a SPI slave to toggle the LED.

Use HAL APIs.

Solution key: Refer mtb_02_ex08_spi_master project for this solution.

Useful APIs:

cyhal_spi_init() – Initializes the SPI block and configures it as slave or master.

cyhal_spi_set_frequency() – set the SPI baud rate

cyhal_spi_send() – Sends the command

cyhal_spi_recv() – Receives the command

42 CYPRESS CONFIDENTIAL

▪ ModusToolbox User Guide

▪ Cypress Github Landing Page

▪ PSoC6 Architecture TRM

Resources

https://www.cypress.com/file/492951/download
https://github.com/cypresssemiconductorco/amazon-freertos
https://www.cypress.com/file/399201/download

43 CYPRESS CONFIDENTIAL

▪ https://community.cypress.com/welcome

▪ Send your queries to ddka@cypress.com

Contact Information

https://community.cypress.com/welcome
mailto:ddka@cypress.com

44

